

Generic UART Model
Datasheet

Rev. 1.0.2 – 11/05/2007

Author: Bert van Moll

 2

Table Of Contents

1 Introduction ... 3

2 UART Features.. 3
2.1 Bus Interface.. 5

2.2 Register Block ... 5

2.3 Baud Rate Generator.. 5

2.4 Receive FIFO... 5

2.5 Transmit FIFO ... 5

2.6 Receiver Logic... 6

2.7 Transmitter Logic .. 6

2.8 Interrupt Generator... 6

2.9 Modem .. 6

2.10 IrDA Modulation ... 6

2.11 DMA Interface... 6

2.12 Flow Control.. 7

3 Register description ... 8
3.1 Register map.. 8

3.2 Receiver Buffer Register .. 8

3.3 Transmitter Holding Register ... 8

3.4 Interrupt Enable Register ... 8

3.5 Interrupt Identification Register ... 9

3.6 FIFO Control Register ..10

3.7 Line Control Register..11

3.8 Line Status Register ..12

4 Architecture and Operation .. 13
4.1 Overview ..13

4.2 RBR and THR register callback block...14

4.3 IER Register Write Callback block ...15

4.4 IIR and FCR register callback block..16

4.5 LSR Register Read Callback block ...17

4.6 Transmit and Receive FIFO blocks ...18

4.7 Serial Transmit block..20

4.8 Serial Receive block ...22

4.9 Handle Interrupts block...23

5 Test Setup... 25
5.1 Testbench..25

5.2 Serial Dummy Device ...27

6 List of Figures .. 29

7 List of Tables.. 29

 3

1 Introduction
This document describes a generic UART model. This model was created based on

the common functionality that was found in three different UART IPs. For now, the

generic UART model contains only the basic functionality of a UART. Only the most

important features of an UART are implemented. Additional features can be added to

the model later.

The model is created using the SCML, OSCI TLM and NXP GMFL library

components on top of the standard SystemC features. The generic UART model was

first created using only SystemC, SCML and OSCI TLM features. Features from the

NXP GMFL library were added later.

2 UART Features
Figure 1 on the next page shows a schematic diagram of all features that were found

in common in the UART specifications that were studied. From all the common

features that were found, a selection of the most important features was made and

these were implemented in the generic UART model. Table 1 shows the common

features that are available in an UART IP, and it indicates if a feature is really

required for the operation of an UART, of if it is an optional feature that could be

added at a later point in time.

Table 1: UART Feature Table

Feature: Necessity: Generic UART Model:

Bus Interface Required Implemented.

Register Block Required Implemented.

Baud Rate Generator Optional Not implemented.

Receive FIFO Recommended Implemented. Can be disabled.

Transmit FIFO Recommended Implemented. Can be disabled.

Receiver Logic Required Implemented.

Transmitter Logic Required Implemented.

Interrupt Generator Recommended Implemented. Can be disabled.

Modem Optional Not implemented.

IrDA Modulation Optional Not implemented.

DMA Interface Optional Not implemented.

Flow Control Optional Not implemented.

 4

Figure 1: Schematic of all common features found in UARTs

Color Meaning

Black Necessary Common Features

Green Common, but implementation specific feature.

Blue Timing Specific Features

Orange Optional Common Features

Red Non-common Features

The following sections describe each feature in more detail and note how the feature

was implemented, or why the feature was left out of the generic UART model.

Bus

Interface

Register

Block

Receive

FIFO

Transmit

FIFO

DMA

Interface

Baud Rate

Generator

Modem Status &

Control

(HW Flow Control)

Transmitter

(Shift Register)

IrDA SIR

Modulator

Receiver

(Shift Register)

IrDA SIR

Demodulator

UART Clock

OUT2

Interrupt Generator

OUT1

DCD

RI

CTS

RTS

DSR

DTR

SIR Input

Serial Input

SIR Output

Serial Output

RX Ready
TX Ready

RX Request
TX Request

Clear RX Req.
Clear TX Req.

Interrupt Request

Additional Interrupt Lines

Clock

Reset

Address

Data In

Data Out

Baud Output

Status & Control

Status & Control

IRQ

IRQ

IR
Q

Control

Status & Control

IR
Q

S
ta

tu
s

&
 C

o
n

tr
o

l

Enable

Read/Write

Strobe/

Select
Output

Valid

Baud Rate

 5

2.1 Bus Interface
The bus interface is needed to connect the UART to a bus interconnect. This interface

is specific for the bus that the UART is connected to. All the UART IP specifications

that were studied implemented a different type of bus interface. To make this interface

generic for the generic UART model, a SCML PV Target port is used to communicate

with the bus. A transactor could be used to connect the generic UART to a specific

bus infrastructure.

Figure 2 shows the implementation of the PV Target Port in the generic UART model.

Figure 2: A PV Target Port is used to communicate between UART and the rest of a system.

2.2 Register Block
A register block is needed to control the UART functionality through the bus

interface. The registers control the operation and indicate the status of the UART. For

the generic UART model, only a few registers are needed to control the entire UART.

All registers are 32 bits wide. A detailed description of the registers is shown later in

this document.

2.3 Baud Rate Generator
Since the generic UART is modelled as a PV model without timing, there is no clock

signal in the model. This means that the baud rate generator, which divides the clock

frequency to provide the correct baud rate, is not needed in the un-timed generic

UART model.

2.4 Receive FIFO
The receive FIFO buffers the incoming serial data. While it is not really necessary to

have this FIFO buffer, it is a feature that is nice to have because it reduces the risk that

data is lost when a new data frame is received but the previous data has not been read

by the system yet.

The generic UART model has a receive FIFO. This FIFO can be disabled, by clearing

the FIFO Enable bit in the FCR register. The default size of the receive FIFO is 16

elements, but this can be changed at compile time.

