
Universal Verification Methodology
(UVM) 1.2 Class Reference

June 2014

UVM 1.2
Copyright© 2011 - 2014 Accellera Systems Initiative (Accellera). All rights reserved.
Accellera Systems Initiative Inc., 1370 Trancas Street #163, Napa, CA 94558, USA.

Notices

Accellera Systems Initiative (Accellera) Standards documents are developed within Accellera and the Technical
Committees of Accellera. Accellera develops its standards through a consensus development process, approved by its
members and board of directors, which brings together volunteers representing varied viewpoints and interests to
achieve the final product. Volunteers are not necessarily members of Accellera and serve without compensation.
While Accellera administers the process and establishes rules to promote fairness in the consensus development pro-
cess, Accellera does not independently evaluate, test, or verify the accuracy of any of the information contained in its
standards.

Use of an Accellera Standard is wholly voluntary. Accellera disclaims liability for any personal injury, property or
other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indi-
rectly resulting from the publication, use of, or reliance upon this, or any other Accellera Standard document.

Accellera does not warrant or represent the accuracy or content of the material contained herein, and expressly dis-
claims any express or implied warranty, including any implied warranty of merchantability or suitability for a specific
purpose, or that the use of the material contained herein is free from patent infringement. Accellera Standards docu-
ments are supplied “AS IS.”

The existence of an Accellera Standard does not imply that there are no other ways to produce, test, measure, pur-
chase, market, or provide other goods and services related to the scope of an Accellera Standard. Furthermore, the
viewpoint expressed at the time a standard is approved and issued is subject to change due to developments in the
state of the art and comments received from users of the standard. Every Accellera Standard is subjected to review
periodically for revision and update. Users are cautioned to check to determine that they have the latest edition of any
Accellera Standard.

In publishing and making this document available, Accellera is not suggesting or rendering professional or other ser-
vices for, or on behalf of, any person or entity. Nor is Accellera undertaking to perform any duty owed by any other
person or entity to another. Any person utilizing this, and any other Accellera Standards document, should rely upon
the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to spe-
cific applications. When the need for interpretations is brought to the attention of Accellera, Accellera will initiate
action to prepare appropriate responses. Since Accellera Standards represent a consensus of concerned interests, it is
important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason,
Accellera and the members of its Technical Committees are not able to provide an instant response to interpretation
requests except in those cases where the matter has previously received formal consideration.

Comments for revision of Accellera Standards are welcome from any interested party, regardless of membership
affiliation with Accellera. Suggestions for changes in documents should be in the form of a proposed change of text,
together with appropriate supporting comments. Comments on standards and requests for interpretations should be
addressed to:

Accellera Systems Initiative Inc.
1370 Trancas Street #163
Napa, CA 94558
USA

Note: Attention is called to the possibility that implementation of this standard may require use of subject mat-
ter covered by patent rights. By publication of this standard, no position is taken with respect to the existence
or validity of any patent rights in connection therewith. Accellera shall not be responsible for identifying pat-
 Class Reference Front-2

UVM 1.2
ents for which a license may be required by an Accellera standard or for conducting inquiries into the legal
validity or scope of those patents that are brought to its attention.

Accellera is the sole entity that may authorize the use of Accellera-owned certification marks and/or trademarks to
indicate compliance with the materials set forth herein.

Authorization to photocopy portions of any individual standard for internal or personal use must be granted by Accel-
lera, provided that permission is obtained from and any required fee is paid to Accellera. To arrange for authorization
please contact Lynn Bannister, Accellera, 1370 Trancas Street #163, Napa, CA 94558, phone (707) 251-9977, e-mail
lynn@accellera.org. Permission to photocopy portions of any individual standard for educational classroom use can
also be obtained from Accellera.

Suggestions for improvements to the UVM 1.2 Class Reference are welcome. They should be sent to the UVM email
reflector

uvm-wg@lists.accellera.org
 Class Reference Front-3

UVM 1.2
Contents

1. Overview...1

 1.1 Scope . 1

 1.2 Purpose . 1

2. Normative References...2

3. Definitions, Acronyms, and Abbreviations...2

 3.1 Definitions . 2

 3.2 Acronyms and Abbreviations . 3

4. Classes and Utilities ..5

5. Core Base Classes ...8

 5.1 Miscellaneous Structures . 9

 5.2 uvm_object . 11

 5.3 uvm_transaction . 26

 5.4 uvm_root. 34

 5.5 Port Base Classes . 38

6. Reporting Classes..46

 6.1 uvm_report_message . 47

 6.2 uvm_report_object . 59

 6.3 uvm_report_handler . 68

 6.4 uvm_report_server . 70

 6.5 uvm_report_catcher . 81

7. Recording Classes ...89

 7.1 uvm_tr_database . 90

 7.2 uvm_tr_stream . 96

8. Factory Classes ...103

 8.1 uvm_*_registry . 104

 8.2 uvm_factory . 110

9. Phasing Classes ...125

 9.1 uvm_phase . 127

 9.2 uvm_domain . 140
 Class Reference Front-4

UVM 1.2
 9.3 uvm_bottomup_phase. 142

 9.4 uvm_task_phase . 144

 9.5 uvm_topdown_phase . 146

 9.6 UVM Common Phases . 148

 9.7 UVM Run-Time Phases . 159

 9.8 User-Defined Phases. 172

10. Configuration and Resource Classes...173

 10.1 uvm_resource . 174

 10.2 uvm_resource_db . 192

 10.3 uvm_config_db. 197

11. Synchronization Classes ...202

 11.1 uvm_event . 203

 11.2 uvm_event_callback . 208

 11.3 uvm_barrier . 210

 11.4 uvm_objection . 213

 11.5 uvm_heartbeat . 221

 11.6 uvm_callback . 224

12. Container Classes ..232

 12.1 uvm_pool . 233

 12.2 uvm_queue . 238

13. TLM Interfaces ...241

14. TLM1 ..242

 14.1 Interfaces . 250

 14.2 Exports . 254

 14.3 Ports . 257

 14.4 Imps . 260

 14.5 FIFO . 263

 14.6 FIFO Base. 266

 14.7 Channel Classes . 269

 14.8 Sequence Item Pull Ports . 274

 14.9 Sequencer Base. 276
 Class Reference Front-5

UVM 1.2
15. TLM2 ..281

 15.1 Interface Masks. 284

 15.2 Types . 285

 15.3 Generic Payload . 289

 15.4 Socket Base. 303

 15.5 Sockets . 308

 15.6 Exports . 315

 15.7 Imps . 317

 15.8 Ports . 321

 15.9 Temporal Decoupling . 323

16. Analysis Ports ...328

17. Component Classes ...331

 17.1 uvm_component . 332

 17.2 uvm_test . 359

 17.3 uvm_env . 361

 17.4 uvm_agent . 362

 17.5 uvm_monitor . 364

 17.6 uvm_scoreboard . 365

 17.7 uvm_driver . 366

 17.8 uvm_push_driver . 368

 17.9 uvm_random_stimulus . 370

 17.10 uvm_subscriber. 372

18. Comparators ..374

 18.1 uvm_in_order_comparator . 375

 18.2 uvm_algorithmic_comparator . 378

 18.3 uvm_pair . 381

 18.4 uvm_policies . 384

19. Sequencer Classes ...387

 19.1 uvm_sequencer_base . 389

 19.2 uvm_sequencer_param_base . 397

 19.3 uvm_sequencer . 401

 19.4 uvm_push_sequencer . 404
 Class Reference Front-6

UVM 1.2
20. Sequence Classes ..406

 20.1 uvm_sequence_item . 407

 20.2 uvm_sequence_base . 413

 20.3 uvm_sequence . 428

 20.4 uvm_sequence_library . 431

21. Macros...436

 21.1 Report Macros . 437

 21.2 Component and Object Macros . 445

 21.3 Sequence-Related Macros . 470

 21.4 Callback Macros . 477

 21.5 TLM Macros. 481

 21.6 Register Defines . 487

 21.7 Version Defines . 488

22. Policy Classes ...491

 22.1 uvm_printer . 492

 22.2 uvm_comparer . 504

 22.3 uvm_recorder . 508

 22.4 uvm_packer . 522

 22.5 links . 529

23. Data Access Policies ...538

 23.1 Set / Get Base . 539

 23.2 Simple Lock . 541

 23.3 Get To Lock . 544

 23.4 Set Before Get . 546

24. Register Layer ...549

 24.1 Register Layer Overview . 549

 24.2 Global Declarations . 551

25. Register Model ..557

 25.1 Blocks . 557

 25.2 Address Maps . 573

 25.3 Register Files . 584

 25.4 Registers . 588
 Class Reference Front-7

UVM 1.2
 25.5 Fields . 607

 25.6 Memories . 619

 25.7 Indirect Registers . 635

 25.8 FIFO Registers . 637

 25.9 Virtual Registers . 641

 25.10 Virtual Fields . 654

 25.11 Callbacks . 662

 25.12 Memory Allocation Manager . 671

26. DUT Integration ..682

 26.1 Generic Register Operation Descriptors. 682

 26.2 Register Model Adaptor . 688

 26.3 Explicit Register Predictor . 692

 26.4 Register Sequences . 695

 26.5 Backdoors . 704

 26.6 HDL Access . 708

27. Test Sequences ...711

 27.1 Run All Built-In . 711

 27.2 Reset . 713

 27.3 Register Bit Bash . 715

 27.4 Register Access . 718

 27.5 Shared Access. 722

 27.6 Memory Access . 727

 27.7 Memory Walk. 730

 27.8 HDL Paths Checking Test Sequence . 734

28. Command Line Processor (CLP) Class ..736

 28.1 CLP Overview . 736

 28.2 uvm_cmdline_processor . 737

29. Globals ..744

 29.1 Types and Enumerations . 745

 29.2 Globals . 754

 29.3 Core Service . 759

 29.4 Traversal . 763
 Class Reference Front-8

UVM 1.2
Bibliography..769

Index..770
 Class Reference Front-9

1. Overview

Verification has evolved into a complex project that often spans internal and external teams, but the discontinuity
associated with multiple, incompatible methodologies among those teams has limited productivity. The Universal
Verification Methodology (UVM) 1.2 Class Reference addresses verification complexity and interoperability within
companies and throughout the electronics industry for both novice and advanced teams while also providing
consistency. While UVM is revolutionary, being the first verification methodology to be standardized, it is also
evolutionary, as it is built on the Open Verification Methodology (OVM), which combined the Advanced
Verification Methodology (AVM) with the Universal Reuse Methodology (URM) and concepts from the e Reuse
Methodology (eRM). Furthermore, UVM also infuses concepts and code from the Verification Methodology Manual
(VMM), plus the collective experience and knowledge of the 300+ members of the Accellera Universal Verification
Methodology Work Group (UVMWG) to help standardize verification methodology.

1.1 Scope

The UVM application programming interface (API) defines a standard for the creation, integration, and extension of
UVM Verification Components (UVCs) and verification environments that scale from block to system. The UVM
1.2 Class Reference is independent of any specific design processes and is complete for the construction of
verification environments. The generator to connect register abstractions, many of which are captured using IP-
XACT (IEEE Std 1685™), is not part of the standard, although a register package is.

1.2 Purpose

The purpose of the UVM 1.2 Class Reference is to enable verification interoperability throughout the electronics
ecosystem. To further that goal, a reference implementation will be made available, along with the UVM 1.2 User’s
Guide. While these materials are neither required to implement UVM, nor considered part of the standard, they help
provide consistency when the UVM 1.2 Class Reference is applied and further enable UVM to achieve its purpose.

UVM 1.2 Class Reference 1

UVM 1.2
2. Normative References

The following referenced documents are indispensable for the application of this specification (i.e., they must be
understood and used, so each referenced document is cited in text and its relationship to this document is explained).
For dated references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments or corrigenda) applies.

IEEE Std 1800™, IEEE Standard for SystemVerilog Unified Hardware Design, Specification and Verification Lan-
guage.1, 2

3. Definitions, Acronyms, and Abbreviations

For the purposes of this document, the following terms and definitions apply. The IEEE Standards Dictionary Online
should be consulted for terms not defined in this clause.3

3.1 Definitions

agent: An abstract container used to emulate and verify DUT devices; agents encapsulate a driver, sequencer, and
monitor.

blocking: An interface where tasks block execution until they complete. See also: non blocking.

component: A piece of VIP that provides functionality and interfaces. Also referred to as a transactor.

consumer: A verification component that receives transactions from another component.

driver: A component responsible for executing or otherwise processing transactions, usually interacting with the
device under test (DUT) to do so.

environment: The container object that defines the testbench topology.

export: A transaction level modeling (TLM) interface that provides the implementation of methods used for commu-
nication. Used in UVM to connect to a port.

factory method: A classic software design pattern used to create generic code by deferring, until run time, the exact
specification of the object to be created.

foreign methodology: A verification methodology that is different from the methodology being used for the majority
of the verification environment.

generator: A verification component that provides transactions to another component. Also referred to as a pro-
ducer.

monitor: A passive entity that samples DUT signals, but does not drive them.

non blocking: A call that returns immediately. See also: blocking.

1IEEE publications are available from the Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, Piscataway, NJ 08854, USA
(http://standards.ieee.org/).
2The IEEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.
3IEEE Standards Dictionary Online subscription is available at:
http://www.ieee.org/portal/innovate/products/standard/standards_dictionary.html.
 Class Reference 2

UVM 1.2
port: A TLM interface that defines the set of methods used for communication. Used in UVM to connect to an
export.

primary (host) methodology: The methodology that manages the top-level operation of the verification environment
and with which the user/integrator is presumably more familiar.

request: A transaction that provides information to initiate the processing of a particular operation.

response: A transaction that provides information about the completion or status of a particular operation.

scoreboard: The mechanism used to dynamically predict the response of the design and check the observed response
against the predicted response. Usually refers to the entire dynamic response-checking structure.

sequence: A UVM object that procedurally defines a set of transactions to be executed and/or controls the execution
of other sequences.

sequencer: An advanced stimulus generator which executes sequences that define the transactions provided to the
driver for execution.

test: Specific customization of an environment to exercise required functionality of the DUT.

testbench: The structural definition of a set of verification components used to verify a DUT. Also referred to as a
verification environment.

transaction: A class instance that encapsulates information used to communicate between two or more components.

transactor: See component.

virtual sequence: A conceptual term for a sequence that controls the execution of sequences on other sequencers.

3.2 Acronyms and Abbreviations

API application programming interface

CDV coverage-driven verification

CBCL common base class library

CLI command line interface

DUT device under test

DUV device under verification

EDA electronic design automation

FIFO first-in, first-out

HDL hardware description language

HVL high-level verification language

IP intellectual property
 Class Reference 3

UVM 1.2
OSCI Open SystemC Initiative

TLM transaction level modeling

UVC UVM Verification Component

UVM Universal Verification Methodology

VIP verification intellectual property
 Class Reference 4

4. Classes and Utilities

The UVM Class Library provides the building blocks needed to quickly develop well-
constructed and reusable verification components and test environments in
SystemVerilog.

This UVM Class Reference provides detailed reference information for each user-visible
class in the UVM library. For additional information on using UVM, see the UVM User’s
Guide located in the top level directory within the UVM kit.

We divide the UVM classes and utilities into categories pertaining to their role or
function. A more detailed overview of each category-- and the classes comprising them--
can be found in the menu at left.

Globals This category defines a small list of types,
variables, functions, and tasks defined in the
uvm_pkg scope. These items are accessible
from any scope that imports the uvm_pkg. See
Types and Enumerations and Globals for details.

Base This basic building blocks for all environments
are components, which do the actual work,
transactions, which convey information between
components, and ports, which provide the
interfaces used to convey transactions. The
UVM’s core base classes provide these building
blocks. See Core Base Classes for more
information.

Reporting The reporting classes provide a facility for
issuing reports (messages) with consistent
formatting and configurable side effects, such
as logging to a file or exiting simulation. Users
can also filter out reports based on their
verbosity , unique ID, or severity. See
Reporting Classes for more information.

Factory As the name implies, the UVM factory is used to
manufacture (create) UVM objects and
components. Users can configure the factory to
produce an object of a given type on a global
or instance basis. Use of the factory allows
dynamically configurable component hierarchies
and object substitutions without having to
modify their code and without breaking
encapsulation. See Factory Classes for details.

Phasing This sections describes the phasing capability
providing by UVM. The details can be found in
Phasing Overview.

Configuration and Resources The Configuration and Resource Classes are a
set of classes which provide a configuration
database. The configuration database is used to
store and retrieve both configuration time and
run time properties.

Synchronization The UVM provides event and barrier
synchronization classes for process
synchronization. See Synchronization Classes
for more information.

Containers The Container Classes are type parameterized

UVM 1.2 Class Reference 5

data structures which provide queue and pool
services. The class based queue and pool types
allow for efficient sharing of the data structures
compared with their SystemVerilog built-in
counterparts.

Policies Each of UVM’s policy classes performs a specific
task for uvm_object-based objects: printing,
comparing, recording, packing, and unpacking.
They are implemented separately from
uvm_object so that users can plug in different
ways to print, compare, etc. without modifying
the object class being operated on. The user
can simply apply a different printer or compare
“policy” to change how an object is printed or
compared. See Policy Classes for more
information.

TLM The UVM TLM library defines several abstract,
transaction-level interfaces and the ports and
exports that facilitate their use. Each TLM
interface consists of one or more methods used
to transport data, typically whole transactions
(objects) at a time. Component designs that
use TLM ports and exports to communicate are
inherently more reusable, interoperable, and
modular. See TLM Interfaces for details.

Components Components form the foundation of the UVM.
They encapsulate behavior of drivers,
scoreboards, and other objects in a testbench.
The UVM library provides a set of predefined
component types, all derived directly or
indirectly from uvm_component. See
Predefined Component Classes for more
information.

Sequencers The sequencer serves as an arbiter for
controlling transaction flow from multiple
stimulus generators. More specifically, the
sequencer controls the flow of
uvm_sequence_item-based transactions
generated by one or more uvm_sequence
#(REQ,RSP)-based sequences. See Sequencer
Classes for more information.

Sequences Sequences encapsulate user-defined procedures
that generate multiple uvm_sequence_item-
based transactions. Such sequences can be
reused, extended, randomized, and combined
sequentially and hierarchically in interesting
ways to produce realistic stimulus to your DUT.
See Sequence Classes for more information.

Macros The UVM provides several macros to help
increase user productivity. See the set of
macro categories in the main menu for a
complete list of macros for Reporting,
Components, Objects, Sequences, Callbacks,
TLM and Registers.

Register Layer The Register abstraction classes, when properly
extended, abstract the read/write operations to
registers and memories in a design-under-

UVM 1.2 Class Reference 6

verification. See Register Layer for more
information.

Command Line Processor The command line processor provides a general
interface to the command line arguments that
were provided for the given simulation. The
capabilities are detailed in the
uvm_cmdline_processor section.

Summary

UVM 1.2 Class Reference

The UVM Class Library provides the building blocks needed to quickly develop
well-constructed and reusable verification components and test environments in
SystemVerilog.

UVM 1.2 Class Reference 7

5. Core Base Classes

The UVM library defines a set of base classes and utilities that facilitate the design of
modular, scalable, reusable verification environments.

The basic building blocks for all environments are components and the transactions they
use to communicate. The UVM provides base classes for these, as shown below.

uvm_object - All components and transactions derive from uvm_object, which
defines an interface of core class-based operations: create, copy, compare, print,
sprint, record, etc. It also defines interfaces for instance identification (name, type
name, unique id, etc.) and random seeding.
uvm_component - The uvm_component class is the root base class for all UVM
components. Components are quasi-static objects that exist throughout
simulation. This allows them to establish structural hierarchy much like modules
and program blocks. Every component is uniquely addressable via a hierarchical
path name, e.g. “env1.pci1.master3.driver”. The uvm_component also defines a
phased test flow that components follow during the course of simulation. Each
phase-- build, connect, run, etc.-- is defined by a callback that is executed in
precise order. Finally, the uvm_component also defines configuration, reporting,
transaction recording, and factory interfaces.
uvm_transaction - The uvm_transaction is the root base class for UVM
transactions, which, unlike uvm_components, are transient in nature. It extends
uvm_object to include a timing and recording interface. Simple transactions can
derive directly from uvm_transaction, while sequence-enabled transactions derive
from uvm_sequence_item.
uvm_root - The uvm_root class is special uvm_component that serves as the top-
level component for all UVM components, provides phasing control for all UVM
components, and other global services.

Summary

Core Base Classes

The UVM library defines a set of base classes and utilities that facilitate the
design of modular, scalable, reusable verification environments.

UVM 1.2 Class Reference 8

5.1 Miscellaneous Structures

Contents

Miscellaneous
Structures

uvm_void The uvm_void class is the base class for all UVM
classes.

uvm_utils #(TYPE,FIELD) This class contains useful template functions.

uvm_void

The uvm_void class is the base class for all UVM classes. It is an abstract class with no
data members or functions. It allows for generic containers of objects to be created,
similar to a void pointer in the C programming language. User classes derived directly
from uvm_void inherit none of the UVM functionality, but such classes may be placed in
uvm_void-typed containers along with other UVM objects.

Summary

uvm_void

The uvm_void class is the base class for all UVM classes.

CLAss DEcLARATION

uvm_utils #(TYPE,FIELD)

This class contains useful template functions.

Summary

uvm_utils #(TYPE,FIELD)

This class contains useful template functions.

CLAss DEcLARATION

METHOds

find_all Recursively finds all component instances of the parameter type
TYPE, starting with the component given by start.

get_config This method gets the object config of type TYPE associated with

virtual class uvm_void

class uvm_utils #(
 type TYPE = int,
 string FIELD = "config"
)

UVM 1.2 Class Reference 9

component comp.

METHOds

find_all

Recursively finds all component instances of the parameter type TYPE, starting with the
component given by start. Uses uvm_root::find_all.

get_config

This method gets the object config of type TYPE associated with component comp. We
check for the two kinds of error which may occur with this kind of operation.

static function types_t find_all(
 uvm_component start
)

static function TYPE get_config(
 uvm_component comp,
 bit is_fatal
)

UVM 1.2 Class Reference 10

5.2 uvm_object

The uvm_object class is the base class for all UVM data and hierarchical classes. Its
primary role is to define a set of methods for such common operations as create, copy,
compare, print, and record. Classes deriving from uvm_object must implement the pure
virtual methods such as create and get_type_name.

Summary

uvm_object

The uvm_object class is the base class for all UVM data and hierarchical classes.

CLAss HIERARchY

uvm_void

uvm_object

CLAss DEcLARATION

new Creates a new uvm_object with the given instance name.
SEEdING

use_uvm_seeding This bit enables or disables the UVM seeding
mechanism.

reseed Calls srandom on the object to reseed the object using
the UVM seeding mechanism, which sets the seed based
on type name and instance name instead of based on
instance position in a thread.

IdENTIFIcATION

set_name Sets the instance name of this object, overwriting any
previously given name.

get_name Returns the name of the object, as provided by the
name argument in the new constructor or set_name
method.

get_full_name Returns the full hierarchical name of this object.
get_inst_id Returns the object’s unique, numeric instance identifier.
get_inst_count Returns the current value of the instance counter, which

represents the total number of uvm_object-based
objects that have been allocated in simulation.

get_type Returns the type-proxy (wrapper) for this object.
get_object_type Returns the type-proxy (wrapper) for this object.
get_type_name This function returns the type name of the object, which

is typically the type identifier enclosed in quotes.
CREATION

create The create method allocates a new object of the same
type as this object and returns it via a base uvm_object
handle.

clone The clone method creates and returns an exact copy of
this object.

PRINTING

print The print method deep-prints this object’s properties in
a format and manner governed by the given printer
argument; if the printer argument is not provided, the
global uvm_default_printer is used.

sprint The sprint method works just like the print method,
except the output is returned in a string rather than
displayed.

do_print The do_print method is the user-definable hook called
by print and sprint that allows users to customize what

virtual class uvm_object extends uvm_void

UVM 1.2 Class Reference 11

gets printed or sprinted beyond the field information
provided by the `uvm_field_* macros, Utility and Field
Macros for Components and Objects.

convert2string This virtual function is a user-definable hook, called
directly by the user, that allows users to provide object
information in the form of a string.

REcORdING

record The record method deep-records this object’s properties
according to an optional recorder policy.

do_record The do_record method is the user-definable hook called
by the record method.

COpYING

copy The copy makes this object a copy of the specified
object.

do_copy The do_copy method is the user-definable hook called
by the copy method.

COMpARING

compare Deep compares members of this data object with those
of the object provided in the rhs (right-hand side)
argument, returning 1 on a match, 0 otherwise.

do_compare The do_compare method is the user-definable hook
called by the compare method.

PAcKING

pack
pack_bytes
pack_ints The pack methods bitwise-concatenate this object’s

properties into an array of bits, bytes, or ints.
do_pack The do_pack method is the user-definable hook called

by the pack methods.
UNpAcKING

unpack
unpack_bytes
unpack_ints The unpack methods extract property values from an

array of bits, bytes, or ints.
do_unpack The do_unpack method is the user-definable hook called

by the unpack method.
CONFIGuRATION

set_int_local
set_string_local
set_object_local These methods provide write access to integral, string,

and uvm_object-based properties indexed by a
field_name string.

new

Creates a new uvm_object with the given instance name. If name is not supplied, the
object is unnamed.

SEEdING

use_uvm_seeding

function new (
 string name = ""
)

UVM 1.2 Class Reference 12

This bit enables or disables the UVM seeding mechanism. It globally affects the
operation of the reseed method.

When enabled, UVM-based objects are seeded based on their type and full hierarchical
name rather than allocation order. This improves random stability for objects whose
instance names are unique across each type. The uvm_component class is an example
of a type that has a unique instance name.

reseed

Calls srandom on the object to reseed the object using the UVM seeding mechanism,
which sets the seed based on type name and instance name instead of based on
instance position in a thread.

If the use_uvm_seeding static variable is set to 0, then reseed() does not perform any
function.

IdENTIFIcATION

set_name

Sets the instance name of this object, overwriting any previously given name.

get_name

Returns the name of the object, as provided by the name argument in the new
constructor or set_name method.

get_full_name

Returns the full hierarchical name of this object. The default implementation is the same
as get_name, as uvm_objects do not inherently possess hierarchy.

Objects possessing hierarchy, such as uvm_components, override the default
implementation. Other objects might be associated with component hierarchy but are
not themselves components. For example, uvm_sequence #(REQ,RSP) classes are
typically associated with a uvm_sequencer #(REQ,RSP). In this case, it is useful to
override get_full_name to return the sequencer’s full name concatenated with the
sequence’s name. This provides the sequence a full context, which is useful when
debugging.

static bit use_uvm_seeding = 1

function void reseed ()

virtual function void set_name (
 string name
)

virtual function string get_name ()

virtual function string get_full_name ()

UVM 1.2 Class Reference 13

get_inst_id

Returns the object’s unique, numeric instance identifier.

get_inst_count

Returns the current value of the instance counter, which represents the total number of
uvm_object-based objects that have been allocated in simulation. The instance counter
is used to form a unique numeric instance identifier.

get_type

Returns the type-proxy (wrapper) for this object. The uvm_factory’s type-based override
and creation methods take arguments of uvm_object_wrapper. This method, if
implemented, can be used as convenient means of supplying those arguments.

The default implementation of this method produces an error and returns null. To enable
use of this method, a user’s subtype must implement a version that returns the
subtype’s wrapper.

For example

Then, to use

This function is implemented by the `uvm_*_utils macros, if employed.

get_object_type

Returns the type-proxy (wrapper) for this object. The uvm_factory’s type-based override
and creation methods take arguments of uvm_object_wrapper. This method, if
implemented, can be used as convenient means of supplying those arguments. This
method is the same as the static get_type method, but uses an already allocated object

virtual function int get_inst_id ()

static function int get_inst_count()

static function uvm_object_wrapper get_type ()

class cmd extends uvm_object;
 typedef uvm_object_registry #(cmd) type_id;
 static function type_id get_type();
 return type_id::get();
 endfunction
endclass

factory.set_type_override(cmd::get_type(),subcmd::get_type());

virtual function uvm_object_wrapper get_object_type ()

UVM 1.2 Class Reference 14

to determine the type-proxy to access (instead of using the static object).

The default implementation of this method does a factory lookup of the proxy using the
return value from get_type_name. If the type returned by get_type_name is not
registered with the factory, then a null handle is returned.

For example

This function is implemented by the `uvm_*_utils macros, if employed.

get_type_name

This function returns the type name of the object, which is typically the type identifier
enclosed in quotes. It is used for various debugging functions in the library, and it is
used by the factory for creating objects.

This function must be defined in every derived class.

A typical implementation is as follows

We define the type_name static variable to enable access to the type name without need
of an object of the class, i.e., to enable access via the scope operator,
mytype::type_name.

CREATION

create

The create method allocates a new object of the same type as this object and returns it
via a base uvm_object handle. Every class deriving from uvm_object, directly or

class cmd extends uvm_object;
 typedef uvm_object_registry #(cmd) type_id;
 static function type_id get_type();
 return type_id::get();
 endfunction
 virtual function type_id get_object_type();
 return type_id::get();
 endfunction
endclass

virtual function string get_type_name ()

class mytype extends uvm_object;
 ...
 const static string type_name = "mytype";

 virtual function string get_type_name();
 return type_name;
 endfunction

virtual function uvm_object create (
 string name = ""
)

UVM 1.2 Class Reference 15

indirectly, must implement the create method.

A typical implementation is as follows

clone

The clone method creates and returns an exact copy of this object.

The default implementation calls create followed by copy. As clone is virtual, derived
classes may override this implementation if desired.

PRINTING

print

The print method deep-prints this object’s properties in a format and manner governed
by the given printer argument; if the printer argument is not provided, the global
uvm_default_printer is used. See uvm_printer for more information on printer output
formatting. See also uvm_line_printer, uvm_tree_printer, and uvm_table_printer for
details on the pre-defined printer “policies,” or formatters, provided by the UVM.

The print method is not virtual and must not be overloaded. To include custom
information in the print and sprint operations, derived classes must override the do_print
method and use the provided printer policy class to format the output.

sprint

The sprint method works just like the print method, except the output is returned in a
string rather than displayed.

The sprint method is not virtual and must not be overloaded. To include additional fields
in the print and sprint operation, derived classes must override the do_print method and
use the provided printer policy class to format the output. The printer policy will manage
all string concatenations and provide the string to sprint to return to the caller.

class mytype extends uvm_object;
 ...
 virtual function uvm_object create(string name="");
 mytype t = new(name);
 return t;
 endfunction

virtual function uvm_object clone ()

function void print (
 uvm_printer printer = null
)

function string sprint (
 uvm_printer printer = null
)

UVM 1.2 Class Reference 16

do_print

The do_print method is the user-definable hook called by print and sprint that allows
users to customize what gets printed or sprinted beyond the field information provided
by the `uvm_field_* macros, Utility and Field Macros for Components and Objects.

The printer argument is the policy object that governs the format and content of the
output. To ensure correct print and sprint operation, and to ensure a consistent output
format, the printer must be used by all do_print implementations. That is, instead of
using $display or string concatenations directly, a do_print implementation must call
through the printer’s API to add information to be printed or sprinted.

An example implementation of do_print is as follows

Then, to print and sprint the object, you could write

See uvm_printer for information about the printer API.

convert2string

This virtual function is a user-definable hook, called directly by the user, that allows
users to provide object information in the form of a string. Unlike sprint, there is no
requirement to use a uvm_printer policy object. As such, the format and content of the
output is fully customizable, which may be suitable for applications not requiring the
consistent formatting offered by the print/sprint/do_print API.

Fields declared in Utility Macros macros (`uvm_field_*), if used, will not automatically
appear in calls to convert2string.

An example implementation of convert2string follows.

virtual function void do_print (
 uvm_printer printer
)

class mytype extends uvm_object;
 data_obj data;
 int f1;
 virtual function void do_print (uvm_printer printer);
 super.do_print(printer);
 printer.print_field_int("f1", f1, $bits(f1), UVM_DEC);
 printer.print_object("data", data);
 endfunction

mytype t = new;
t.print();
uvm_report_info("Received",t.sprint());

virtual function string convert2string()

class base extends uvm_object;
 string field = "foo";
 virtual function string convert2string();
 convert2string = {"base_field=",field};
 endfunction
endclass

class obj2 extends uvm_object;

UVM 1.2 Class Reference 17

Then, to display an object, you could write

The output will look similar to

REcORdING

record

The record method deep-records this object’s properties according to an optional recorder
policy. The method is not virtual and must not be overloaded. To include additional
fields in the record operation, derived classes should override the do_record method.

The optional recorder argument specifies the recording policy, which governs how
recording takes place. See uvm_recorder for information.

A simulator’s recording mechanism is vendor-specific. By providing access via a common
interface, the uvm_recorder policy provides vendor-independent access to a simulator’s
recording capabilities.

do_record

The do_record method is the user-definable hook called by the record method. A derived

 string field = "bar";
 virtual function string convert2string();
 convert2string = {"child_field=",field};
 endfunction
endclass

class obj extends base;
 int addr = 'h123;
 int data = 'h456;
 bit write = 1;
 obj2 child = new;
 virtual function string convert2string();
 convert2string = {super.convert2string(),
 $sformatf(" write=%0d addr=%8h data=%8h ",write,addr,data),
 child.convert2string()};
 endfunction
endclass

obj o = new;
uvm_report_info("BusMaster",{"Sending:\n ",o.convert2string()});

UVM_INFO @ 0: reporter [BusMaster] Sending:
 base_field=foo write=1 addr=00000123 data=00000456 child_field=bar

function void record (
 uvm_recorder recorder = null
)

virtual function void do_record (
 uvm_recorder recorder
)

UVM 1.2 Class Reference 18

class should override this method to include its fields in a record operation.

The recorder argument is policy object for recording this object. A do_record
implementation should call the appropriate recorder methods for each of its fields.
Vendor-specific recording implementations are encapsulated in the recorder policy,
thereby insulating user-code from vendor-specific behavior. See uvm_recorder for more
information.

A typical implementation is as follows

COpYING

copy

The copy makes this object a copy of the specified object.

The copy method is not virtual and should not be overloaded in derived classes. To copy
the fields of a derived class, that class should override the do_copy method.

do_copy

The do_copy method is the user-definable hook called by the copy method. A derived
class should override this method to include its fields in a copy operation.

A typical implementation is as follows

The implementation must call super.do_copy, and it must $cast the rhs argument to the
derived type before copying.

class mytype extends uvm_object;
 data_obj data;
 int f1;
 function void do_record (uvm_recorder recorder);
 recorder.record_field("f1", f1, $bits(f1), UVM_DEC);
 recorder.record_object("data", data);
 endfunction

function void copy (
 uvm_object rhs
)

virtual function void do_copy (
 uvm_object rhs
)

class mytype extends uvm_object;
 ...
 int f1;
 function void do_copy (uvm_object rhs);
 mytype rhs_;
 super.do_copy(rhs);
 $cast(rhs_,rhs);
 field_1 = rhs_.field_1;
 endfunction

UVM 1.2 Class Reference 19

COMpARING

compare

Deep compares members of this data object with those of the object provided in the rhs
(right-hand side) argument, returning 1 on a match, 0 otherwise.

The compare method is not virtual and should not be overloaded in derived classes. To
compare the fields of a derived class, that class should override the do_compare method.

The optional comparer argument specifies the comparison policy. It allows you to control
some aspects of the comparison operation. It also stores the results of the comparison,
such as field-by-field miscompare information and the total number of miscompares. If a
compare policy is not provided, then the global uvm_default_comparer policy is used.
See uvm_comparer for more information.

do_compare

The do_compare method is the user-definable hook called by the compare method. A
derived class should override this method to include its fields in a compare operation. It
should return 1 if the comparison succeeds, 0 otherwise.

A typical implementation is as follows

A derived class implementation must call super.do_compare() to ensure its base class’
properties, if any, are included in the comparison. Also, the rhs argument is provided as
a generic uvm_object. Thus, you must $cast it to the type of this object before
comparing.

The actual comparison should be implemented using the uvm_comparer object rather
than direct field-by-field comparison. This enables users of your class to customize how
comparisons are performed and how much miscompare information is collected. See
uvm_comparer for more details.

function bit compare (
 uvm_object rhs,
 uvm_comparer comparer = null
)

virtual function bit do_compare (
 uvm_object rhs,
 uvm_comparer comparer
)

class mytype extends uvm_object;
 ...
 int f1;
 virtual function bit do_compare (uvm_object rhs,uvm_comparer comparer);
 mytype rhs_;
 do_compare = super.do_compare(rhs,comparer);
 $cast(rhs_,rhs);
 do_compare &= comparer.compare_field_int("f1", f1, rhs_.f1);
 endfunction

UVM 1.2 Class Reference 20

PAcKING

pack

pack_bytes

pack_ints

The pack methods bitwise-concatenate this object’s properties into an array of bits,
bytes, or ints. The methods are not virtual and must not be overloaded. To include
additional fields in the pack operation, derived classes should override the do_pack
method.

The optional packer argument specifies the packing policy, which governs the packing
operation. If a packer policy is not provided, the global uvm_default_packer policy is
used. See uvm_packer for more information.