When the interrupt is enabled, an interrupt will be triggered when the contents of the

receive FIFO reach the trigger level. This trigger level can be set in the FCR register.

2.5 Transmit FIFO
The transmit FIFO buffers the data that is coming from the system. When the transmit

logic is ready, data will be read from the transmit FIFO and sent out as a serial data

frame. This FIFO is not vital to the operation of an UART, but it is a nice feature to

PV Target Port

PV Bus,

Transactor or PV

Initiator

UART Register

Block

Generic UART

 6

have because it allows the system to write multiple data characters to the UART

without having to wait before each character is sent.

The generic UART model implements a transmit FIFO buffer. This FIFO can be

disabled, by clearing the FIFO Enable bit in the FCR register. The default size of the

receive FIFO is 16 elements, but this can be changed at compile time.

When the interrupt is enabled, an interrupt will be triggered when the contents of the

transmit FIFO drop below the trigger level. This trigger level can be set in the FCR

register.

2.6 Receiver Logic
To receive incoming serial data, some form of serial logic is needed in an UART. In

the generic UART model, the receiver logic gets the incoming serial data frame and

puts the data in the receive FIFO (if the FIFOs are enabled). When an error in the

incoming data frame is detected (Overflow Error, Parity Error, Framing Error or

Break Indication), the receive logic will set the line status flags in the LSR register

and trigger an interrupt.

2.7 Transmitter Logic
An UART needs transmitter logic to send serial data. The transmit block of the

generic UART model reads a data character from the transmit FIFO (or the THR

register if FIFOs are disabled), puts it into a serial character frame and sends it out.

2.8 Interrupt Generator
The Interrupt Generator will assert the interrupt line of the UART, when the status of

the UART indicates that an interrupt should be given. It is not required for the basic

operation of an UART that interrupts are generated, but it is a good feature to have

because it allows the UART to notify the system it is connected to when it needs

attention.

The generic UART model can indicate three different interrupts. The interrupt status

can be read from the IIR register. Each of the three interrupts can be enabled or

disabled by writing to the IER register.

2.9 Modem
The Modem block of an UART provides additional hardware signals for

synchronising and controlling data flow between two serial devices. Since it is not

really necessary for the basic operation of the UART, and because the generic model

is modelled at a higher abstraction level, the modem feature is not implemented in the

generic UART model.

2.10 IrDA Modulation
Serial Infra-Red (SIR) Data modulation and demodulation allows an UART to

generate and receive IrDA pulses for connecting to an infrared transceiver module.

This feature is not needed for the operation of an UART, so it is not implemented in

the generic UART model.

2.11 DMA Interface
A DMA Interface allows an UART to communicate directly with an external DMA

controller to place read and write requests. This is an optional feature and not

implemented in the generic UART model.

 7

2.12 Flow Control
Flow control can be used to let the UART control its own data flow. Hardware and/or

software flow control allows an UART to send and receive signals from the serial

device it is connected to and ‘automatically’ stop or start the sending or receiving of

serial data.

No form of flow control is implemented in the generic UART model, since it is not a

vital feature for the operation of an UART.

 8

3 Register description

3.1 Register map
Table 2 shows the complete register map of the generic UART model.

Table 2: Generic UART Memory Map

Address

Index:

Byte

Address:

Name: Description: Read/Write:

0 0x00 RBR Receiver Buffer Register Read Only

0 0x00 THR Transmitter Holding Register Write Only

1 0x04 IER Interrupt Enable Register Read & Write

2 0x08 IIR Interrupt Identification Register Read Only

2 0x08 FCR FIFO Control Register Write Only

3 0x0C LCR Line Control Register Read & Write

4 0x10 - Reserved Read & Write

5 0x14 LSR Line Status Register Read & Write

3.2 Receiver Buffer Register
The Receiver Buffer Register (RBR) is located on byte address 0x00. It is read-only;

writing to this address will access the THR register. Table 3 shows the bit definition

of this register.

Table 3: Receive Buffer Register bit definition

Bit Range Description R/W/RW Reset Value

31:8 Reserved R 0x00

7:0 Data Character R 0x00

When reading from this register, the UART will check if the FIFOs are enabled

(FCR[0] = 1). If FIFOs are enabled, the first element in the FIFO queue is returned. If

the FIFOs are not enabled, the value of the RBR register is returned.

3.3 Transmitter Holding Register
The Transmitter Holding Register (THR) is located on byte address 0x00. It is write-

only; reading from this address will access the RBR register. Table 4 shows the bit

definition of this register.

Table 4: Transmitter Holding Register bit definition

Bit Range Description R/W/RW Reset Value

31:8 Reserved R 0x00

7:0 Data Character R 0x00

If FIFOs are enabled (FCR[0] = 1), writing to this address will put the data in the

transmit FIFO. If FIFOs are not enabled (FCR[0] = 0), data is placed in the THR

register instead.

3.4 Interrupt Enable Register
The Interrupt Enable Register (IER) is located on byte address 0x04. Read and write

access is possible to the IER register. Table 5 shows the bit definition of this register.

 9

Table 5: Interrupt Enable Register bit definition

Bit Range Description R/W/RW Reset Value

31:8 Reserved RW 0x00

7:3 Reserved for future interrupts RW 0x00

2 Enable Line Status Interrupt RW 0x00

1 Enable THR Empty Interrupt RW 0x00

0 Enable Receive Data Available

Interrupt

RW 0x00

The IER masks the Line Status, THR Empty and Receive Data Available interrupts.

An interrupt can be enabled, by writing a ‘1’ to the corresponding bit in the IER

register. Only enabled interrupts can trigger the UART interrupt line and show up in

the IIR register.