The return value is the total number of bits packed into the given array. Use the array’s
built-in size method to get the number of bytes or ints consumed during the packing
process.

do_pack

The do_pack method is the user-definable hook called by the pack methods. A derived
class should override this method to include its fields in a pack operation.

The packer argument is the policy object for packing. The policy object should be used
to pack objects.

A typical example of an object packing itself is as follows

function int pack (
 ref bit bitstream[],
 input uvm_packer packer = null
)

function int pack_bytes (
 ref byte unsigned bytestream[],
 input uvm_packer packer = null
)

function int pack_ints (
 ref int unsigned intstream[],
 input uvm_packer packer = null
)

virtual function void do_pack (
 uvm_packer packer
)

class mysubtype extends mysupertype;
 ...
 shortint myshort;
 obj_type myobj;
 byte myarray[];
 ...
 function void do_pack (uvm_packer packer);
 super.do_pack(packer); // pack mysupertype properties

UVM 1.2 Class Reference 21

The implementation must call super.do_pack so that base class properties are packed as
well.

If your object contains dynamic data (object, string, queue, dynamic array, or associative
array), and you intend to unpack into an equivalent data structure when unpacking, you
must include meta-information about the dynamic data when packing as follows.

For queues, dynamic arrays, or associative arrays, pack the number of elements in
the array in the 32 bits immediately before packing individual elements, as shown
above.
For string data types, append a zero byte after packing the string contents.
For objects, pack 4 bits immediately before packing the object. For null objects,
pack 4’b0000. For non-null objects, pack 4’b0001.

When the `uvm_field_* macros are used, Utility and Field Macros for Components and
Objects, the above meta information is included provided the
uvm_packer::use_metadata variable is set for the packer.

Packing order does not need to match declaration order. However, unpacking order must
match packing order.

UNpAcKING

unpack

unpack_bytes

unpack_ints

The unpack methods extract property values from an array of bits, bytes, or ints. The
method of unpacking must exactly correspond to the method of packing. This is assured
if (a) the same packer policy is used to pack and unpack, and (b) the order of unpacking
is the same as the order of packing used to create the input array.

 packer.pack_field_int(myarray.size(), 32);
 foreach (myarray)
 packer.pack_field_int(myarray[index], 8);
 packer.pack_field_int(myshort, $bits(myshort));
 packer.pack_object(myobj);
 endfunction

function int unpack (
 ref bit bitstream[],
 input uvm_packer packer = null
)

function int unpack_bytes (
 ref byte unsigned bytestream[],
 input uvm_packer packer = null
)

function int unpack_ints (
 ref int unsigned intstream[],
 input uvm_packer packer = null
)

UVM 1.2 Class Reference 22

The unpack methods are fixed (non-virtual) entry points that are directly callable by the
user. To include additional fields in the unpack operation, derived classes should override
the do_unpack method.

The optional packer argument specifies the packing policy, which governs both the pack
and unpack operation. If a packer policy is not provided, then the global
uvm_default_packer policy is used. See uvm_packer for more information.

The return value is the actual number of bits unpacked from the given array.

do_unpack

The do_unpack method is the user-definable hook called by the unpack method. A
derived class should override this method to include its fields in an unpack operation.

The packer argument is the policy object for both packing and unpacking. It must be
the same packer used to pack the object into bits. Also, do_unpack must unpack fields
in the same order in which they were packed. See uvm_packer for more information.

The following implementation corresponds to the example given in do_pack.

If your object contains dynamic data (object, string, queue, dynamic array, or associative
array), and you intend to unpack into an equivalent data structure, you must have
included meta-information about the dynamic data when it was packed.

For queues, dynamic arrays, or associative arrays, unpack the number of elements
in the array from the 32 bits immediately before unpacking individual elements, as
shown above.
For string data types, unpack into the new string until a null byte is encountered.
For objects, unpack 4 bits into a byte or int variable. If the value is 0, the target
object should be set to null and unpacking continues to the next property, if any.
If the least significant bit is 1, then the target object should be allocated and its
properties unpacked.

CONFIGuRATION

set_int_local

virtual function void do_unpack (
 uvm_packer packer
)

function void do_unpack (uvm_packer packer);
 int sz;
 super.do_unpack(packer); // unpack super's properties
 sz = packer.unpack_field_int(myarray.size(), 32);
 myarray.delete();
 for(int index=0; index<sz; index++)
 myarray[index] = packer.unpack_field_int(8);
 myshort = packer.unpack_field_int($bits(myshort));
 packer.unpack_object(myobj);
endfunction

virtual function void set_int_local (
 string field_name,
 uvm_bitstream_t value,
 bit recurse = 1

UVM 1.2 Class Reference 23

set_string_local

set_object_local

These methods provide write access to integral, string, and uvm_object-based properties
indexed by a field_name string. The object designer choose which, if any, properties will
be accessible, and overrides the appropriate methods depending on the properties’
types. For objects, the optional clone argument specifies whether to clone the value
argument before assignment.

The global uvm_is_match function is used to match the field names, so field_name may
contain wildcards.

An example implementation of all three methods is as follows.

)

virtual function void set_string_local (
 string field_name,
 string value,
 bit recurse = 1
)

virtual function void set_object_local (
 string field_name,
 uvm_object value,
 bit clone = 1,
 bit recurse = 1
)

class mytype extends uvm_object;

 local int myint;
 local byte mybyte;
 local shortint myshort; // no access
 local string mystring;
 local obj_type myobj;

 // provide access to integral properties
 function void set_int_local(string field_name, uvm_bitstream_t value);
 if (uvm_is_match (field_name, "myint"))
 myint = value;
 else if (uvm_is_match (field_name, "mybyte"))
 mybyte = value;
 endfunction

 // provide access to string properties
 function void set_string_local(string field_name, string value);
 if (uvm_is_match (field_name, "mystring"))
 mystring = value;
 endfunction

 // provide access to sub-objects
 function void set_object_local(string field_name, uvm_object value,
 bit clone=1);
 if (uvm_is_match (field_name, "myobj")) begin
 if (value != null) begin
 obj_type tmp;
 // if provided value is not correct type, produce error
 if (!$cast(tmp, value))
 /* error */
 else begin
 if(clone)
 $cast(myobj, tmp.clone());
 else
 myobj = tmp;
 end
 end
 else
 myobj = null; // value is null, so simply assign null to myobj
 end
 endfunction
 ...

UVM 1.2 Class Reference 24

Although the object designer implements these methods to provide outside access to one
or more properties, they are intended for internal use (e.g., for command-line debugging
and auto-configuration) and should not be called directly by the user.

UVM 1.2 Class Reference 25

5.3 uvm_transaction

The uvm_transaction class is the root base class for UVM transactions. Inheriting all the
methods of uvm_object, uvm_transaction adds a timing and recording interface.

This class provides timestamp properties, notification events, and transaction recording
support.

Use of this class as a base for user-defined transactions is deprecated. Its subtype,
uvm_sequence_item, shall be used as the base class for all user-defined transaction
types.

The intended use of this API is via a uvm_driver #(REQ,RSP) to call
uvm_component::accept_tr, uvm_component::begin_tr, and uvm_component::end_tr
during the course of sequence item execution. These methods in the component base
class will call into the corresponding methods in this class to set the corresponding
timestamps (accept_time, begin_time, and end_time), trigger the corresponding event
(begin_event and end_event, and, if enabled, record the transaction contents to a
vendor-specific transaction database.

Note that get_next_item/item_done when called on a uvm_seq_item_pull_port will
automatically trigger the begin_event and end_events via calls to begin_tr and end_tr.
While convenient, it is generally the responsibility of drivers to mark a transaction’s
progress during execution. To allow the driver or layering sequence to control sequence
item timestamps, events, and recording, you must call
uvm_sqr_if_base#(REQ,RSP)::disable_auto_item_recording at the beginning of the
driver’s run_phase task.

Users may also use the transaction’s event pool, events, to define custom events for the
driver to trigger and the sequences to wait on. Any in-between events such as marking
the beginning of the address and data phases of transaction execution could be
implemented via the events pool.

In pipelined protocols, the driver may release a sequence (return from finish_item() or
its `uvm_do macro) before the item has been completed. If the driver uses the
begin_tr/end_tr API in uvm_component, the sequence can wait on the item’s end_event
to block until the item was fully executed, as in the following example.

A simple two-stage pipeline driver that can execute address and data phases
concurrently might be implemented as follows:

task uvm_execute(item, ...);
 // can use the `uvm_do macros as well
 start_item(item);
 item.randomize();
 finish_item(item);
 item.end_event.wait_on();
 // get_response(rsp, item.get_transaction_id()); //if needed
endtask

task run();
 // this driver supports a two-deep pipeline
 fork
 do_item();
 do_item();
 join
endtask

task do_item();

 forever begin
 mbus_item req;

UVM 1.2 Class Reference 26

Summary

uvm_transaction

The uvm_transaction class is the root base class for UVM transactions.

CLAss HIERARchY

uvm_void

uvm_object

uvm_transaction

CLAss DEcLARATION

METhOds

new Creates a new transaction object.
accept_tr Calling accept_tr indicates that the transaction item

has been received by a consumer component.
do_accept_tr This user-definable callback is called by accept_tr

just before the accept event is triggered.
begin_tr This function indicates that the transaction has been

started and is not the child of another transaction.
begin_child_tr This function indicates that the transaction has been

started as a child of a parent transaction given by
parent_handle.

do_begin_tr This user-definable callback is called by begin_tr and
begin_child_tr just before the begin event is
triggered.

end_tr This function indicates that the transaction execution
has ended.

do_end_tr This user-definable callback is called by end_tr just
before the end event is triggered.

get_tr_handle Returns the handle associated with the transaction,
as set by a previous call to begin_child_tr or
begin_tr with transaction recording enabled.

disable_recording Turns off recording for the transaction stream.
enable_recording Turns on recording to the stream specified.
is_recording_enabled Returns 1 if recording is currently on, 0 otherwise.
is_active Returns 1 if the transaction has been started but has

not yet been ended.
get_event_pool Returns the event pool associated with this

transaction.
set_initiator Sets initiator as the initiator of this transaction.

 lock.get();

 seq_item_port.get(req); // Completes the sequencer-driver handshake

 accept_tr(req);

 // request bus, wait for grant, etc.

 begin_tr(req);

 // execute address phase

 // allows next transaction to begin address phase
 lock.put();

 // execute data phase
 // (may trigger custom "data_phase" event here)

 end_tr(req);

 end

endtask: do_item

virtual class uvm_transaction extends uvm_object

UVM 1.2 Class Reference 27

get_initiator Returns the component that produced or started the
transaction, as set by a previous call to set_initiator.

get_accept_time
get_begin_time
get_end_time Returns the time at which this transaction was

accepted, begun, or ended, as by a previous call to
accept_tr, begin_tr, begin_child_tr, or end_tr.

set_transaction_id Sets this transaction’s numeric identifier to id.
get_transaction_id Returns this transaction’s numeric identifier, which is

-1 if not set explicitly by set_transaction_id.
VARIABLEs

events The event pool instance for this transaction.
begin_event A uvm_event#(uvm_object) that is triggered when

this transaction’s actual execution on the bus begins,
typically as a result of a driver calling
uvm_component::begin_tr.

end_event A uvm_event#(uvm_object) that is triggered when
this transaction’s actual execution on the bus ends,
typically as a result of a driver calling
uvm_component::end_tr.

METhOds

new

Creates a new transaction object. The name is the instance name of the transaction. If
not supplied, then the object is unnamed.

accept_tr

Calling accept_tr indicates that the transaction item has been received by a consumer
component. Typically a uvm_driver #(REQ,RSP) would call uvm_component::accept_tr,
which calls this method-- upon return from a get_next_item(), get(), or peek()
call on its sequencer port, uvm_driver#(REQ,RSP)::seq_item_port.

With some protocols, the received item may not be started immediately after it is
accepted. For example, a bus driver, having accepted a request transaction, may still
have to wait for a bus grant before beginning to execute the request.

This function performs the following actions
The transaction’s internal accept time is set to the current simulation time, or to
accept_time if provided and non-zero. The accept_time may be any time, past or
future.
The transaction’s internal accept event is triggered. Any processes waiting on the
this event will resume in the next delta cycle.
The do_accept_tr method is called to allow for any post-accept action in derived

function new (
 string name = "",
 uvm_component initiator = null
)

function void accept_tr (
 time accept_time = 0
)

UVM 1.2 Class Reference 28

classes.

do_accept_tr

This user-definable callback is called by accept_tr just before the accept event is
triggered. Implementations should call super.do_accept_tr to ensure correct operation.

begin_tr

This function indicates that the transaction has been started and is not the child of
another transaction. Generally, a consumer component begins execution of a
transactions it receives.

Typically a uvm_driver #(REQ,RSP) would call uvm_component::begin_tr, which calls this
method, before actual execution of a sequence item transaction. Sequence items
received by a driver are always a child of a parent sequence. In this case, begin_tr
obtains the parent handle and delegates to begin_child_tr.

See accept_tr for more information on how the begin-time might differ from when the
transaction item was received.

This function performs the following actions
The transaction’s internal start time is set to the current simulation time, or to
begin_time if provided and non-zero. The begin_time may be any time, past or
future, but should not be less than the accept time.
If recording is enabled, then a new database-transaction is started with the same
begin time as above.
The do_begin_tr method is called to allow for any post-begin action in derived
classes.
The transaction’s internal begin event is triggered. Any processes waiting on this
event will resume in the next delta cycle.

The return value is a transaction handle, which is valid (non-zero) only if recording is
enabled. The meaning of the handle is implementation specific.

begin_child_tr

This function indicates that the transaction has been started as a child of a parent
transaction given by parent_handle. Generally, a consumer component calls this method
via uvm_component::begin_child_tr to indicate the actual start of execution of this
transaction.

The parent handle is obtained by a previous call to begin_tr or begin_child_tr. If the
parent_handle is invalid (=0), then this function behaves the same as begin_tr.

virtual protected function void do_accept_tr ()

function integer begin_tr (
 time begin_time = 0
)

function integer begin_child_tr (
 time begin_time = 0,
 integer parent_handle = 0
)

UVM 1.2 Class Reference 29

This function performs the following actions
The transaction’s internal start time is set to the current simulation time, or to
begin_time if provided and non-zero. The begin_time may be any time, past or
future, but should not be less than the accept time.
If recording is enabled, then a new database-transaction is started with the same
begin time as above. The inherited uvm_object::record method is then called,
which records the current property values to this new transaction. Finally, the
newly started transaction is linked to the parent transaction given by
parent_handle.
The do_begin_tr method is called to allow for any post-begin action in derived
classes.
The transaction’s internal begin event is triggered. Any processes waiting on this
event will resume in the next delta cycle.

The return value is a transaction handle, which is valid (non-zero) only if recording is
enabled. The meaning of the handle is implementation specific.

do_begin_tr

This user-definable callback is called by begin_tr and begin_child_tr just before the begin
event is triggered. Implementations should call super.do_begin_tr to ensure correct
operation.

end_tr

This function indicates that the transaction execution has ended. Generally, a consumer
component ends execution of the transactions it receives.

You must have previously called begin_tr or begin_child_tr for this call to be successful.

Typically a uvm_driver #(REQ,RSP) would call uvm_component::end_tr, which calls this
method, upon completion of a sequence item transaction. Sequence items received by a
driver are always a child of a parent sequence. In this case, begin_tr obtain the parent
handle and delegate to begin_child_tr.

This function performs the following actions
The transaction’s internal end time is set to the current simulation time, or to
end_time if provided and non-zero. The end_time may be any time, past or
future, but should not be less than the begin time.
If recording is enabled and a database-transaction is currently active, then the
record method inherited from uvm_object is called, which records the final
property values. The transaction is then ended. If free_handle is set, the
transaction is released and can no longer be linked to (if supported by the
implementation).
The do_end_tr method is called to allow for any post-end action in derived classes.
The transaction’s internal end event is triggered. Any processes waiting on this
event will resume in the next delta cycle.

virtual protected function void do_begin_tr ()

function void end_tr (
 time end_time = 0,
 bit free_handle = 1
)

UVM 1.2 Class Reference 30

do_end_tr

This user-definable callback is called by end_tr just before the end event is triggered.
Implementations should call super.do_end_tr to ensure correct operation.

get_tr_handle

Returns the handle associated with the transaction, as set by a previous call to
begin_child_tr or begin_tr with transaction recording enabled.

disable_recording

Turns off recording for the transaction stream. This method does not effect a
uvm_component’s recording streams.

enable_recording

Turns on recording to the stream specified.

If transaction recording is on, then a call to record is made when the transaction is
ended.

is_recording_enabled

Returns 1 if recording is currently on, 0 otherwise.

is_active

Returns 1 if the transaction has been started but has not yet been ended. Returns 0 if
the transaction has not been started.

get_event_pool

virtual protected function void do_end_tr ()

function integer get_tr_handle ()

function void disable_recording ()

function void enable_recording (
 uvm_tr_stream stream
)

function bit is_recording_enabled()

function bit is_active ()

function uvm_event_pool get_event_pool ()

UVM 1.2 Class Reference 31

Returns the event pool associated with this transaction.

By default, the event pool contains the events: begin, accept, and end. Events can also
be added by derivative objects. An event pool is a specialization of uvm_pool#(KEY,T),
e.g. a uvm_pool#(uvm_event).

set_initiator

Sets initiator as the initiator of this transaction.

The initiator can be the component that produces the transaction. It can also be the
component that started the transaction. This or any other usage is up to the transaction
designer.

get_initiator

Returns the component that produced or started the transaction, as set by a previous call
to set_initiator.

get_accept_time

get_begin_time

get_end_time

Returns the time at which this transaction was accepted, begun, or ended, as by a
previous call to accept_tr, begin_tr, begin_child_tr, or end_tr.

set_transaction_id

Sets this transaction’s numeric identifier to id. If not set via this method, the transaction
ID defaults to -1.

When using sequences to generate stimulus, the transaction ID is used along with the
sequence ID to route responses in sequencers and to correlate responses to requests.

function void set_initiator (
 uvm_component initiator
)

function uvm_component get_initiator ()

function time get_accept_time ()

function time get_begin_time ()

function time get_end_time ()

function void set_transaction_id(
 integer id
)

UVM 1.2 Class Reference 32

get_transaction_id

Returns this transaction’s numeric identifier, which is -1 if not set explicitly by
set_transaction_id.

When using a uvm_sequence #(REQ,RSP) to generate stimulus, the transaction ID is
used along with the sequence ID to route responses in sequencers and to correlate
responses to requests.

VARIABLEs

events

The event pool instance for this transaction. This pool is used to track various
milestones: by default, begin, accept, and end

begin_event

A uvm_event#(uvm_object) that is triggered when this transaction’s actual execution on
the bus begins, typically as a result of a driver calling uvm_component::begin_tr.
Processes that wait on this event will block until the transaction has begun.

For more information, see the general discussion for uvm_transaction. See
uvm_event#(T) for details on the event API.

end_event

A uvm_event#(uvm_object) that is triggered when this transaction’s actual execution on
the bus ends, typically as a result of a driver calling uvm_component::end_tr. Processes
that wait on this event will block until the transaction has ended.

For more information, see the general discussion for uvm_transaction. See
uvm_event#(T) for details on the event API.

function integer get_transaction_id()

const uvm_event_pool events = new

uvm_event#(
 uvm_object
) begin_event

uvm_event#(
 uvm_object
) end_event

virtual task my_sequence::body();
 ...
 start_item(item); \
 item.randomize(); } `uvm_do(item)
 finish_item(item); /
 // return from finish item does not always mean item is completed
 item.end_event.wait_on();
 ...

UVM 1.2 Class Reference 33

5.4 uvm_root

The uvm_root class serves as the implicit top-level and phase controller for all UVM
components. Users do not directly instantiate uvm_root. The UVM automatically creates
a single instance of uvm_root that users can access via the global (uvm_pkg-scope)
variable, uvm_top.

The uvm_top instance of uvm_root plays several key roles in the UVM.

Implicit top-level The uvm_top serves as an implicit top-level
component. Any component whose parent is specified
as null becomes a child of uvm_top. Thus, all UVM
components in simulation are descendants of uvm_top.

Phase control uvm_top manages the phasing for all components.
Search Use uvm_top to search for components based on their

hierarchical name. See find and find_all.
Report configuration Use uvm_top to globally configure report verbosity, log

files, and actions. For example,
uvm_top.set_report_verbosity_level_hier(UVM_FULL)
would set full verbosity for all components in simulation.

Global reporter Because uvm_top is globally accessible (in uvm_pkg
scope), UVM’s reporting mechanism is accessible from
anywhere outside uvm_component, such as in modules
and sequences. See uvm_report_error,
uvm_report_warning, and other global methods.

The uvm_top instance checks during the end_of_elaboration phase if any errors have
been generated so far. If errors are found a UVM_FATAL error is being generated as
result so that the simulation will not continue to the start_of_simulation_phase.

Summary

uvm_root

The uvm_root class serves as the implicit top-level and phase controller for all
UVM components.

get() Static accessor for uvm_root.
SIMULATION CONTROL

run_test Phases all components through all registered
phases.

die This method is called by the report server if a report
reaches the maximum quit count or has a
UVM_EXIT action associated with it, e.g., as with
fatal errors.

set_timeout Specifies the timeout for the simulation.
finish_on_completion If set, then run_test will call $finish after all phases

are executed.
TOPOLOGY

top_levels This variable is a list of all of the top level

UVM 1.2 Class Reference 34

components in UVM.
find
find_all Returns the component handle (find) or list of

components handles (find_all) matching a given
string.

print_topology Print the verification environment’s component
topology.

enable_print_topology If set, then the entire testbench topology is printed
just after completion of the end_of_elaboration
phase.

GLOBAL VARIABLEs

uvm_top This is the top-level that governs phase execution
and provides component search interface.

get()

Static accessor for uvm_root.

The static accessor is provided as a convenience wrapper around retrieving the root via
the uvm_coreservice_t::get_root method.

SIMULATION CONTROL

run_test

Phases all components through all registered phases. If the optional test_name
argument is provided, or if a command-line plusarg, +UVM_TESTNAME=TEST_NAME, is
found, then the specified component is created just prior to phasing. The test may
contain new verification components or the entire testbench, in which case the test and
testbench can be chosen from the command line without forcing recompilation. If the
global (package) variable, finish_on_completion, is set, then $finish is called after
phasing completes.

die

This method is called by the report server if a report reaches the maximum quit count or

static function uvm_root get()

// Using the uvm_coreservice_t:
uvm_coreservice_t cs;
uvm_root r;
cs = uvm_coreservice_t::get();
r = cs.get_root();

// Not using the uvm_coreservice_t:
uvm_root r;
r = uvm_root::get();

virtual task run_test (
 string test_name = ""
)

virtual function void die()

UVM 1.2 Class Reference 35

has a UVM_EXIT action associated with it, e.g., as with fatal errors.

Calls the uvm_component::pre_abort() method on the entire uvm_component hierarchy
in a bottom-up fashion. It then calls uvm_report_server::report_summarize and
terminates the simulation with $finish.

set_timeout

Specifies the timeout for the simulation. Default is `UVM_DEFAULT_TIMEOUT

The timeout is simply the maximum absolute simulation time allowed before a FATAL
occurs. If the timeout is set to 20ns, then the simulation must end before 20ns, or a
FATAL timeout will occur.

This is provided so that the user can prevent the simulation from potentially consuming
too many resources (Disk, Memory, CPU, etc) when the testbench is essentially hung.

finish_on_completion

If set, then run_test will call $finish after all phases are executed.

TOPOLOGY

top_levels

This variable is a list of all of the top level components in UVM. It includes the
uvm_test_top component that is created by run_test as well as any other top level
components that have been instantiated anywhere in the hierarchy.

find

find_all

function void set_timeout(
 time timeout,
 bit overridable = 1
)

bit finish_on_completion = 1

uvm_component top_levels[$]

function uvm_component find (
 string comp_match
)

function void find_all (
 string comp_match,
 ref uvm_component comps[$],
 input uvm_component comp = null
)

UVM 1.2 Class Reference 36

Returns the component handle (find) or list of components handles (find_all) matching a
given string. The string may contain the wildcards,

and ?. Strings beginning with ‘.’ are absolute path names. If the optional
argument comp is provided, then search begins from that component down
(default=all components).

print_topology

Print the verification environment’s component topology. The printer is a uvm_printer
object that controls the format of the topology printout; a null printer prints with the
default output.

enable_print_topology

If set, then the entire testbench topology is printed just after completion of the
end_of_elaboration phase.

GLOBAL VARIABLEs

uvm_top

This is the top-level that governs phase execution and provides component search
interface. See uvm_root for more information.

function void print_topology (
 uvm_printer printer = null
)

bit enable_print_topology = 0

const uvm_root uvm_top = uvm_root::get()

UVM 1.2 Class Reference 37

5.5 Port Base Classes

Contents

Port Base Classes

uvm_port_component_base This class defines an interface for obtaining a port’s
connectivity lists after or during the
end_of_elaboration phase.

uvm_port_component
#(PORT)

See description of uvm_port_component_base for
information about this class

uvm_port_base #(IF) Transaction-level communication between
components is handled via its ports, exports, and
imps, all of which derive from this class.

uvm_port_component_base

This class defines an interface for obtaining a port’s connectivity lists after or during the
end_of_elaboration phase. The sub-class, uvm_port_component #(PORT), implements
this interface.

The connectivity lists are returned in the form of handles to objects of this type. This
allowing traversal of any port’s fan-out and fan-in network through recursive calls to
get_connected_to and get_provided_to. Each port’s full name and type name can be
retrieved using get_full_name and get_type_name methods inherited from
uvm_component.

Summary

uvm_port_component_base

This class defines an interface for obtaining a port’s connectivity lists after or
during the end_of_elaboration phase.

CLAss HIERARchY

uvm_void

uvm_object

uvm_report_object

uvm_component

uvm_port_component_base

CLAss DEcLARATION

METhOds

get_connected_to For a port or export type, this function fills list with all of
the ports, exports and implementations that this port is
connected to.

get_provided_to For an implementation or export type, this function fills
list with all of the ports, exports and implementations

virtual class uvm_port_component_base extends
uvm_component

UVM 1.2 Class Reference 38

that this port is provides its implementation to.
is_port
is_export
is_imp These function determine the type of port.

METhOds

get_connected_to

For a port or export type, this function fills list with all of the ports, exports and
implementations that this port is connected to.

get_provided_to

For an implementation or export type, this function fills list with all of the ports, exports
and implementations that this port is provides its implementation to.

is_port

is_export

is_imp

These function determine the type of port. The functions are mutually exclusive; one will
return 1 and the other two will return 0.

uvm_port_component #(PORT)

See description of uvm_port_component_base for information about this class

Summary

pure virtual function void get_connected_to(
 ref uvm_port_list list
)

pure virtual function void get_provided_to(
 ref uvm_port_list list
)

pure virtual function bit is_port()

pure virtual function bit is_export()

pure virtual function bit is_imp()

UVM 1.2 Class Reference 39

uvm_port_component #(PORT)

See description of uvm_port_component_base for information about this class

CLAss HIERARchY

uvm_void

uvm_object

uvm_report_object

uvm_component

uvm_port_component_base

uvm_port_component#(PORT)

CLAss DEcLARATION

METhOds

get_port Retrieve the actual port object that this proxy refers to.

METhOds

get_port

Retrieve the actual port object that this proxy refers to.

uvm_port_base #(IF)

Transaction-level communication between components is handled via its ports, exports,
and imps, all of which derive from this class.

The uvm_port_base extends IF, which is the type of the interface implemented by
derived port, export, or implementation. IF is also a type parameter to uvm_port_base.

IF The interface type implemented by the subtype to this base port

The UVM provides a complete set of ports, exports, and imps for the OSCI- standard TLM
interfaces. They can be found in the ../src/tlm/ directory. For the TLM interfaces, the IF
parameter is always uvm_tlm_if_base #(T1,T2).

Just before uvm_component::end_of_elaboration_phase, an internal
uvm_component::resolve_bindings process occurs, after which each port and export
holds a list of all imps connected to it via hierarchical connections to other ports and
exports. In effect, we are collapsing the port’s fanout, which can span several levels up
and down the component hierarchy, into a single array held local to the port. Once the
list is determined, the port’s min and max connection settings can be checked and
enforced.

class uvm_port_component #(
 type PORT = uvm_object
) extends uvm_port_component_base

function PORT get_port()

UVM 1.2 Class Reference 40

uvm_port_base possesses the properties of components in that they have a hierarchical
instance path and parent. Because SystemVerilog does not support multiple inheritance,
uvm_port_base cannot extend both the interface it implements and uvm_component.
Thus, uvm_port_base contains a local instance of uvm_component, to which it delegates
such commands as get_name, get_full_name, and get_parent.

Summary

uvm_port_base #(IF)

Transaction-level communication between components is handled via its ports,
exports, and imps, all of which derive from this class.

CLAss HIERARchY

IF

uvm_port_base#(IF)

CLAss DEcLARATION

METhOds

new The first two arguments are the normal
uvm_component constructor arguments.

get_name Returns the leaf name of this port.
get_full_name Returns the full hierarchical name of this port.
get_parent Returns the handle to this port’s parent, or null if it

has no parent.
get_comp Returns a handle to the internal proxy component

representing this port.
get_type_name Returns the type name to this port.
min_size Returns the minimum number of implementation

ports that must be connected to this port by the
end_of_elaboration phase.

max_size Returns the maximum number of implementation
ports that must be connected to this port by the
end_of_elaboration phase.

is_unbounded Returns 1 if this port has no maximum on the number
of implementation ports this port can connect to.

is_port
is_export
is_imp Returns 1 if this port is of the type given by the

method name, 0 otherwise.
size Gets the number of implementation ports connected

to this port.
set_default_index Sets the default implementation port to use when

calling an interface method.
connect Connects this port to the given provider port.
debug_connected_to The debug_connected_to method outputs a visual

text display of the port/export/imp network to which
this port connects (i.e., the port’s fanout).

debug_provided_to The debug_provided_to method outputs a visual
display of the port/export network that ultimately
connect to this port (i.e., the port’s fanin).

resolve_bindings This callback is called just before entering the
end_of_elaboration phase.

get_if Returns the implementation (imp) port at the given
index from the array of imps this port is connected
to.

virtual class uvm_port_base #(
 type IF = uvm_void
) extends IF

UVM 1.2 Class Reference 41

METhOds

new

The first two arguments are the normal uvm_component constructor arguments.

The port_type can be one of UVM_PORT, UVM_EXPORT, or UVM_IMPLEMENTATION.

The min_size and max_size specify the minimum and maximum number of
implementation (imp) ports that must be connected to this port base by the end of
elaboration. Setting max_size to UVM_UNBOUNDED_CONNECTIONS sets no maximum,
i.e., an unlimited number of connections are allowed.

By default, the parent/child relationship of any port being connected to this port is not
checked. This can be overridden by configuring the port’s check_connection_relationships
bit via uvm_config_int::set(). See connect for more information.

get_name

Returns the leaf name of this port.

get_full_name

Returns the full hierarchical name of this port.

get_parent

Returns the handle to this port’s parent, or null if it has no parent.

get_comp

Returns a handle to the internal proxy component representing this port.

Ports are considered components. However, they do not inherit uvm_component.
Instead, they contain an instance of uvm_port_component #(PORT) that serves as a
proxy to this port.

function new (
 string name,
 uvm_component parent,
 uvm_port_type_e port_type,
 int min_size = 0,
 int max_size = 1
)

function string get_name()

virtual function string get_full_name()

virtual function uvm_component get_parent()

virtual function uvm_port_component_base get_comp()

UVM 1.2 Class Reference 42

get_type_name

Returns the type name to this port. Derived port classes must implement this method to
return the concrete type. Otherwise, only a generic “uvm_port”, “uvm_export” or
“uvm_implementation” is returned.

min_size

Returns the minimum number of implementation ports that must be connected to this
port by the end_of_elaboration phase.

max_size

Returns the maximum number of implementation ports that must be connected to this
port by the end_of_elaboration phase.

is_unbounded

Returns 1 if this port has no maximum on the number of implementation ports this port
can connect to. A port is unbounded when the max_size argument in the constructor is
specified as UVM_UNBOUNDED_CONNECTIONS.

is_port

is_export

is_imp

Returns 1 if this port is of the type given by the method name, 0 otherwise.

size

Gets the number of implementation ports connected to this port. The value is not valid
before the end_of_elaboration phase, as port connections have not yet been resolved.

virtual function string get_type_name()

function bit is_unbounded ()

function bit is_port ()

function bit is_export ()

function bit is_imp ()

function int size ()

UVM 1.2 Class Reference 43

set_default_index

Sets the default implementation port to use when calling an interface method. This
method should only be called on UVM_EXPORT types. The value must not be set before
the end_of_elaboration phase, when port connections have not yet been resolved.

connect

Connects this port to the given provider port. The ports must be compatible in the
following ways

Their type parameters must match
The provider’s interface type (blocking, non-blocking, analysis, etc.) must be
compatible. Each port has an interface mask that encodes the interface(s) it
supports. If the bitwise AND of these masks is equal to the this port’s mask, the
requirement is met and the ports are compatible. For example, a
uvm_blocking_put_port #(T) is compatible with a uvm_put_export #(T) and
uvm_blocking_put_imp #(T) because the export and imp provide the interface
required by the uvm_blocking_put_port.
Ports of type UVM_EXPORT can only connect to other exports or imps.
Ports of type UVM_IMPLEMENTATION cannot be connected, as they are bound to
the component that implements the interface at time of construction.

In addition to type-compatibility checks, the relationship between this port and the
provider port will also be checked if the port’s check_connection_relationships
configuration has been set. (See new for more information.)

Relationships, when enabled, are checked are as follows
If this port is a UVM_PORT type, the provider can be a parent port, or a sibling
export or implementation port.
If this port is a UVM_EXPORT type, the provider can be a child export or
implementation port.

If any relationship check is violated, a warning is issued.

Note- the uvm_component::connect_phase method is related to but not the same as this
method. The component’s connect method is a phase callback where port’s connect
method calls are made.

debug_connected_to

The debug_connected_to method outputs a visual text display of the port/export/imp
network to which this port connects (i.e., the port’s fanout).

function void set_default_index (
 int index
)

virtual function void connect (
 this_type provider
)

function void debug_connected_to (
 int level = 0,
 int max_level = -1
)

UVM 1.2 Class Reference 44

This method must not be called before the end_of_elaboration phase, as port connections
are not resolved until then.

debug_provided_to

The debug_provided_to method outputs a visual display of the port/export network that
ultimately connect to this port (i.e., the port’s fanin).

This method must not be called before the end_of_elaboration phase, as port connections
are not resolved until then.

resolve_bindings

This callback is called just before entering the end_of_elaboration phase. It recurses
through each port’s fanout to determine all the imp destinations. It then checks against
the required min and max connections. After resolution, size returns a valid value and
get_if can be used to access a particular imp.

This method is automatically called just before the start of the end_of_elaboration
phase. Users should not need to call it directly.

get_if

Returns the implementation (imp) port at the given index from the array of imps this
port is connected to. Use size to get the valid range for index. This method can only be
called at the end_of_elaboration phase or after, as port connections are not resolved
before then.

function void debug_provided_to (
 int level = 0,
 int max_level = -1
)

virtual function void resolve_bindings()

function uvm_port_base #(
 IF
) get_if(int index=0)

UVM 1.2 Class Reference 45

6. REPOrTING CLASSES

The reporting classes provide a facility for issuing reports with consistent formatting.
Users can configure what actions to take and what files to send output to based on
report severity, ID, or both severity and ID. Users can also filter messages based on
their verbosity settings.

The primary interface to the UVM reporting facility is the uvm_report_object from which
all uvm_components extend. The uvm_report_object delegates most tasks to its internal
uvm_report_handler. If the report handler determines the report is not filtered based
the configured verbosity setting, it sends the report to the central uvm_report_server for
formatting and processing.

Summary

Reporting Classes

The reporting classes provide a facility for issuing reports with consistent
formatting.

UVM 1.2 Class Reference 46

6.1 uvm_report_message_element_base

Base class for report message element. Defines common interface.

Contents

uvm_report_message_element_base Base class for report message
element.

uvm_report_message_int_element Message element class for integral
type

uvm_report_message_string_element Message element class for string type
uvm_report_message_object_element Message element class for object type
uvm_report_message_element_container A container used by report message to

contain the dynamically added
elements, with APIs to add and delete
the elements.

uvm_report_message The uvm_report_message is the basic
UVM object message class.