3.5 Interrupt Identification Register
The Interrupt Identification Register (IIR) is located on byte address 0x08. It is read-

only; writing to this address will access the FCR register. Table 6 shows the bit

definition of this register.

Table 6: Interrupt Identification Register bit definition

Bit Range Description R/W/RW Reset Value

31:8 Reserved R 0x00

7:6 Same as FCR[0] R 0x00

5:4 Reserved for future use R 0x00

3:1 Interrupt Identification R 0x00

0 No Interrupt Pending R 0x01

The IIR register indicates what interrupt, if any, is pending. If bit 0 is ‘1’, no interrupt

is pending. If it is ‘0’, bits 3:1 indicate what kind of interrupt is pending. The three

possible interrupts are coded with their own interrupt ID and priority as shown in

Table 7.

Table 7: Interrupt ID

IIR[5:0]

ID:

Priority: Interrupt: Source:

000001 - No Interrupt Pending

000110 1 (high) Line Status Interrupt BI, FE, PE or OE set in LSR

000100 2 Receive Data Available Data received, or receive

FIFO trigger level reached.

000010 3 (low) THR Empty Interrupt THR Empty, or transmit

FIFO trigger level reached.

Line Status Interrupt.

The Line Status Interrupt is triggered when a line status error is detected in the

receiver logic. Reading the LSR register will clear this interrupt.

 10

Receive Data Available Interrupt.

If the FIFOs are enabled (FCR[0] = 1), this interrupt is generated when the receive

FIFO is filled to its trigger level (see FCR[7:6]). It can then be cleared by reading

from the RBR register until the contents of the receive FIFO drop below its trigger

level.

If the FIFOs are not enabled (FCR[0] = 0), this interrupt is generated when the RBR

register contains data. Reading from the RBR register will clear the interrupt.

THR Empty Interrupt.

If the FIFOs are enabled, this interrupt is generated when the contents of the transmit

FIFO drop below its trigger level (see FCR[5:4]). Writing to the THR until the

transmit FIFO is above the trigger level will clear the interrupt.

If FIFOs are not enabled, this interrupt indicates that the Transmitter Holding Register

is empty. Writing data to the THR will clear the interrupt. Reading the IIR register

when this interrupt is pending also clears the interrupt.

3.6 FIFO Control Register
The FIFO Control Register (FCR) is located at byte address 0x08. This register is

write-only; when reading from this address, the IIR register is accessed. Table 8

shows the bit definition of this register.

Table 8: FIFO Control Register bit definition

Bit Range Description R/W/RW Reset Value

31:8 Reserved W 0x00

7:6 Receiver FIFO Trigger Level W 0x00

5:4 Transmitter FIFO Trigger Level W 0x00

3:1 Reserved for future use W 0x00

0 Enable FIFOs W 0x01

The FCR register controls the receive and transmit FIFOs. Bit 0 has to be set to ‘1’ to

enable the FIFOs. If FCR[0] = 0, the other bits in the FCR register have no use.

The receiver FIFO trigger level bits (FCR[7:6]) and transmitter FIFO trigger level bits

(FCR[5:4]) determine the trigger level at which the UART will generate an interrupt

when accessing the FIFOs.

Table 9 and Table 10 show the value of the trigger level bits, and what FIFO level

they represent.

Table 9: Receive FIFO Trigger level control bits

FCR[7:6] Trigger Level Default (FIFO size = 16)

00 1 1

01 ¼ of FIFO size 4

10 ½ of FIFO size 8

11 FIFO size – 2 14

Table 10: Transmit FIFO Trigger level control bits

FCR[5:4] Trigger Level Default (FIFO size = 16)

00 1 1

 11

01 ¼ of FIFO size 4

10 ½ of FIFO size 8

11 FIFO size – 2 14

3.7 Line Control Register
The Line Control Register (LCR) is located at byte address 0x0C. The register allows

both read and written access. Table 11 shows the bit definition of this register.

Table 11: Line Control Register bit definition

Bit Range Description R/W/RW Reset Value

31:8 Reserved RW 0x00

7 Reserved for future use RW 0x00

6 Set Break (SB) RW 0x00

5 Stick Parity (SP) RW 0x00

4 Even Parity Select (EPS) RW 0x00

3 Parity Enabled (PE) RW 0x01

2 Number of Stop Bits (STB) RW 0x00

1:0 Word Length Select (WLS) RW 0x03

The LCR register controls the format of the serial data frame output of the UART.

Bit 6 can be set to force a break condition. Writing a ‘1’ to this bit will cause the start

bit of the serial data output frame to be set to ‘0’.

Bits 5:3 determine the parity options of the UART. Table 12 shows the possible parity

mode options:

Table 12: Parity Mode Options

PE - LCR[3] EPS – LCR[4] SP – LCR[5] Description

0 X X Parity is disabled. No parity

information will be sent or checked.

1 0 0 Odd parity mode. Data and parity bits

will have an odd number of 1s.

1 1 0 Even parity mode. Data and parity

bits will have an even number of 1s.

1 0 1 Stick 1 mode. Parity is always 1.

1 1 1 Stick 0 mode. Parity is always 0.

Bit 2 indicates the number of stop bits that should be used when sending a character

frame. However, this functionality has not yet been implemented in the generic

UART model, so the UART always sends a single stop bit.

Bits 1:0 determine the length of the data word in the serial character frame. Table 13

shows the valid options.

Table 13: Character Word Length options

FCR[1:0]: Character Word Length:

 12

00 5 bits

01 6 bits

10 7 bits

11 8 bits

3.8 Line Status Register
The Line Status Register (LSR) is located on byte address 0x14. This register is read-

only. Table 14 shows the bit definition of this register.

Table 14: Line Status Register bit definition

Bit Range Description R/W/RW Reset Value

31:8 Reserved R 0x00

7:6 Reserved for future use R 0x00

5 Transmitter Holding Register Empty R 0x01

4 Break Indication (BI) R 0x00

3 Framing Error (FE) R 0x00

2 Parity Error (PE) R 0x00

1 Overrun Error (OE) R 0x00

0 Data Ready (DR) R 0x00

If FIFOs are enabled, the Transmitter Holding Register Empty (THRE) bit (LSR[5]) is

set to ‘1’ when the contents of the transmit FIFO drop below the trigger level of the

transmit FIFO. The bit is cleared when the at least one byte is written to the FIFO.

When the FIFOs are disabled, the THRE bit is set to ‘1’ when the THR register is

empty and ready to accept new data. It is cleared when data is written to the THR

register.

The Break Indication bit (LSR[4]) is set to ‘1’ when the last serial character frame that

was received by the UART had its start bit set to ‘0’.

The Framing Error bit (LSR[3]) is set to ‘1’ when the last serial character frame that

was received by the UART had its stop bit set to ‘0’.

The Parity Error bit (LSR[2]) is set to ‘1’ when the parity of the last serial character

frame that was read by the UART does not match the parity mode set in the LCR

register.

The Overrun Error bit (LSR[1]) is set to ‘1’ when FIFOs are enabled and a character

frame is received while the receive FIFO is full, or when FIFOs are disabled and a

new character frame is received while the previous character has not yet been read

from the RBR register. In both cases, the incoming character will be lost.

The Data Ready bit (LSR[0]) is set to ‘1’ when there is data available in either the

RBR register or the receive FIFO. It is cleared when the RBR register is read or all the

contents of the receive FIFO have been read.

 13

4 Architecture and Operation

4.1 Overview
The generic UART model consists of several different module classes. Most of these

classes are either instances of, or classes derived from, GMFL feature classes. The

different modules are connected together by port-to-interface bindings. Figure 3

shows a block diagram of the generic UART model.

Figure 3: Block Diagram of the generic UART model.

 Port
 name

 inheritance

Class with name and inheritance classes

 Export: sc_export<…>
 Registered Call-back

 Interface Port to Interface bindings

 Input, Output: sc_in<bool>, sc_out<bool>
 Method Sensitivity

PV Target Port: PVTarget_port<…>

Function()
 Class method function

The following sections describe the module class blocks that are not just instances of

a GMFL feature class.

 14

4.2 RBR and THR register callback block

The RBR and THR register callback block is a class that derives from

gmfl_function_callback. This block implements the non-blocking read and write

callback functions that are attached to the RBR/THR register alias in the register

bank. Figure 4 shows the block diagram of this RegCB_RBR_THR_ReadWrite class.

Figure 4: The RBR and THR register read/write callback class

4.2.1 Port description

Table 15 lists the ports that are implemented in the RBR and THR register callback

block.

Table 15: RegCB_RBR_THR_ReadWrite class port description

Name: Type: Description:
p_rRBR gmfl_scml_memory_port<unsigned int> Connects to the RBR

register
p_rTHR gmfl_scml_memory_port<unsigned int> Connects to the THR

register

p_rFCR gmfl_scml_memory_port<unsigned int> Connects to the FCR

register

p_rLSR gmfl_scml_memory_port<unsigned int> Connects to the LSR

register

p_TX_FIFO FIFO_port<unsigned int> Connects to the

Transmit FIFO

p_RX_FIFO FIFO_port<unsigned int> Connects to the

Receive FIFO
p_InterruptEvent gmfl_channel_event_notify_port Used to notify the

Interrupt Event

p_TransmitEvent gmfl_channel_event_notify_port Used to notify the

Transmit Event

p_Clear_RX_Interrupt gmfl_channel_value_port<bool> Signal to clear the

receive interrupt.

4.2.2 Function description

void WriteCallback(unsigned int WriteData, unsigned int AccessSize,

unsigned int Offset)

RegCB_RBR_THR_ReadWrite
gmfl_function_callback

p_rRBR

p_rTHR

p_rFCR

p_rLSR

p_TX_FIFO

p_RX_FIFO

p_TransmitEvent

p_InterruptEvent

p_Clear_RX_Interrupt

ReadCallback

WriteCallback

 15

This function is registered as the non-blocking write callback of the rRBR_THR register

alias in the mRegisterBank memory.

This function first checks if the FIFOs are enabled, by reading the FIFO enable bit

from the FCR register via the p_rFCR port. If FIFOs are enabled, data is written to the

p_TX_FIFO port, if FIFOs are diabled, data is written to the p_rTHR port.

The THR Empty bit in the LSR register is cleared via the p_rLSR port, to indicate that

data has been written.

Finally, the events connected to p_TransmitEvent and p_InterruptEvent are

notified to trigger the transmitter and interrupt handler blocks.

unsigned int ReadCallback(unsigned int AccessSize, unsigned int

Offset)

This function is registered as the non-blocking read callback of the rRBR_THR register

alias in the mRegisterBank memory.

This function first checks if the FIFOs are enabled, by reading the FIFO enable bit

from the FCR register via the p_rFCR port. If FIFOs are enabled, data is read from the

p_RX_FIFO port, if FIFOs are disabled, data is read from the p_rRBR port.

If the FIFO is empty after the read, the Data Ready (DR) bit in the LSR register is

cleared via the p_rLSR port. If the receive FIFO drops below its trigger level or if the

FIFOs are disabled, the p_Clear_RX_Interrupt port is asserted to clear the receive

interrupt.

Finally, the event connected to p_InterruptEvent is notified to trigger the interrupt

handler.