METHODS

get_name

set_name

Get or set the name of the element

get_action

set_action

Get or set the authorized action for the element

uvm_report_message_int_element

virtual function string get_name()

virtual function void set_name(
 string name
)

virtual function uvm_action get_action()

virtual function void set_action(
 uvm_action action
)

UVM 1.2 Class Reference 47

Message element class for integral type

Summary

uvm_report_message_int_element

Message element class for integral type

CLASS HIERARcHY

uvm_report_message_element_base

uvm_report_message_int_element

CLASS DEcLARATION

METHODS

get_value
set_value Get or set the value (integral type) of the element, with size

and radix

METHODS

get_value

set_value

Get or set the value (integral type) of the element, with size and radix

uvm_report_message_string_element

Message element class for string type

Summary

uvm_report_message_string_element

Message element class for string type

class uvm_report_message_int_element extends
uvm_report_message_element_base

virtual function uvm_bitstream_t get_value(
 output int size,
 output uvm_radix_enum radix
)

virtual function void set_value(
 uvm_bitstream_t value,
 int size,
 uvm_radix_enum radix
)

UVM 1.2 Class Reference 48

CLASS HIERARcHY

uvm_report_message_element_base

uvm_report_message_string_element

CLASS DEcLARATION

METHODS

get_value
set_value Get or set the value (string type) of the element

METHODS

get_value

set_value

Get or set the value (string type) of the element

uvm_report_message_object_element

Message element class for object type

Summary

uvm_report_message_object_element

Message element class for object type

CLASS HIERARcHY

uvm_report_message_element_base

uvm_report_message_object_element

CLASS DEcLARATION

METHODS

get_value Get the value (object reference) of the element
set_value Get or set the value (object reference) of the element

class uvm_report_message_string_element extends
uvm_report_message_element_base

virtual function string get_value()

virtual function void set_value(
 string value
)

class uvm_report_message_object_element extends
uvm_report_message_element_base

UVM 1.2 Class Reference 49

METHODS

get_value

Get the value (object reference) of the element

set_value

Get or set the value (object reference) of the element

uvm_report_message_element_container

A container used by report message to contain the dynamically added elements, with
APIs to add and delete the elements.

Summary

uvm_report_message_element_container

A container used by report message to contain the dynamically added elements,
with APIs to add and delete the elements.

CLASS HIERARcHY

uvm_void

uvm_object

uvm_report_message_element_container

CLASS DEcLARATION

METHODS

new Create a new uvm_report_message_element_container
object

size Returns the size of the container
delete Delete the index-th element in the container
delete_elements Delete all the elements in the container
get_elements Get all the elements from the container and put them in a

queue
add_int This method adds an integral type of the name name and

value value to the container.
add_string This method adds a string of the name name and value

value to the message.
add_object This method adds a uvm_object of the name name and

virtual function uvm_object get_value()

virtual function void set_value(
 uvm_object value
)

class uvm_report_message_element_container extends
uvm_object

UVM 1.2 Class Reference 50

reference obj to the message.

METHODS

new

Create a new uvm_report_message_element_container object

size

Returns the size of the container, i.e. the number of elements

delete

Delete the index-th element in the container

delete_elements

Delete all the elements in the container

get_elements

Get all the elements from the container and put them in a queue

add_int

This method adds an integral type of the name name and value value to the container.
The required size field indicates the size of value. The required radix field determines
how to display and record the field. The optional print/record bit is to specify whether
the element will be printed/recorded.

function new(
 string name = "element_container"
)

virtual function int size()

virtual function void delete(
 int index
)

virtual function void delete_elements()

virtual function void add_int(
 string name,
 uvm_bitstream_t value,
 int size,
 uvm_radix_enum radix,
 uvm_action action = (UVM_LOG|UVM_RM_RECORD)
)

UVM 1.2 Class Reference 51

add_string

This method adds a string of the name name and value value to the message. The
optional print/record bit is to specify whether the element will be printed/recorded.

add_object

This method adds a uvm_object of the name name and reference obj to the message.
The optional print/record bit is to specify whether the element will be printed/recorded.

uvm_report_message

The uvm_report_message is the basic UVM object message class. It provides the fields
that are common to all messages. It also has a message element container and provides
the APIs necessary to add integral types, strings and uvm_objects to the container. The
report message object can be initialized with the common fields, and passes through the
whole reporting system (i.e. report object, report handler, report server, report catcher,
etc) as an object. The additional elements can be added/deleted to/from the message
object anywhere in the reporting system, and can be printed or recorded along with the
common fields.

Summary

uvm_report_message

The uvm_report_message is the basic UVM object message class.

CLASS HIERARcHY

uvm_void

uvm_object

uvm_report_message

CLASS DEcLARATION

new Creates a new uvm_report_message object.
new_report_message Creates a new uvm_report_message object.
print The uvm_report_message implements

uvm_object::do_print() such that print method
provides UVM printer formatted output of the
message.

virtual function void add_string(
 string name,
 string value,
 uvm_action action = (UVM_LOG|UVM_RM_RECORD)
)

virtual function void add_object(
 string name,
 uvm_object obj,
 uvm_action action = (UVM_LOG|UVM_RM_RECORD)
)

class uvm_report_message extends uvm_object

UVM 1.2 Class Reference 52

INFRASTRUcTURE

REFERENcES

get_report_object
set_report_object Get or set the uvm_report_object that originated

the message.
get_report_handler
set_report_handler Get or set the uvm_report_handler that is

responsible for checking whether the message is
enabled, should be upgraded/downgraded, etc.

get_report_server
set_report_server Get or set the uvm_report_server that is

responsible for servicing the message’s actions.
MESSAGE FIELDS

get_severity
set_severity Get or set the severity (UVM_INFO,

UVM_WARNING, UVM_ERROR or UVM_FATAL) of
the message.

get_id
set_id Get or set the id of the message.
get_message
set_message Get or set the user message content string.
get_verbosity
set_verbosity Get or set the message threshold value.
get_filename
set_filename Get or set the file from which the message

originates.
get_line
set_line Get or set the line in the file from which the

message originates.
get_context
set_context Get or set the optional user-supplied string that is

meant to convey the context of the message.
get_action
set_action Get or set the action(s) that the

uvm_report_server should perform for this
message.

get_file
set_file Get or set the file that the message is to be written

to when the message’s action is UVM_LOG.
get_element_container Get the element_container of the message
set_report_message Set all the common fields of the report message in

one shot.
MESSAGE ELEmENT APIS

add_int This method adds an integral type of the name
name and value value to the message.

add_string This method adds a string of the name name and
value value to the message.

add_object This method adds a uvm_object of the name name
and reference obj to the message.

new

Creates a new uvm_report_message object.

new_report_message

function new(
 string name = "uvm_report_message"
)

static function uvm_report_message new_report_message(

UVM 1.2 Class Reference 53

Creates a new uvm_report_message object. This function is the same as new(), but
keeps the random stability.

print

The uvm_report_message implements uvm_object::do_print() such that print method
provides UVM printer formatted output of the message. A snippet of example output is
shown here:

INFRASTRUcTURE REFERENcES

get_report_object

set_report_object

Get or set the uvm_report_object that originated the message.

get_report_handler

set_report_handler

 string name = "uvm_report_message"
)

virtual function void do_print(
 uvm_printer printer
)

--
Name Type Size Value
--
uvm_report_message uvm_report_message - @532
 severity uvm_severity 2 UVM_INFO
 id string 10 TEST_ID
 message string 12 A message...
 verbosity uvm_verbosity 32 UVM_LOW
 filename string 7 test.sv
 line integral 32 'd58
 context_name string 0 ""
 color string 3 red
 my_int integral 32 'd5
 my_string string 3 foo
 my_obj my_class - @531
 foo integral 32 'd3
 bar string 8 hi there

virtual function uvm_report_object get_report_object()

virtual function void set_report_object(
 uvm_report_object ro
)

virtual function uvm_report_handler get_report_handler()

UVM 1.2 Class Reference 54

Get or set the uvm_report_handler that is responsible for checking whether the message
is enabled, should be upgraded/downgraded, etc.

get_report_server

set_report_server

Get or set the uvm_report_server that is responsible for servicing the message’s actions.

MESSAGE FIELDS

get_severity

set_severity

Get or set the severity (UVM_INFO, UVM_WARNING, UVM_ERROR or UVM_FATAL) of the
message. The value of this field is determined via the API used (`uvm_info(),
`uvm_waring(), etc.) and populated for the user.

get_id

set_id

Get or set the id of the message. The value of this field is completely under user
discretion. Users are recommended to follow a consistent convention. Settings in the
uvm_report_handler allow various messaging controls based on this field. See
uvm_report_handler.

virtual function void set_report_handler(
 uvm_report_handler rh
)

virtual function uvm_report_server get_report_server()

virtual function void set_report_server(
 uvm_report_server rs
)

virtual function uvm_severity get_severity()

virtual function void set_severity(
 uvm_severity sev
)

virtual function string get_id()

virtual function void set_id(
 string id
)

UVM 1.2 Class Reference 55

get_message

set_message

Get or set the user message content string.

get_verbosity

set_verbosity

Get or set the message threshold value. This value is compared against settings in the
uvm_report_handler to determine whether this message should be executed.

get_filename

set_filename

Get or set the file from which the message originates. This value is automatically
populated by the messaging macros.

get_line

set_line

virtual function string get_message()

virtual function void set_message(
 string msg
)

virtual function int get_verbosity()

virtual function void set_verbosity(
 int ver
)

virtual function string get_filename()

virtual function void set_filename(
 string fname
)

virtual function int get_line()

virtual function void set_line(
 int ln
)

UVM 1.2 Class Reference 56

Get or set the line in the file from which the message originates. This value is
automatically populate by the messaging macros.

get_context

set_context

Get or set the optional user-supplied string that is meant to convey the context of the
message. It can be useful in scopes that are not inherently UVM like modules,
interfaces, etc.

get_action

set_action

Get or set the action(s) that the uvm_report_server should perform for this message.
This field is populated by the uvm_report_handler during message execution flow.

get_file

set_file

Get or set the file that the message is to be written to when the message’s action is
UVM_LOG. This field is populated by the uvm_report_handler during message execution
flow.

get_element_container

Get the element_container of the message

virtual function string get_context()

virtual function void set_context(
 string cn
)

virtual function uvm_action get_action()

virtual function void set_action(
 uvm_action act
)

virtual function UVM_FILE get_file()

virtual function void set_file(
 UVM_FILE fl
)

virtual function uvm_report_message_element_container
get_element_container()

UVM 1.2 Class Reference 57

set_report_message

Set all the common fields of the report message in one shot.

MESSAGE ELEmENT APIS

add_int

This method adds an integral type of the name name and value value to the message.
The required size field indicates the size of value. The required radix field determines
how to display and record the field. The optional print/record bit is to specify whether
the element will be printed/recorded.

add_string

This method adds a string of the name name and value value to the message. The
optional print/record bit is to specify whether the element will be printed/recorded.

add_object

This method adds a uvm_object of the name name and reference obj to the message.
The optional print/record bit is to specify whether the element will be printed/recorded.

virtual function void set_report_message(
 uvm_severity severity,
 string id,
 string message,
 int verbosity,
 string filename,
 int line,
 string context_name
)

virtual function void add_int(
 string name,
 uvm_bitstream_t value,
 int size,
 uvm_radix_enum radix,
 uvm_action action = (UVM_LOG|UVM_RM_RECORD)
)

virtual function void add_string(
 string name,
 string value,
 uvm_action action = (UVM_LOG|UVM_RM_RECORD)
)

virtual function void add_object(
 string name,
 uvm_object obj,
 uvm_action action = (UVM_LOG|UVM_RM_RECORD)
)

UVM 1.2 Class Reference 58

6.2 uvm_report_object

The uvm_report_object provides an interface to the UVM reporting facility. Through this
interface, components issue the various messages that occur during simulation. Users
can configure what actions are taken and what file(s) are output for individual messages
from a particular component or for all messages from all components in the
environment. Defaults are applied where there is no explicit configuration.

Most methods in uvm_report_object are delegated to an internal instance of a
uvm_report_handler, which stores the reporting configuration and determines whether an
issued message should be displayed based on that configuration. Then, to display a
message, the report handler delegates the actual formatting and production of messages
to a central uvm_report_server.

A report consists of an id string, severity, verbosity level, and the textual message
itself. They may optionally include the filename and line number from which the
message came. If the verbosity level of a report is greater than the configured
maximum verbosity level of its report object, it is ignored. If a report passes the
verbosity filter in effect, the report’s action is determined. If the action includes output
to a file, the configured file descriptor(s) are determined.

Actions can be set for (in increasing priority) severity, id, and
(severity,id) pair. They include output to the screen
UVM_DISPLAY, whether the message counters should be
incremented UVM_COUNT, and whether a $finish should
occur UVM_EXIT.

Default Actions The following provides the default actions assigned to each
severity. These can be overridden by any of the set_*_action
methods.

File descriptors These can be set by (in increasing priority) default,
severity level, an id, or (severity,id) pair. File descriptors
are standard SystemVerilog file descriptors; they may
refer to more than one file. It is the user’s responsibility
to open and close them.

Default file handle The default file handle is 0, which means that reports are
not sent to a file even if a UVM_LOG attribute is set in the
action associated with the report. This can be overridden
by any of the set_*_file methods.

Summary

uvm_report_object

The uvm_report_object provides an interface to the UVM reporting facility.

CLAss HIERARchY

uvm_void

uvm_object

UVM_INFO - UVM_DISPLAY
UVM_WARNING - UVM_DISPLAY
UVM_ERROR - UVM_DISPLAY | UVM_COUNT
UVM_FATAL - UVM_DISPLAY | UVM_EXIT

UVM 1.2 Class Reference 59

uvm_report_object

CLAss DEcLARATION

new Creates a new report object with the given
name.

REPORTING

uvm_get_report_object Returns the nearest uvm_report_object
when called.

uvm_report_enabled Returns 1 if the configured verbosity for
this severity/id is greater than or equal to
verbosity else returns 0.

uvm_report
uvm_report_info
uvm_report_warning
uvm_report_error
uvm_report_fatal These are the primary reporting methods

in the UVM.
uvm_process_report_message This method takes a preformed

uvm_report_message, populates it with
the report object and passes it to the
report handler for processing.

VERBOsITY CONFIGURATION

get_report_verbosity_level Gets the verbosity level in effect for this
object.

get_report_max_verbosity_level Gets the maximum verbosity level in
effect for this report object.

set_report_verbosity_level This method sets the maximum verbosity
level for reports for this component.

set_report_id_verbosity
set_report_severity_id_verbosity These methods associate the specified

verbosity threshold with reports of the
given severity, id, or severity-id pair.

AcTION CONFIGURATION

get_report_action Gets the action associated with reports
having the given severity and id.

set_report_severity_action
set_report_id_action
set_report_severity_id_action These methods associate the specified

action or actions with reports of the given
severity, id, or severity-id pair.

FILE CONFIGURATION

get_report_file_handle Gets the file descriptor associated with
reports having the given severity and id.

set_report_default_file
set_report_id_file
set_report_severity_file
set_report_severity_id_file These methods configure the report

handler to direct some or all of its output
to the given file descriptor.

OvERRIdE CONFIGURATION

set_report_severity_override
set_report_severity_id_override These methods provide the ability to

upgrade or downgrade a message in
terms of severity given severity and id.

REPORT HANdLER CONFIGURATION

set_report_handler Sets the report handler, overwriting the
default instance.

get_report_handler Returns the underlying report handler to
which most reporting tasks are
delegated.

reset_report_handler Resets the underlying report handler to
its default settings.

class uvm_report_object extends uvm_object

UVM 1.2 Class Reference 60

new

Creates a new report object with the given name. This method also creates a new
uvm_report_handler object to which most tasks are delegated.

REPORTING

uvm_get_report_object

Returns the nearest uvm_report_object when called. From inside a uvm_component, the
method simply returns this.

See also the global version of uvm_get_report_object.

uvm_report_enabled

Returns 1 if the configured verbosity for this severity/id is greater than or equal to
verbosity else returns 0.

See also get_report_verbosity_level and the global version of uvm_report_enabled.

uvm_report

uvm_report_info

function new(
 string name = ""
)

function uvm_report_object uvm_get_report_object()

function int uvm_report_enabled(
 int verbosity,
 uvm_severity severity = UVM_INFO,
 string id = ""
)

virtual function void uvm_report(
 uvm_severity severity,
 string id,
 string message,
 int verbosity = (severity ==

uvm_severity'(UVM_ERROR)) ?
UVM_LOW : (severity ==
uvm_severity'(UVM_FATAL)) ?
UVM_NONE : UVM_MEDIUM,

 string filename = "",
 int line = 0,
 string context_name = "",
 bit report_enabled_checked = 0
)

virtual function void uvm_report_info(

UVM 1.2 Class Reference 61

uvm_report_warning

uvm_report_error

uvm_report_fatal

These are the primary reporting methods in the UVM. Using these instead of $display
and other ad hoc approaches ensures consistent output and central control over where
output is directed and any actions that result. All reporting methods have the same
arguments, although each has a different default verbosity:

id a unique id for the report or report group that can
be used for identification and therefore targeted
filtering. You can configure an individual report’s
actions and output file(s) using this id string.

message the message body, preformatted if necessary to a
single string.

verbosity the verbosity of the message, indicating its relative
importance. If this number is less than or equal to
the effective verbosity level, see
set_report_verbosity_level, then the report is issued,
subject to the configured action and file descriptor
settings. Verbosity is ignored for warnings, errors,

 string id,
 string message,
 int verbosity = UVM_MEDIUM,
 string filename = "",
 int line = 0,
 string context_name = "",
 bit report_enabled_checked = 0
)

virtual function void uvm_report_warning(
 string id,
 string message,
 int verbosity = UVM_MEDIUM,
 string filename = "",
 int line = 0,
 string context_name = "",
 bit report_enabled_checked = 0
)

virtual function void uvm_report_error(
 string id,
 string message,
 int verbosity = UVM_LOW,
 string filename = "",
 int line = 0,
 string context_name = "",
 bit report_enabled_checked = 0
)

virtual function void uvm_report_fatal(
 string id,
 string message,
 int verbosity = UVM_NONE,
 string filename = "",
 int line = 0,
 string context_name = "",
 bit report_enabled_checked = 0
)

UVM 1.2 Class Reference 62

and fatals. However, if a warning, error or fatal is
demoted to an info message using the
uvm_report_catcher, then the verbosity is taken
into account.

filename/line (Optional) The location from which the report was
issued. Use the predefined macros, `__FILE__ and
`__LINE__. If specified, it is displayed in the
output.

context_name (Optional) The string context from where the
message is originating. This can be the %m of a
module, a specific method, etc.

report_enabled_checked (Optional) This bit indicates whether the currently
provided message has been checked as to whether
the message should be processed. If it hasn’t been
checked, it will be checked inside the uvm_report
function.

uvm_process_report_message

This method takes a preformed uvm_report_message, populates it with the report object
and passes it to the report handler for processing. It is expected to be checked for
verbosity and populated.

VERBOsITY CONFIGURATION

get_report_verbosity_level

Gets the verbosity level in effect for this object. Reports issued with verbosity greater
than this will be filtered out. The severity and tag arguments check if the verbosity level
has been modified for specific severity/tag combinations.

get_report_max_verbosity_level

Gets the maximum verbosity level in effect for this report object. Any report from this
component whose verbosity exceeds this maximum will be ignored.

set_report_verbosity_level

virtual function void uvm_process_report_message(
 uvm_report_message report_message
)

function int get_report_verbosity_level(
 uvm_severity severity = UVM_INFO,
 string id = ""
)

function int get_report_max_verbosity_level()

function void set_report_verbosity_level (
 int verbosity_level

UVM 1.2 Class Reference 63

This method sets the maximum verbosity level for reports for this component. Any
report from this component whose verbosity exceeds this maximum will be ignored.

set_report_id_verbosity

set_report_severity_id_verbosity

These methods associate the specified verbosity threshold with reports of the given
severity, id, or severity-id pair. This threshold is compared with the verbosity originally
assigned to the report to decide whether it gets processed. A verbosity threshold
associated with a particular severity-id pair takes precedence over a verbosity threshold
associated with id, which takes precedence over a verbosity threshold associated with a
severity.

The verbosity argument can be any integer, but is most commonly a predefined
uvm_verbosity value, UVM_NONE, UVM_LOW, UVM_MEDIUM, UVM_HIGH, UVM_FULL.

AcTION CONFIGURATION

get_report_action

Gets the action associated with reports having the given severity and id.

set_report_severity_action

set_report_id_action

)

function void set_report_id_verbosity (
 string id,
 int verbosity
)

function void set_report_severity_id_verbosity (
 uvm_severity severity,
 string id,
 int verbosity
)

function int get_report_action(
 uvm_severity severity,
 string id
)

function void set_report_severity_action (
 uvm_severity severity,
 uvm_action action
)

function void set_report_id_action (
 string id,
 uvm_action action
)

UVM 1.2 Class Reference 64

set_report_severity_id_action

These methods associate the specified action or actions with reports of the given
severity, id, or severity-id pair. An action associated with a particular severity-id pair
takes precedence over an action associated with id, which takes precedence over an
action associated with a severity.

The action argument can take the value UVM_NO_ACTION, or it can be a bitwise OR of
any combination of UVM_DISPLAY, UVM_LOG, UVM_COUNT, UVM_STOP, UVM_EXIT, and
UVM_CALL_HOOK.

FILE CONFIGURATION

get_report_file_handle

Gets the file descriptor associated with reports having the given severity and id.

set_report_default_file

set_report_id_file

set_report_severity_file

set_report_severity_id_file

function void set_report_severity_id_action (
 uvm_severity severity,
 string id,
 uvm_action action
)

function int get_report_file_handle(
 uvm_severity severity,
 string id
)

function void set_report_default_file (
 UVM_FILE file
)

function void set_report_id_file (
 string id,
 UVM_FILE file
)

function void set_report_severity_file (
 uvm_severity severity,
 UVM_FILE file
)

UVM 1.2 Class Reference 65

These methods configure the report handler to direct some or all of its output to the
given file descriptor. The file argument must be a multi-channel descriptor (mcd) or file
id compatible with $fdisplay.

A FILE descriptor can be associated with reports of the given severity, id, or severity-id
pair. A FILE associated with a particular severity-id pair takes precedence over a FILE
associated with id, which take precedence over an a FILE associated with a severity,
which takes precedence over the default FILE descriptor.

When a report is issued and its associated action has the UVM_LOG bit set, the report
will be sent to its associated FILE descriptor. The user is responsible for opening and
closing these files.

OvERRIdE CONFIGURATION

set_report_severity_override

set_report_severity_id_override

These methods provide the ability to upgrade or downgrade a message in terms of
severity given severity and id. An upgrade or downgrade for a specific id takes
precedence over an upgrade or downgrade associated with a severity.

REPORT HANdLER CONFIGURATION

set_report_handler

Sets the report handler, overwriting the default instance. This allows more than one
component to share the same report handler.

get_report_handler

function void set_report_severity_id_file (
 uvm_severity severity,
 string id,
 UVM_FILE file
)

function void set_report_severity_override(
 uvm_severity cur_severity,
 uvm_severity new_severity
)

function void set_report_severity_id_override(
 uvm_severity cur_severity,
 string id,
 uvm_severity new_severity
)

function void set_report_handler(
 uvm_report_handler handler
)

UVM 1.2 Class Reference 66

Returns the underlying report handler to which most reporting tasks are delegated.

reset_report_handler

Resets the underlying report handler to its default settings. This clears any settings
made with the set_report_* methods (see below).

function uvm_report_handler get_report_handler()

function void reset_report_handler

UVM 1.2 Class Reference 67

6.3 uvm_report_handler

The uvm_report_handler is the class to which most methods in uvm_report_object
delegate. It stores the maximum verbosity, actions, and files that affect the way reports
are handled.

The report handler is not intended for direct use. See uvm_report_object for information
on the UVM reporting mechanism.

The relationship between uvm_report_object (a base class for uvm_component) and
uvm_report_handler is typically one to one, but it can be many to one if several
uvm_report_objects are configured to use the same uvm_report_handler_object. See
uvm_report_object::set_report_handler.

The relationship between uvm_report_handler and uvm_report_server is many to one.

Summary

uvm_report_handler

The uvm_report_handler is the class to which most methods in
uvm_report_object delegate.

CLAss HIERARchY

uvm_void

uvm_object

uvm_report_handler

CLAss DEcLARATION

new Creates and initializes a new uvm_report_handler
object.

print The uvm_report_handler implements the
uvm_object::do_print() such that print method
provides UVM printer formatted output of the
current configuration.

MEssAGE PROcEssING

process_report_message This is the common handler method used by the
four core reporting methods (e.g.

CONVENIENcE METhOds

format_action Returns a string representation of the action,
e.g., “DISPLAY”.

new

Creates and initializes a new uvm_report_handler object.

print

class uvm_report_handler extends uvm_object

function new(
 string name = "uvm_report_handler"
)

UVM 1.2 Class Reference 68

The uvm_report_handler implements the uvm_object::do_print() such that print method
provides UVM printer formatted output of the current configuration. A snippet of
example output is shown here:

MEssAGE PROcEssING

process_report_message

This is the common handler method used by the four core reporting methods (e.g.
uvm_report_error) in uvm_report_object.

CONVENIENcE METhOds

format_action

Returns a string representation of the action, e.g., “DISPLAY”.

virtual function void do_print (
 uvm_printer printer
)

uvm_test_top uvm_report_handler - @555
 max_verbosity_level uvm_verbosity 32 UVM_FULL
 id_verbosities uvm_pool 3 -
 [ID1] uvm_verbosity 32 UVM_LOW
 severity_id_verbosities array 4 -
 [UVM_INFO:ID4] int 32 501
 id_actions uvm_pool 2 -
 [ACT_ID] uvm_action 32 DISPLAY LOG COUNT
 severity_actions array 4 -
 [UVM_INFO] uvm_action 32 DISPLAY
 [UVM_WARNING] uvm_action 32 DISPLAY RM_RECORD
COUNT
 [UVM_ERROR] uvm_action 32 DISPLAY COUNT
 [UVM_FATAL] uvm_action 32 DISPLAY EXIT
 default_file_handle int 32 'h1

virtual function void process_report_message(
 uvm_report_message report_message
)

static function string format_action(
 uvm_action action
)

UVM 1.2 Class Reference 69

6.4 UVM Report Server

This page covers the classes that define the UVM report server facility.

Contents

UVM Report Server This page covers the classes that define the UVM
report server facility.

uvm_report_server uvm_report_server is a global server that processes
all of the reports generated by a
uvm_report_handler.

uvm_default_report_server Default implementation of the UVM report server.

uvm_report_server

uvm_report_server is a global server that processes all of the reports generated by a
uvm_report_handler.

The uvm_report_server is an abstract class which declares many of its methods as pure
virtual. The UVM uses the uvm_default_report_server class as its default report server
implementation.

Summary

uvm_report_server

uvm_report_server is a global server that processes all of the reports generated
by a uvm_report_handler.

METHODs

set_max_quit_count count is the maximum number of UVM_QUIT
actions the uvm_report_server will tolerate
before invoking client.die().

get_max_quit_count returns the currently configured max quit count
set_quit_count sets the current number of UVM_QUIT actions

already passed through this uvm_report_server
get_quit_count returns the current number of UVM_QUIT

actions already passed through this server
set_severity_count sets the count of already passed messages with

severity severity to count
get_severity_count returns the count of already passed messages

with severity severity
set_id_count sets the count of already passed messages with

id to count
get_id_count returns the count of already passed messages

with id
get_id_set returns the set of id’s already used by this

uvm_report_server
get_severity_set returns the set of severities already used by this

uvm_report_server
set_message_database sets the uvm_tr_database used for recording

messages
get_message_database returns the uvm_tr_database used for recording

messages
do_copy copies all message statistic severity,id counts to

UVM 1.2 Class Reference 70

the destination uvm_report_server the copy is
cummulative (only items from the source are
transferred, already existing entries are not
deleted, existing entries/counts are overridden
when they exist in the source set)

execute_report_message Processes the provided message per the actions
contained within.

compose_report_message Constructs the actual string sent to the file or
command line from the severity, component
name, report id, and the message itself.

report_summarize Outputs statistical information on the reports
issued by this central report server.

set_server Sets the global report server to use for
reporting.

get_server Gets the global report server used for reporting.

METHODs

set_max_quit_count

count is the maximum number of UVM_QUIT actions the uvm_report_server will tolerate
before invoking client.die(). when overridable = 0 is passed, the set quit count cannot be
changed again

get_max_quit_count

returns the currently configured max quit count

set_quit_count

sets the current number of UVM_QUIT actions already passed through this
uvm_report_server

get_quit_count

returns the current number of UVM_QUIT actions already passed through this server

set_severity_count

pure virtual function void set_max_quit_count(
 int count,
 bit overridable = 1
)

pure virtual function int get_max_quit_count()

pure virtual function void set_quit_count(
 int quit_count
)

pure virtual function int get_quit_count()

UVM 1.2 Class Reference 71

sets the count of already passed messages with severity severity to count

get_severity_count

returns the count of already passed messages with severity severity

set_id_count

sets the count of already passed messages with id to count

get_id_count

returns the count of already passed messages with id

get_id_set

returns the set of id’s already used by this uvm_report_server

get_severity_set

returns the set of severities already used by this uvm_report_server

set_message_database

pure virtual function void set_severity_count(
 uvm_severity severity,
 int count
)

pure virtual function int get_severity_count(
 uvm_severity severity
)

pure virtual function void set_id_count(
 string id,
 int count
)

pure virtual function int get_id_count(
 string id
)

pure virtual function void get_id_set(
 output string q[$]
)

pure virtual function void get_severity_set(
 output uvm_severity q[$]
)

pure virtual function void set_message_database(
 uvm_tr_database database
)

UVM 1.2 Class Reference 72

sets the uvm_tr_database used for recording messages

get_message_database

returns the uvm_tr_database used for recording messages

do_copy

copies all message statistic severity,id counts to the destination uvm_report_server the
copy is cummulative (only items from the source are transferred, already existing entries
are not deleted, existing entries/counts are overridden when they exist in the source set)

execute_report_message

Processes the provided message per the actions contained within.

Expert users can overload this method to customize action processing.

compose_report_message

Constructs the actual string sent to the file or command line from the severity,
component name, report id, and the message itself.

Expert users can overload this method to customize report formatting.

report_summarize

Outputs statistical information on the reports issued by this central report server. This
information will be sent to the command line if file is 0, or to the file descriptor file if it
is not 0.

The run_test method in uvm_top calls this method.

pure virtual function uvm_tr_database get_message_database()

function void do_copy (
 uvm_object rhs
)

pure virtual function void execute_report_message(
 uvm_report_message report_message,
 string composed_message
)

pure virtual function string compose_report_message(
 uvm_report_message report_message,
 string report_object_name = ""
)

pure virtual function void report_summarize(
 UVM_FILE file = 0
)

UVM 1.2 Class Reference 73

set_server

Sets the global report server to use for reporting.

This method is provided as a convenience wrapper around setting the report server via
the uvm_coreservice_t::set_report_server method.

In addition to setting the server this also copies the severity/id counts from the current
report_server to the new one

get_server

Gets the global report server used for reporting.

This method is provided as a convenience wrapper around retrieving the report server via
the uvm_coreservice_t::get_report_server method.

uvm_default_report_server

Default implementation of the UVM report server.

Summary

uvm_default_report_server

Default implementation of the UVM report server.

CLAss HIErArcHY

uvm_report_server

static function void set_server(
 uvm_report_server server
)

// Using the uvm_coreservice_t:
uvm_coreservice_t cs;
cs = uvm_coreservice_t::get();
your_server.copy(cs.get_report_server());
cs.set_report_server(your_server);

// Not using the uvm_coreservice_t:
uvm_report_server::set_server(your_server);

static function uvm_report_server get_server()

// Using the uvm_coreservice_t:
uvm_coreservice_t cs;
uvm_report_server rs;
cs = uvm_coreservice_t::get();
rs = cs.get_report_server();

// Not using the uvm_coreservice_t:
uvm_report_server rs;
rs = uvm_report_server::get_server();

UVM 1.2 Class Reference 74

uvm_default_report_server

CLAss DEcLArATION

enable_report_id_count_summary A flag to enable report count summary for
each ID

record_all_messages A flag to force recording of all messages
(add UVM_RM_RECORD action)

show_verbosity A flag to include verbosity in the
messages, e.g.

show_terminator A flag to add a terminator in the
messages, e.g.

new Creates an instance of the class.
print The uvm_report_server implements the

uvm_object::do_print() such that print
method provides UVM printer formatted
output of the current configuration.

QuIT COuNT

get_max_quit_count
set_max_quit_count Get or set the maximum number of

COUNT actions that can be tolerated
before a UVM_EXIT action is taken.

get_quit_count
set_quit_count
incr_quit_count
reset_quit_count Set, get, increment, or reset to 0 the quit

count, i.e., the number of COUNT actions
issued.

is_quit_count_reached If is_quit_count_reached returns 1, then
the quit counter has reached the
maximum.

SEvErITY COuNT

get_severity_count
set_severity_count
incr_severity_count
reset_severity_counts Set, get, or increment the counter for the

given severity, or reset all severity
counters to 0.

ID COuNT

get_id_count
set_id_count
incr_id_count Set, get, or increment the counter for

reports with the given id.
mEssAGE rEcOrDING The uvm_default_report_server will record

messages into the message database,
using one transaction per message, and
one stream per report object/handler pair.

set_message_database sets the uvm_tr_database used for
recording messages

get_message_database returns the uvm_tr_database used for
recording messages

MEssAGE PrOcEssING

execute_report_message Processes the provided message per the
actions contained within.

compose_report_message Constructs the actual string sent to the
file or command line from the severity,
component name, report id, and the
message itself.

report_summarize Outputs statistical information on the
reports issued by this central report
server.

class uvm_default_report_server extends uvm_report_server

UVM 1.2 Class Reference 75

enable_report_id_count_summary

A flag to enable report count summary for each ID

record_all_messages

A flag to force recording of all messages (add UVM_RM_RECORD action)

show_verbosity

A flag to include verbosity in the messages, e.g.

”UVM_INFO(UVM_MEDIUM) file.v(3) @ 60: reporter [ID0] Message 0”

show_terminator

A flag to add a terminator in the messages, e.g.

”UVM_INFO file.v(3) @ 60: reporter [ID0] Message 0 -UVM_INFO”

new

Creates an instance of the class.

print

The uvm_report_server implements the uvm_object::do_print() such that print method
provides UVM printer formatted output of the current configuration. A snippet of
example output is shown here:

bit enable_report_id_count_summary=1

bit record_all_messages = 0

bit show_verbosity = 0

bit show_terminator = 0

function new(
 string name = "uvm_report_server"
)

uvm_report_server uvm_report_server - @13
 quit_count int 32 'd0
 max_quit_count int 32 'd5
 max_quit_overridable bit 1 'b1
 severity_count severity counts 4 -
 [UVM_INFO] integral 32 'd4
 [UVM_WARNING] integral 32 'd2
 [UVM_ERROR] integral 32 'd50
 [UVM_FATAL] integral 32 'd10
 id_count id counts 4 -
 [ID1] integral 32 'd1
 [ID2] integral 32 'd2
 [RNTST] integral 32 'd1
 enable_report_id_count_summary bit 1 'b1

UVM 1.2 Class Reference 76

QuIT COuNT

get_max_quit_count

set_max_quit_count

Get or set the maximum number of COUNT actions that can be tolerated before a
UVM_EXIT action is taken. The default is 0, which specifies no maximum.

get_quit_count

set_quit_count

incr_quit_count

reset_quit_count

Set, get, increment, or reset to 0 the quit count, i.e., the number of COUNT actions
issued.

is_quit_count_reached

If is_quit_count_reached returns 1, then the quit counter has reached the maximum.

 record_all_messages bit 1 `b0
 show_verbosity bit 1 `b0
 show_terminator bit 1 `b0

function int get_max_quit_count()

function void set_max_quit_count(
 int count,
 bit overridable = 1
)

function int get_quit_count()

function void set_quit_count(
 int quit_count
)

function void incr_quit_count()

function void reset_quit_count()

function bit is_quit_count_reached()

UVM 1.2 Class Reference 77

SEvErITY COuNT

get_severity_count

set_severity_count

incr_severity_count

reset_severity_counts

Set, get, or increment the counter for the given severity, or reset all severity counters to
0.

ID COuNT

get_id_count

set_id_count

incr_id_count

function int get_severity_count(
 uvm_severity severity
)

function void set_severity_count(
 uvm_severity severity,
 int count
)

function void incr_severity_count(
 uvm_severity severity
)

function void reset_severity_counts()

function int get_id_count(
 string id
)

function void set_id_count(
 string id,
 int count
)

function void incr_id_count(

UVM 1.2 Class Reference 78

Set, get, or increment the counter for reports with the given id.

mEssAGE rEcOrDING

The uvm_default_report_server will record messages into the message database, using
one transaction per message, and one stream per report object/handler pair.

set_message_database

sets the uvm_tr_database used for recording messages

get_message_database

returns the uvm_tr_database used for recording messages

MEssAGE PrOcEssING

execute_report_message

Processes the provided message per the actions contained within.

Expert users can overload this method to customize action processing.

compose_report_message

Constructs the actual string sent to the file or command line from the severity,
component name, report id, and the message itself.

Expert users can overload this method to customize report formatting.

report_summarize

 string id
)

virtual function void set_message_database(
 uvm_tr_database database
)

virtual function uvm_tr_database get_message_database()

virtual function void execute_report_message(
 uvm_report_message report_message,
 string composed_message
)

virtual function string compose_report_message(
 uvm_report_message report_message,
 string report_object_name = ""
)

UVM 1.2 Class Reference 79

Outputs statistical information on the reports issued by this central report server. This
information will be sent to the command line if file is 0, or to the file descriptor file if it
is not 0.

The run_test method in uvm_top calls this method.

virtual function void report_summarize(
 UVM_FILE file = 0
)

UVM 1.2 Class Reference 80

6.5 uvm_report_catcher

The uvm_report_catcher is used to catch messages issued by the uvm report server.
Catchers are uvm_callbacks#(uvm_report_object,uvm_report_catcher) objects, so all
facilities in the uvm_callback and uvm_callbacks#(T,CB) classes are available for
registering catchers and controlling catcher state. The
uvm_callbacks#(uvm_report_object,uvm_report_catcher) class is aliased to
uvm_report_cb to make it easier to use. Multiple report catchers can be registered with
a report object. The catchers can be registered as default catchers which catch all
reports on all uvm_report_object reporters, or catchers can be attached to specific report
objects (i.e. components).

User extensions of uvm_report_catcher must implement the catch method in which the
action to be taken on catching the report is specified. The catch method can return
CAUGHT, in which case further processing of the report is immediately stopped, or return
THROW in which case the (possibly modified) report is passed on to other registered
catchers. The catchers are processed in the order in which they are registered.

On catching a report, the catch method can modify the severity, id, action, verbosity or
the report string itself before the report is finally issued by the report server. The report
can be immediately issued from within the catcher class by calling the issue method.

The catcher maintains a count of all reports with FATAL,ERROR or WARNING severity and
a count of all reports with FATAL, ERROR or WARNING severity whose severity was
lowered. These statistics are reported in the summary of the uvm_report_server.

This example shows the basic concept of creating a report catching callback and
attaching it to all messages that get emitted:

Summary

uvm_report_catcher

The uvm_report_catcher is used to catch messages issued by the uvm report
server.

CLAss HIERARchY

class my_error_demoter extends uvm_report_catcher;
 function new(string name="my_error_demoter");
 super.new(name);
 endfunction
 //This example demotes "MY_ID" errors to an info message
 function action_e catch();
 if(get_severity() == UVM_ERROR && get_id() == "MY_ID")
 set_severity(UVM_INFO);
 return THROW;
 endfunction
endclass

my_error_demoter demoter = new;
initial begin
 // Catchers are callbacks on report objects (components are report
 // objects, so catchers can be attached to components).

 // To affect all reporters, use ~null~ for the object
 uvm_report_cb::add(null, demoter);

 // To affect some specific object use the specific reporter
 uvm_report_cb::add(mytest.myenv.myagent.mydriver, demoter);

 // To affect some set of components (any "*driver" under mytest.myenv)
 // using the component name
 uvm_report_cb::add_by_name("*driver", demoter, mytest.myenv);
end

UVM 1.2 Class Reference 81

uvm_void

uvm_object

uvm_callback

uvm_report_catcher

CLAss DEcLARATION

new Create a new report catcher.
CURRENT MEssAGE STATE

get_client Returns the uvm_report_object that has generated
the message that is currently being processed.

get_severity Returns the uvm_severity of the message that is
currently being processed.

get_context Returns the context name of the message that is
currently being processed.

get_verbosity Returns the verbosity of the message that is
currently being processed.

get_id Returns the string id of the message that is
currently being processed.

get_message Returns the string message of the message that is
currently being processed.

get_action Returns the uvm_action of the message that is
currently being processed.

get_fname Returns the file name of the message.
get_line Returns the line number of the message.
get_element_container Returns the element container of the message.

ChANGE MEssAGE STATE

set_severity Change the severity of the message to severity.
set_verbosity Change the verbosity of the message to verbosity.
set_id Change the id of the message to id.
set_message Change the text of the message to message.
set_action Change the action of the message to action.
set_context Change the context of the message to context_str.
add_int Add an integral type of the name name and value

value to the message.
add_string Adds a string of the name name and value value to

the message.
add_object Adds a uvm_object of the name name and

reference obj to the message.
DEBUG

get_report_catcher Returns the first report catcher that has name.
print_catcher Prints information about all of the report catchers

that are registered.
CALLBAcK INTERFAcE

catch This is the method that is called for each registered
report catcher.

REPORTING

uvm_report_fatal Issues a fatal message using the current message’s
report object.

uvm_report_error Issues an error message using the current
message’s report object.

uvm_report_warning Issues a warning message using the current
message’s report object.

uvm_report_info Issues a info message using the current message’s
report object.

uvm_report Issues a message using the current message’s
report object.

issue Immediately issues the message which is currently
being processed.

summarize This function is called automatically by
uvm_report_server::report_summarize().

virtual class uvm_report_catcher extends uvm_callback

UVM 1.2 Class Reference 82

new

Create a new report catcher. The name argument is optional, but should generally be
provided to aid in debugging.

CURRENT MEssAGE STATE

get_client

Returns the uvm_report_object that has generated the message that is currently being
processed.

get_severity

Returns the uvm_severity of the message that is currently being processed. If the
severity was modified by a previously executed catcher object (which re-threw the
message), then the returned severity is the modified value.

get_context

Returns the context name of the message that is currently being processed. This is
typically the full hierarchical name of the component that issued the message. However,
if user-defined context is set from a uvm_report_message, the user-defined context will
be returned.

get_verbosity

Returns the verbosity of the message that is currently being processed. If the verbosity
was modified by a previously executed catcher (which re-threw the message), then the
returned verbosity is the modified value.

get_id

function new(
 string name = "uvm_report_catcher"
)

function uvm_report_object get_client()

function uvm_severity get_severity()

function string get_context()

function int get_verbosity()

function string get_id()

UVM 1.2 Class Reference 83

Returns the string id of the message that is currently being processed. If the id was
modified by a previously executed catcher (which re-threw the message), then the
returned id is the modified value.

get_message

Returns the string message of the message that is currently being processed. If the
message was modified by a previously executed catcher (which re-threw the message),
then the returned message is the modified value.

get_action

Returns the uvm_action of the message that is currently being processed. If the action
was modified by a previously executed catcher (which re-threw the message), then the
returned action is the modified value.

get_fname

Returns the file name of the message.

get_line

Returns the line number of the message.

get_element_container

Returns the element container of the message.

ChANGE MEssAGE STATE

set_severity

Change the severity of the message to severity. Any other report catchers will see the
modified value.

function string get_message()

function uvm_action get_action()

function string get_fname()

function int get_line()

function uvm_report_message_element_container get_element_container()

protected function void set_severity(
 uvm_severity severity
)

UVM 1.2 Class Reference 84

set_verbosity

Change the verbosity of the message to verbosity. Any other report catchers will see
the modified value.

set_id

Change the id of the message to id. Any other report catchers will see the modified
value.

set_message

Change the text of the message to message. Any other report catchers will see the
modified value.

set_action

Change the action of the message to action. Any other report catchers will see the
modified value.

set_context

Change the context of the message to context_str. Any other report catchers will see
the modified value.

add_int

protected function void set_verbosity(
 int verbosity
)

protected function void set_id(
 string id
)

protected function void set_message(
 string message
)

protected function void set_action(
 uvm_action action
)

protected function void set_context(
 string context_str
)

protected function void add_int(
 string name,
 uvm_bitstream_t value,
 int size,
 uvm_radix_enum radix,
 uvm_action action = (UVM_LOG|UVM_RM_RECORD)
)

UVM 1.2 Class Reference 85

Add an integral type of the name name and value value to the message. The required
size field indicates the size of value. The required radix field determines how to display
and record the field. Any other report catchers will see the newly added element.

add_string

Adds a string of the name name and value value to the message. Any other report
catchers will see the newly added element.

add_object

Adds a uvm_object of the name name and reference obj to the message. Any other
report catchers will see the newly added element.

DEBUG

get_report_catcher

Returns the first report catcher that has name.

print_catcher

Prints information about all of the report catchers that are registered. For finer grained
detail, the uvm_callbacks #(T,CB)::display method can be used by calling
uvm_report_cb::display(uvm_report_object).

CALLBAcK INTERFAcE

catch

protected function void add_string(
 string name,
 string value,
 uvm_action action = (UVM_LOG|UVM_RM_RECORD)
)

protected function void add_object(
 string name,
 uvm_object obj,
 uvm_action action = (UVM_LOG|UVM_RM_RECORD)
)

static function uvm_report_catcher get_report_catcher(
 string name
)

static function void print_catcher(
 UVM_FILE file = 0
)

UVM 1.2 Class Reference 86

This is the method that is called for each registered report catcher. There are no
arguments to this function. The Current Message State interface methods can be used to
access information about the current message being processed.

REPORTING

uvm_report_fatal

Issues a fatal message using the current message’s report object. This message will
bypass any message catching callbacks.

uvm_report_error

Issues an error message using the current message’s report object. This message will
bypass any message catching callbacks.

uvm_report_warning

Issues a warning message using the current message’s report object. This message will
bypass any message catching callbacks.

uvm_report_info

pure virtual function action_e catch()

protected function void uvm_report_fatal(
 string id,
 string message,
 int verbosity,
 string fname = "",
 int line = 0,
 string context_name = "",
 bit report_enabled_checked = 0
)

protected function void uvm_report_error(
 string id,
 string message,
 int verbosity,
 string fname = "",
 int line = 0,
 string context_name = "",
 bit report_enabled_checked = 0
)

protected function void uvm_report_warning(
 string id,
 string message,
 int verbosity,
 string fname = "",
 int line = 0,
 string context_name = "",
 bit report_enabled_checked = 0
)

protected function void uvm_report_info(
 string id,
 string message,

UVM 1.2 Class Reference 87

Issues a info message using the current message’s report object. This message will
bypass any message catching callbacks.

uvm_report

Issues a message using the current message’s report object. This message will bypass
any message catching callbacks.

issue

Immediately issues the message which is currently being processed. This is useful if the
message is being CAUGHT but should still be emitted.

Issuing a message will update the report_server stats, possibly multiple times if the
message is not CAUGHT.

summarize

This function is called automatically by uvm_report_server::report_summarize(). It prints
the statistics for the active catchers.

 int verbosity,
 string fname = "",
 int line = 0,
 string context_name = "",
 bit report_enabled_checked = 0
)

protected function void uvm_report(
 uvm_severity severity,
 string id,
 string message,
 int verbosity,
 string fname = "",
 int line = 0,
 string context_name = "",
 bit report_enabled_checked = 0
)

protected function void issue()

static function void summarize()

UVM 1.2 Class Reference 88

7. TRANSACtION RECORDING CLASSES

The recording classes provide a facility to record transactions into a database using a
consistent API. Users can configure what gets sent to the backend database, without
knowing exactly how the connection to that database is established.

The primary interface to the UVM recording facility is the uvm_recorder class, which
serves as a reference to the transaction in the database, as well as the policy which is
used to record information into the database.

The UVM provides a default implementation of the recording API, which creates textual
logs. This is primarily intended to be used as an example of how to create a recording
implementation without the user needing to have tool and/or vendor specific code in their
testbench.

Summary

Transaction Recording Classes

The recording classes provide a facility to record transactions into a database
using a consistent API.

UVM 1.2 Class Reference 89

7.1 Transaction Recording Databases

The UVM “Transaction Recording Database” classes are an abstract representation of the
backend tool which is recording information for the user. Usually this tool would be
dumping information such that it can be viewed with the waves of the DUT.

Contents

Transaction
Recording
Databases

The UVM “Transaction Recording Database” classes are
an abstract representation of the backend tool which is
recording information for the user.

uvm_tr_database The uvm_tr_database class is intended to hide the
underlying database implementation from the end user,
as these details are often vendor or tool-specific.

uvm_text_tr_database The uvm_text_tr_database is the default implementation
for the uvm_tr_database.

uvm_tr_database

The uvm_tr_database class is intended to hide the underlying database implementation
from the end user, as these details are often vendor or tool-specific.

The uvm_tr_database class is pure virtual, and must be extended with an
implementation. A default text-based implementation is provided via the
uvm_text_tr_database class.

Summary

uvm_tr_database

The uvm_tr_database class is intended to hide the underlying database
implementation from the end user, as these details are often vendor or tool-
specific.

CLAss HIErArchY

uvm_void

uvm_object

uvm_tr_database

CLAss DEcLArAtION

new Constructor
DAtABAsE API

open_db Open the backend connection to the database.
close_db Closes the backend connection to the database.
is_open Returns the open/closed status of the database.

StrEAM API
open_stream Provides a reference to a stream within the

database.
get_streams Provides a queue of all streams within the

virtual class uvm_tr_database extends uvm_object

UVM 1.2 Class Reference 90

database.
LINK API

establish_link Establishes a link between two elements in the
database

IMpLEMENtAtION AGNOstIc

API
do_open_db Backend implementation of open_db
do_close_db Backend implementation of close_db
do_open_stream Backend implementation of open_stream
do_establish_link Backend implementation of establish_link

new

Constructor

Parameters

name Instance name

DAtABAsE API

open_db

Open the backend connection to the database.

If the database is already open, then this method will return 1.

Otherwise, the method will call do_open_db, and return the result.

close_db

Closes the backend connection to the database.

Closing a database implicitly closes and frees all uvm_tr_streams within the database.

If the database is already closed, then this method will return 1.

Otherwise, this method will trigger a do_close_db call, and return the result.

is_open

Returns the open/closed status of the database.

function new(
 string name = "unnamed-uvm_tr_database"
)

function bit open_db()

function bit close_db()

function bit is_open()

UVM 1.2 Class Reference 91

This method returns 1 if the database has been successfully opened, but not yet closed.

StrEAM API

open_stream

Provides a reference to a stream within the database.

Parameters

name A string name for the stream. This is the name associated with
the stream in the database.

scope An optional scope for the stream.
type_name An optional name describing the type of records which will be

created in this stream.

The method returns a reference to a uvm_tr_stream object if successful, null otherwise.

This method will trigger a do_open_stream call, and if a non null stream is returned,
then uvm_tr_stream::do_open will be called.

Streams can only be opened if the database is open (per is_open). Otherwise the
request will be ignored, and null will be returned.

get_streams

Provides a queue of all streams within the database.

Parameters

q A reference to a queue of uvm_tr_streams

The get_streams method returns the size of the queue, such that the user can
conditionally process the elements.

LINK API

function uvm_tr_stream open_stream(
 string name,
 string scope = "",
 string type_name = ""
)

function unsigned get_streams(
 ref uvm_tr_stream q[$]
)

uvm_tr_stream stream_q[$];
if (my_db.get_streams(stream_q)) begin
 // Process the queue...
end

UVM 1.2 Class Reference 92

establish_link

Establishes a link between two elements in the database

Links are only supported between streams and records within a single database.

This method will trigger a do_establish_link call.

IMpLEMENtAtION AGNOstIc API

do_open_db

Backend implementation of open_db

do_close_db

Backend implementation of close_db

do_open_stream

Backend implementation of open_stream

do_establish_link

Backend implementation of establish_link

uvm_text_tr_database

The uvm_text_tr_database is the default implementation for the uvm_tr_database. It
provides the ability to store recording information into a textual log file.

function void establish_link(
 uvm_link_base link
)

pure virtual protected function bit do_open_db()

pure virtual protected function bit do_close_db()

pure virtual protected function uvm_tr_stream do_open_stream(
 string name,
 string scope,
 string type_name
)

pure virtual protected function void do_establish_link(
 uvm_link_base link
)

UVM 1.2 Class Reference 93

Summary

uvm_text_tr_database

The uvm_text_tr_database is the default implementation for the
uvm_tr_database.

CLAss HIErArchY

uvm_void

uvm_object

uvm_tr_database

uvm_text_tr_database

CLAss DEcLArAtION

new Constructor
IMpLEMENtAtION AGNOstIc

API
do_open_db Open the backend connection to the database.
do_close_db Close the backend connection to the database.
do_open_stream Provides a reference to a stream within the

database.
do_establish_link Establishes a link between two elements in the

database
IMpLEMENtAtION SpEcIFIc

API
set_file_name Sets the file name which will be used for output.

new

Constructor

Parameters

name Instance name

IMpLEMENtAtION AGNOstIc API

do_open_db

Open the backend connection to the database.

Text-Backend implementation of uvm_tr_database::open_db.

class uvm_text_tr_database extends uvm_tr_database

function new(
 string name = "unnamed-uvm_text_tr_database"
)

protected virtual function bit do_open_db()

UVM 1.2 Class Reference 94

The text-backend will open a text file to dump all records in to. The name of this text
file is controlled via set_file_name.

This will also lock the file_name, so that it cannot be modified while the connection is
open.

do_close_db

Close the backend connection to the database.

Text-Backend implementation of uvm_tr_database::close_db.

The text-backend will close the text file used to dump all records in to, if it is currently
opened.

This unlocks the file_name, allowing it to be modified again.

do_open_stream

Provides a reference to a stream within the database.

Text-Backend implementation of uvm_tr_database::open_stream

do_establish_link

Establishes a link between two elements in the database

Text-Backend implementation of uvm_tr_database::establish_link.

IMpLEMENtAtION SpEcIFIc API

set_file_name

Sets the file name which will be used for output.

The set_file_name method can only be called prior to open_db.

By default, the database will use a file named “tr_db.log”.

protected virtual function bit do_close_db()

protected virtual function uvm_tr_stream do_open_stream(
 string name,
 string scope,
 string type_name
)

protected virtual function void do_establish_link(
 uvm_link_base link
)

function void set_file_name(
 string filename
)

UVM 1.2 Class Reference 95

7.2 Transaction Recording Streams

Contents

Transaction
Recording
Streams

uvm_tr_stream The uvm_tr_stream base class is a representation of a
stream of records within a uvm_tr_database.

uvm_text_tr_stream The uvm_text_tr_stream is the default stream
implementation for the uvm_text_tr_database.

uvm_tr_stream

The uvm_tr_stream base class is a representation of a stream of records within a
uvm_tr_database.

The record stream is intended to hide the underlying database implementation from the
end user, as these details are often vendor or tool-specific.

The uvm_tr_stream class is pure virtual, and must be extended with an implementation.
A default text-based implementation is provided via the uvm_text_tr_stream class.

Summary

uvm_tr_stream

The uvm_tr_stream base class is a representation of a stream of records within a
uvm_tr_database.

CLAss HIErArchY

uvm_void

uvm_object

uvm_tr_stream

CLAss DEcLArAtION

new Constructor
CONFIGUrAtION API

get_db Returns a reference to the database which
contains this stream.

get_scope Returns the scope supplied when opening this
stream.

get_stream_type_name Returns a reference to the database which
contains this stream.

StrEAM API Once a stream has been opened via
uvm_tr_database::open_stream, the user can
close the stream.

close Closes this stream.
free Frees this stream.
is_open Returns true if this uvm_tr_stream was opened

virtual class uvm_tr_stream extends uvm_object

UVM 1.2 Class Reference 96

on the database, but has not yet been closed.
is_closed Returns true if this uvm_tr_stream was closed on

the database, but has not yet been freed.
TrANsActION REcOrdEr API New recorders can be opened prior to the stream

being closed.
open_recorder Marks the opening of a new transaction recorder

on the stream.
get_recorders Provides a queue of all transactions within the

stream.
HANdLEs

get_handle Returns a unique ID for this stream.
get_stream_from_handle Static accessor, returns a stream reference for a

given unique id.
IMpLEMENtAtION AGNOstIc

API
do_open Callback triggered via

uvm_tr_database::open_stream.
do_close Callback triggered via close.
do_free Callback triggered via free.
do_open_recorder Marks the beginning of a new record in the

stream.

new

Constructor

Parameters

name Stream instance name

CONFIGUrAtION API

get_db

Returns a reference to the database which contains this stream.

A warning will be asserted if get_db is called prior to the stream being initialized via
do_open.

get_scope

Returns the scope supplied when opening this stream.

A warning will be asserted if get_scope is called prior to the stream being initialized via
do_open.

function new(
 string name = "unnamed-uvm_tr_stream"
)

function uvm_tr_database get_db()

function string get_scope()

UVM 1.2 Class Reference 97

get_stream_type_name

Returns a reference to the database which contains this stream.

A warning will be asserted if get_stream_type_name is called prior to the stream being
initialized via do_open.

StrEAM API
Once a stream has been opened via uvm_tr_database::open_stream, the user can close
the stream.

Due to the fact that many database implementations will require crossing a language
boundary, an additional step of freeing the stream is required.

A link can be established within the database any time between “Open” and “Free”,
however it is illegal to establish a link after “Freeing” the stream.

close

Closes this stream.

Closing a stream closes all open recorders in the stream.

This method will trigger a do_close call, followed by uvm_recorder::close on all open
recorders within the stream.

free

Frees this stream.

Freeing a stream indicates that the database can free any references to the stream
(including references to records within the stream).

This method will trigger a do_free call, followed by uvm_recorder::free on all recorders
within the stream.

is_open

Returns true if this uvm_tr_stream was opened on the database, but has not yet been
closed.

is_closed

function string get_stream_type_name()

function void close()

function void free()

function bit is_open()

UVM 1.2 Class Reference 98

Returns true if this uvm_tr_stream was closed on the database, but has not yet been
freed.

TrANsActION REcOrdEr API
New recorders can be opened prior to the stream being closed.

Once a stream has been closed, requests to open a new recorder will be ignored
(open_recorder will return null).

open_recorder

Marks the opening of a new transaction recorder on the stream.

Parameters

name A name for the new transaction
open_time Optional time to record as the opening of this transaction
type_name Optional type name for the transaction

If open_time is omitted (or set to 0), then the stream will use the current time.

This method will trigger a do_open_recorder call. If do_open_recorder returns a non-null
value, then the uvm_recorder::do_open method will be called in the recorder.

Transaction recorders can only be opened if the stream is open on the database (per
is_open). Otherwise the request will be ignored, and null will be returned.

get_recorders

Provides a queue of all transactions within the stream.

Parameters

q A reference to the queue of uvm_recorders

The get_recorders method returns the size of the queue, such that the user can
conditionally process the elements.

function bit is_closed()

function uvm_recorder open_recorder(
 string name,
 time open_time = 0,
 string type_name = ""
)

function unsigned get_recorders(
 ref uvm_recorder q[$]
)

uvm_recorder tr_q[$];
if (my_stream.get_recorders(tr_q)) begin
 // Process the queue...
end

UVM 1.2 Class Reference 99

HANdLEs

get_handle

Returns a unique ID for this stream.

A value of 0 indicates that the recorder has been freed, and no longer has a valid ID.

get_stream_from_handle

Static accessor, returns a stream reference for a given unique id.

If no stream exists with the given id, or if the stream with that id has been freed, then
null is returned.

IMpLEMENtAtION AGNOstIc API

do_open

Callback triggered via uvm_tr_database::open_stream.

Parameters

db Database which the stream belongs to
scope Optional scope
stream_type_name Optional type name for the stream

The do_open callback can be used to initialize any internal state within the stream, as
well as providing a location to record any initial information about the stream.

do_close

Callback triggered via close.

function integer get_handle()

static function uvm_tr_stream get_stream_from_handle(
 integer id
)

protected virtual function void do_open(
 uvm_tr_database db,
 string scope,
 string stream_type_name
)

protected virtual function void do_close()

UVM 1.2 Class Reference 100

The do_close callback can be used to set internal state within the stream, as well as
providing a location to record any closing information.

do_free

Callback triggered via free.

The do_free callback can be used to release the internal state within the stream, as well
as providing a location to record any “freeing” information.

do_open_recorder

Marks the beginning of a new record in the stream.

Backend implementation of open_recorder

uvm_text_tr_stream

The uvm_text_tr_stream is the default stream implementation for the
uvm_text_tr_database.

Summary

uvm_text_tr_stream

The uvm_text_tr_stream is the default stream implementation for the
uvm_text_tr_database.

CLAss HIErArchY

uvm_void

uvm_object

uvm_tr_stream

uvm_text_tr_stream

CLAss DEcLArAtION

new Constructor
IMpLEMENtAtION AGNOstIc

API
do_open Callback triggered via

uvm_tr_database::open_stream.
do_close Callback triggered via uvm_tr_stream::close.
do_free Callback triggered via uvm_tr_stream::free.

protected virtual function void do_free()

protected virtual function uvm_recorder do_open_recorder(
 string name,
 time open_time,
 string type_name
)

class uvm_text_tr_stream extends uvm_tr_stream

UVM 1.2 Class Reference 101

do_open_recorder Marks the beginning of a new record in the stream

new

Constructor

Parameters

name Instance name

IMpLEMENtAtION AGNOstIc API

do_open

Callback triggered via uvm_tr_database::open_stream.

do_close

Callback triggered via uvm_tr_stream::close.

do_free

Callback triggered via uvm_tr_stream::free.

do_open_recorder

Marks the beginning of a new record in the stream

Text-backend specific implementation.

function new(
 string name = "unnamed-uvm_text_tr_stream"
)

protected virtual function void do_open(
 uvm_tr_database db,
 string scope,
 string stream_type_name
)

protected virtual function void do_close()

protected virtual function void do_free()

protected virtual function uvm_recorder do_open_recorder(
 string name,
 time open_time,
 string type_name
)

UVM 1.2 Class Reference 102

8. Factory Classes

As the name implies, the uvm_factory is used to manufacture (create) UVM objects and
components. Only one instance of the factory is present in a given simulation.

User-defined object and component types are registered with the factory via typedef or
macro invocation, as explained in uvm_default_factory::Usage. The factory generates
and stores lightweight proxies to the user-defined objects and components:
uvm_object_registry #(T,Tname) for objects and uvm_component_registry #(T,Tname)
for components. Each proxy only knows how to create an instance of the object or
component it represents, and so is very efficient in terms of memory usage.

When the user requests a new object or component from the factory (e.g.
uvm_factory::create_object_by_type), the factory will determine what type of object to
create based on its configuration, then ask that type’s proxy to create an instance of the
type, which is returned to the user.

Summary

Factory Classes

As the name implies, the uvm_factory is used to manufacture (create) UVM
objects and components.

UVM 1.2 Class Reference 103

8.1 Factory Component and Object Wrappers

Contents

Factory Component
and Object Wrappers

Intro This section defines the proxy component and object
classes used by the factory.

uvm_component_registry
#(T,Tname)

The uvm_component_registry serves as a lightweight
proxy for a component of type T and type name
Tname, a string.

uvm_object_registry
#(T,Tname)

The uvm_object_registry serves as a lightweight proxy
for a uvm_object of type T and type name Tname, a
string.

Intro

This section defines the proxy component and object classes used by the factory. To
avoid the overhead of creating an instance of every component and object that get
registered, the factory holds lightweight wrappers, or proxies. When a request for a new
object is made, the factory calls upon the proxy to create the object it represents.

uvm_component_registry #(T,Tname)

The uvm_component_registry serves as a lightweight proxy for a component of type T
and type name Tname, a string. The proxy enables efficient registration with the
uvm_factory. Without it, registration would require an instance of the component itself.

See Usage section below for information on using uvm_component_registry.

Summary

uvm_component_registry #(T,Tname)

The uvm_component_registry serves as a lightweight proxy for a component of
type T and type name Tname, a string.

CLAss HiERARchY

uvm_object_wrapper

uvm_component_registry#(T,Tname)

CLAss DEcLARAtioN

MEthods

create_component Creates a component of type T having the provided
name and parent.

get_type_name Returns the value given by the string parameter,

class uvm_component_registry #(
 type T = uvm_component,
 string Tname = "<unknown>"
) extends uvm_object_wrapper

UVM 1.2 Class Reference 104

Tname.
get Returns the singleton instance of this type.
create Returns an instance of the component type, T,

represented by this proxy, subject to any factory
overrides based on the context provided by the parent’s
full name.

set_type_override Configures the factory to create an object of the type
represented by override_type whenever a request is
made to create an object of the type, T, represented by
this proxy, provided no instance override applies.

set_inst_override Configures the factory to create a component of the
type represented by override_type whenever a request
is made to create an object of the type, T, represented
by this proxy, with matching instance paths.

MEthods

create_component

Creates a component of type T having the provided name and parent. This is an
override of the method in uvm_object_wrapper. It is called by the factory after
determining the type of object to create. You should not call this method directly. Call
create instead.

get_type_name

Returns the value given by the string parameter, Tname. This method overrides the
method in uvm_object_wrapper.

get

Returns the singleton instance of this type. Type-based factory operation depends on
there being a single proxy instance for each registered type.

create

Returns an instance of the component type, T, represented by this proxy, subject to any
factory overrides based on the context provided by the parent’s full name. The contxt
argument, if supplied, supersedes the parent’s context. The new instance will have the

virtual function uvm_component create_component (
 string name,
 uvm_component parent
)

virtual function string get_type_name()

static function this_type get()

static function T create(
 string name,
 uvm_component parent,
 string contxt = ""
)

UVM 1.2 Class Reference 105

given leaf name and parent.

set_type_override

Configures the factory to create an object of the type represented by override_type
whenever a request is made to create an object of the type, T, represented by this
proxy, provided no instance override applies. The original type, T, is typically a super
class of the override type.

set_inst_override

Configures the factory to create a component of the type represented by override_type
whenever a request is made to create an object of the type, T, represented by this
proxy, with matching instance paths. The original type, T, is typically a super class of
the override type.

If parent is not specified, inst_path is interpreted as an absolute instance path, which
enables instance overrides to be set from outside component classes. If parent is
specified, inst_path is interpreted as being relative to the parent’s hierarchical instance
path, i.e. {parent.get_full_name(),”.”,inst_path} is the instance path that is registered
with the override. The inst_path may contain wildcards for matching against multiple
contexts.

uvm_object_registry #(T,Tname)

The uvm_object_registry serves as a lightweight proxy for a uvm_object of type T and
type name Tname, a string. The proxy enables efficient registration with the
uvm_factory. Without it, registration would require an instance of the object itself.

See Usage section below for information on using uvm_component_registry.

Summary

uvm_object_registry #(T,Tname)

The uvm_object_registry serves as a lightweight proxy for a uvm_object of type T
and type name Tname, a string.

CLAss HiERARchY

uvm_object_wrapper

uvm_object_registry#(T,Tname)

static function void set_type_override (
 uvm_object_wrapper override_type,
 bit replace = 1
)

static function void set_inst_override(
 uvm_object_wrapper override_type,
 string inst_path,
 uvm_component parent = null
)

UVM 1.2 Class Reference 106

CLAss DEcLARAtioN

create_object Creates an object of type T and returns it as a handle to a
uvm_object.

get_type_name Returns the value given by the string parameter, Tname.
get Returns the singleton instance of this type.
create Returns an instance of the object type, T, represented by

this proxy, subject to any factory overrides based on the
context provided by the parent’s full name.

set_type_override Configures the factory to create an object of the type
represented by override_type whenever a request is made
to create an object of the type represented by this proxy,
provided no instance override applies.

set_inst_override Configures the factory to create an object of the type
represented by override_type whenever a request is made
to create an object of the type represented by this proxy,
with matching instance paths.

UsAGE This section describes usage for the uvm_*_registry
classes.

create_object

Creates an object of type T and returns it as a handle to a uvm_object. This is an
override of the method in uvm_object_wrapper. It is called by the factory after
determining the type of object to create. You should not call this method directly. Call
create instead.

get_type_name

Returns the value given by the string parameter, Tname. This method overrides the
method in uvm_object_wrapper.

get

Returns the singleton instance of this type. Type-based factory operation depends on
there being a single proxy instance for each registered type.

create

class uvm_object_registry #(
 type T = uvm_object,
 string Tname = "<unknown>"
) extends uvm_object_wrapper

virtual function uvm_object create_object(
 string name = ""
)

virtual function string get_type_name()

static function this_type get()

static function T create (
 string name = "",
 uvm_component parent = null,
 string contxt = ""
)

UVM 1.2 Class Reference 107

Returns an instance of the object type, T, represented by this proxy, subject to any
factory overrides based on the context provided by the parent’s full name. The contxt
argument, if supplied, supersedes the parent’s context. The new instance will have the
given leaf name, if provided.

set_type_override

Configures the factory to create an object of the type represented by override_type
whenever a request is made to create an object of the type represented by this proxy,
provided no instance override applies. The original type, T, is typically a super class of
the override type.

set_inst_override

Configures the factory to create an object of the type represented by override_type
whenever a request is made to create an object of the type represented by this proxy,
with matching instance paths. The original type, T, is typically a super class of the
override type.

If parent is not specified, inst_path is interpreted as an absolute instance path, which
enables instance overrides to be set from outside component classes. If parent is
specified, inst_path is interpreted as being relative to the parent’s hierarchical instance
path, i.e. {parent.get_full_name(),”.”,inst_path} is the instance path that is registered
with the override. The inst_path may contain wildcards for matching against multiple
contexts.

UsAGE

This section describes usage for the uvm_*_registry classes.

The wrapper classes are used to register lightweight proxies of objects and components.

To register a particular component type, you need only typedef a specialization of its
proxy class, which is typically done inside the class.

For example, to register a UVM component of type mycomp

However, because of differences between simulators, it is necessary to use a macro to
ensure vendor interoperability with factory registration. To register a UVM component of
type mycomp in a vendor-independent way, you would write instead:

static function void set_type_override (
 uvm_object_wrapper override_type,
 bit replace = 1
)

static function void set_inst_override(
 uvm_object_wrapper override_type,
 string inst_path,
 uvm_component parent = null
)

class mycomp extends uvm_component;
 typedef uvm_component_registry #(mycomp,"mycomp") type_id;
endclass

UVM 1.2 Class Reference 108

The `uvm_component_utils macro is for non-parameterized classes. In this example, the
typedef underlying the macro specifies the Tname parameter as “mycomp”, and
mycomp’s get_type_name() is defined to return the same. With Tname defined, you can
use the factory’s name-based methods to set overrides and create objects and
components of non-parameterized types.

For parameterized types, the type name changes with each specialization, so you cannot
specify a Tname inside a parameterized class and get the behavior you want; the same
type name string would be registered for all specializations of the class! (The factory
would produce warnings for each specialization beyond the first.) To avoid the warnings
and simulator interoperability issues with parameterized classes, you must register
parameterized classes with a different macro.

For example, to register a UVM component of type driver #(T), you would write:

The `uvm_component_param_utils and `uvm_object_param_utils macros are used to
register parameterized classes with the factory. Unlike the non-param versions, these
macros do not specify the Tname parameter in the underlying uvm_component_registry
typedef, and they do not define the get_type_name method for the user class.
Consequently, you will not be able to use the factory’s name-based methods for
parameterized classes.

The primary purpose for adding the factory’s type-based methods was to accommodate
registration of parameterized types and eliminate the many sources of errors associated
with string-based factory usage. Thus, use of name-based lookup in uvm_factory is no
longer recommended.

class mycomp extends uvm_component;
 `uvm_component_utils(mycomp);
 ...
endclass

class driver #(type T=int) extends uvm_component;
 `uvm_component_param_utils(driver #(T));
 ...
endclass

UVM 1.2 Class Reference 109

8.2 UVM Factory

This page covers the classes that define the UVM factory facility.

Contents

UVM Factory This page covers the classes that define the UVM factory
facility.

uvm_factory As the name implies, uvm_factory is used to manufacture
(create) UVM objects and components.

uvm_default_factory Default implementation of the UVM factory.
uvm_object_wrapper The uvm_object_wrapper provides an abstract interface for

creating object and component proxies.

uvm_factory

As the name implies, uvm_factory is used to manufacture (create) UVM objects and
components. Object and component types are registered with the factory using
lightweight proxies to the actual objects and components being created. The
uvm_object_registry #(T,Tname) and uvm_component_registry #(T,Tname) class are
used to proxy uvm_objects and uvm_components.

The factory provides both name-based and type-based interfaces.

type-based The type-based interface is far less prone to errors in usage.
When errors do occur, they are caught at compile-time.

name-based The name-based interface is dominated by string arguments
that can be misspelled and provided in the wrong order. Errors
in name-based requests might only be caught at the time of the
call, if at all. Further, the name-based interface is not portable
across simulators when used with parameterized classes.

The uvm_factory is an abstract class which declares many of its methods as pure
virtual. The UVM uses the uvm_default_factory class as its default factory
implementation.

See uvm_default_factory::Usage section for details on configuring and using the factory.

Summary

uvm_factory

As the name implies, uvm_factory is used to manufacture (create) UVM objects
and components.

CLAss DEcLARATION

RETRIEvING THE fAcTORY

get Static accessor for uvm_factory
REGIsTERING TYPEs

register Registers the given proxy object, obj, with

virtual class uvm_factory

UVM 1.2 Class Reference 110

the factory.
TYPE & INsTANcE OvERRIdEs

set_inst_override_by_type
set_inst_override_by_name Configures the factory to create an object of

the override’s type whenever a request is
made to create an object of the original type
using a context that matches full_inst_path.

set_type_override_by_type
set_type_override_by_name Configures the factory to create an object of

the override’s type whenever a request is
made to create an object of the original type,
provided no instance override applies.

CREATION

create_object_by_type
create_component_by_type
create_object_by_name
create_component_by_name Creates and returns a component or object of

the requested type, which may be specified
by type or by name.

DEBuG

debug_create_by_type
debug_create_by_name These methods perform the same search

algorithm as the create_* methods, but they
do not create new objects.

find_override_by_type
find_override_by_name These methods return the proxy to the

object that would be created given the
arguments.

find_wrapper_by_name This method returns the uvm_object_wrapper
associated with a given type_name.

print Prints the state of the uvm_factory, including
registered types, instance overrides, and
type overrides.