4.3 IER Register Write Callback block

The IER register write callback block is a class that derives from

gmfl_function_callback. This block implements the non-blocking write callback

function that is attached to the IER register alias in the register bank. Figure 5 shows

the block diagram of this RegCB_IER_Write class.

Figure 5: The IER write callback class

4.3.1 Port description

Table 16 lists the ports that are implemented in the IER register write callback block.

RegCB_IER_Write
gmfl_function_callback

p_rIER p_InterruptEvent WriteCallback

 16

Table 16: RegCB_IER_Write class port description

Name: Type: Description:
p_rIER gmfl_scml_memory_port<unsigned int> Connects to the IER

register

p_InterruptEvent gmfl_channel_event_notify_port Used to notify the

Interrupt Event

4.3.2 Function description

void WriteCallback(unsigned int WriteData, unsigned int AccessSize,

unsigned int Offset)

This function is registered as the non-blocking write callback of the rIER register

alias in the mRegisterBank memory block.

This function simply writes the data to the p_rIER port and notifies the event

connected to the p_InterruptEvent port to update the interrupts.

4.4 IIR and FCR register callback block

The IIR and FCR register callback block is a class that derives from

gmfl_function_callback. This block implements the non-blocking read and write

callback functions that are attached to the IIR/FCR register alias in the register bank.

Figure 6 shows the block diagram of this RegCB_IIR_FCR_ReadWrite class.

Figure 6: The IIR and FCR register read/write callback class

4.4.1 Port description

Table 17 lists the ports that are implemented in the IIR and FCR register read/write

callback block.

RegCB_IIR_FCR_ReadWrite
gmfl_function_callback

p_rRBR

p_rIIR

p_rFCR

p_TX_FIFO

p_RX_FIFO

p_InterruptEvent

p_Clear_TX_Interrupt

ReadCallback

WriteCallback

 17

Table 17: RegCB_IIR_FCR_ReadWrite class port description

Name: Type: Description:
p_rRBR gmfl_scml_memory_port<unsigned int> Connects to the RBR

register

p_rIIR gmfl_scml_memory_port<unsigned int> Connects to the IIR

register

p_rFCR gmfl_scml_memory_port<unsigned int> Connects to the FCR

register

p_TX_FIFO FIFO_port<unsigned int> Connects to the

Transmit FIFO

p_RX_FIFO FIFO_port<unsigned int> Connects to the

Receive FIFO

p_InterruptEvent gmfl_channel_event_notify_port Used to notify the

Interrupt Event

p_Clear_TX_Interrupt

gmfl_channel_value_port<bool> Signal to clear the

transmit interrupt.

4.4.2 Function description

void WriteCallback(unsigned int WriteData, unsigned int AccessSize,

unsigned int Offset)

This function is registered as the non-blocking write callback of the rIIR_FCR register

alias in the mRegisterBank memory block.

When writing data to the FCR register, this function checks if the FIFOs are being

enabled or disabed. If they are being enabled, the trigger levels of the receive and

transmit FIFOs are set by writing to the p_RX_FIFO and p_TX_FIFO ports. If the

FIFOs are being disabled, this function moves the top item from the receive FIFO to

the RBR register via the p_rRBR port, provided the receive FIFO is not empty.

Finally the written data is stored in the FCR register via the p_rFCR port and the event

connected to p_InterruptEvent is notified.

unsigned int ReadCallback(unsigned int AccessSize, unsigned int

 Offset)

This function is registered as the non-blocking read callback of the rIIR_FCR register

alias in the mRegisterBank memory block.

If this function is called, and the IIR register (read via the p_rIIR port) indicates a

transmitter empty interrupt, the p_Clear_TX_Interrupt port is asserted to clear the

THR empty interrupt.

The FIFO Enable bit from the FCR register is read from the p_rFCR port, this bit is

returned as bit 6 and 7 of the IIR register.

The event connected to p_InterruptEvent port is notified to update the interrupts.

4.5 LSR Register Read Callback block

The LSR register read callback block is a class that derives from

gmfl_function_callback. This block implements the non-blocking read callback

function that is attached to the LSR register alias in the register bank. Figure 7 shows

the block diagram of this RegCB_LSR_Read class.

 18

Figure 7: The LSR read callback class

4.5.1 Port description

Table 18 lists the ports that are implemented in the LSR register read callback block.

Table 18: RegCB_LSR_Read class port description

Name: Type: Description:
p_rLSR gmfl_scml_memory_port<unsigned int> Connects to the LSR

register
p_InterruptEvent gmfl_channel_event_notify_port Used to notify the

Interrupt Event

p_Clear_LS_Interrupt

gmfl_channel_value_port<bool> Signal to clear the line

status interrupt.

4.5.2 Function description

unsigned int ReadCallback(unsigned int AccessSize, unsigned int

 Offset)

This function is registered as the non-blocking read callback of the rLSR register alias

in the mRegisterBank memory block.

This function returns the data from the LSR register, read via the p_rLSR port. It

clears the line status interrupt by writing to the p_Clear_LS_Interrupt port, and

then notifies the event connected to the p_InterruptEvent port to update the

interrupts.

4.6 Transmit and Receive FIFO blocks

The Transmit and Receive FIFOs are instances of a custom FIFO class called

UART_FIFO. This class implements the FIFO_if<DT> interface. Other modules

connecting to the interface of this class should do so using a FIFO_port<DT> port.

Figure 8: The UART_FIFO class

UART_FIFO<DT>
FIFO_if<DT>

FIFO_if<DT>

Write

SetTriggerLevel

IsAboveTriggerLevel

IsBelowTriggerLevel

IsFull

IsEmpty

Read

RegCB_LSR_Read
gmfl_function_callback

p_rLSR
p_InterruptEvent

ReadCallback
p_Clear_LS_Interrupt

 19

4.6.1 FIFO Interface description

Table 19 lists the interface methods that are available through the the FIFO_if<DT>

interface. The class template parameter DT defines the data type of the FIFO. The

generic UART model uses unsigned integer as the data type.

Table 19: FIFO_if<data_type> interface methods

Name: Return Type:
read() data_type
write(data_type v) void
SetTriggerLevel(int level) void
IsEmpty() bool
IsFull() bool
IsAboveTriggerLevel() bool
IsBelowTriggerLevel() bool

4.6.2 FIFO Methods description

UART_FIFO<DT>(sc_module_name N, int pSize)

Constructor of the UART_FIFO class. The class parameter DT defines the data type

of the FIFO. The constuctor arguments N and pSize set the name and the size of the

FIFO, respectively. On construction, the trigger level of the FIFO is set to 1.

void write(DT WriteData)

If the FIFO is not full, this function pushes the WriteData element onto the internal

FIFO queue.

DT read()

If the FIFO is not empty, this function pops the front item from the FIFO queue and

returns it.

void SetTriggerLevel(int level)

This function sets the trigger level of the FIFO. The value has to be between 1 and

FIFO Size – 2.

bool IsEmpty()

Returns true if FIFO is empty.

bool IsFull()

Returns true if FIFO is full.

bool IsAboveTriggerLevel()

Returns true if FIFO is above (or at) its trigger level.

bool IsBelowTriggerLevel()

 20

Returns true if FIFO is below its trigger level.

4.7 Serial Transmit block

The Serial Transmit block is a class that derives from gmfl_function_method. This

block implements the serial transmit logic of the UART needed to send serial data.

Figure 9 shows the block diagram of this Serial_Transmit class.

Figure 9: The Serial Transmit function method class

4.7.1 Port description

Table 20 lists the ports that are implemented in the Serial Transmit block.

Serial_Transmit
gmfl_function_method

p_TX_FIFO

p_rTHR

p_rFCR

Main
p_rLCR

p_rLSR

p_TransmitEvent

p_WaitTransmitEvent

p_InterruptEvent

p_SerialOut

Sensitivity

 21

Table 20: Serial_Transmit class port description

Name: Type: Description:
p_TX_FIFO FIFO_port<unsigned int> Connects to the

Transmit FIFO

p_rTHR gmfl_scml_memory_port<unsigned int> Connects to the THR

register

p_rFCR gmfl_scml_memory_port<unsigned int> Connects to the FCR

register

p_rLCR gmfl_scml_memory_port<unsigned int> Connects to the LCR

register

p_rLSR gmfl_scml_memory_port<unsigned int> Connects to the LSR

register

p_TransmitEvent gmfl_channel_event_notify_port Used to notify the

Transmit Event

p_WaitTransmitEvent gmfl_channel_event_wait_port Used to ‘wait’ for the

Transmit Event

p_InterruptEvent gmfl_channel_event_notify_port Used to notify the

Interrupt Event

p_SerialOut sc_port< tlm::tlm_blocking_put_if

<SERIAL_DATA_STRUCTURE> >
Serial Data output port.

4.7.2 Function description

void main()

This function is made sensitive to the event connected to the p_WaitTransmitEvent

port.

This function checks if the FIFOs are enabled, by reading from the p_rFCR port. If

they are enabled and the transmit FIFO is not empty, data is read from the FIFO via

the p_TX_FIFO port. If FIFOs are disabled, data is read from the THR register via the

p_rTHR port instead.

If, after reading from the FIFO or the THR, the FIFO drops below its trigger level, or

the THR becomes empty, the THR Empty bit in the LSR register is set via the p_rLSR

port.

After the data has been read, a character frame is created using the settings read from

the LCR register via the p_rLCR port. After all values of the character frame have

been set, the frame is sent to the p_SerialOut port using the put interface method call

of the tlm_blocking_put_if interface.

Finally, the events connected to the p_TransmitEvent and p_InterruptEvent ports

are notified to trigger the Serial Transmit block again in case more data is available,

and trigger the Interrupt Handler to update the interrupts.

 22

4.8 Serial Receive block

The Serial Receive block is a class that derives from gmfl_function_base and

tlm_blocking_put_if. This block implements the serial receive logic of the UART

needed to receive serial data. Figure 10 shows the block diagram of this

Serial_Receive class.

Figure 10: The Serial Receive function method class

4.8.1 Port description

Table 21 lists the ports that are implemented in the Serial Receive block.

Table 21: Serial_Receive class port description

Name: Type: Description:
p_InterruptEvent gmfl_channel_event_notify_port Used to notify the

Interrupt Event
p_RX_FIFO FIFO_port<unsigned int> Connects to the

Receive FIFO

p_rRBR gmfl_scml_memory_port<unsigned int> Connects to the RBR

register

p_rFCR gmfl_scml_memory_port<unsigned int> Connects to the FCR

register

p_rLCR gmfl_scml_memory_port<unsigned int> Connects to the LCR

register

p_rLSR gmfl_scml_memory_port<unsigned int> Connects to the LSR

register

p_SerialIn sc_export< tlm::tlm_blocking_put_if

<SERIAL_DATA_STRUCTURE> >

Serial data input port,

bound to tlm interface

4.8.2 Function description

void main()

This function is empty and not used.

Serial_Receive
gmfl_function_base

tlm_blocking_put_if p_InterruptEvent

p_RX_FIFO

p_rRBR

Main

p_rFCR

p_rLCR

p_rLSR

p_SerialIn

Put

tlm_blocking_put_if

Binding

 23

4.8.3 Interface Method description

void put(const SERIAL_DATA_STRUCTURE &DataStruct)

This is the put interface method of the tlm_blocking_put_if interface, to which the

p_SerialIn export is bound.