RETRIEvING THE fAcTORY

get

Static accessor for uvm_factory

The static accessor is provided as a convenience wrapper around retrieving the factory
via the uvm_coreservice_t::get_factory method.

static function uvm_factory get()

// Using the uvm_coreservice_t:
uvm_coreservice_t cs;
uvm_factory f;
cs = uvm_coreservice_t::get();
f = cs.get_factory();

// Not using the uvm_coreservice_t:
uvm_factory f;
f = uvm_factory::get();

UVM 1.2 Class Reference 111

REGIsTERING TYPEs

register

Registers the given proxy object, obj, with the factory. The proxy object is a lightweight
substitute for the component or object it represents. When the factory needs to create
an object of a given type, it calls the proxy’s create_object or create_component method
to do so.

When doing name-based operations, the factory calls the proxy’s get_type_name method
to match against the requested_type_name argument in subsequent calls to
create_component_by_name and create_object_by_name. If the proxy object’s
get_type_name method returns the empty string, name-based lookup is effectively
disabled.

TYPE & INsTANcE OvERRIdEs

set_inst_override_by_type

set_inst_override_by_name

Configures the factory to create an object of the override’s type whenever a request is
made to create an object of the original type using a context that matches
full_inst_path. The original type is typically a super class of the override type.

When overriding by type, the original_type and override_type are handles to the types’
proxy objects. Preregistration is not required.

When overriding by name, the original_type_name typically refers to a preregistered type
in the factory. It may, however, be any arbitrary string. Future calls to any of the
create_* methods with the same string and matching instance path will produce the type
represented by override_type_name, which must be preregistered with the factory.

The full_inst_path is matched against the concatenation of {parent_inst_path, “.”, name}
provided in future create requests. The full_inst_path may include wildcards (* and ?)
such that a single instance override can be applied in multiple contexts. A full_inst_path
of “*” is effectively a type override, as it will match all contexts.

pure virtual function void register (
 uvm_object_wrapper obj
)

pure virtual function void set_inst_override_by_type (
 uvm_object_wrapper original_type,
 uvm_object_wrapper override_type,
 string full_inst_path
)

pure virtual function void set_inst_override_by_name (
 string original_type_name,
 string override_type_name,
 string full_inst_path
)

UVM 1.2 Class Reference 112

When the factory processes instance overrides, the instance queue is processed in order
of override registrations, and the first override match prevails. Thus, more specific
overrides should be registered first, followed by more general overrides.

set_type_override_by_type

set_type_override_by_name

Configures the factory to create an object of the override’s type whenever a request is
made to create an object of the original type, provided no instance override applies. The
original type is typically a super class of the override type.

When overriding by type, the original_type and override_type are handles to the types’
proxy objects. Preregistration is not required.

When overriding by name, the original_type_name typically refers to a preregistered type
in the factory. It may, however, be any arbitrary string. Future calls to any of the
create_* methods with the same string and matching instance path will produce the type
represented by override_type_name, which must be preregistered with the factory.

When replace is 1, a previous override on original_type_name is replaced, otherwise a
previous override, if any, remains intact.

CREATION

create_object_by_type

create_component_by_type

pure virtual function void set_type_override_by_type (
 uvm_object_wrapper original_type,
 uvm_object_wrapper override_type,
 bit replace = 1
)

pure virtual function void set_type_override_by_name (
 string original_type_name,
 string override_type_name,
 bit replace = 1
)

pure virtual function uvm_object create_object_by_type (
 uvm_object_wrapper requested_type,
 string parent_inst_path = "",
 string name = ""
)

pure virtual function uvm_component create_component_by_type (
 uvm_object_wrapper requested_type,
 string parent_inst_path = "",
 string name,
 uvm_component parent
)

UVM 1.2 Class Reference 113

create_object_by_name

create_component_by_name

Creates and returns a component or object of the requested type, which may be
specified by type or by name. A requested component must be derived from the
uvm_component base class, and a requested object must be derived from the
uvm_object base class.

When requesting by type, the requested_type is a handle to the type’s proxy object.
Preregistration is not required.

When requesting by name, the request_type_name is a string representing the requested
type, which must have been registered with the factory with that name prior to the
request. If the factory does not recognize the requested_type_name, an error is
produced and a null handle returned.

If the optional parent_inst_path is provided, then the concatenation, {parent_inst_path,
“.”,~name~}, forms an instance path (context) that is used to search for an instance
override. The parent_inst_path is typically obtained by calling the
uvm_component::get_full_name on the parent.

If no instance override is found, the factory then searches for a type override.

Once the final override is found, an instance of that component or object is returned in
place of the requested type. New components will have the given name and parent.
New objects will have the given name, if provided.

Override searches are recursively applied, with instance overrides taking precedence over
type overrides. If foo overrides bar, and xyz overrides foo, then a request for bar will
produce xyz. Recursive loops will result in an error, in which case the type returned will
be that which formed the loop. Using the previous example, if bar overrides xyz, then
bar is returned after the error is issued.

DEBuG

debug_create_by_type

pure virtual function uvm_object create_object_by_name (
 string requested_type_name,
 string parent_inst_path = "",
 string name = ""
)

pure virtual function uvm_component create_component_by_name (
 string requested_type_name,
 string parent_inst_path = "",
 string name,
 uvm_component parent
)

pure virtual function void debug_create_by_type (
 uvm_object_wrapper requested_type,
 string parent_inst_path = "",
 string name = ""
)

UVM 1.2 Class Reference 114

debug_create_by_name

These methods perform the same search algorithm as the create_* methods, but they do
not create new objects. Instead, they provide detailed information about what type of
object it would return, listing each override that was applied to arrive at the result.
Interpretation of the arguments are exactly as with the create_* methods.

find_override_by_type

find_override_by_name

These methods return the proxy to the object that would be created given the
arguments. The full_inst_path is typically derived from the parent’s instance path and
the leaf name of the object to be created, i.e. { parent.get_full_name(), “.”, name }.

find_wrapper_by_name

This method returns the uvm_object_wrapper associated with a given type_name.

print

Prints the state of the uvm_factory, including registered types, instance overrides, and
type overrides.

When all_types is 0, only type and instance overrides are displayed. When all_types is 1
(default), all registered user-defined types are printed as well, provided they have names
associated with them. When all_types is 2, the UVM types (prefixed with uvm_) are
included in the list of registered types.

uvm_default_factory

pure virtual function void debug_create_by_name (
 string requested_type_name,
 string parent_inst_path = "",
 string name = ""
)

pure virtual function uvm_object_wrapper find_override_by_type (
 uvm_object_wrapper requested_type,
 string full_inst_path
)

pure virtual function uvm_object_wrapper find_override_by_name (
 string requested_type_name,
 string full_inst_path
)

pure virtual function uvm_object_wrapper find_wrapper_by_name (
 string type_name
)

pure virtual function void print (
 int all_types = 1
)

UVM 1.2 Class Reference 115

Default implementation of the UVM factory.

Summary

uvm_default_factory

Default implementation of the UVM factory.

CLAss HIERARcHY

uvm_factory

uvm_default_factory

CLAss DEcLARATION

REGIsTERING TYPEs

register Registers the given proxy object, obj, with
the factory.

TYPE & INsTANcE OvERRIdEs

set_inst_override_by_type
set_inst_override_by_name Configures the factory to create an object of

the override’s type whenever a request is
made to create an object of the original type
using a context that matches full_inst_path.

set_type_override_by_type
set_type_override_by_name Configures the factory to create an object of

the override’s type whenever a request is
made to create an object of the original type,
provided no instance override applies.

CREATION

create_object_by_type
create_component_by_type
create_object_by_name
create_component_by_name Creates and returns a component or object of

the requested type, which may be specified
by type or by name.

DEBuG

debug_create_by_type
debug_create_by_name These methods perform the same search

algorithm as the create_* methods, but they
do not create new objects.

find_override_by_type
find_override_by_name These methods return the proxy to the

object that would be created given the
arguments.

print Prints the state of the uvm_factory, including
registered types, instance overrides, and
type overrides.

UsAGE Using the factory involves three basic
operations

REGIsTERING TYPEs

register

class uvm_default_factory extends uvm_factory

UVM 1.2 Class Reference 116

Registers the given proxy object, obj, with the factory.

TYPE & INsTANcE OvERRIdEs

set_inst_override_by_type

set_inst_override_by_name

Configures the factory to create an object of the override’s type whenever a request is
made to create an object of the original type using a context that matches
full_inst_path.

set_type_override_by_type

set_type_override_by_name

Configures the factory to create an object of the override’s type whenever a request is
made to create an object of the original type, provided no instance override applies.

CREATION

create_object_by_type

virtual function void register (
 uvm_object_wrapper obj
)

virtual function void set_inst_override_by_type (
 uvm_object_wrapper original_type,
 uvm_object_wrapper override_type,
 string full_inst_path
)

virtual function void set_inst_override_by_name (
 string original_type_name,
 string override_type_name,
 string full_inst_path
)

virtual function void set_type_override_by_type (
 uvm_object_wrapper original_type,
 uvm_object_wrapper override_type,
 bit replace = 1
)

virtual function void set_type_override_by_name (
 string original_type_name,
 string override_type_name,
 bit replace = 1
)

UVM 1.2 Class Reference 117

create_component_by_type

create_object_by_name

create_component_by_name

Creates and returns a component or object of the requested type, which may be
specified by type or by name.

DEBuG

debug_create_by_type

debug_create_by_name

These methods perform the same search algorithm as the create_* methods, but they do
not create new objects.

virtual function uvm_object create_object_by_type (
 uvm_object_wrapper requested_type,
 string parent_inst_path = "",
 string name = ""
)

virtual function uvm_component create_component_by_type (
 uvm_object_wrapper requested_type,
 string parent_inst_path = "",
 string name,
 uvm_component parent
)

virtual function uvm_object create_object_by_name (
 string requested_type_name,
 string parent_inst_path = "",
 string name = ""
)

virtual function uvm_component create_component_by_name (
 string requested_type_name,
 string parent_inst_path = "",
 string name,
 uvm_component parent
)

virtual function void debug_create_by_type (
 uvm_object_wrapper requested_type,
 string parent_inst_path = "",
 string name = ""
)

virtual function void debug_create_by_name (
 string requested_type_name,
 string parent_inst_path = "",
 string name = ""
)

UVM 1.2 Class Reference 118

find_override_by_type

find_override_by_name

These methods return the proxy to the object that would be created given the
arguments.

print

Prints the state of the uvm_factory, including registered types, instance overrides, and
type overrides.

UsAGE

Using the factory involves three basic operations

1 Registering objects and components types with the factory
2 Designing components to use the factory to create objects or components
3 Configuring the factory with type and instance overrides, both within and

outside components

We’ll briefly cover each of these steps here. More reference information can be found at
Utility Macros, uvm_component_registry #(T,Tname), uvm_object_registry #(T,Tname),
uvm_component.

1 -- Registering objects and component types with the factory

When defining uvm_object and uvm_component-based classes, simply invoke the
appropriate macro. Use of macros are required to ensure portability across different
vendors’ simulators.

Objects that are not parameterized are declared as

virtual function uvm_object_wrapper find_override_by_type (
 uvm_object_wrapper requested_type,
 string full_inst_path
)

virtual function uvm_object_wrapper find_override_by_name (
 string requested_type_name,
 string full_inst_path
)

virtual function void print (
 int all_types = 1
)

class packet extends uvm_object;
 `uvm_object_utils(packet)
endclass

class packetD extends packet;
 `uvm_object_utils(packetD)
endclass

UVM 1.2 Class Reference 119

Objects that are parameterized are declared as

Components that are not parameterized are declared as

Components that are parameterized are declared as

The `uvm_*_utils macros for simple, non-parameterized classes will register the type
with the factory and define the get_type, get_type_name, and create virtual methods
inherited from uvm_object. It will also define a static type_name variable in the class,
which will allow you to determine the type without having to allocate an instance.

The `uvm_*_param_utils macros for parameterized classes differ from `uvm_*_utils
classes in the following ways:

The get_type_name method and static type_name variable are not defined.
You will need to implement these manually.
A type name is not associated with the type when registering with the factory, so
the factory’s *_by_name operations will not work with parameterized classes.
The factory’s print, debug_create_by_type, and debug_create_by_name methods,
which depend on type names to convey information, will list parameterized types
as ‘<unknown>’.

It is worth noting that environments that exclusively use the type-based factory methods
(*_by_type) do not require type registration. The factory’s type-based methods will
register the types involved “on the fly,” when first used. However, registering with the
`uvm_*_utils macros enables name-based factory usage and implements some useful
utility functions.

2 -- Designing components that defer creation to the factory

Having registered your objects and components with the factory, you can now make
requests for new objects and components via the factory. Using the factory instead of
allocating them directly (via new) allows different objects to be substituted for the
original without modifying the requesting class. The following code defines a driver class
that is parameterized.

class packet #(type T=int, int WIDTH=32) extends uvm_object;
 `uvm_object_param_utils(packet #(T,WIDTH))
 endclass

class comp extends uvm_component;
 `uvm_component_utils(comp)
endclass

class comp #(type T=int, int WIDTH=32) extends uvm_component;
 `uvm_component_param_utils(comp #(T,WIDTH))
endclass

class driverB #(type T=uvm_object) extends uvm_driver;

 // parameterized classes must use the _param_utils version
 `uvm_component_param_utils(driverB #(T))

 // our packet type; this can be overridden via the factory
 T pkt;

UVM 1.2 Class Reference 120

For purposes of illustrating type and instance overrides, we define two subtypes of the
driverB class. The subtypes are also parameterized, so we must again provide an
implementation for uvm_object::get_type_name, which we recommend writing in terms
of a static string constant.

Next, we’ll define a agent component, which requires a utils macro for non-
parameterized types. Before creating the drivers using the factory, we override driver0’s
packet type to be packetD.

 // standard component constructor
 function new(string name, uvm_component parent=null);
 super.new(name,parent);
 endfunction

 // get_type_name not implemented by macro for parameterized classes
 const static string type_name = {"driverB #(",T::type_name,")"};
 virtual function string get_type_name();
 return type_name;
 endfunction

 // using the factory allows pkt overrides from outside the class
 virtual function void build_phase(uvm_phase phase);
 pkt = packet::type_id::create("pkt",this);
 endfunction

 // print the packet so we can confirm its type when printing
 virtual function void do_print(uvm_printer printer);
 printer.print_object("pkt",pkt);
 endfunction

endclass

class driverD1 #(type T=uvm_object) extends driverB #(T);

 `uvm_component_param_utils(driverD1 #(T))

 function new(string name, uvm_component parent=null);
 super.new(name,parent);
 endfunction

 const static string type_name = {"driverD1 #(",T::type_name,")"};
 virtual function string get_type_name();
 ...return type_name;
 endfunction

endclass

class driverD2 #(type T=uvm_object) extends driverB #(T);

 `uvm_component_param_utils(driverD2 #(T))

 function new(string name, uvm_component parent=null);
 super.new(name,parent);
 endfunction

 const static string type_name = {"driverD2 #(",T::type_name,")"};
 virtual function string get_type_name();
 return type_name;
 endfunction

endclass

// typedef some specializations for convenience
typedef driverB #(packet) B_driver; // the base driver
typedef driverD1 #(packet) D1_driver; // a derived driver
typedef driverD2 #(packet) D2_driver; // another derived driver

class agent extends uvm_agent;

 `uvm_component_utils(agent)
 ...
 B_driver driver0;
 B_driver driver1;

 function new(string name, uvm_component parent=null);
 super.new(name,parent);
 endfunction

 virtual function void build_phase(uvm_phase phase);

UVM 1.2 Class Reference 121

Finally we define an environment class, also not parameterized. Its build_phase
method shows three methods for setting an instance override on a grandchild component
with relative path name, agent1.driver1, all equivalent.

3 -- Configuring the factory with type and instance overrides

In the previous step, we demonstrated setting instance overrides and creating
components using the factory within component classes. Here, we will demonstrate
setting overrides from outside components, as when initializing the environment prior to
running the test.

 // override the packet type for driver0 and below
 packet::type_id::set_inst_override(packetD::get_type(),"driver0.*");

 // create using the factory; actual driver types may be different
 driver0 = B_driver::type_id::create("driver0",this);
 driver1 = B_driver::type_id::create("driver1",this);

 endfunction

endclass

class env extends uvm_env;

 `uvm_component_utils(env)

 agent agent0;
 agent agent1;

 function new(string name, uvm_component parent=null);
 super.new(name,parent);
 endfunction

 virtual function void build_phase(uvm_phase phase);

 // three methods to set an instance override for agent1.driver1
 // - via component convenience method...
 set_inst_override_by_type("agent1.driver1",
 B_driver::get_type(),
 D2_driver::get_type());

 // - via the component's proxy (same approach as create)...
 B_driver::type_id::set_inst_override(D2_driver::get_type(),
 "agent1.driver1",this);

 // - via a direct call to a factory method...
 factory.set_inst_override_by_type(B_driver::get_type(),
 D2_driver::get_type(),

{get_full_name(),".agent1.driver1"});

 // create agents using the factory; actual agent types may be different
 agent0 = agent::type_id::create("agent0",this);
 agent1 = agent::type_id::create("agent1",this);

 endfunction

 // at end_of_elaboration, print topology and factory state to verify
 virtual function void end_of_elaboration_phase(uvm_phase phase);
 uvm_top.print_topology();
 endfunction

 virtual task run_phase(uvm_phase phase);
 #100 global_stop_request();
 endfunction

endclass

module top;

 env env0;

 initial begin

 // Being registered first, the following overrides take precedence
 // over any overrides made within env0's construction & build.

 // Replace all base drivers with derived drivers...

UVM 1.2 Class Reference 122

When the above example is run, the resulting topology (displayed via a call to
uvm_root::print_topology in env’s uvm_component::end_of_elaboration_phase method)
is similar to the following:

uvm_object_wrapper

The uvm_object_wrapper provides an abstract interface for creating object and
component proxies. Instances of these lightweight proxies, representing every
uvm_object-based and uvm_component-based object available in the test environment,
are registered with the uvm_factory. When the factory is called upon to create an object
or component, it finds and delegates the request to the appropriate proxy.

Summary

uvm_object_wrapper

The uvm_object_wrapper provides an abstract interface for creating object and
component proxies.

CLAss DEcLARATION

METHOds

 B_driver::type_id::set_type_override(D_driver::get_type());

 // ...except for agent0.driver0, whose type remains a base driver.
 // (Both methods below have the equivalent result.)

 // - via the component's proxy (preferred)
 B_driver::type_id::set_inst_override(B_driver::get_type(),
 "env0.agent0.driver0");

 // - via a direct call to a factory method
 factory.set_inst_override_by_type(B_driver::get_type(),
 B_driver::get_type(),
 {get_full_name(),"env0.agent0.driver0"});

 // now, create the environment; our factory configuration will
 // govern what topology gets created
 env0 = new("env0");

 // run the test (will execute build phase)
 run_test();

 end

endmodule

UVM_INFO @ 0 [RNTST] Running test ...
UVM_INFO @ 0 [UVMTOP] UVM testbench topology:
--
Name Type Size Value
--
env0 env - env0@2
agent0 agent - agent0@4
driver0 driverB #(packet) - driver0@8
pkt packet - pkt@21
driver1 driverD #(packet) - driver1@14
pkt packet - pkt@23
agent1 agent - agent1@6
driver0 driverD #(packet) - driver0@24
pkt packet - pkt@37
driver1 driverD2 #(packet) - driver1@30
pkt packet - pkt@39
--

virtual class uvm_object_wrapper

UVM 1.2 Class Reference 123

create_object Creates a new object with the optional name.
create_component Creates a new component, passing to its constructor

the given name and parent.
get_type_name Derived classes implement this method to return the

type name of the object created by create_component
or create_object.

METHOds

create_object

Creates a new object with the optional name. An object proxy (e.g.,
uvm_object_registry #(T,Tname)) implements this method to create an object of a
specific type, T.

create_component

Creates a new component, passing to its constructor the given name and parent. A
component proxy (e.g. uvm_component_registry #(T,Tname)) implements this method
to create a component of a specific type, T.

get_type_name

Derived classes implement this method to return the type name of the object created by
create_component or create_object. The factory uses this name when matching against
the requested type in name-based lookups.

virtual function uvm_object create_object (
 string name = ""
)

virtual function uvm_component create_component (
 string name,
 uvm_component parent
)

pure virtual function string get_type_name()

UVM 1.2 Class Reference 124

9. Phasing Overview

UVM implements an automated mechanism for phasing the execution of the various
components in a testbench.

Summary

Phasing Overview

UVM implements an automated mechanism for phasing the execution of the
various components in a testbench.

Phasing Implementation

The API described here provides a general purpose testbench phasing solution, consisting
of a phaser machine, traversing a master schedule graph, which is built by the integrator
from one or more instances of template schedules provided by UVM or by 3rd-party VIP,
and which supports implicit or explicit synchronization, runtime control of threads and
jumps.

Each schedule leaf node refers to a single phase that is compatible with that VIP’s
components and which executes the required behavior via a functor or delegate
extending the phase into component context as required.

Execution threads are tracked on a per-component basis.

Class hierarchy

A single class represents both the definition, the state, and the context of a phase. It is
instantiated once as a singleton IMP and one or more times as nodes in a graph which
represents serial and parallel phase relationships and stores current state as the phaser
progresses, and the phase implementation which specifies required component behavior
(by extension into component context if non-default behavior required.)

The following classes related to phasing are defined herein

uvm_phase : The base class for defining a phase’s behavior, state, context

UVM 1.2 Class Reference 125

uvm_domain : Phasing schedule node representing an independent branch of the
schedule

uvm_bottomup_phase : A phase implementation for bottom up function phases.

uvm_topdown_phase : A phase implementation for topdown function phases.

uvm_task_phase : A phase implementation for task phases.

Common, Run-Time and User-Defined Phases

The common phases to all uvm_components are described in UVM Common Phases.

The run-time phases are described in UVM Run-Time Phases.

The ability to create user-defined phases is described User-Defined Phases.

Summary

Phasing Implementation

The API described here provides a general purpose testbench phasing solution,
consisting of a phaser machine, traversing a master schedule graph, which is built
by the integrator from one or more instances of template schedules provided by
UVM or by 3rd-party VIP, and which supports implicit or explicit synchronization,
runtime control of threads and jumps.

UVM 1.2 Class Reference 126

9.1 Phasing Definition classes

The following class are used to specify a phase and its implied functionality.

Contents

Phasing Definition
classes

The following class are used to specify a phase and its
implied functionality.

uvm_phase This base class defines everything about a phase:
behavior, state, and context.

uvm_phase_state_change Phase state transition descriptor.
uvm_phase_cb This class defines a callback method that is invoked

by the phaser during the execution of a specific node
in the phase graph or all phase nodes.

uvm_phase_cb_pool Convenience type for the
uvm_callbacks#(uvm_phase, uvm_phase_cb) class.

uvm_phase

This base class defines everything about a phase: behavior, state, and context.

To define behavior, it is extended by UVM or the user to create singleton objects which
capture the definition of what the phase does and how it does it. These are then cloned
to produce multiple nodes which are hooked up in a graph structure to provide context:
which phases follow which, and to hold the state of the phase throughout its lifetime.
UVM provides default extensions of this class for the standard runtime phases. VIP
Providers can likewise extend this class to define the phase functor for a particular
component context as required.

This base class defines everything about a phase: behavior, state, and context.

To define behavior, it is extended by UVM or the user to create singleton objects which
capture the definition of what the phase does and how it does it. These are then cloned
to produce multiple nodes which are hooked up in a graph structure to provide context:
which phases follow which, and to hold the state of the phase throughout its lifetime.
UVM provides default extensions of this class for the standard runtime phases. VIP
Providers can likewise extend this class to define the phase functor for a particular
component context as required.

Phase Definition

Singleton instances of those extensions are provided as package variables. These
instances define the attributes of the phase (not what state it is in) They are then cloned
into schedule nodes which point back to one of these implementations, and calls its
virtual task or function methods on each participating component. It is the base class
for phase functors, for both predefined and user-defined phases. Per-component
overrides can use a customized imp.

To create custom phases, do not extend uvm_phase directly: see the three predefined
extended classes below which encapsulate behavior for different phase types: task,
bottom-up function and top-down function.

Extend the appropriate one of these to create a uvm_YOURNAME_phase class (or
YOURPREFIX_NAME_phase class) for each phase, containing the default implementation

UVM 1.2 Class Reference 127

of the new phase, which must be a uvm_component-compatible delegate, and which may
be a null implementation. Instantiate a singleton instance of that class for your code to
use when a phase handle is required. If your custom phase depends on methods that
are not in uvm_component, but are within an extended class, then extend the base
YOURPREFIX_NAME_phase class with parameterized component class context as required,
to create a specialized functor which calls your extended component class methods. This
scheme ensures compile-safety for your extended component classes while providing
homogeneous base types for APIs and underlying data structures.

Phase Context

A schedule is a coherent group of one or mode phase/state nodes linked together by a
graph structure, allowing arbitrary linear/parallel relationships to be specified, and
executed by stepping through them in the graph order. Each schedule node points to a
phase and holds the execution state of that phase, and has optional links to other nodes
for synchronization.

The main operations are: construct, add phases, and instantiate hierarchically within
another schedule.

Structure is a DAG (Directed Acyclic Graph). Each instance is a node connected to
others to form the graph. Hierarchy is overlaid with m_parent. Each node in the graph
has zero or more successors, and zero or more predecessors. No nodes are completely
isolated from others. Exactly one node has zero predecessors. This is the root node.
Also the graph is acyclic, meaning for all nodes in the graph, by following the forward
arrows you will never end up back where you started but you will eventually reach a
node that has no successors.

Phase State

A given phase may appear multiple times in the complete phase graph, due to the
multiple independent domain feature, and the ability for different VIP to customize their
own phase schedules perhaps reusing existing phases. Each node instance in the graph
maintains its own state of execution.

Phase Handle

Handles of this type uvm_phase are used frequently in the API, both by the user, to
access phasing-specific API, and also as a parameter to some APIs. In many cases, the
singleton phase handles can be used (eg. uvm_run_phase::get()) in APIs. For those
APIs that need to look up that phase in the graph, this is done automatically.

Summary

uvm_phase

This base class defines everything about a phase: behavior, state, and context.

CLAss HIERARchY

uvm_void

uvm_object

uvm_phase

CLAss DEcLARATION

CONsTRUcTION

new Create a new phase node, with a name
and a note of its type name - name of

class uvm_phase extends uvm_object

UVM 1.2 Class Reference 128

this phase type - a value in
uvm_phase_type

get_phase_type Returns the phase type as defined by
uvm_phase_type

STATE

get_state Accessor to return current state of this
phase

get_run_count Accessor to return the integer number of
times this phase has executed

find_by_name Locate a phase node with the specified
name and return its handle.

find Locate the phase node with the specified
phase IMP and return its handle.

is returns 1 if the containing uvm_phase
refers to the same phase as the phase
argument, 0 otherwise

is_before Returns 1 if the containing uvm_phase
refers to a phase that is earlier than the
phase argument, 0 otherwise

is_after returns 1 if the containing uvm_phase
refers to a phase that is later than the
phase argument, 0 otherwise

CALLBAcKs

exec_func Implements the functor/delegate
functionality for a function phase type
comp - the component to execute the
functionality upon phase - the phase
schedule that originated this phase call

exec_task Implements the functor/delegate
functionality for a task phase type comp
- the component to execute the
functionality upon phase - the phase
schedule that originated this phase call

SchEdULE

add Build up a schedule structure inserting
phase by phase, specifying linkage

get_parent Returns the parent schedule node, if any,
for hierarchical graph traversal

get_full_name Returns the full path from the enclosing
domain down to this node.

get_schedule Returns the topmost parent schedule
node, if any, for hierarchical graph
traversal

get_schedule_name Returns the schedule name associated
with this phase node

get_domain Returns the enclosing domain
get_imp Returns the phase implementation for

this this node.
get_domain_name Returns the domain name associated

with this phase node
get_adjacent_predecessor_nodes Provides an array of nodes which are

predecessors to this phase node.
get_adjacent_successor_nodes Provides an array of nodes which are

successors to this phase node.
PhAsE DONE OBJEcTION Task-based phase nodes within the

phasing graph provide a uvm_objection
based interface for prolonging the
execution of the phase.

get_objection Return the uvm_objection that gates the
termination of the phase.

raise_objection Raise an objection to ending this phase
Provides components with greater control
over the phase flow for processes which
are not implicit objectors to the phase.

drop_objection Drop an objection to ending this phase
get_objection_count Returns the current number of objections

UVM 1.2 Class Reference 129

to ending this phase raised by the given
object.

SYNchRONIZATION The functions ‘sync’ and ‘unsync’ add soft
sync relationships between nodes

sync Synchronize two domains, fully or
partially

unsync Remove synchronization between two
domains, fully or partially

wait_for_state Wait until this phase compares with the
given state and op operand.

JUMpING

jump Jump to a specified phase.
set_jump_phase Specify a phase to transition to when

phase is complete.
end_prematurely Set a flag to cause the phase to end

prematurely.
get_jump_target Return handle to the target phase of the

current jump, or null if no jump is in
progress.

CONsTRUcTION

new

Create a new phase node, with a name and a note of its type name - name of this phase
type - a value in uvm_phase_type

get_phase_type

Returns the phase type as defined by uvm_phase_type

STATE

get_state

Accessor to return current state of this phase

get_run_count

function new(
 string name = "uvm_phase",
 uvm_phase_type phase_type = UVM_PHASE_SCHEDULE,
 uvm_phase parent = null
)

function uvm_phase_type get_phase_type()

function uvm_phase_state get_state()

function int get_run_count()

UVM 1.2 Class Reference 130

Accessor to return the integer number of times this phase has executed

find_by_name

Locate a phase node with the specified name and return its handle. With stay_in_scope
set, searches only within this phase’s schedule or domain.

find

Locate the phase node with the specified phase IMP and return its handle. With
stay_in_scope set, searches only within this phase’s schedule or domain.

is

returns 1 if the containing uvm_phase refers to the same phase as the phase argument,
0 otherwise

is_before

Returns 1 if the containing uvm_phase refers to a phase that is earlier than the phase
argument, 0 otherwise

is_after

returns 1 if the containing uvm_phase refers to a phase that is later than the phase
argument, 0 otherwise

CALLBAcKs

function uvm_phase find_by_name(
 string name,
 bit stay_in_scope = 1
)

function uvm_phase find(
 uvm_phase phase,
 bit stay_in_scope = 1
)

function bit is(
 uvm_phase phase
)

function bit is_before(
 uvm_phase phase
)

function bit is_after(
 uvm_phase phase
)

UVM 1.2 Class Reference 131

exec_func

Implements the functor/delegate functionality for a function phase type comp - the
component to execute the functionality upon phase - the phase schedule that originated
this phase call

exec_task

Implements the functor/delegate functionality for a task phase type comp - the
component to execute the functionality upon phase - the phase schedule that originated
this phase call

SchEdULE

add

Build up a schedule structure inserting phase by phase, specifying linkage

Phases can be added anywhere, in series or parallel with existing nodes

phase handle of singleton derived imp containing actual functor. by
default the new phase is appended to the schedule

with_phase specify to add the new phase in parallel with this one
after_phase specify to add the new phase as successor to this one
before_phase specify to add the new phase as predecessor to this one

get_parent

Returns the parent schedule node, if any, for hierarchical graph traversal

get_full_name

virtual function void exec_func(
 uvm_component comp,
 uvm_phase phase
)

virtual task exec_task(
 uvm_component comp,
 uvm_phase phase
)

function void add(
 uvm_phase phase,
 uvm_phase with_phase = null,
 uvm_phase after_phase = null,
 uvm_phase before_phase = null
)

function uvm_phase get_parent()

virtual function string get_full_name()

UVM 1.2 Class Reference 132

Returns the full path from the enclosing domain down to this node. The singleton IMP
phases have no hierarchy.

get_schedule

Returns the topmost parent schedule node, if any, for hierarchical graph traversal

get_schedule_name

Returns the schedule name associated with this phase node

get_domain

Returns the enclosing domain

get_imp

Returns the phase implementation for this this node. Returns null if this phase type is
not a UVM_PHASE_LEAF_NODE.

get_domain_name

Returns the domain name associated with this phase node

get_adjacent_predecessor_nodes

Provides an array of nodes which are predecessors to this phase node. A ‘predecessor
node’ is defined as any phase node which lies prior to this node in the phase graph, with
no nodes between this node and the predecessor node.

get_adjacent_successor_nodes

function uvm_phase get_schedule(
 bit hier = 0
)

function string get_schedule_name(
 bit hier = 0
)

function uvm_domain get_domain()

function uvm_phase get_imp()

function string get_domain_name()

function void get_adjacent_predecessor_nodes(
 ref uvm_phase pred[]
)

UVM 1.2 Class Reference 133

Provides an array of nodes which are successors to this phase node. A ‘successor’s
node’ is defined as any phase node which comes after this node in the phase graph, with
no nodes between this node and the successor node.

PhAsE DONE OBJEcTION

Task-based phase nodes within the phasing graph provide a uvm_objection based
interface for prolonging the execution of the phase. All other phase types do not contain
an objection, and will report a fatal error if the user attempts to raise, drop, or
get_objection_count.

get_objection

Return the uvm_objection that gates the termination of the phase.

raise_objection

Raise an objection to ending this phase Provides components with greater control over
the phase flow for processes which are not implicit objectors to the phase.

drop_objection

Drop an objection to ending this phase

The drop is expected to be matched with an earlier raise.

get_objection_count

function void get_adjacent_successor_nodes(
 ref uvm_phase succ[]
)

function uvm_objection get_objection()

virtual function void raise_objection (
 uvm_object obj,
 string description = "",
 int count = 1
)

while(1) begin
 some_phase.raise_objection(this);
 ...
 some_phase.drop_objection(this);
end
...

virtual function void drop_objection (
 uvm_object obj,
 string description = "",
 int count = 1
)

UVM 1.2 Class Reference 134

Returns the current number of objections to ending this phase raised by the given
object.

SYNchRONIZATION

The functions ‘sync’ and ‘unsync’ add soft sync relationships between nodes

Summary of usage

Components in different schedule domains can be phased independently or in sync with
each other. An API is provided to specify synchronization rules between any two
domains. Synchronization can be done at any of three levels:

the domain’s whole phase schedule can be synchronized
a phase can be specified, to sync that phase with a matching counterpart
or a more detailed arbitrary synchronization between any two phases

Each kind of synchronization causes the same underlying data structures to be
managed. Like other APIs, we use the parameter dot-notation to set optional
parameters.

When a domain is synced with another domain, all of the matching phases in the two
domains get a ‘with’ relationship between them. Likewise, if a domain is unsynched, all
of the matching phases that have a ‘with’ relationship have the dependency removed. It
is possible to sync two domains and then just remove a single phase from the
dependency relationship by unsyncing just the one phase.

sync

Synchronize two domains, fully or partially

target handle of target domain to synchronize this one to
phase optional single phase in this domain to synchronize, otherwise

sync all
with_phase optional different target-domain phase to synchronize with,

otherwise use phase in the target domain

unsync

virtual function int get_objection_count(
 uvm_object obj = null
)

my_phase.sync(.target(domain)
 [,.phase(phase)[,.with_phase(phase)]]);
my_phase.unsync(.target(domain)
 [,.phase(phase)[,.with_phase(phase)]]);

function void sync(
 uvm_domain target,
 uvm_phase phase = null,
 uvm_phase with_phase = null
)

UVM 1.2 Class Reference 135

Remove synchronization between two domains, fully or partially

target handle of target domain to remove synchronization from
phase optional single phase in this domain to un-synchronize, otherwise

unsync all
with_phase optional different target-domain phase to un-synchronize with,

otherwise use phase in the target domain

wait_for_state

Wait until this phase compares with the given state and op operand. For UVM_EQ and
UVM_NE operands, several uvm_phase_states can be supplied by ORing their enum
constants, in which case the caller will wait until the phase state is any of (UVM_EQ) or
none of (UVM_NE) the provided states.

To wait for the phase to be at the started state or after

To wait for the phase to be either started or executing

JUMpING

jump

Jump to a specified phase. If the destination phase is within the current phase schedule,
a simple local jump takes place. If the jump-to phase is outside of the current schedule
then the jump affects other schedules which share the phase.

set_jump_phase

function void unsync(
 uvm_domain target,
 uvm_phase phase = null,
 uvm_phase with_phase = null
)

task wait_for_state(
 uvm_phase_state state,
 uvm_wait_op op = UVM_EQ
)

wait_for_state(UVM_PHASE_STARTED, UVM_GTE);

wait_for_state(UVM_PHASE_STARTED | UVM_PHASE_EXECUTING, UVM_EQ);

function void jump(
 uvm_phase phase
)

function void set_jump_phase(
 uvm_phase phase

UVM 1.2 Class Reference 136

Specify a phase to transition to when phase is complete. Note that this function is part
of what jump() does; unlike jump() it does not set the flag to terminate the phase
prematurely.

end_prematurely

Set a flag to cause the phase to end prematurely. Note that this function is part of what
jump() does; unlike jump() it does not set a jump_phase to go to after the phase ends.

get_jump_target

Return handle to the target phase of the current jump, or null if no jump is in progress.
Valid for use during the phase_ended() callback

uvm_phase_state_change

Phase state transition descriptor. Used to describe the phase transition that caused a
uvm_phase_state_changed() callback to be invoked.

Summary

uvm_phase_state_change

Phase state transition descriptor.