This function checks if the FIFOs are enabled, by reading from the p_rFCR port. If

they are enabled and the receive FIFO is not full, data from the DataStruct structure

is written to the FIFO via the p_RX_FIFO port. If FIFOs are disabled, the data is

written to the RBR register via the p_rRBR port.

If there are any Line Status errors, the appropriate Overflow Error, Parity Error,

Framing Error or Break Indicator bit is set in the LSR register via the p_rLSR port.

Finally, the event connected to the p_InterruptEvent port is notified to trigger the

Interrupt Handler to update the interrupts.

4.9 Handle Interrupts block

The Handle Interrupts block is a class that derives from gmfl_function_method. This

block checks the status of the UART, and sends an interrupt if needed. Figure 11

shows the block diagram of this Handle_Interrupts class.

Figure 11: The Handle Interrupts function method class

4.9.1 Port description

Table 22 lists the ports that are implemented in the Handle Interrupts block.

Handle_Interrupts
gmfl_function_method

p_rIER

p_rIIR

p_rFCR

p_rLSR

p_InterruptEvent

p_WaitInterruptEvent

p_RX_FIFO

p_Clear_RX_Interrupt

p_Clear_TX_Interrupt

p_Clear_LS_Interrupt

Main

Sensitivity

p_Interrupt

 24

Table 22: Handle_Interupts class port description

Name: Type: Description:
p_Clear_RX_Interrupt

gmfl_channel_value_port<bool> Signal to clear the

receive interrupt

p_Clear_TX_Interrupt gmfl_channel_value_port<bool> Signal to clear the

transmit interrupt

p_Clear_LS_Interrupt gmfl_channel_value_port<bool> Signal to clear the line

status interrupt

p_rIER gmfl_scml_memory_port<unsigned int> Connects to the IER

register

p_rIIR gmfl_scml_memory_port<unsigned int> Connects to the IIR

register

p_rFCR gmfl_scml_memory_port<unsigned int> Connects to the FCR

register

p_rLSR gmfl_scml_memory_port<unsigned int> Connects to the LSR

register

p_InterruptEvent gmfl_channel_event_notify_port Used to notify the

Interrupt Event

p_WaitInterruptEvent gmfl_channel_event_wait_port Used to ‘wait’ for the

Interrupt Event

p_RX_FIFO FIFO_port<unsigned int> Connects to the

Receive FIFO

p_Interrupt sc_out<bool> Interrupt signal port

4.9.2 Function description

void main()

This function is made sensitive to the event connected to the p_WaitInterruptEvent

port.

If any of the p_Clear_RX_Interrupt, p_Clear_RX_Interrupt or

p_Clear_LS_Interrupt lines are asserted and there is a matching interrupt pending,

the interrupt is cleared and the clear interrupt line is deasserted.

The IER register is read via the p_rIER port to see which interrupts are enabled.

If the line status interrupt is enabled, the OE, PE, FE and BI bits are read from the

p_rLSR port. If any of these are set, the p_Interrupt port is asserted.

If the receiver interrupt is enabled the FCR register is checked by reading the p_rFCR

port, to determine if the FIFOs are enabled. If enabled, the level of the receive FIFO is

checked via the p_RX_FIFO port and an interrupt is send if the level is above the

trigger level. If the FIFOs are not enabled, an interrupt is generated if the Data Ready

bit of the LSR register is set.

If the transmitter interrupt is enabled, the THR Empty bit of the LSR register is

checked via the p_rLSR port. If it is set, an interrupt is generated.

After an interrupt has been generated, the IIR register is updated via the p_rIIR port.

If an interrupt with a higher priority than the interrupt currently pending is detected,

the interrupt line is held low for one delta cycle before becoming high again.

 25

5 Test Setup

The generic UART model has been tested with a simple test set-up, shown in Figure

12. A testbench is connected to the PV port and reset and interrupt ports of the UART.

The serial input and output is connected to a Serial Dummy Device, which does

nothing more than loop-back the serial data from the output to the input.

Figure 12: Test set-up of the UART Model

The following sections describe the Testbench and Serial Dummy Device modules in

more detail.

5.1 Testbench

The testbench block is an instance of the custom made uart_testbench module class.

This class was created for the purpose of testing the functionality if the generic UART

model. The testbench has one thread and one method, which is sensitive to the interrupt

port of the module. The thread (TestProcess) configures the UART at the beginning of

the test, and validates the data at the end of the test. The method (InterruptHandler)

does the actual reading and writing of data to the UART, based on the incomming

interrupts. Figure 13 shows the schematic of the uart_testbench class.

Figure 13: UART Testbench class

Testbench

UART Model

Serial

Dummy

Device

Testbench
uart_testbench

pPVInitiatorPort

pReset

pInterrupt

TestProcess

Write

Read

ConfigUART

SendData

ReadData

InterruptHandler Sensitivity

 26

5.1.1 Port description

Table 23 lists the ports that are implemented in the Testbench block.

Table 23: uart_testbench class port description

Name: Type: Description:
pPVInitiatorPort

PVInitiator_port<DATA_TYPE,

ADDRESS_TYPE>
Used to communicate with the

UART at the PV level

PInterrupt sc_in<bool> Incoming interrupt signal port

pReset sc_out<bool> Reset signal port

5.1.2 Function description

void TestProcess()

This function is the main thread of the Testbench class. It starts by asserting the

pReset port to clear the registers of the UART. Then the UART is configured by

calling the ConfigUART() function. After the UART is configured, the thread waits for

1 ns to make sure no more interrupts are being received. Finally the data that was send

to the UART is compared with the data that was received from the UART. If the data is

the same, there was no error.

void ConfigUART()

This function writes data to the FCR and IER registers to configure the UART. By

default, the receive and transmit FIFOs are enabled, both with a trigger level of 1.