CLAss HIERARchY

uvm_void

uvm_object

uvm_phase_state_change

CLAss DEcLARATION

METhOds

get_state() Returns the state the phase just transitioned to.
get_prev_state() Returns the state the phase just transitioned from.
jump_to() If the current state is UVM_PHASE_ENDED or

UVM_PHASE_JUMPING because of a phase jump, returns
the phase that is the target of jump.

METhOds

)

function void end_prematurely()

function uvm_phase get_jump_target()

class uvm_phase_state_change extends uvm_object

UVM 1.2 Class Reference 137

get_state()

Returns the state the phase just transitioned to. Functionally equivalent to
uvm_phase::get_state().

get_prev_state()

Returns the state the phase just transitioned from.

jump_to()

If the current state is UVM_PHASE_ENDED or UVM_PHASE_JUMPING because of a phase
jump, returns the phase that is the target of jump. Returns null otherwise.

uvm_phase_cb

This class defines a callback method that is invoked by the phaser during the execution
of a specific node in the phase graph or all phase nodes. User-defined callback
extensions can be used to integrate data types that are not natively phase-aware with
the UVM phasing.

Summary

uvm_phase_cb

This class defines a callback method that is invoked by the phaser during the
execution of a specific node in the phase graph or all phase nodes.

CLAss HIERARchY

uvm_void

uvm_object

uvm_callback

uvm_phase_cb

CLAss DEcLARATION

METhOds

new Constructor
phase_state_change Called whenever a phase changes state.

virtual function uvm_phase_state get_state()

virtual function uvm_phase_state get_prev_state()

function uvm_phase jump_to()

class uvm_phase_cb extends uvm_callback

UVM 1.2 Class Reference 138

METhOds

new

Constructor

phase_state_change

Called whenever a phase changes state. The change descriptor describes the transition
that was just completed. The callback method is invoked immediately after the phase
state has changed, but before the phase implementation is executed.

An extension may interact with the phase, such as raising the phase objection to prolong
the phase, in a manner that is consistent with the current phase state.

By default, the callback method does nothing. Unless otherwise specified, modifying the
phase transition descriptor has no effect on the phasing schedule or execution.

uvm_phase_cb_pool

Convenience type for the uvm_callbacks#(uvm_phase, uvm_phase_cb) class.

Summary

uvm_phase_cb_pool

Convenience type for the uvm_callbacks#(uvm_phase, uvm_phase_cb) class.

CLAss DEcLARATION

function new(
 string name = "unnamed-uvm_phase_cb"
)

virtual function void phase_state_change(
 uvm_phase phase,
 uvm_phase_state_change change
)

typedef uvm_callbacks#(
 uvm_phase,
 uvm_phase_cb
) uvm_phase_cb_pool

UVM 1.2 Class Reference 139

9.2 uvm_domain

Phasing schedule node representing an independent branch of the schedule. Handle used
to assign domains to components or hierarchies in the testbench

Summary

uvm_domain

Phasing schedule node representing an independent branch of the schedule.

CLAss HIERARchY

uvm_void

uvm_object

uvm_phase

uvm_domain

CLAss DEcLARATION

METhOds

get_domains Provides a list of all domains in the provided domains
argument.

get_uvm_schedule Get the “UVM” schedule, which consists of the run-
time phases that all components execute when
participating in the “UVM” domain.

get_common_domain Get the “common” domain, which consists of the
common phases that all components execute in sync
with each other.

add_uvm_phases Appends to the given schedule the built-in UVM
phases.

get_uvm_domain Get a handle to the singleton uvm domain
new Create a new instance of a phase domain.
jump jumps all active phases of this domain to to-phase if

there is a path between active-phase and to-phase

METhOds

get_domains

Provides a list of all domains in the provided domains argument.

get_uvm_schedule

Get the “UVM” schedule, which consists of the run-time phases that all components

class uvm_domain extends uvm_phase

static function void get_domains(
 output uvm_domain domains[string]
)

static function uvm_phase get_uvm_schedule()

UVM 1.2 Class Reference 140

execute when participating in the “UVM” domain.

get_common_domain

Get the “common” domain, which consists of the common phases that all components
execute in sync with each other. Phases in the “common” domain are build, connect,
end_of_elaboration, start_of_simulation, run, extract, check, report, and final.

add_uvm_phases

Appends to the given schedule the built-in UVM phases.

get_uvm_domain

Get a handle to the singleton uvm domain

new

Create a new instance of a phase domain.

jump

jumps all active phases of this domain to to-phase if there is a path between active-
phase and to-phase

static function uvm_domain get_common_domain()

static function void add_uvm_phases(
 uvm_phase schedule
)

static function uvm_domain get_uvm_domain()

function new(
 string name
)

function void jump(
 uvm_phase phase
)

UVM 1.2 Class Reference 141

9.3 uvm_bottomup_phase

Virtual base class for function phases that operate bottom-up. The pure virtual function
execute() is called for each component. This is the default traversal so is included only
for naming.

A bottom-up function phase completes when the execute() method has been called and
returned on all applicable components in the hierarchy.

Summary

uvm_bottomup_phase

Virtual base class for function phases that operate bottom-up.

CLAss HIERARchY

uvm_void

uvm_object

uvm_phase

uvm_bottomup_phase

CLAss DEcLARATION

METhOds

new Create a new instance of a bottom-up phase.
traverse Traverses the component tree in bottom-up order, calling execute

for each component.
execute Executes the bottom-up phase phase for the component comp.

METhOds

new

Create a new instance of a bottom-up phase.

traverse

Traverses the component tree in bottom-up order, calling execute for each component.

virtual class uvm_bottomup_phase extends uvm_phase

function new(
 string name
)

virtual function void traverse(
 uvm_component comp,
 uvm_phase phase,
 uvm_phase_state state
)

UVM 1.2 Class Reference 142

execute

Executes the bottom-up phase phase for the component comp.

virtual function void execute(
 uvm_component comp,
 uvm_phase phase
)

UVM 1.2 Class Reference 143

9.4 uvm_task_phase

Base class for all task phases. It forks a call to uvm_phase::exec_task() for each
component in the hierarchy.

The completion of the task does not imply, nor is it required for, the end of phase. Once
the phase completes, any remaining forked uvm_phase::exec_task() threads are forcibly
and immediately killed.

By default, the way for a task phase to extend over time is if there is at least one
component that raises an objection.

There is however one scenario wherein time advances within a task-based phase without
any objections to the phase being raised. If two (or more) phases share a common
successor, such as the uvm_run_phase and the uvm_post_shutdown_phase sharing the
uvm_extract_phase as a successor, then phase advancement is delayed until all
predecessors of the common successor are ready to proceed. Because of this, it is
possible for time to advance between uvm_component::phase_started and
uvm_component::phase_ended of a task phase without any participants in the phase
raising an objection.

Summary

uvm_task_phase

Base class for all task phases.

CLAss HIERARchY

uvm_void

uvm_object

uvm_phase

uvm_task_phase

CLAss DEcLARATION

METhOds

new Create a new instance of a task-based phase
traverse Traverses the component tree in bottom-up order, calling execute

for each component.
execute Fork the task-based phase phase for the component comp.

METhOds

class my_comp extends uvm_component;
 task main_phase(uvm_phase phase);
 phase.raise_objection(this, "Applying stimulus")
 ...
 phase.drop_objection(this, "Applied enough stimulus")
 endtask
endclass

virtual class uvm_task_phase extends uvm_phase

UVM 1.2 Class Reference 144

new

Create a new instance of a task-based phase

traverse

Traverses the component tree in bottom-up order, calling execute for each component.
The actual order for task-based phases doesn’t really matter, as each component task is
executed in a separate process whose starting order is not deterministic.

execute

Fork the task-based phase phase for the component comp.

function new(
 string name
)

virtual function void traverse(
 uvm_component comp,
 uvm_phase phase,
 uvm_phase_state state
)

virtual function void execute(
 uvm_component comp,
 uvm_phase phase
)

UVM 1.2 Class Reference 145

9.5 uvm_topdown_phase

Virtual base class for function phases that operate top-down. The pure virtual function
execute() is called for each component.

A top-down function phase completes when the execute() method has been called and
returned on all applicable components in the hierarchy.

Summary

uvm_topdown_phase

Virtual base class for function phases that operate top-down.

CLAss HIERARchY

uvm_void

uvm_object

uvm_phase

uvm_topdown_phase

CLAss DEcLARATION

METhOds

new Create a new instance of a top-down phase
traverse Traverses the component tree in top-down order, calling execute

for each component.
execute Executes the top-down phase phase for the component comp.

METhOds

new

Create a new instance of a top-down phase

traverse

Traverses the component tree in top-down order, calling execute for each component.

virtual class uvm_topdown_phase extends uvm_phase

function new(
 string name
)

virtual function void traverse(
 uvm_component comp,
 uvm_phase phase,
 uvm_phase_state state
)

UVM 1.2 Class Reference 146

execute

Executes the top-down phase phase for the component comp.

virtual function void execute(
 uvm_component comp,
 uvm_phase phase
)

UVM 1.2 Class Reference 147

9.6 UVM Common Phases

The common phases are the set of function and task phases that all uvm_components
execute together. All uvm_components are always synchronized with respect to the
common phases.

The names of the UVM phases (which will be returned by get_name() for a phase
instance) match the class names specified below with the “uvm_” and “_phase”
removed. For example, the build phase corresponds to the uvm_build_phase class below
and has the name “build”, which means that the following can be used to call foo() at
the end of the build phase (after all lower levels have finished build):

The common phases are executed in the sequence they are specified below.

Contents

UVM Common Phases The common phases are the set of function and
task phases that all uvm_components execute
together.

uvm_build_phase Create and configure of testbench structure
uvm_connect_phase Establish cross-component connections.
uvm_end_of_elaboration_phase Fine-tune the testbench.
uvm_start_of_simulation_phase Get ready for DUT to be simulated.
uvm_run_phase Stimulate the DUT.
uvm_extract_phase Extract data from different points of the

verification environment.
uvm_check_phase Check for any unexpected conditions in the

verification environment.
uvm_report_phase Report results of the test.
uvm_final_phase Tie up loose ends.

uvm_build_phase

Create and configure of testbench structure

uvm_topdown_phase that calls the uvm_component::build_phase method.

Upon entry
The top-level components have been instantiated under uvm_root.
Current simulation time is still equal to 0 but some “delta cycles” may have
occurred

Typical Uses
Instantiate sub-components.
Instantiate register model.
Get configuration values for the component being built.

function void phase_ended(uvm_phase phase) ;
 if (phase.get_name()=="build") foo() ;
endfunction

UVM 1.2 Class Reference 148

Set configuration values for sub-components.

Exit Criteria
All uvm_components have been instantiated.

Summary

uvm_build_phase

Create and configure of testbench structure

CLAss HIeRARchY

uvm_void

uvm_object

uvm_phase

uvm_topdown_phase

uvm_build_phase

CLAss DecLARAtION

MethOds

get Returns the singleton phase handle

MethOds

get

Returns the singleton phase handle

uvm_connect_phase

Establish cross-component connections.

uvm_bottomup_phase that calls the uvm_component::connect_phase method.

Upon Entry
All components have been instantiated.
Current simulation time is still equal to 0 but some “delta cycles” may have
occurred.

Typical Uses
Connect TLM ports and exports.

class uvm_build_phase extends uvm_topdown_phase

static function uvm_build_phase get()

UVM 1.2 Class Reference 149

Connect TLM initiator sockets and target sockets.
Connect register model to adapter components.
Setup explicit phase domains.

Exit Criteria
All cross-component connections have been established.
All independent phase domains are set.

Summary

uvm_connect_phase

Establish cross-component connections.

CLAss HIeRARchY

uvm_void

uvm_object

uvm_phase

uvm_bottomup_phase

uvm_connect_phase

CLAss DecLARAtION

MethOds

get Returns the singleton phase handle

MethOds

get

Returns the singleton phase handle

uvm_end_of_elaboration_phase

Fine-tune the testbench.

uvm_bottomup_phase that calls the uvm_component::end_of_elaboration_phase method.

Upon Entry
The verification environment has been completely assembled.
Current simulation time is still equal to 0 but some “delta cycles” may have
occurred.

class uvm_connect_phase extends uvm_bottomup_phase

static function uvm_connect_phase get()

UVM 1.2 Class Reference 150

Typical Uses
Display environment topology.
Open files.
Define additional configuration settings for components.

Exit Criteria
None.

Summary

uvm_end_of_elaboration_phase

Fine-tune the testbench.

CLAss HIeRARchY

uvm_void

uvm_object

uvm_phase

uvm_bottomup_phase

uvm_end_of_elaboration_phase

CLAss DecLARAtION

MethOds

get Returns the singleton phase handle

MethOds

get

Returns the singleton phase handle

uvm_start_of_simulation_phase

Get ready for DUT to be simulated.

uvm_bottomup_phase that calls the uvm_component::start_of_simulation_phase method.

Upon Entry
Other simulation engines, debuggers, hardware assisted platforms and all other
run-time tools have been started and synchronized.

class uvm_end_of_elaboration_phase extends
uvm_bottomup_phase

static function uvm_end_of_elaboration_phase get()

UVM 1.2 Class Reference 151

The verification environment has been completely configured and is ready to start.
Current simulation time is still equal to 0 but some “delta cycles” may have
occurred.

Typical Uses
Display environment topology
Set debugger breakpoint
Set initial run-time configuration values.

Exit Criteria
None.

Summary

uvm_start_of_simulation_phase

Get ready for DUT to be simulated.

CLAss HIeRARchY

uvm_void

uvm_object

uvm_phase

uvm_bottomup_phase

uvm_start_of_simulation_phase

CLAss DecLARAtION

MethOds

get Returns the singleton phase handle

MethOds

get

Returns the singleton phase handle

uvm_run_phase

Stimulate the DUT.

This uvm_task_phase calls the uvm_component::run_phase virtual method. This phase
runs in parallel to the runtime phases, uvm_pre_reset_phase through

class uvm_start_of_simulation_phase extends
uvm_bottomup_phase

static function uvm_start_of_simulation_phase get()

UVM 1.2 Class Reference 152

uvm_post_shutdown_phase. All components in the testbench are synchronized with
respect to the run phase regardless of the phase domain they belong to.

Upon Entry
Indicates that power has been applied.
There should not have been any active clock edges before entry into this phase
(e.g. x->1 transitions via initial blocks).
Current simulation time is still equal to 0 but some “delta cycles” may have
occurred.

Typical Uses
Components implement behavior that is exhibited for the entire run-time, across
the various run-time phases.
Backward compatibility with OVM.

Exit Criteria
The DUT no longer needs to be simulated, and
The uvm_post_shutdown_phase is ready to end

The run phase terminates in one of two ways.

1. All run_phase objections are dropped

When all objections on the run_phase objection have been dropped, the phase ends and
all of its threads are killed. If no component raises a run_phase objection immediately
upon entering the phase, the phase ends immediately.

2. Timeout

The phase ends if the timeout expires before all objections are dropped. By default, the
timeout is set to 9200 seconds. You may override this via uvm_root::set_timeout.

If a timeout occurs in your simulation, or if simulation never ends despite completion of
your test stimulus, then it usually indicates that a component continues to object to the
end of a phase.

Summary

uvm_run_phase

Stimulate the DUT.

CLAss HIeRARchY

uvm_void

uvm_object

uvm_phase

uvm_task_phase

uvm_run_phase

CLAss DecLARAtION

MethOds

class uvm_run_phase extends uvm_task_phase

UVM 1.2 Class Reference 153

get Returns the singleton phase handle

MethOds

get

Returns the singleton phase handle

uvm_extract_phase

Extract data from different points of the verification environment.

uvm_bottomup_phase that calls the uvm_component::extract_phase method.

Upon Entry
The DUT no longer needs to be simulated.
Simulation time will no longer advance.

Typical Uses
Extract any remaining data and final state information from scoreboard and
testbench components
Probe the DUT (via zero-time hierarchical references and/or backdoor accesses)
for final state information.
Compute statistics and summaries.
Display final state information
Close files.

Exit Criteria
All data has been collected and summarized.

Summary

uvm_extract_phase

Extract data from different points of the verification environment.

CLAss HIeRARchY

uvm_void

uvm_object

uvm_phase

uvm_bottomup_phase

uvm_extract_phase

static function uvm_run_phase get()

UVM 1.2 Class Reference 154

CLAss DecLARAtION

MethOds

get Returns the singleton phase handle

MethOds

get

Returns the singleton phase handle

uvm_check_phase

Check for any unexpected conditions in the verification environment.

uvm_bottomup_phase that calls the uvm_component::check_phase method.

Upon Entry
All data has been collected.

Typical Uses
Check that no unaccounted-for data remain.

Exit Criteria
Test is known to have passed or failed.

Summary

uvm_check_phase

Check for any unexpected conditions in the verification environment.

CLAss HIeRARchY

uvm_void

uvm_object

uvm_phase

uvm_bottomup_phase

uvm_check_phase

CLAss DecLARAtION

MethOds

class uvm_extract_phase extends uvm_bottomup_phase

static function uvm_extract_phase get()

class uvm_check_phase extends uvm_bottomup_phase

UVM 1.2 Class Reference 155

get Returns the singleton phase handle

MethOds

get

Returns the singleton phase handle

uvm_report_phase

Report results of the test.

uvm_bottomup_phase that calls the uvm_component::report_phase method.

Upon Entry
Test is known to have passed or failed.

Typical Uses
Report test results.
Write results to file.

Exit Criteria
End of test.

Summary

uvm_report_phase

Report results of the test.

CLAss HIeRARchY

uvm_void

uvm_object

uvm_phase

uvm_bottomup_phase

uvm_report_phase

CLAss DecLARAtION

MethOds

get Returns the singleton phase handle

static function uvm_check_phase get()

class uvm_report_phase extends uvm_bottomup_phase

UVM 1.2 Class Reference 156

MethOds

get

Returns the singleton phase handle

uvm_final_phase

Tie up loose ends.

uvm_topdown_phase that calls the uvm_component::final_phase method.

Upon Entry
All test-related activity has completed.

Typical Uses
Close files.
Terminate co-simulation engines.

Exit Criteria
Ready to exit simulator.

Summary

uvm_final_phase

Tie up loose ends.

CLAss HIeRARchY

uvm_void

uvm_object

uvm_phase

uvm_topdown_phase

uvm_final_phase

CLAss DecLARAtION

MethOds

get Returns the singleton phase handle

MethOds

static function uvm_report_phase get()

class uvm_final_phase extends uvm_topdown_phase

UVM 1.2 Class Reference 157

get

Returns the singleton phase handle

static function uvm_final_phase get()

UVM 1.2 Class Reference 158

9.7 UVM Run-Time Phases

The run-time schedule is the pre-defined phase schedule which runs concurrently to the
uvm_run_phase global run phase. By default, all uvm_components using the run-time
schedule are synchronized with respect to the pre-defined phases in the schedule. It is
possible for components to belong to different domains in which case their schedules can
be unsynchronized.

The names of the UVM phases (which will be returned by get_name() for a phase
instance) match the class names specified below with the “uvm_” and “_phase”
removed. For example, the main phase corresponds to the uvm_main_phase class below
and has the name “main”, which means that the following can be used to call foo() at
the start of main phase:

The run-time phases are executed in the sequence they are specified below.

Contents

UVM Run-Time Phases The run-time schedule is the pre-defined phase
schedule which runs concurrently to the
uvm_run_phase global run phase.

uvm_pre_reset_phase Before reset is asserted.
uvm_reset_phase Reset is asserted.
uvm_post_reset_phase After reset is de-asserted.
uvm_pre_configure_phase Before the DUT is configured by the SW.
uvm_configure_phase The SW configures the DUT.
uvm_post_configure_phase After the SW has configured the DUT.
uvm_pre_main_phase Before the primary test stimulus starts.
uvm_main_phase Primary test stimulus.
uvm_post_main_phase After enough of the primary test stimulus.
uvm_pre_shutdown_phase Before things settle down.
uvm_shutdown_phase Letting things settle down.
uvm_post_shutdown_phase After things have settled down.

uvm_pre_reset_phase

Before reset is asserted.

uvm_task_phase that calls the uvm_component::pre_reset_phase method. This phase
starts at the same time as the uvm_run_phase unless a user defined phase is inserted in
front of this phase.

Upon Entry
Indicates that power has been applied but not necessarily valid or stable.
There should not have been any active clock edges before entry into this phase.

Typical Uses

function void phase_started(uvm_phase phase) ;
 if (phase.get_name()=="main") foo() ;
endfunction

UVM 1.2 Class Reference 159

Wait for power good.
Components connected to virtual interfaces should initialize their output to X’s or
Z’s.
Initialize the clock signals to a valid value
Assign reset signals to X (power-on reset).
Wait for reset signal to be asserted if not driven by the verification environment.

Exit Criteria
Reset signal, if driven by the verification environment, is ready to be asserted.
Reset signal, if not driven by the verification environment, is asserted.

Summary

uvm_pre_reset_phase

Before reset is asserted.

CLAss HIerArchY

uvm_void

uvm_object

uvm_phase

uvm_task_phase

uvm_pre_reset_phase

CLAss DecLArAtION

MethOds

get Returns the singleton phase handle

MethOds

get

Returns the singleton phase handle

uvm_reset_phase

Reset is asserted.

uvm_task_phase that calls the uvm_component::reset_phase method.

Upon Entry

class uvm_pre_reset_phase extends uvm_task_phase

static function uvm_pre_reset_phase get()

UVM 1.2 Class Reference 160

Indicates that the hardware reset signal is ready to be asserted.

Typical Uses
Assert reset signals.
Components connected to virtual interfaces should drive their output to their
specified reset or idle value.
Components and environments should initialize their state variables.
Clock generators start generating active edges.
De-assert the reset signal(s) just before exit.
Wait for the reset signal(s) to be de-asserted.

Exit Criteria
Reset signal has just been de-asserted.
Main or base clock is working and stable.
At least one active clock edge has occurred.
Output signals and state variables have been initialized.

Summary

uvm_reset_phase

Reset is asserted.

CLAss HIerArchY

uvm_void

uvm_object

uvm_phase

uvm_task_phase

uvm_reset_phase

CLAss DecLArAtION

MethOds

get Returns the singleton phase handle

MethOds

get

Returns the singleton phase handle

class uvm_reset_phase extends uvm_task_phase

static function uvm_reset_phase get()

UVM 1.2 Class Reference 161

uvm_post_reset_phase

After reset is de-asserted.

uvm_task_phase that calls the uvm_component::post_reset_phase method.

Upon Entry
Indicates that the DUT reset signal has been de-asserted.

Typical Uses
Components should start behavior appropriate for reset being inactive. For
example, components may start to transmit idle transactions or interface training
and rate negotiation. This behavior typically continues beyond the end of this
phase.

Exit Criteria
The testbench and the DUT are in a known, active state.

Summary

uvm_post_reset_phase

After reset is de-asserted.

CLAss HIerArchY

uvm_void

uvm_object

uvm_phase

uvm_task_phase

uvm_post_reset_phase

CLAss DecLArAtION

MethOds

get Returns the singleton phase handle

MethOds

get

Returns the singleton phase handle

uvm_pre_configure_phase

class uvm_post_reset_phase extends uvm_task_phase

static function uvm_post_reset_phase get()

UVM 1.2 Class Reference 162

Before the DUT is configured by the SW.

uvm_task_phase that calls the uvm_component::pre_configure_phase method.

Upon Entry
Indicates that the DUT has been completed reset and is ready to be configured.

Typical Uses
Procedurally modify the DUT configuration information as described in the
environment (and that will be eventually uploaded into the DUT).
Wait for components required for DUT configuration to complete training and rate
negotiation.

Exit Criteria
DUT configuration information is defined.

Summary

uvm_pre_configure_phase

Before the DUT is configured by the SW.

CLAss HIerArchY

uvm_void

uvm_object

uvm_phase

uvm_task_phase

uvm_pre_configure_phase

CLAss DecLArAtION

MethOds

get Returns the singleton phase handle

MethOds

get

Returns the singleton phase handle

uvm_configure_phase

class uvm_pre_configure_phase extends uvm_task_phase

static function uvm_pre_configure_phase get()

UVM 1.2 Class Reference 163

The SW configures the DUT.

uvm_task_phase that calls the uvm_component::configure_phase method.

Upon Entry
Indicates that the DUT is ready to be configured.

Typical Uses
Components required for DUT configuration execute transactions normally.
Set signals and program the DUT and memories (e.g. read/write operations and
sequences) to match the desired configuration for the test and environment.

Exit Criteria
The DUT has been configured and is ready to operate normally.

Summary

uvm_configure_phase

The SW configures the DUT.

CLAss HIerArchY

uvm_void

uvm_object

uvm_phase

uvm_task_phase

uvm_configure_phase

CLAss DecLArAtION

MethOds

get Returns the singleton phase handle

MethOds

get

Returns the singleton phase handle

uvm_post_configure_phase

After the SW has configured the DUT.

class uvm_configure_phase extends uvm_task_phase

static function uvm_configure_phase get()

UVM 1.2 Class Reference 164

uvm_task_phase that calls the uvm_component::post_configure_phase method.

Upon Entry
Indicates that the configuration information has been fully uploaded.

Typical Uses
Wait for configuration information to fully propagate and take effect.
Wait for components to complete training and rate negotiation.
Enable the DUT.
Sample DUT configuration coverage.

Exit Criteria
The DUT has been fully configured and enabled and is ready to start operating
normally.

Summary

uvm_post_configure_phase

After the SW has configured the DUT.

CLAss HIerArchY

uvm_void

uvm_object

uvm_phase

uvm_task_phase

uvm_post_configure_phase

CLAss DecLArAtION

MethOds

get Returns the singleton phase handle

MethOds

get

Returns the singleton phase handle

uvm_pre_main_phase

Before the primary test stimulus starts.

class uvm_post_configure_phase extends uvm_task_phase

static function uvm_post_configure_phase get()

UVM 1.2 Class Reference 165

uvm_task_phase that calls the uvm_component::pre_main_phase method.

Upon Entry
Indicates that the DUT has been fully configured.

Typical Uses
Wait for components to complete training and rate negotiation.

Exit Criteria
All components have completed training and rate negotiation.
All components are ready to generate and/or observe normal stimulus.

Summary

uvm_pre_main_phase

Before the primary test stimulus starts.

CLAss HIerArchY

uvm_void

uvm_object

uvm_phase

uvm_task_phase

uvm_pre_main_phase

CLAss DecLArAtION

MethOds

get Returns the singleton phase handle

MethOds

get

Returns the singleton phase handle

uvm_main_phase

Primary test stimulus.

uvm_task_phase that calls the uvm_component::main_phase method.

class uvm_pre_main_phase extends uvm_task_phase

static function uvm_pre_main_phase get()

UVM 1.2 Class Reference 166

Upon Entry
The stimulus associated with the test objectives is ready to be applied.

Typical Uses
Components execute transactions normally.
Data stimulus sequences are started.
Wait for a time-out or certain amount of time, or completion of stimulus
sequences.

Exit Criteria
Enough stimulus has been applied to meet the primary stimulus objective of the
test.

Summary

uvm_main_phase

Primary test stimulus.

CLAss HIerArchY

uvm_void

uvm_object

uvm_phase

uvm_task_phase

uvm_main_phase

CLAss DecLArAtION

MethOds

get Returns the singleton phase handle

MethOds

get

Returns the singleton phase handle

uvm_post_main_phase

After enough of the primary test stimulus.

uvm_task_phase that calls the uvm_component::post_main_phase method.

class uvm_main_phase extends uvm_task_phase

static function uvm_main_phase get()

UVM 1.2 Class Reference 167

Upon Entry
The primary stimulus objective of the test has been met.

Typical Uses
Included for symmetry.

Exit Criteria
None.

Summary

uvm_post_main_phase

After enough of the primary test stimulus.

CLAss HIerArchY

uvm_void

uvm_object

uvm_phase

uvm_task_phase

uvm_post_main_phase

CLAss DecLArAtION

MethOds

get Returns the singleton phase handle

MethOds

get

Returns the singleton phase handle

uvm_pre_shutdown_phase

Before things settle down.

uvm_task_phase that calls the uvm_component::pre_shutdown_phase method.

Upon Entry
None.

class uvm_post_main_phase extends uvm_task_phase

static function uvm_post_main_phase get()

UVM 1.2 Class Reference 168

Typical Uses
Included for symmetry.

Exit Criteria
None.

Summary

uvm_pre_shutdown_phase

Before things settle down.

CLAss HIerArchY

uvm_void

uvm_object

uvm_phase

uvm_task_phase

uvm_pre_shutdown_phase

CLAss DecLArAtION

MethOds

get Returns the singleton phase handle

MethOds

get

Returns the singleton phase handle

uvm_shutdown_phase

Letting things settle down.

uvm_task_phase that calls the uvm_component::shutdown_phase method.

Upon Entry
None.

Typical Uses
Wait for all data to be drained out of the DUT.
Extract data still buffered in the DUT, usually through read/write operations or

class uvm_pre_shutdown_phase extends uvm_task_phase

static function uvm_pre_shutdown_phase get()

UVM 1.2 Class Reference 169

sequences.

Exit Criteria
All data has been drained or extracted from the DUT.
All interfaces are idle.

Summary

uvm_shutdown_phase

Letting things settle down.

CLAss HIerArchY

uvm_void

uvm_object

uvm_phase

uvm_task_phase

uvm_shutdown_phase

CLAss DecLArAtION

MethOds

get Returns the singleton phase handle

MethOds

get

Returns the singleton phase handle

uvm_post_shutdown_phase

After things have settled down.

uvm_task_phase that calls the uvm_component::post_shutdown_phase method. The end
of this phase is synchronized to the end of the uvm_run_phase phase unless a user
defined phase is added after this phase.

Upon Entry
No more “data” stimulus is applied to the DUT.

Typical Uses
Perform final checks that require run-time access to the DUT (e.g. read accounting

class uvm_shutdown_phase extends uvm_task_phase

static function uvm_shutdown_phase get()

UVM 1.2 Class Reference 170

registers or dump the content of memories).

Exit Criteria
All run-time checks have been satisfied.
The uvm_run_phase phase is ready to end.

Summary

uvm_post_shutdown_phase

After things have settled down.

CLAss HIerArchY

uvm_void

uvm_object

uvm_phase

uvm_task_phase

uvm_post_shutdown_phase

CLAss DecLArAtION

MethOds

get Returns the singleton phase handle

MethOds

get

Returns the singleton phase handle

class uvm_post_shutdown_phase extends uvm_task_phase

static function uvm_post_shutdown_phase get()

UVM 1.2 Class Reference 171

9.8 User-Defined Phases

To define your own custom phase, use the following pattern.

1. Extend the appropriate base class for your phase type.

2. Optionally, implement your exec_task or exec_func method.

If implemented, these methods usually call the related method on the component

3. Since the phase class is a singleton, providing an accessor method allows for easy
global use, and protecting the constructor prevents misuse.

4. Insert the phase in a phase schedule or domain using the uvm_phase::add method:

Summary

User-Defined Phases

To define your own custom phase, use the following pattern.

class my_PHASE_phase extends uvm_task_phase;
class my_PHASE_phase extends uvm_topdown_phase;
class my_PHASE_phase extends uvm_bottomup_phase;

task exec_task(uvm_component comp, uvm_phase schedule);
function void exec_func(uvm_component comp, uvm_phase schedule);

comp.PHASE_phase(uvm_phase phase);

class my_PHASE_phase extends uvm_topdown_phase; or
uvm_task_phase/uvm_bottomum_phase
 static local my_PHASE_phase m_inst; Local reference to global IMP
 protected function new(string name="PHASE"); Protected constructor for
singleton
 super.new(name);
 endfunction : new
 static function my_PHASE_phase get(); Static method for accessing
singleton
 if (m_imp == null)
 m_imp = new();
 return m_imp;
 endfunction : get
 Optionally implement exec_func/exec_task
endclass : my_PHASE_phase

my_schedule.add(my_PHASE_class::get());

UVM 1.2 Class Reference 172

10. Configuration and Resource Classes

The configuration and resources classes provide access to a centralized database where
type specific information can be stored and received. The uvm_resource_db is the low
level resource database which users can write to or read from. The uvm_config_db is
layered on top of the resoure database and provides a typed interface for configuration
setting that is consistent with the uvm_component::Configuration Interface.

Information can be read from or written to the database at any time during simulation.
A resource may be associated with a specific hierarchical scope of a uvm_component or it
may be visible to all components regardless of their hierarchical position.

Summary

Configuration and Resource Classes

The configuration and resources classes provide access to a centralized database
where type specific information can be stored and received.

UVM 1.2 Class Reference 173

10.1 Resources

Contents

Resources

Intro A resource is a parameterized container that holds
arbitrary data.

uvm_resource_types Provides typedefs and enums used throughout the
resources facility.

uvm_resource_options Provides a namespace for managing options for the
resources facility.

uvm_resource_base Non-parameterized base class for resources.
uvm_resource_pool The global (singleton) resource database.
uvm_resource #(T) Parameterized resource.

Intro

A resource is a parameterized container that holds arbitrary data. Resources can be used
to configure components, supply data to sequences, or enable sharing of information
across disparate parts of a testbench. They are stored using scoping information so their
visibility can be constrained to certain parts of the testbench. Resource containers can
hold any type of data, constrained only by the data types available in SystemVerilog.
Resources can contain scalar objects, class handles, queues, lists, or even virtual
interfaces.

Resources are stored in a resource database so that each resource can be retrieved by
name or by type. The database has both a name table and a type table and each
resource is entered into both. The database is globally accessible.

Each resource has a set of scopes over which it is visible. The set of scopes is
represented as a regular expression. When a resource is looked up the scope of the
entity doing the looking up is supplied to the lookup function. This is called the current
scope. If the current scope is in the set of scopes over which a resource is visible then
the resource can be retuned in the lookup.

Resources can be looked up by name or by type. To support type lookup each resource
has a static type handle that uniquely identifies the type of each specialized resource
container.

Multiple resources that have the same name are stored in a queue. Each resource is
pushed into a queue with the first one at the front of the queue and each subsequent
one behind it. The same happens for multiple resources that have the same type. The
resource queues are searched front to back, so those placed earlier in the queue have
precedence over those placed later.

The precedence of resources with the same name or same type can be altered. One way
is to set the precedence member of the resource container to any arbitrary value. The
search algorithm will return the resource with the highest precedence. In the case where
there are multiple resources that match the search criteria and have the same (highest)
precedence, the earliest one located in the queue will be one returned. Another way to
change the precedence is to use the set_priority function to move a resource to either
the front or back of the queue.

The classes defined here form the low level layer of the resource database. The classes
include the resource container and the database that holds the containers. The following
set of classes are defined here:

UVM 1.2 Class Reference 174

uvm_resource_types: A class without methods or members, only typedefs and enums.
These types and enums are used throughout the resources facility. Putting the types in
a class keeps them confined to a specific name space.

uvm_resource_options: policy class for setting options, such as auditing, which effect
resources.

uvm_resource_base: the base (untyped) resource class living in the resource database.
This class includes the interface for setting a resource as read-only, notification, scope
management, altering search priority, and managing auditing.

uvm_resource#(T): parameterized resource container. This class includes the interfaces
for reading and writing each resource. Because the class is parameterized, all the access
functions are type safe.

uvm_resource_pool: the resource database. This is a singleton class object.

uvm_resource_types

Provides typedefs and enums used throughout the resources facility. This class has no
members or methods, only typedefs. It’s used in lieu of package-scope types. When
needed, other classes can use these types by prefixing their usage with
uvm_resource_types::. E.g.

Summary

uvm_resource_types

Provides typedefs and enums used throughout the resources facility.

CLAss DEcLArATiON

uvm_resource_options

Provides a namespace for managing options for the resources facility. The only thing
allowed in this class is static local data members and static functions for manipulating
and retrieving the value of the data members. The static local data members represent
options and settings that control the behavior of the resources facility.

Summary

uvm_resource_options

Provides a namespace for managing options for the resources facility.

uvm_resource_types::rsrc_q_t queue;

class uvm_resource_types

UVM 1.2 Class Reference 175

METHOds

turn_on_auditing Turn auditing on for the resource database.
turn_off_auditing Turn auditing off for the resource database.
is_auditing Returns 1 if the auditing facility is on and 0 if it is off.

METHOds

turn_on_auditing

Turn auditing on for the resource database. This causes all reads and writes to the
database to store information about the accesses. Auditing is turned on by default.

turn_off_auditing

Turn auditing off for the resource database. If auditing is turned off, it is not possible to
get extra information about resource database accesses.

is_auditing

Returns 1 if the auditing facility is on and 0 if it is off.

uvm_resource_base

Non-parameterized base class for resources. Supports interfaces for scope matching,
and virtual functions for printing the resource and for printing the accessor list

Summary

uvm_resource_base

Non-parameterized base class for resources.

CLAss HiErArcHY

uvm_void

uvm_object

uvm_resource_base

CLAss DEcLArATiON

static function void turn_on_auditing()

static function void turn_off_auditing()

static function bit is_auditing()

virtual class uvm_resource_base extends uvm_object

UVM 1.2 Class Reference 176

precedence This variable is used to associate a precedence that a
resource has with respect to other resources which
match the same scope and name.

default_precedence The default precedence for an resource that has been
created.

new constructor for uvm_resource_base.
get_type_handle Pure virtual function that returns the type handle of the

resource container.
REAd-ONLY INTErFAcE

set_read_only Establishes this resource as a read-only resource.
is_read_only Returns one if this resource has been set to read-

only, zero otherwise
NOTiFicATiON

wait_modified This task blocks until the resource has been modified
-- that is, a uvm_resource#(T)::write operation has
been performed.

ScOPE INTErFAcE Each resource has a name, a value and a set of scopes
over which it is visible.

set_scope Set the value of the regular expression that identifies
the set of scopes over which this resource is visible.

get_scope Retrieve the regular expression string that identifies
the set of scopes over which this resource is visible.

match_scope Using the regular expression facility, determine if this
resource is visible in a scope.

PriOriTY Functions for manipulating the search priority of
resources.

set priority Change the search priority of the resource based on
the value of the priority enum argument.

UTiLiTY FuNcTiONs

do_print Implementation of do_print which is called by print().
AudiT TrAiL To find out what is happening as the simulation

proceeds, an audit trail of each read and write is kept.
record_read_access
record_write_access
print_accessors Dump the access records for this resource
init_access_record Initialize a new access record

precedence

This variable is used to associate a precedence that a resource has with respect to other
resources which match the same scope and name. Resources are set to the
default_precedence initially, and may be set to a higher or lower precedence as desired.

default_precedence

The default precedence for an resource that has been created. When two resources have
the same precedence, the first resource found has precedence.

new

int unsigned precedence

static int unsigned default_precedence = 1000

function new(

UVM 1.2 Class Reference 177

constructor for uvm_resource_base. The constructor takes two arguments, the name of
the resource and a regular expression which represents the set of scopes over which this
resource is visible.

get_type_handle

Pure virtual function that returns the type handle of the resource container.

REAd-ONLY INTErFAcE

set_read_only

Establishes this resource as a read-only resource. An attempt to call
uvm_resource#(T)::write on the resource will cause an error.

is_read_only

Returns one if this resource has been set to read-only, zero otherwise

NOTiFicATiON

wait_modified

This task blocks until the resource has been modified -- that is, a
uvm_resource#(T)::write operation has been performed. When a
uvm_resource#(T)::write is performed the modified bit is set which releases the block.
Wait_modified() then clears the modified bit so it can be called repeatedly.

ScOPE INTErFAcE

Each resource has a name, a value and a set of scopes over which it is visible. A scope
is a hierarchical entity or a context. A scope name is a multi-element string that
identifies a scope. Each element refers to a scope context and the elements are
separated by dots (.).

 string name = "",
 string s = "*"
)

pure virtual function uvm_resource_base get_type_handle()

function void set_read_only()

function bit is_read_only()

task wait_modified()

UVM 1.2 Class Reference 178

Consider the example above of a scope name. It consists of four elements: “top”, “env”,
“agent”, and “monitor”. The elements are strung together with a dot separating each
element. top.env.agent is the parent of top.env.agent.monitor, top.env is the parent of
top.env.agent, and so on. A set of scopes can be represented by a set of scope name
strings. A very straightforward way to represent a set of strings is to use regular
expressions. A regular expression is a special string that contains placeholders which can
be substituted in various ways to generate or recognize a particular set of strings. Here
are a few simple examples:

u4, or u5, and any of their subscopes.

The examples above use POSIX regular expression notation. This is a very general and
expressive notation. It is not always the case that so much expressiveness is required.
Sometimes an expression syntax that is easy to read and easy to write is useful, even if
the syntax is not as expressive as the full power of POSIX regular expressions. A
popular substitute for regular expressions is globs. A glob is a simplified regular
expression. It only has three metacharacters -- *, +, and ?. Character ranges are not
allowed and dots are not a metacharacter in globs as they are in regular expressions.
The following table shows glob metacharacters.

Of the examples above, the first three can easily be translated into globs. The last one
cannot. It relies on notation that is not available in glob syntax.

The resource facility supports both regular expression and glob syntax. Regular
expressions are identified as such when they surrounded by ‘/’ characters. For example,
/^top\.*/ is interpreted as the regular expression ^top\.*, where the surrounding ‘/’
characters have been removed. All other expressions are treated as glob expressions.
They are converted from glob notation to regular expression notation internally. Regular
expression compilation and matching as well as glob-to-regular expression conversion
are handled by two DPI functions:

top.env.agent.monitor

 top\..* all of the scopes whose top-level component
 is top
top\.env\..*\.monitor all of the scopes in env that end in monitor;
 i.e. all the monitors two levels down from env
.*\.monitor all of the scopes that end in monitor; i.e.
 all the monitors (assuming a naming convention
 was used where all monitors are named "monitor")
top\.u[1-5]\.* all of the scopes rooted and named u1, u2, u3,

char meaning regular expression
 equivalent
* 0 or more characters .*
+ 1 or more characters .+
? exactly one character .

regular expression glob equivalent
--------------------- ------------------
top\..* top.*
top\.env\..*\.monitor top.env.*.monitor
.*\.monitor *.monitor

function int uvm_re_match(string re, string str);
function string uvm_glob_to_re(string glob);

UVM 1.2 Class Reference 179

uvm_re_match both compiles and matches the regular expression. All of the matching is
done using regular expressions, so globs are converted to regular expressions and then
processed.

set_scope

Set the value of the regular expression that identifies the set of scopes over which this
resource is visible. If the supplied argument is a glob it will be converted to a regular
expression before it is stored.

get_scope

Retrieve the regular expression string that identifies the set of scopes over which this
resource is visible.

match_scope

Using the regular expression facility, determine if this resource is visible in a scope.
Return one if it is, zero otherwise.

PriOriTY

Functions for manipulating the search priority of resources. The function definitions here
are pure virtual and are implemented in derived classes. The definitions serve as a
priority management interface.

set priority

Change the search priority of the resource based on the value of the priority enum
argument.

UTiLiTY FuNcTiONs

do_print

function void set_scope(
 string s
)

function string get_scope()

function bit match_scope(
 string s
)

function void do_print (
 uvm_printer printer

UVM 1.2 Class Reference 180

Implementation of do_print which is called by print().

AudiT TrAiL

To find out what is happening as the simulation proceeds, an audit trail of each read and
write is kept. The uvm_resource#(T)::read and uvm_resource#(T)::write methods each
take an accessor argument. This is a handle to the object that performed that resource
access.

The accessor can by anything as long as it is derived from uvm_object. The accessor
object can be a component or a sequence or whatever object from which a read or write
was invoked. Typically the this handle is used as the accessor. For example:

The accessor’s get_full_name() is stored as part of the audit trail. This way you can find
out what object performed each resource access. Each audit record also includes the
time of the access (simulation time) and the particular operation performed (read or
write).

Auditing is controlled through the uvm_resource_options class.

record_read_access

record_write_access

print_accessors

Dump the access records for this resource

)

function T read(uvm_object accessor = null);
function void write(T t, uvm_object accessor = null);

uvm_resource#(int) rint;
int i;
...
rint.write(7, this);
i = rint.read(this);

function void record_read_access(
 uvm_object accessor = null
)

function void record_write_access(
 uvm_object accessor = null
)

virtual function void print_accessors()

UVM 1.2 Class Reference 181

init_access_record

Initialize a new access record

uvm_resource_pool

The global (singleton) resource database.

Each resource is stored both by primary name and by type handle. The resource pool
contains two associative arrays, one with name as the key and one with the type handle
as the key. Each associative array contains a queue of resources. Each resource has a
regular expression that represents the set of scopes over which it is visible.

The above diagrams illustrates how a resource whose name is A and type is T is stored
in the pool. The pool contains an entry in the type map for type T and an entry in the
name map for name A. The queues in each of the arrays each contain an entry for the
resource A whose type is T. The name map can contain in its queue other resources
whose name is A which may or may not have the same type as our resource A.
Similarly, the type map can contain in its queue other resources whose type is T and
whose name may or may not be A.

Resources are added to the pool by calling set; they are retrieved from the pool by
calling get_by_name or get_by_type. When an object creates a new resource and calls
set the resource is made available to be retrieved by other objects outside of itself; an
object gets a resource when it wants to access a resource not currently available in its
scope.

The scope is stored in the resource itself (not in the pool) so whether you get by name
or by type the resource’s visibility is the same.

As an auditing capability, the pool contains a history of gets. A record of each get,
whether by get_by_type or get_by_name, is stored in the audit record. Both successful
and failed gets are recorded. At the end of simulation, or any time for that matter, you
can dump the history list. This will tell which resources were successfully located and
which were not. You can use this information to determine if there is some error in
name, type, or scope that has caused a resource to not be located or to be incorrectly
located (i.e. the wrong resource is located).

Summary

function void init_access_record (
 inout uvm_resource_types::access_t access_record
)

+------+------------+ +------------+------+
| name | rsrc queue | | rsrc queue | type |
+------+------------+ +------------+------+
| | | | | |
+------+------------+ +-+-+ +------------+------+
| | | | | |<--+---* | T |
+------+------------+ +-+-+ +-+-+ +------------+------+
| A | *---+-->| | | | | | |
+------+------------+ +-+-+ | +------------+------+
| | | | | | | |
+------+------------+ +-------+ +-+ +------------+------+
| | | | | | | |
+------+------------+ | | +------------+------+
| | | V V | | |
+------+------------+ +------+ +------------+------+
| | | | rsrc | | | |
+------+------------+ +------+ +------------+------+

UVM 1.2 Class Reference 182

uvm_resource_pool

The global (singleton) resource database.

CLAss DEcLArATiON

get Returns the singleton handle to the resource pool
spell_check Invokes the spell checker for a string s.
SET

set Add a new resource to the resource pool.
set_override The resource provided as an argument will be

entered into the pool and will override both by
name and type.

set_name_override The resource provided as an argument will
entered into the pool using normal precedence in
the type map and will override the name.

set_type_override The resource provided as an argument will be
entered into the pool using normal precedence in
the name map and will override the type.

LOOKuP This group of functions is for finding resources in
the resource database.

lookup_name Lookup resources by name.
get_highest_precedence Traverse a queue, q, of resources and return the

one with the highest precedence.
sort_by_precedence Given a list of resources, obtained for example

from lookup_scope, sort the resources in
precedence order.

get_by_name Lookup a resource by name, scope, and
type_handle.

lookup_type Lookup resources by type.
get_by_type Lookup a resource by type_handle and scope.
lookup_regex_names This utility function answers the question, for a

given name, scope, and type_handle, what are all
of the resources with requested name, a matching
scope (where the resource scope may be a
regular expression), and a matching type?

lookup_regex Looks for all the resources whose name matches
the regular expression argument and whose scope
matches the current scope.

lookup_scope This is a utility function that answers the
question: For a given scope, what resources are
visible to it?

SET PriOriTY Functions for altering the search priority of
resources.

set_priority_type Change the priority of the rsrc based on the value
of pri, the priority enum argument.

set_priority_name Change the priority of the rsrc based on the value
of pri, the priority enum argument.

set_priority Change the search priority of the rsrc based on
the value of pri, the priority enum argument.

DEBuG

find_unused_resources Locate all the resources that have at least one
write and no reads

print_resources Print the resources that are in a single queue, rq.
dump dump the entire resource pool.

get

class uvm_resource_pool

static function uvm_resource_pool get()

UVM 1.2 Class Reference 183

Returns the singleton handle to the resource pool

spell_check

Invokes the spell checker for a string s. The universe of correctly spelled strings -- i.e.
the dictionary -- is the name map.

SET

set

Add a new resource to the resource pool. The resource is inserted into both the name
map and type map so it can be located by either.

An object creates a resources and sets it into the resource pool. Later, other objects
that want to access the resource must get it from the pool

Overrides can be specified using this interface. Either a name override, a type override
or both can be specified. If an override is specified then the resource is entered at the
front of the queue instead of at the back. It is not recommended that users specify the
override parameter directly, rather they use the set_override, set_name_override, or
set_type_override functions.

set_override

The resource provided as an argument will be entered into the pool and will override
both by name and type.

set_name_override

The resource provided as an argument will entered into the pool using normal
precedence in the type map and will override the name.

set_type_override

function bit spell_check(
 string s
)

function void set (
 uvm_resource_base rsrc,
 uvm_resource_types::override_t override = 0
)

function void set_override(
 uvm_resource_base rsrc
)

function void set_name_override(
 uvm_resource_base rsrc
)

UVM 1.2 Class Reference 184

The resource provided as an argument will be entered into the pool using normal
precedence in the name map and will override the type.

LOOKuP

This group of functions is for finding resources in the resource database.

lookup_name and lookup_type locate the set of resources that matches the name or
type (respectively) and is visible in the current scope. These functions return a queue of
resources.

get_highest_precedence traverse a queue of resources and returns the one with the
highest precedence -- i.e. the one whose precedence member has the highest value.

get_by_name and get_by_type use lookup_name and lookup_type (respectively) and
get_highest_precedence to find the resource with the highest priority that matches the
other search criteria.

lookup_name

Lookup resources by name. Returns a queue of resources that match the name, scope,
and type_handle. If no resources match the queue is returned empty. If rpterr is set
then a warning is issued if no matches are found, and the spell checker is invoked on
name. If type_handle is null then a type check is not made and resources are returned
that match only name and scope.

get_highest_precedence

Traverse a queue, q, of resources and return the one with the highest precedence. In
the case where there exists more than one resource with the highest precedence value,
the first one that has that precedence will be the one that is returned.

sort_by_precedence

Given a list of resources, obtained for example from lookup_scope, sort the resources in
precedence order. The highest precedence resource will be first in the list and the lowest
precedence will be last. Resources that have the same precedence and the same name

function void set_type_override(
 uvm_resource_base rsrc
)

function uvm_resource_types::rsrc_q_t lookup_name(
 string scope = "",
 string name,
 uvm_resource_base type_handle = null,
 bit rpterr = 1
)

function uvm_resource_base get_highest_precedence(
 ref uvm_resource_types::rsrc_q_t q
)

static function void sort_by_precedence(
 ref uvm_resource_types::rsrc_q_t q
)

UVM 1.2 Class Reference 185

will be ordered by most recently set first.

get_by_name

Lookup a resource by name, scope, and type_handle. Whether the get succeeds or fails,
save a record of the get attempt. The rpterr flag indicates whether to report errors or
not. Essentially, it serves as a verbose flag. If set then the spell checker will be invoked
and warnings about multiple resources will be produced.

lookup_type

Lookup resources by type. Return a queue of resources that match the type_handle and
scope. If no resources match then the returned queue is empty.

get_by_type

Lookup a resource by type_handle and scope. Insert a record into the get history list
whether or not the get succeeded.

lookup_regex_names

This utility function answers the question, for a given name, scope, and type_handle,
what are all of the resources with requested name, a matching scope (where the
resource scope may be a regular expression), and a matching type? name and scope
are explicit values.

lookup_regex

function uvm_resource_base get_by_name(
 string scope = "",
 string name,
 uvm_resource_base type_handle,
 bit rpterr = 1
)

function uvm_resource_types::rsrc_q_t lookup_type(
 string scope = "",
 uvm_resource_base type_handle
)

function uvm_resource_base get_by_type(
 string scope = "",
 uvm_resource_base type_handle
)

function uvm_resource_types::rsrc_q_t lookup_regex_names(
 string scope,
 string name,
 uvm_resource_base type_handle = null
)

function uvm_resource_types::rsrc_q_t lookup_regex(
 string re,
 scope
)

UVM 1.2 Class Reference 186

Looks for all the resources whose name matches the regular expression argument and
whose scope matches the current scope.

lookup_scope

This is a utility function that answers the question: For a given scope, what resources are
visible to it? Locate all the resources that are visible to a particular scope. This
operation could be quite expensive, as it has to traverse all of the resources in the
database.

SET PriOriTY

Functions for altering the search priority of resources. Resources are stored in queues in
the type and name maps. When retrieving resources, either by type or by name, the
resource queue is search from front to back. The first one that matches the search
criteria is the one that is returned. The set_priority functions let you change the order in
which resources are searched. For any particular resource, you can set its priority to
UVM_HIGH, in which case the resource is moved to the front of the queue, or to
UVM_LOW in which case the resource is moved to the back of the queue.

set_priority_type

Change the priority of the rsrc based on the value of pri, the priority enum argument.
This function changes the priority only in the type map, leaving the name map
untouched.

set_priority_name

Change the priority of the rsrc based on the value of pri, the priority enum argument.
This function changes the priority only in the name map, leaving the type map
untouched.

set_priority

Change the search priority of the rsrc based on the value of pri, the priority enum

function uvm_resource_types::rsrc_q_t lookup_scope(
 string scope
)

function void set_priority_type(
 uvm_resource_base rsrc,
 uvm_resource_types::priority_e pri
)

function void set_priority_name(
 uvm_resource_base rsrc,
 uvm_resource_types::priority_e pri
)

function void set_priority (
 uvm_resource_base rsrc,
 uvm_resource_types::priority_e pri
)

UVM 1.2 Class Reference 187

argument. This function changes the priority in both the name and type maps.

DEBuG

find_unused_resources

Locate all the resources that have at least one write and no reads

print_resources

Print the resources that are in a single queue, rq. This is a utility function that can be
used to print any collection of resources stored in a queue. The audit flag determines
whether or not the audit trail is printed for each resource along with the name, value,
and scope regular expression.

dump

dump the entire resource pool. The resource pool is traversed and each resource is
printed. The utility function print_resources() is used to initiate the printing. If the audit
bit is set then the audit trail is dumped for each resource.

uvm_resource #(T)

Parameterized resource. Provides essential access methods to read from and write to
the resource database.

Summary

uvm_resource #(T)

Parameterized resource.

CLAss HiErArcHY

uvm_void

uvm_object

uvm_resource_base

uvm_resource#(T)

function uvm_resource_types::rsrc_q_t find_unused_resources()

function void print_resources(
 uvm_resource_types::rsrc_q_t rq,
 bit audit = 0
)

function void dump(
 bit audit = 0
)

UVM 1.2 Class Reference 188

CLAss DEcLArATiON

TYPE INTErFAcE Resources can be identified by type using a static
type handle.

get_type Static function that returns the static type handle.
get_type_handle Returns the static type handle of this resource in

a polymorphic fashion.
SET/GET INTErFAcE uvm_resource#(T) provides an interface for setting

and getting a resources.
set Simply put this resource into the global resource

pool
set_override Put a resource into the global resource pool as an

override.
get_by_name looks up a resource by name in the name map.
get_by_type looks up a resource by type_handle in the type

map.
REAd/WriTE INTErFAcE read and write provide a type-safe interface for

getting and setting the object in the resource
container.

read Return the object stored in the resource
container.

write Modify the object stored in this resource
container.

PriOriTY Functions for manipulating the search priority of
resources.

set priority Change the search priority of the resource based
on the value of the priority enum argument, pri.

get_highest_precedence In a queue of resources, locate the first one with
the highest precedence whose type is T.

TYPE INTErFAcE

Resources can be identified by type using a static type handle. The parent class provides
the virtual function interface get_type_handle. Here we implement it by returning the
static type handle.

get_type

Static function that returns the static type handle. The return type is this_type, which is
the type of the parameterized class.

get_type_handle

Returns the static type handle of this resource in a polymorphic fashion. The return type
of get_type_handle() is uvm_resource_base. This function is not static and therefore can
only be used by instances of a parameterized resource.

class uvm_resource #(
 type T = int
) extends uvm_resource_base

static function this_type get_type()

function uvm_resource_base get_type_handle()

UVM 1.2 Class Reference 189

SET/GET INTErFAcE

uvm_resource#(T) provides an interface for setting and getting a resources. Specifically,
a resource can insert itself into the resource pool. It doesn’t make sense for a resource
to get itself, since you can’t call a function on a handle you don’t have. However, a
static get interface is provided as a convenience. This obviates the need for the user to
get a handle to the global resource pool as this is done for him here.

set

Simply put this resource into the global resource pool

set_override

Put a resource into the global resource pool as an override. This means it gets put at
the head of the list and is searched before other existing resources that occupy the same
position in the name map or the type map. The default is to override both the name
and type maps. However, using the override argument you can specify that either the
name map or type map is overridden.

get_by_name

looks up a resource by name in the name map. The first resource with the specified
name, whose type is the current type, and is visible in the specified scope is returned, if
one exists. The rpterr flag indicates whether or not an error should be reported if the
search fails. If rpterr is set to one then a failure message is issued, including suggested
spelling alternatives, based on resource names that exist in the database, gathered by
the spell checker.

get_by_type

looks up a resource by type_handle in the type map. The first resource with the
specified type_handle that is visible in the specified scope is returned, if one exists. If
there is no resource matching the specifications, null is returned.

REAd/WriTE INTErFAcE

function void set()

function void set_override(

static function this_type get_by_name(
 string scope,
 string name,
 bit rpterr = 1
)

static function this_type get_by_type(
 string scope = "",
 uvm_resource_base type_handle
)

UVM 1.2 Class Reference 190

read and write provide a type-safe interface for getting and setting the object in the
resource container. The interface is type safe because the value argument for write and
the return value of read are T, the type supplied in the class parameter. If either of
these functions is used in an incorrect type context the compiler will complain.

read

Return the object stored in the resource container. If an accessor object is supplied
then also update the accessor record for this resource.

write

Modify the object stored in this resource container. If the resource is read-only then
issue an error message and return without modifying the object in the container. If the
resource is not read-only and an accessor object has been supplied then also update the
accessor record. Lastly, replace the object value in the container with the value supplied
as the argument, t, and release any processes blocked on
uvm_resource_base::wait_modified. If the value to be written is the same as the value
already present in the resource then the write is not done. That also means that the
accessor record is not updated and the modified bit is not set.

PriOriTY

Functions for manipulating the search priority of resources. These implementations of
the interface defined in the base class delegate to the resource pool.

set priority

Change the search priority of the resource based on the value of the priority enum
argument, pri.

get_highest_precedence

In a queue of resources, locate the first one with the highest precedence whose type is
T. This function is static so that it can be called from anywhere.

function T read(
 uvm_object accessor = null
)

function void write(
 T t,
 uvm_object accessor = null
)

static function this_type get_highest_precedence(
 ref uvm_resource_types::rsrc_q_t q
)

UVM 1.2 Class Reference 191

10.2 UVM Resource Database

Contents

UVM Resource
Database

Intro The uvm_resource_db class provides a convenience
interface for the resources facility.

uvm_resource_db All of the functions in uvm_resource_db#(T) are
static, so they must be called using the :: operator.

uvm_resource_db_options Provides a namespace for managing options for the
resources DB facility.

Intro

The uvm_resource_db class provides a convenience interface for the resources facility.
In many cases basic operations such as creating and setting a resource or getting a
resource could take multiple lines of code using the interfaces in uvm_resource_base or
uvm_resource#(T). The convenience layer in uvm_resource_db reduces many of those
operations to a single line of code.

If the run-time +UVM_RESOURCE_DB_TRACE command line option is specified, all
resource DB accesses (read and write) are displayed.

uvm_resource_db

All of the functions in uvm_resource_db#(T) are static, so they must be called using the
:: operator. For example:

The parameter value “int” identifies the resource type as uvm_resource#(int). Thus, the
type of the object in the resource container is int. This maintains the type-safety
characteristics of resource operations.

Summary

uvm_resource_db

All of the functions in uvm_resource_db#(T) are static, so they must be called
using the :: operator.

CLAss DEcLArATiON

METHOds

get_by_type Get a resource by type.

uvm_resource_db#(int)::set("A", "*", 17, this);

class uvm_resource_db #(
 type T = uvm_object
)

UVM 1.2 Class Reference 192

get_by_name Imports a resource by name.
set_default add a new item into the resources database.
set Create a new resource, write a val to it, and set it into the

database using name and scope as the lookup
parameters.

set_anonymous Create a new resource, write a val to it, and set it into the
database.

read_by_name locate a resource by name and scope and read its value.
read_by_type Read a value by type.
write_by_name write a val into the resources database.
write_by_type write a val into the resources database.
dump Dump all the resources in the resource pool.

METHOds

get_by_type

Get a resource by type. The type is specified in the db class parameter so the only
argument to this function is the scope.

get_by_name

Imports a resource by name. The first argument is the current scope of the resource to
be retrieved and the second argument is the name. The rpterr flag indicates whether or
not to generate a warning if no matching resource is found.

set_default

add a new item into the resources database. The item will not be written to so it will
have its default value. The resource is created using name and scope as the lookup
parameters.

set

static function rsrc_t get_by_type(
 string scope
)

static function rsrc_t get_by_name(
 string scope,
 string name,
 bit rpterr = 1
)

static function rsrc_t set_default(
 string scope,
 string name
)

static function void set(
 input string scope,
 input string name,
 T val,
 input uvm_object accessor = null
)

UVM 1.2 Class Reference 193

Create a new resource, write a val to it, and set it into the database using name and
scope as the lookup parameters. The accessor is used for auditing.

set_anonymous

Create a new resource, write a val to it, and set it into the database. The resource has
no name and therefore will not be entered into the name map. But is does have a scope
for lookup purposes. The accessor is used for auditing.

read_by_name

locate a resource by name and scope and read its value. The value is returned through
the output argument val. The return value is a bit that indicates whether or not the
read was successful. The accessor is used for auditing.

read_by_type

Read a value by type. The value is returned through the output argument val. The
scope is used for the lookup. The return value is a bit that indicates whether or not the
read is successful. The accessor is used for auditing.

write_by_name

write a val into the resources database. First, look up the resource by name and scope.
If it is not located then add a new resource to the database and then write its value.

Because the scope is matched to a resource which may be a regular expression, and
consequently may target other scopes beyond the scope argument. Care must be taken
with this function. If a get_by_name match is found for name and scope then val will be
written to that matching resource and thus may impact other scopes which also match
the resource.

static function void set_anonymous(
 input string scope,
 T val,
 input uvm_object accessor = null
)

static function bit read_by_name(
 input string scope,
 input string name,
 inout T val,
 input uvm_object accessor = null
)

static function bit read_by_type(
 input string scope,
 inout T val,
 input uvm_object accessor = null
)

static function bit write_by_name(
 input string scope,
 input string name,
 input T val,
 input uvm_object accessor = null
)

UVM 1.2 Class Reference 194

write_by_type

write a val into the resources database. First, look up the resource by type. If it is not
located then add a new resource to the database and then write its value.

Because the scope is matched to a resource which may be a regular expression, and
consequently may target other scopes beyond the scope argument. Care must be taken
with this function. If a get_by_name match is found for name and scope then val will be
written to that matching resource and thus may impact other scopes which also match
the resource.

dump

Dump all the resources in the resource pool. This is useful for debugging purposes. This
function does not use the parameter T, so it will dump the same thing -- the entire
database -- no matter the value of the parameter.

uvm_resource_db_options

Provides a namespace for managing options for the resources DB facility. The only thing
allowed in this class is static local data members and static functions for manipulating
and retrieving the value of the data members. The static local data members represent
options and settings that control the behavior of the resources DB facility.

Summary

uvm_resource_db_options

Provides a namespace for managing options for the resources DB facility.

METHOds

turn_on_tracing Turn tracing on for the resource database.
turn_off_tracing Turn tracing off for the resource database.
is_tracing Returns 1 if the tracing facility is on and 0 if it is off.

METHOds

turn_on_tracing

static function bit write_by_type(
 input string scope,
 input T val,
 input uvm_object accessor = null
)

static function void dump()

static function void turn_on_tracing()

UVM 1.2 Class Reference 195

Turn tracing on for the resource database. This causes all reads and writes to the
database to display information about the accesses. Tracing is off by default.

This method is implicitly called by the +UVM_RESOURCE_DB_TRACE.

turn_off_tracing

Turn tracing off for the resource database.

is_tracing

Returns 1 if the tracing facility is on and 0 if it is off.

static function void turn_off_tracing()

static function bit is_tracing()

UVM 1.2 Class Reference 196

10.3 UVM Configuration Database

Contents

UVM Configuration
Database

Intro The uvm_config_db class provides a convenience
interface on top of the uvm_resource_db to simplify the
basic interface that is used for configuring
uvm_component instances.

uvm_config_db All of the functions in uvm_config_db#(T) are static, so
they must be called using the :: operator.

Types

uvm_config_int Convenience type for
uvm_config_db#(uvm_bitstream_t)

uvm_config_string Convenience type for uvm_config_db#(string)
uvm_config_object Convenience type for uvm_config_db#(uvm_object)
uvm_config_wrapper Convenience type for

uvm_config_db#(uvm_object_wrapper)
uvm_config_db_options Provides a namespace for managing options for the

configuration DB facility.

Intro

The uvm_config_db class provides a convenience interface on top of the
uvm_resource_db to simplify the basic interface that is used for configuring
uvm_component instances.

If the run-time +UVM_CONFIG_DB_TRACE command line option is specified, all
configuration DB accesses (read and write) are displayed.

uvm_config_db

All of the functions in uvm_config_db#(T) are static, so they must be called using the ::
operator. For example:

The parameter value “int” identifies the configuration type as an int property.

The set and get methods provide the same API and semantics as the set/get_config_*
functions in uvm_component.

Summary

uvm_config_db

All of the functions in uvm_config_db#(T) are static, so they must be called using

uvm_config_db#(int)::set(this, "*", "A");

UVM 1.2 Class Reference 197

file:///C|/Users/Joe/Documents/accellera/uvm_1.2/ND%20material/html_RC7/src/base/uvm_config_db.svh

the :: operator.

CLAss HiERARchY

uvm_resource_db#(T)

uvm_config_db

CLAss DEcLARAtiON

MEthOds

get Get the value for field_name in inst_name, using
component cntxt as the starting search point.

set Create a new or update an existing configuration setting for
field_name in inst_name from cntxt.

exists Check if a value for field_name is available in inst_name,
using component cntxt as the starting search point.

wait_modified Wait for a configuration setting to be set for field_name in
cntxt and inst_name.

MEthOds

get

Get the value for field_name in inst_name, using component cntxt as the starting search
point. inst_name is an explicit instance name relative to cntxt and may be an empty
string if the cntxt is the instance that the configuration object applies to. field_name is
the specific field in the scope that is being searched for.

The basic get_config_* methods from uvm_component are mapped to this function as:

set

Create a new or update an existing configuration setting for field_name in inst_name
from cntxt. The setting is made at cntxt, with the full scope of the set being
{cntxt,”.”,~inst_name~}. If cntxt is null then inst_name provides the complete scope

class uvm_config_db#(
 type T = int
) extends uvm_resource_db#(T)

static function bit get(
 uvm_component cntxt,
 string inst_name,
 string field_name,
 inout T value
)

get_config_int(...) => uvm_config_db#(uvm_bitstream_t)::get(cntxt,...)
get_config_string(...) => uvm_config_db#(string)::get(cntxt,...)
get_config_object(...) => uvm_config_db#(uvm_object)::get(cntxt,...)

static function void set(
 uvm_component cntxt,
 string inst_name,
 string field_name,
 T value
)

UVM 1.2 Class Reference 198

information of the setting. field_name is the target field. Both inst_name and
field_name may be glob style or regular expression style expressions.

If a setting is made at build time, the cntxt hierarchy is used to determine the setting’s
precedence in the database. Settings from hierarchically higher levels have higher
precedence. Settings from the same level of hierarchy have a last setting wins
semantic. A precedence setting of uvm_resource_base::default_precedence is used for
uvm_top, and each hierarchical level below the top is decremented by 1.

After build time, all settings use the default precedence and thus have a last wins
semantic. So, if at run time, a low level component makes a runtime setting of some
field, that setting will have precedence over a setting from the test level that was made
earlier in the simulation.

The basic set_config_* methods from uvm_component are mapped to this function as:

exists

Check if a value for field_name is available in inst_name, using component cntxt as the
starting search point. inst_name is an explicit instance name relative to cntxt and may
be an empty string if the cntxt is the instance that the configuration object applies to.
field_name is the specific field in the scope that is being searched for. The spell_chk arg
can be set to 1 to turn spell checking on if it is expected that the field should exist in
the database. The function returns 1 if a config parameter exists and 0 if it doesn’t
exist.

wait_modified

Wait for a configuration setting to be set for field_name in cntxt and inst_name. The
task blocks until a new configuration setting is applied that effects the specified field.

Types

Summary

Types

uvm_config_int Convenience type for

set_config_int(...) => uvm_config_db#(uvm_bitstream_t)::set(cntxt,...)
set_config_string(...) => uvm_config_db#(string)::set(cntxt,...)
set_config_object(...) => uvm_config_db#(uvm_object)::set(cntxt,...)

static function bit exists(
 uvm_component cntxt,
 string inst_name,
 string field_name,
 bit spell_chk =
)

static task wait_modified(
 uvm_component cntxt,
 string inst_name,
 string field_name
)

UVM 1.2 Class Reference 199

uvm_config_db#(uvm_bitstream_t)
uvm_config_string Convenience type for uvm_config_db#(string)
uvm_config_object Convenience type for uvm_config_db#(uvm_object)
uvm_config_wrapper Convenience type for

uvm_config_db#(uvm_object_wrapper)

uvm_config_int

Convenience type for uvm_config_db#(uvm_bitstream_t)

uvm_config_string

Convenience type for uvm_config_db#(string)

uvm_config_object

Convenience type for uvm_config_db#(uvm_object)

uvm_config_wrapper

Convenience type for uvm_config_db#(uvm_object_wrapper)

uvm_config_db_options

Provides a namespace for managing options for the configuration DB facility. The only
thing allowed in this class is static local data members and static functions for
manipulating and retrieving the value of the data members. The static local data
members represent options and settings that control the behavior of the configuration DB
facility.

Summary

typedef uvm_config_db#(uvm_bitstream_t) uvm_config_int;

typedef uvm_config_db#(string) uvm_config_string;

typedef uvm_config_db#(uvm_object) uvm_config_object;

typedef uvm_config_db#(uvm_object_wrapper) uvm_config_wrapper;

UVM 1.2 Class Reference 200

uvm_config_db_options

Provides a namespace for managing options for the configuration DB facility.

MEthOds

turn_on_tracing Turn tracing on for the configuration database.
turn_off_tracing Turn tracing off for the configuration database.
is_tracing Returns 1 if the tracing facility is on and 0 if it is off.

MEthOds

turn_on_tracing

Turn tracing on for the configuration database. This causes all reads and writes to the
database to display information about the accesses. Tracing is off by default.

This method is implicitly called by the +UVM_CONFIG_DB_TRACE.

turn_off_tracing

Turn tracing off for the configuration database.

is_tracing

Returns 1 if the tracing facility is on and 0 if it is off.

static function void turn_on_tracing()

static function void turn_off_tracing()

static function bit is_tracing()

UVM 1.2 Class Reference 201

11. Synchronization Classes

The UVM provides event and barrier synchronization classes for managing concurrent
processes.

uvm_event#(T) - UVM’s event class augments the SystemVerilog event datatype
with such services as setting callbacks and data delivery.
uvm_barrier - A barrier is used to prevent a pre-configured number of processes
from continuing until all have reached a certain point in simulation.
uvm_event_pool and uvm_barrier_pool - The event and barrier pool classes are
specializations of uvm_object_string_pool #(T) used to store collections of
uvm_event#(uvm_object) and uvm_barriers, respectively, indexed by string name. Each
pool class contains a static, “global” pool instance for sharing across all processes.
uvm_event_callback - The event callback is used to create callback objects that
may be attached to uvm_event#(T).

Summary

Synchronization Classes

UVM 1.2 Class Reference 202

11.1 uvm_event_base

The uvm_event_base class is an abstract wrapper class around the SystemVerilog event
construct. It provides some additional services such as setting callbacks and maintaining
the number of waiters.

Contents

uvm_event_base The uvm_event_base class is an abstract wrapper class around
the SystemVerilog event construct.

uvm_event#(T) The uvm_event class is an extension of the abstract
uvm_event_base class.

METHODS

new

Creates a new event object.

wait_on

Waits for the event to be activated for the first time.

If the event has already been triggered, this task returns immediately. If delta is set,
the caller will be forced to wait a single delta #0 before returning. This prevents the
caller from returning before previously waiting processes have had a chance to resume.

Once an event has been triggered, it will be remain “on” until the event is reset.

wait_off

If the event has already triggered and is “on”, this task waits for the event to be turned
“off” via a call to reset.

If the event has not already been triggered, this task returns immediately. If delta is
set, the caller will be forced to wait a single delta #0 before returning. This prevents the
caller from returning before previously waiting processes have had a chance to resume.

function new (
 string name = ""
)

virtual task wait_on (
 bit delta = 0
)

virtual task wait_off (
 bit delta = 0
)

UVM 1.2 Class Reference 203

wait_trigger

Waits for the event to be triggered.

If one process calls wait_trigger in the same delta as another process calls
uvm_event#(T)::trigger, a race condition occurs. If the call to wait occurs before the
trigger, this method will return in this delta. If the wait occurs after the trigger, this
method will not return until the next trigger, which may never occur and thus cause
deadlock.

wait_ptrigger

Waits for a persistent trigger of the event. Unlike wait_trigger, this views the trigger as
persistent within a given time-slice and thus avoids certain race conditions. If this
method is called after the trigger but within the same time-slice, the caller returns
immediately.

get_trigger_time

Gets the time that this event was last triggered. If the event has not been triggered, or
the event has been reset, then the trigger time will be 0.

is_on

Indicates whether the event has been triggered since it was last reset.