Also, all three interrupt mask bits in the IER register are set. These options can be

changed at compile time to test different settings.

void InterruptHandler()

The InterruptHandler() method function provides the main functionality of the

Testbench. This method is sensitive to the positive edge of the interrupt signal

connected to the PInterrupt port. When an interrupt is received, first the IIR register

of the UART is read to determine the ID of the interrupt.

In case a Line Status interrupt is detected, the LSR register is read to get the specific

line status error and to clear the interrupt. If it concerns an Overflow Error, data is read

from the UART. If it is an Parity Error, the SystemC simulation is aborted.

In case of a receive buffer full interrupt, data is read from the UART by calling the

ReadData(…) function.

In case of a transmit buffer empty interrupt, data is written to the UART by calling the

SendData(…) function.

If the IIR register indicates no interrupt when this function is called, an error message

is displayed.

void ReadData(int NrOfReads = 1)

This function reads a number of data elements (equal to the NrOfReads parameter)

from the RBR register address of the UART by making several calls to the Read(…)

function. All received elements are stored in a buffer.

 27

void SendData(int NrOfWrites = 1)

This function writes a number of data elements (equal to the NrOfReads parameter) to

the THR register address of the UART by making several calls to the Write(…)

function. The elements are read from a buffer.

bool Write(PVInitiator_port<DATA_TYPE, ADDRESS_TYPE> *Port,

ADDRESS_TYPE address, DATA_TYPE *data, int BurstCount=1)

Generic PV write function. Sends a PV write request with the address, data source and

burstcount values copied from the address, *data and BurstCount function

arguments to the PV Initiator Port defined by the *Port pointer. The function returns

true if the response was OK.

bool Read(PVInitiator_port<DATA_TYPE, ADDRESS_TYPE> *Port,

ADDRESS_TYPE address, DATA_TYPE *data, int BurstCount=1)

Generic PV read function. Sends a PV read request with the address, data destination

and burstcount values copied from the address, *data and BurstCount function

arguments to the PV Initiator Port defined by the *Port pointer. The function returns

true if the response was OK.

5.2 Serial Dummy Device

The Serial Dummy Device is a custum class named SerialDevice. It implements the

tlm_blocking_put_if interface, which is exported via the export. Data put to the

pSerialIn port, is send back out the PSerialOut port. Figure 14 shows the diagram of

this SerialDevice class.

Figure 14: SerialDevice class

5.2.1 Port description

Table 24 lists the ports that are implemented in the Serial Dummy Device block.

SerialDevice
tlm_blocking_put_if

pSerialIn

pSerialOut

put

SendData

Binding

tlm_blocking_put_if

send_event

Sensitivity

Notification

 28

Table 24: SerialDevice class port description

Name: Type: Description:
pSerialIn

sc_export< tlm_blocking_put_if

 <SERIAL_DATA_STRUCTURE> >
Serial data input port, bound to

tlm interface

PSerialOut sc_port< tlm_blocking_put_if

 <SERIAL_DATA_STRUCTURE> >
Serial data output port

5.2.2 Function description

Void SendData()

This function is sensitive to the send_event event. It sends the current data frame to

the PSerialOut port.

5.2.3 Interface Method description

Void put(const SERIAL_DATA_STRUCTURE &DataStruct)

This is the put interface method of the tlm_blocking_put_if interface, to which the

p_SerialIn export is bound.

This function stores the DataStruct data structure in a local variable, and notifies the

send_event event.

 29

6 List of Figures

Figure 1: Schematic of all common features found in UARTs 4

Figure 2: A PV Target Port is used to communicate between UART and the rest of a

system.. 5

Figure 3: Block Diagram of the generic UART model. ..13

Figure 4: The RBR and THR register read/write callback class14

Figure 5: The IER write callback class..15

Figure 6: The IIR and FCR register read/write callback class...................................16

Figure 7: The LSR read callback class ..18

Figure 8: The UART_FIFO class ..18

Figure 9: The Serial Transmit function method class ..20

Figure 10: The Serial Receive function method class ..22

Figure 11: The Handle Interrupts function method class ...23

Figure 12: Test set-up of the UART Model ..25

Figure 13: UART Testbench class ...25

Figure 14: SerialDevice class ...27

7 List of Tables

Table 1: UART Feature Table.. 3

Table 2: Generic UART Memory Map ... 8

Table 3: Receive Buffer Register bit definition ... 8

Table 4: Transmitter Holding Register bit definition.. 8

Table 5: Interrupt Enable Register bit definition.. 9

Table 6: Interrupt Identification Register bit definition .. 9

Table 7: Interrupt ID ... 9

Table 8: FIFO Control Register bit definition ...10

Table 9: Receive FIFO Trigger level control bits..10

Table 10: Transmit FIFO Trigger level control bits ..10

Table 11: Line Control Register bit definition...11

Table 12: Parity Mode Options...11

Table 13: Character Word Length options ..11

Table 14: Line Status Register bit definition ...12

Table 15: RegCB_RBR_THR_ReadWrite class port description14

Table 16: RegCB_IER_Write class port description..16

Table 17: RegCB_IIR_FCR_ReadWrite class port description..................................17

Table 18: RegCB_LSR_Read class port description..18

Table 19: FIFO_if<data_type> interface methods..19

Table 20: Serial_Transmit class port description..21

Table 21: Serial_Receive class port description..22

Table 22: Handle_Interupts class port description..24

Table 23: uart_testbench class port description ..26

Table 24: SerialDevice class port description ...28