A return of 1 indicates that the event has triggered.

is_off

Indicates whether the event has been triggered or been reset.

A return of 1 indicates that the event has not been triggered.

reset

Resets the event to its off state. If wakeup is set, then all processes currently waiting
for the event are activated before the reset.

virtual task wait_trigger ()

virtual task wait_ptrigger ()

virtual function time get_trigger_time ()

virtual function bit is_on ()

virtual function bit is_off ()

virtual function void reset (
 bit wakeup = 0
)

UVM 1.2 Class Reference 204

No callbacks are called during a reset.

cancel

Decrements the number of waiters on the event.

This is used if a process that is waiting on an event is disabled or activated by some
other means.

get_num_waiters

Returns the number of processes waiting on the event.

uvm_event#(T)

The uvm_event class is an extension of the abstract uvm_event_base class.

The optional parameter T allows the user to define a data type which can be passed
during an event trigger.

Summary

uvm_event#(T)

The uvm_event class is an extension of the abstract uvm_event_base class.

CLASS HIERARcHY

uvm_void

uvm_object

uvm_event_base

uvm_event#(T)

CLASS DEcLARATION

METHODS

new Creates a new event object.
wait_trigger_data This method calls uvm_event_base::wait_trigger

followed by get_trigger_data.
wait_ptrigger_data This method calls uvm_event_base::wait_ptrigger

followed by get_trigger_data.
trigger Triggers the event, resuming all waiting processes.
get_trigger_data Gets the data, if any, provided by the last call to

trigger.
add_callback Registers a callback object, cb, with this event.
delete_callback Unregisters the given callback, cb, from this event.

virtual function void cancel ()

virtual function int get_num_waiters ()

class uvm_event#(
 type T = uvm_object
) extends uvm_event_base

UVM 1.2 Class Reference 205

METHODS

new

Creates a new event object.

wait_trigger_data

This method calls uvm_event_base::wait_trigger followed by get_trigger_data.

wait_ptrigger_data

This method calls uvm_event_base::wait_ptrigger followed by get_trigger_data.

trigger

Triggers the event, resuming all waiting processes.

An optional data argument can be supplied with the enable to provide trigger-specific
information.

get_trigger_data

Gets the data, if any, provided by the last call to trigger.

add_callback

function new (
 string name = ""
)

virtual task wait_trigger_data (
 output T data
)

virtual task wait_ptrigger_data (
 output T data
)

virtual function void trigger (
 T data = null
)

virtual function T get_trigger_data ()

virtual function void add_callback (
 uvm_event_callback#(T) cb,
 bit append = 1
)

UVM 1.2 Class Reference 206

Registers a callback object, cb, with this event. The callback object may include
pre_trigger and post_trigger functionality. If append is set to 1, the default, cb is added
to the back of the callback list. Otherwise, cb is placed at the front of the callback list.

delete_callback

Unregisters the given callback, cb, from this event.

virtual function void delete_callback (
 uvm_event_callback#(T) cb
)

UVM 1.2 Class Reference 207

11.2 uvm_event_callback

The uvm_event_callback class is an abstract class that is used to create callback objects
which may be attached to uvm_event#(T)s. To use, you derive a new class and override
any or both pre_trigger and post_trigger.

Callbacks are an alternative to using processes that wait on events. When a callback is
attached to an event, that callback object’s callback function is called each time the
event is triggered.

Summary

uvm_event_callback

The uvm_event_callback class is an abstract class that is used to create callback
objects which may be attached to uvm_event#(T)s.

CLAss HIERARchY

uvm_void

uvm_object

uvm_event_callback

CLAss DEcLARATION

METhOds

new Creates a new callback object.
pre_trigger This callback is called just before triggering the associated

event.
post_trigger This callback is called after triggering the associated event.

METhOds

new

Creates a new callback object.

pre_trigger

This callback is called just before triggering the associated event. In a derived class,
override this method to implement any pre-trigger functionality.

virtual class uvm_event_callback#(
 type T = uvm_object
) extends uvm_object

function new (
 string name = ""
)

virtual function bit pre_trigger (
 uvm_event#(T) e,
 T data
)

UVM 1.2 Class Reference 208

If your callback returns 1, then the event will not trigger and the post-trigger callback is
not called. This provides a way for a callback to prevent the event from triggering.

In the function, e is the uvm_event#(T) that is being triggered, and data is the optional
data associated with the event trigger.

post_trigger

This callback is called after triggering the associated event. In a derived class, override
this method to implement any post-trigger functionality.

In the function, e is the uvm_event#(T) that is being triggered, and data is the optional
data associated with the event trigger.

virtual function void post_trigger (
 uvm_event#(T) e,
 T data
)

UVM 1.2 Class Reference 209

11.3 uvm_barrier

The uvm_barrier class provides a multiprocess synchronization mechanism. It enables a
set of processes to block until the desired number of processes get to the
synchronization point, at which time all of the processes are released.

Summary

uvm_barrier

The uvm_barrier class provides a multiprocess synchronization mechanism.

CLAss HIERARchY

uvm_void

uvm_object

uvm_barrier

CLAss DEcLARATION

METhOds

new Creates a new barrier object.
wait_for Waits for enough processes to reach the barrier before

continuing.
reset Resets the barrier.
set_auto_reset Determines if the barrier should reset itself after the

threshold is reached.
set_threshold Sets the process threshold.
get_threshold Gets the current threshold setting for the barrier.
get_num_waiters Returns the number of processes currently waiting at the

barrier.
cancel Decrements the waiter count by one.

METhOds

new

Creates a new barrier object.

wait_for

Waits for enough processes to reach the barrier before continuing.

The number of processes to wait for is set by the set_threshold method.

class uvm_barrier extends uvm_object

function new (
 string name = "",
 int threshold = 0
)

virtual task wait_for()

UVM 1.2 Class Reference 210

reset

Resets the barrier. This sets the waiter count back to zero.

The threshold is unchanged. After reset, the barrier will force processes to wait for the
threshold again.

If the wakeup bit is set, any currently waiting processes will be activated.

set_auto_reset

Determines if the barrier should reset itself after the threshold is reached.

The default is on, so when a barrier hits its threshold it will reset, and new processes will
block until the threshold is reached again.

If auto reset is off, then once the threshold is achieved, new processes pass through
without being blocked until the barrier is reset.

set_threshold

Sets the process threshold.

This determines how many processes must be waiting on the barrier before the
processes may proceed.

Once the threshold is reached, all waiting processes are activated.

If threshold is set to a value less than the number of currently waiting processes, then
the barrier is reset and waiting processes are activated.

get_threshold

Gets the current threshold setting for the barrier.

get_num_waiters

Returns the number of processes currently waiting at the barrier.

virtual function void reset (
 bit wakeup = 1
)

virtual function void set_auto_reset (
 bit value = 1
)

virtual function void set_threshold (
 int threshold
)

virtual function int get_threshold ()

virtual function int get_num_waiters ()

UVM 1.2 Class Reference 211

cancel

Decrements the waiter count by one. This is used when a process that is waiting on the
barrier is killed or activated by some other means.

virtual function void cancel ()

UVM 1.2 Class Reference 212

11.4 Objection Mechanism

The following classes define the objection mechanism and end-of-test functionality, which
is based on uvm_objection.

Contents

Objection Mechanism The following classes define the objection mechanism
and end-of-test functionality, which is based on
uvm_objection.

uvm_objection Objections provide a facility for coordinating status
information between two or more participating
components, objects, and even module-based IP.

uvm_objection_callback The uvm_objection is the callback type that defines the
callback implementations for an objection callback.

uvm_objection

Objections provide a facility for coordinating status information between two or more
participating components, objects, and even module-based IP.

Tracing of objection activity can be turned on to follow the activity of the objection
mechanism. It may be turned on for a specific objection instance with
uvm_objection::trace_mode, or it can be set for all objections from the command line
using the option +UVM_OBJECTION_TRACE.

Summary

uvm_objection

Objections provide a facility for coordinating status information between two or
more participating components, objects, and even module-based IP.

CLAss HIERARchY

uvm_void

uvm_object

uvm_report_object

uvm_objection

CLAss DEcLARATIoN

new Creates a new objection instance.
trace_mode Set or get the trace mode for the objection object.
OBJEcTIoN CoNTRoL

set_propagate_mode Sets the propagation mode for this objection.
get_propagate_mode Returns the propagation mode for this objection.
raise_objection Raises the number of objections for the source

object by count, which defaults to 1.
drop_objection Drops the number of objections for the source object

by count, which defaults to 1.

class uvm_objection extends uvm_report_object

UVM 1.2 Class Reference 213

clear Immediately clears the objection state.
set_drain_time Sets the drain time on the given object to drain.

CALLBAcK HooKs

raised Objection callback that is called when a
raise_objection has reached obj.

dropped Objection callback that is called when a
drop_objection has reached obj.

all_dropped Objection callback that is called when a
drop_objection has reached obj, and the total count
for obj goes to zero.

OBJEcTIoN STATUs

get_objectors Returns the current list of objecting objects (objects
that raised an objection but have not dropped it).

wait_for Waits for the raised, dropped, or all_dropped event
to occur in the given obj.

get_objection_count Returns the current number of objections raised by
the given object.

get_objection_total Returns the current number of objections raised by
the given object and all descendants.

get_drain_time Returns the current drain time set for the given
object (default: 0 ns).

display_objections Displays objection information about the given
object.

new

Creates a new objection instance. Accesses the command line argument
+UVM_OBJECTION_TRACE to turn tracing on for all objection objects.

trace_mode

Set or get the trace mode for the objection object. If no argument is specified (or an
argument other than 0 or 1) the current trace mode is unaffected. A trace_mode of 0
turns tracing off. A trace mode of 1 turns tracing on. The return value is the mode prior
to being reset.

OBJEcTIoN CoNTRoL

set_propagate_mode

Sets the propagation mode for this objection.

By default, objections support hierarchical propagation for components. For example, if

function new(
 string name = ""
)

function bit trace_mode (
 int mode = -1
)

function void set_propagate_mode (
 bit prop_mode
)

UVM 1.2 Class Reference 214

we have the following basic component tree:

Any objections raised by ‘child’ would get propagated down to parent, and then to
uvm_test_top. Resulting in the following counts and totals:

While propagations such as these can be useful, if they are unused by the testbench then
they are simply an unnecessary performance hit. If the testbench is not going to use
this functionality, then the performance can be improved by setting the propagation
mode to 0.

When propagation mode is set to 0, all intermediate callbacks between the source and
top will be skipped. This would result in the following counts and totals for the above
objection:

Since the propagation mode changes the behavior of the objection, it can only be safely
changed if there are no objections raised or draining. Any attempts to change the mode
while objections are raised or draining will result in an error.

get_propagate_mode

Returns the propagation mode for this objection.

raise_objection

Raises the number of objections for the source object by count, which defaults to 1. The
object is usually the this handle of the caller. If object is not specified or null, the
implicit top-level component, uvm_root, is chosen.

Raising an objection causes the following.
The source and total objection counts for object are increased by count.
description is a string that marks a specific objection and is used in tracing/debug.
The objection’s raised virtual method is called, which calls the

uvm_top.parent.child

 | count | total |
uvm_top.parent.child | 1 | 1 |
uvm_top.parent | 0 | 1 |
uvm_top | 0 | 1 |

 | count | total |
uvm_top.parent.child | 1 | 1 |
uvm_top.parent | 0 | 0 |
uvm_top | 0 | 1 |

function bit get_propagate_mode()

virtual function void raise_objection (
 uvm_object obj = null,
 string description = "",
 int count = 1
)

UVM 1.2 Class Reference 215

uvm_component::raised method for all of the components up the hierarchy.

drop_objection

Drops the number of objections for the source object by count, which defaults to 1. The
object is usually the this handle of the caller. If object is not specified or null, the
implicit top-level component, uvm_root, is chosen.

Dropping an objection causes the following.
The source and total objection counts for object are decreased by count. It is an
error to drop the objection count for object below zero.
The objection’s dropped virtual method is called, which calls the
uvm_component::dropped method for all of the components up the hierarchy.
If the total objection count has not reached zero for object, then the drop is
propagated up the object hierarchy as with raise_objection. Then, each object in
the hierarchy will have updated their source counts--objections that they
originated--and total counts--the total number of objections by them and all their
descendants.

If the total objection count reaches zero, propagation up the hierarchy is deferred until a
configurable drain-time has passed and the uvm_component::all_dropped callback for
the current hierarchy level has returned. The following process occurs for each instance
up the hierarchy from the source caller:

A process is forked in a non-blocking fashion, allowing the drop call to return. The
forked process then does the following:

If a drain time was set for the given object, the process waits for that amount of
time.
The objection’s all_dropped virtual method is called, which calls the
uvm_component::all_dropped method (if object is a component).
The process then waits for the all_dropped callback to complete.
After the drain time has elapsed and all_dropped callback has completed,
propagation of the dropped objection to the parent proceeds as described in
raise_objection, except as described below.

If a new objection for this object or any of its descendants is raised during the drain
time or during execution of the all_dropped callback at any point, the hierarchical chain
described above is terminated and the dropped callback does not go up the hierarchy.
The raised objection will propagate up the hierarchy, but the number of raised
propagated up is reduced by the number of drops that were pending waiting for the
all_dropped/drain time completion. Thus, if exactly one objection caused the count to go
to zero, and during the drain exactly one new objection comes in, no raises or drops are
propagated up the hierarchy,

As an optimization, if the object has no set drain-time and no registered callbacks, the
forked process can be skipped and propagation proceeds immediately to the parent as
described.

clear

virtual function void drop_objection (
 uvm_object obj = null,
 string description = "",
 int count = 1
)

UVM 1.2 Class Reference 216

Immediately clears the objection state. All counts are cleared and the any processes
waiting on a call to wait_for(UVM_ALL_DROPPED, uvm_top) are released.

The caller, if a uvm_object-based object, should pass its ‘this’ handle to the obj
argument to document who cleared the objection. Any drain_times set by the user are
not affected.

set_drain_time

Sets the drain time on the given object to drain.

The drain time is the amount of time to wait once all objections have been dropped
before calling the all_dropped callback and propagating the objection to the parent.

If a new objection for this object or any of its descendants is raised during the drain
time or during execution of the all_dropped callbacks, the drain_time/all_dropped
execution is terminated.

CALLBAcK HooKs

raised

Objection callback that is called when a raise_objection has reached obj. The default
implementation calls uvm_component::raised.

dropped

Objection callback that is called when a drop_objection has reached obj. The default
implementation calls uvm_component::dropped.

all_dropped

virtual function void clear(
 uvm_object obj = null
)

virtual function void raised (
 uvm_object obj,
 uvm_object source_obj,
 string description,
 int count
)

virtual function void dropped (
 uvm_object obj,
 uvm_object source_obj,
 string description,
 int count
)

virtual task all_dropped (
 uvm_object obj,
 uvm_object source_obj,
 string description,
 int count
)

UVM 1.2 Class Reference 217

Objection callback that is called when a drop_objection has reached obj, and the total
count for obj goes to zero. This callback is executed after the drain time associated with
obj. The default implementation calls uvm_component::all_dropped.

OBJEcTIoN STATUs

get_objectors

Returns the current list of objecting objects (objects that raised an objection but have
not dropped it).

wait_for

Waits for the raised, dropped, or all_dropped event to occur in the given obj. The task
returns after all corresponding callbacks for that event have been executed.

get_objection_count

Returns the current number of objections raised by the given object.

get_objection_total

Returns the current number of objections raised by the given object and all descendants.

get_drain_time

Returns the current drain time set for the given object (default: 0 ns).

display_objections

function void get_objectors(
 ref uvm_object list[$]
)

task wait_for(
 uvm_objection_event objt_event,
 uvm_object obj = null
)

function int get_objection_count (
 uvm_object obj = null
)

function int get_objection_total (
 uvm_object obj = null
)

function time get_drain_time (
 uvm_object obj = null
)

UVM 1.2 Class Reference 218

Displays objection information about the given object. If object is not specified or null,
the implicit top-level component, uvm_root, is chosen. The show_header argument
allows control of whether a header is output.

uvm_objection_callback

The uvm_objection is the callback type that defines the callback implementations for an
objection callback. A user uses the callback type uvm_objection_cbs_t to add callbacks
to specific objections.

For example

Summary

uvm_objection_callback

The uvm_objection is the callback type that defines the callback implementations
for an objection callback.

CLAss HIERARchY

uvm_void

uvm_object

uvm_callback

uvm_objection_callback

CLAss DEcLARATIoN

METhods

raised Objection raised callback function.
dropped Objection dropped callback function.
all_dropped Objection all_dropped callback function.

function void display_objections(
 uvm_object obj = null,
 bit show_header = 1
)

class my_objection_cb extends uvm_objection_callback;
 function new(string name);
 super.new(name);
 endfunction

 virtual function void raised (uvm_objection objection, uvm_object obj,
 uvm_object source_obj, string description, int count);
 `uvm_info("RAISED","%0t: Objection %s: Raised for %s", $time,
objection.get_name(),
 obj.get_full_name());
 endfunction
endclass
...
initial begin
 my_objection_cb cb = new("cb");
 uvm_objection_cbs_t::add(null, cb); //typewide callback
end

class uvm_objection_callback extends uvm_callback

UVM 1.2 Class Reference 219

METhods

raised

Objection raised callback function. Called by uvm_objection::raised.

dropped

Objection dropped callback function. Called by uvm_objection::dropped.

all_dropped

Objection all_dropped callback function. Called by uvm_objection::all_dropped.

virtual function void raised (
 uvm_objection objection,
 uvm_object obj,
 uvm_object source_obj,
 string description,
 int count
)

virtual function void dropped (
 uvm_objection objection,
 uvm_object obj,
 uvm_object source_obj,
 string description,
 int count
)

virtual task all_dropped (
 uvm_objection objection,
 uvm_object obj,
 uvm_object source_obj,
 string description,
 int count
)

UVM 1.2 Class Reference 220

11.5 uvm_heartbeat

Heartbeats provide a way for environments to easily ensure that their descendants are
alive. A uvm_heartbeat is associated with a specific objection object. A component that
is being tracked by the heartbeat object must raise (or drop) the synchronizing objection
during the heartbeat window.

The uvm_heartbeat object has a list of participating objects. The heartbeat can be
configured so that all components (UVM_ALL_ACTIVE), exactly one (UVM_ONE_ACTIVE),
or any component (UVM_ANY_ACTIVE) must trigger the objection in order to satisfy the
heartbeat condition.

Summary

uvm_heartbeat

Heartbeats provide a way for environments to easily ensure that their
descendants are alive.

METHODs

new Creates a new heartbeat instance associated with cntxt.
set_mode Sets or retrieves the heartbeat mode.
set_heartbeat Sets up the heartbeat event and assigns a list of objects to

watch.
add Add a single component to the set of components to be

monitored.
remove Remove a single component to the set of components being

monitored.
start Starts the heartbeat monitor.
stop Stops the heartbeat monitor.

METHODs

new

Creates a new heartbeat instance associated with cntxt. The context is the hierarchical
location that the heartbeat objections will flow through and be monitored at. The
objection associated with the heartbeat is optional, if it is left null but it must be set
before the heartbeat monitor will activate.

function new(
 string name,
 uvm_component cntxt,
 uvm_objection objection = null
)

uvm_objection myobjection = new("myobjection"); //some shared objection
class myenv extends uvm_env;
 uvm_heartbeat hb = new("hb", this, myobjection);
 ...
endclass

UVM 1.2 Class Reference 221

set_mode

Sets or retrieves the heartbeat mode. The current value for the heartbeat mode is
returned. If an argument is specified to change the mode then the mode is changed to
the new value.

set_heartbeat

Sets up the heartbeat event and assigns a list of objects to watch. The monitoring is
started as soon as this method is called. Once the monitoring has been started with a
specific event, providing a new monitor event results in an error. To change trigger
events, you must first stop the monitor and then start with a new event trigger.

If the trigger event e is null and there was no previously set trigger event, then the
monitoring is not started. Monitoring can be started by explicitly calling start.

add

Add a single component to the set of components to be monitored. This does not cause
monitoring to be started. If monitoring is currently active then this component will be
immediately added to the list of components and will be expected to participate in the
currently active event window.

remove

Remove a single component to the set of components being monitored. Monitoring is not
stopped, even if the last component has been removed (an explicit stop is required).

start

Starts the heartbeat monitor. If e is null then whatever event was previously set is
used. If no event was previously set then a warning is issued. It is an error if the
monitor is currently running and e is specifying a different trigger event from the current
event.

function uvm_heartbeat_modes set_mode (
 uvm_heartbeat_modes mode = UVM_NO_HB_MODE
)

function void set_heartbeat (
 uvm_event#(uvm_object) e,
 ref uvm_component comps[$]
)

function void add (
 uvm_component comp
)

function void remove (
 uvm_component comp
)

function void start (
 uvm_event#(uvm_object) e = null
)

UVM 1.2 Class Reference 222

stop

Stops the heartbeat monitor. Current state information is reset so that if start is called
again the process will wait for the first event trigger to start the monitoring.

function void stop ()

UVM 1.2 Class Reference 223

11.6 Callbacks Classes

This section defines the classes used for callback registration, management, and user-
defined callbacks.

Contents

Callbacks
Classes

This section defines the classes used for callback registration,
management, and user-defined callbacks.

uvm_callbacks
#(T,CB)

The uvm_callbacks class provides a base class for
implementing callbacks, which are typically used to modify or
augment component behavior without changing the
component class.

uvm_callback_iter The uvm_callback_iter class is an iterator class for iterating
over callback queues of a specific callback type.

uvm_callback The uvm_callback class is the base class for user-defined
callback classes.

uvm_callbacks #(T,CB)

The uvm_callbacks class provides a base class for implementing callbacks, which are
typically used to modify or augment component behavior without changing the
component class. To work effectively, the developer of the component class defines a set
of “hook” methods that enable users to customize certain behaviors of the component in
a manner that is controlled by the component developer. The integrity of the
component’s overall behavior is intact, while still allowing certain customizable actions by
the user.

To enable compile-time type-safety, the class is parameterized on both the user-defined
callback interface implementation as well as the object type associated with the callback.
The object type-callback type pair are associated together using the `uvm_register_cb
macro to define a valid pairing; valid pairings are checked when a user attempts to add a
callback to an object.

To provide the most flexibility for end-user customization and reuse, it is recommended
that the component developer also define a corresponding set of virtual method hooks in
the component itself. This affords users the ability to customize via inheritance/factory
overrides as well as callback object registration. The implementation of each virtual
method would provide the default traversal algorithm for the particular callback being
called. Being virtual, users can define subtypes that override the default algorithm,
perform tasks before and/or after calling super.method to execute any registered
callbacks, or to not call the base implementation, effectively disabling that particular
hook. A demonstration of this methodology is provided in an example included in the kit.

Summary

uvm_callbacks #(T,CB)

The uvm_callbacks class provides a base class for implementing callbacks, which
are typically used to modify or augment component behavior without changing
the component class.

CLAss HIERARchY

UVM 1.2 Class Reference 224

uvm_typed_callbacks#(T)

uvm_callbacks#(T,CB)

CLAss DEcLARAtION

T This type parameter specifies the base object type with
which the CB callback objects will be registered.

CB This type parameter specifies the base callback type that
will be managed by this callback class.

Add/dELEtE

INtERFAcE

add Registers the given callback object, cb, with the given obj
handle.

add_by_name Registers the given callback object, cb, with one or more
uvm_components.

delete Deletes the given callback object, cb, from the queue
associated with the given obj handle.

delete_by_name Removes the given callback object, cb, associated with
one or more uvm_component callback queues.

ItERAtOR INtERFAcE This set of functions provide an iterator interface for
callback queues.

get_first Returns the first enabled callback of type CB which
resides in the queue for obj.

get_last Returns the last enabled callback of type CB which
resides in the queue for obj.

get_next Returns the next enabled callback of type CB which
resides in the queue for obj, using itr as the starting
point.

get_prev Returns the previous enabled callback of type CB which
resides in the queue for obj, using itr as the starting
point.

DEbUG

display This function displays callback information for obj.

T

This type parameter specifies the base object type with which the CB callback objects will
be registered. This object must be a derivative of uvm_object.

CB

This type parameter specifies the base callback type that will be managed by this
callback class. The callback type is typically a interface class, which defines one or more
virtual method prototypes that users can override in subtypes. This type must be a
derivative of uvm_callback.

Add/dELEtE INtERFAcE

add

class uvm_callbacks #(
 type T = uvm_object,
 type CB = uvm_callback
) extends uvm_typed_callbacks#(T)

UVM 1.2 Class Reference 225

Registers the given callback object, cb, with the given obj handle. The obj handle can be
null, which allows registration of callbacks without an object context. If ordering is
UVM_APPEND (default), the callback will be executed after previously added callbacks,
else the callback will be executed ahead of previously added callbacks. The cb is the
callback handle; it must be non-null, and if the callback has already been added to the
object instance then a warning is issued. Note that the CB parameter is optional. For
example, the following are equivalent:

add_by_name

Registers the given callback object, cb, with one or more uvm_components. The
components must already exist and must be type T or a derivative. As with add the CB
parameter is optional. root specifies the location in the component hierarchy to start the
search for name. See uvm_root::find_all for more details on searching by name.

delete

Deletes the given callback object, cb, from the queue associated with the given obj
handle. The obj handle can be null, which allows de-registration of callbacks without an
object context. The cb is the callback handle; it must be non-null, and if the callback
has already been removed from the object instance then a warning is issued. Note that
the CB parameter is optional. For example, the following are equivalent:

delete_by_name

static function void add(
 T obj,
 uvm_callback cb,
 uvm_apprepend ordering = UVM_APPEND
)

uvm_callbacks#(my_comp)::add(comp_a, cb);
uvm_callbacks#(my_comp, my_callback)::add(comp_a,cb);

static function void add_by_name(
 string name,
 uvm_callback cb,
 uvm_component root,
 uvm_apprepend ordering = UVM_APPEND
)

static function void delete(
 T obj,
 uvm_callback cb
)

uvm_callbacks#(my_comp)::delete(comp_a, cb);
uvm_callbacks#(my_comp, my_callback)::delete(comp_a,cb);

static function void delete_by_name(
 string name,
 uvm_callback cb,
 uvm_component root
)

UVM 1.2 Class Reference 226

Removes the given callback object, cb, associated with one or more uvm_component
callback queues. As with delete the CB parameter is optional. root specifies the location
in the component hierarchy to start the search for name. See uvm_root::find_all for
more details on searching by name.

ItERAtOR INtERFAcE

This set of functions provide an iterator interface for callback queues. A facade class,
uvm_callback_iter is also available, and is the generally preferred way to iterate over
callback queues.

get_first

Returns the first enabled callback of type CB which resides in the queue for obj. If obj is
null then the typewide queue for T is searched. itr is the iterator; it will be updated with
a value that can be supplied to get_next to get the next callback object.

If the queue is empty then null is returned.

The iterator class uvm_callback_iter may be used as an alternative, simplified, iterator
interface.

get_last

Returns the last enabled callback of type CB which resides in the queue for obj. If obj is
null then the typewide queue for T is searched. itr is the iterator; it will be updated with
a value that can be supplied to get_prev to get the previous callback object.

If the queue is empty then null is returned.

The iterator class uvm_callback_iter may be used as an alternative, simplified, iterator
interface.

get_next

Returns the next enabled callback of type CB which resides in the queue for obj, using itr
as the starting point. If obj is null then the typewide queue for T is searched. itr is the
iterator; it will be updated with a value that can be supplied to get_next to get the next
callback object.

If no more callbacks exist in the queue, then null is returned. get_next will continue to

static function CB get_first (
 ref int itr,
 input T obj
)

static function CB get_last (
 ref int itr,
 input T obj
)

static function CB get_next (
 ref int itr,
 input T obj
)

UVM 1.2 Class Reference 227

return null in this case until get_first or get_last has been used to reset the iterator.

The iterator class uvm_callback_iter may be used as an alternative, simplified, iterator
interface.

get_prev

Returns the previous enabled callback of type CB which resides in the queue for obj,
using itr as the starting point. If obj is null then the typewide queue for T is searched.
itr is the iterator; it will be updated with a value that can be supplied to get_prev to get
the previous callback object.

If no more callbacks exist in the queue, then null is returned. get_prev will continue to
return null in this case until get_first or get_last has been used to reset the iterator.

The iterator class uvm_callback_iter may be used as an alternative, simplified, iterator
interface.

DEbUG

display

This function displays callback information for obj. If obj is null, then it displays callback
information for all objects of type T, including typewide callbacks.

uvm_callback_iter

The uvm_callback_iter class is an iterator class for iterating over callback queues of a
specific callback type. The typical usage of the class is:

The callback iteration macros, `uvm_do_callbacks and `uvm_do_callbacks_exit_on
provide a simple method for iterating callbacks and executing the callback methods.

Summary

uvm_callback_iter

static function CB get_prev (
 ref int itr,
 input T obj
)

static function void display(
 T obj = null
)

uvm_callback_iter#(mycomp,mycb) iter = new(this);
for(mycb cb = iter.first(); cb != null; cb = iter.next())
 cb.dosomething();

UVM 1.2 Class Reference 228

The uvm_callback_iter class is an iterator class for iterating over callback queues
of a specific callback type.

CLAss DEcLARAtION

MEthOds

new Creates a new callback iterator object.
first Returns the first valid (enabled) callback of the callback type (or a

derivative) that is in the queue of the context object.
last Returns the last valid (enabled) callback of the callback type (or a

derivative) that is in the queue of the context object.
next Returns the next valid (enabled) callback of the callback type (or a

derivative) that is in the queue of the context object.
prev Returns the previous valid (enabled) callback of the callback type

(or a derivative) that is in the queue of the context object.
get_cb Returns the last callback accessed via a first() or next() call.

MEthOds

new

Creates a new callback iterator object. It is required that the object context be provided.

first

Returns the first valid (enabled) callback of the callback type (or a derivative) that is in
the queue of the context object. If the queue is empty then null is returned.

last

Returns the last valid (enabled) callback of the callback type (or a derivative) that is in
the queue of the context object. If the queue is empty then null is returned.

next

Returns the next valid (enabled) callback of the callback type (or a derivative) that is in
the queue of the context object. If there are no more valid callbacks in the queue, then
null is returned.

class uvm_callback_iter#(
 type T = uvm_object,
 type CB = uvm_callback
)

function new(
 T obj
)

function CB first()

function CB last()

function CB next()

UVM 1.2 Class Reference 229

prev

Returns the previous valid (enabled) callback of the callback type (or a derivative) that is
in the queue of the context object. If there are no more valid callbacks in the queue,
then null is returned.

get_cb

Returns the last callback accessed via a first() or next() call.

uvm_callback

The uvm_callback class is the base class for user-defined callback classes. Typically, the
component developer defines an application-specific callback class that extends from this
class. In it, he defines one or more virtual methods, called a callback interface, that
represent the hooks available for user override.

Methods intended for optional override should not be declared pure. Usually, all the
callback methods are defined with empty implementations so users have the option of
overriding any or all of them.

The prototypes for each hook method are completely application specific with no
restrictions.

Summary

uvm_callback

The uvm_callback class is the base class for user-defined callback classes.

CLAss HIERARchY

uvm_void

uvm_object

uvm_callback

CLAss DEcLARAtION

MEthOds

new Creates a new uvm_callback object, giving it an optional
name.

callback_mode Enable/disable callbacks (modeled like rand_mode and
constraint_mode).

is_enabled Returns 1 if the callback is enabled, 0 otherwise.
get_type_name Returns the type name of this callback object.

function CB prev()

function CB get_cb()

class uvm_callback extends uvm_object

UVM 1.2 Class Reference 230

MEthOds

new

Creates a new uvm_callback object, giving it an optional name.

callback_mode

Enable/disable callbacks (modeled like rand_mode and constraint_mode).

is_enabled

Returns 1 if the callback is enabled, 0 otherwise.

get_type_name

Returns the type name of this callback object.

function new(
 string name = "uvm_callback"
)

function bit callback_mode(
 int on = -1
)

function bit is_enabled()

virtual function string get_type_name()

UVM 1.2 Class Reference 231

12. Container Classes

The container classes are type parameterized data structures. The uvm_queue #(T) class
implements a queue datastructure similar to the SystemVerilog queue construct. And
the uvm_pool #(KEY,T) class implements a pool datastructure similar to the
SystemVerilog associative array. The class based data structures allow the objects to be
shared by reference; for example, a copy of a uvm_pool #(KEY,T) object will copy just
the class handle instead of the entire associative array.

Summary

Container Classes

The container classes are type parameterized data structures.

UVM 1.2 Class Reference 232

12.1 Pool Classes

This section defines the uvm_pool #(KEY, T) class and derivative.

Contents

Pool Classes This section defines the uvm_pool #(KEY, T) class and
derivative.

uvm_pool #(KEY,T) Implements a class-based dynamic associative array.
uvm_object_string_pool
#(T)

This provides a specialization of the generic uvm_pool
#(KEY,T) class for an associative array of uvm_object-
based objects indexed by string.

uvm_pool #(KEY,T)

Implements a class-based dynamic associative array. Allows sparse arrays to be
allocated on demand, and passed and stored by reference.

Summary

uvm_pool #(KEY,T)

Implements a class-based dynamic associative array.

CLAss HIeRARchy

uvm_void

uvm_object

uvm_pool#(KEY,T)

CLAss DecLARAtION

MethOds

new Creates a new pool with the given name.
get_global_pool Returns the singleton global pool for the item type, T.
get_global Returns the specified item instance from the global item

pool.
get Returns the item with the given key.
add Adds the given (key, item) pair to the pool.
num Returns the number of uniquely keyed items stored in the

pool.
delete Removes the item with the given key from the pool.
exists Returns 1 if an item with the given key exists in the pool,

0 otherwise.
first Returns the key of the first item stored in the pool.
last Returns the key of the last item stored in the pool.
next Returns the key of the next item in the pool.
prev Returns the key of the previous item in the pool.

class uvm_pool #(
 type KEY = int,
 T = uvm_void
) extends uvm_object

UVM 1.2 Class Reference 233

MethOds

new

Creates a new pool with the given name.

get_global_pool

Returns the singleton global pool for the item type, T.

This allows items to be shared amongst components throughout the verification
environment.

get_global

Returns the specified item instance from the global item pool.

get

Returns the item with the given key.

If no item exists by that key, a new item is created with that key and returned.

add

Adds the given (key, item) pair to the pool. If an item already exists at the given key it
is overwritten with the new item.

num

function new (
 string name = ""
)

static function this_type get_global_pool ()

static function T get_global (
 KEY key
)

virtual function T get (
 KEY key
)

virtual function void add (
 KEY key,
 T item
)

virtual function int num ()

UVM 1.2 Class Reference 234

Returns the number of uniquely keyed items stored in the pool.

delete

Removes the item with the given key from the pool.

exists

Returns 1 if an item with the given key exists in the pool, 0 otherwise.

first

Returns the key of the first item stored in the pool.

If the pool is empty, then key is unchanged and 0 is returned.

If the pool is not empty, then key is key of the first item and 1 is returned.

last

Returns the key of the last item stored in the pool.

If the pool is empty, then 0 is returned and key is unchanged.

If the pool is not empty, then key is set to the last key in the pool and 1 is returned.

next

Returns the key of the next item in the pool.

If the input key is the last key in the pool, then key is left unchanged and 0 is returned.

If a next key is found, then key is updated with that key and 1 is returned.

virtual function void delete (
 KEY key
)

virtual function int exists (
 KEY key
)

virtual function int first (
 ref KEY key
)

virtual function int last (
 ref KEY key
)

virtual function int next (
 ref KEY key
)

UVM 1.2 Class Reference 235

prev

Returns the key of the previous item in the pool.

If the input key is the first key in the pool, then key is left unchanged and 0 is returned.

If a previous key is found, then key is updated with that key and 1 is returned.

uvm_object_string_pool #(T)

This provides a specialization of the generic uvm_pool #(KEY,T) class for an associative
array of uvm_object-based objects indexed by string. Specializations of this class include
the uvm_event_pool (a uvm_object_string_pool storing uvm_event#(uvm_object)) and
uvm_barrier_pool (a uvm_obejct_string_pool storing uvm_barrier).

Summary

uvm_object_string_pool #(T)

This provides a specialization of the generic uvm_pool #(KEY,T) class for an
associative array of uvm_object-based objects indexed by string.

CLAss HIeRARchy

uvm_pool#(string,T)

uvm_object_string_pool#(T)

CLAss DecLARAtION

MethOds

new Creates a new pool with the given name.
get_type_name Returns the type name of this object.
get_global_pool Returns the singleton global pool for the item type, T.
get_global Returns the specified item instance from the global item

pool.
get Returns the object item at the given string key.
delete Removes the item with the given string key from the pool.

MethOds

new

virtual function int prev (
 ref KEY key
)

class uvm_object_string_pool #(
 type T = uvm_object
) extends uvm_pool #(string,T)

function new (
 string name = ""
)

UVM 1.2 Class Reference 236

Creates a new pool with the given name.

get_type_name

Returns the type name of this object.

get_global_pool

Returns the singleton global pool for the item type, T.

This allows items to be shared amongst components throughout the verification
environment.

get_global

Returns the specified item instance from the global item pool.

get

Returns the object item at the given string key.

If no item exists by the given key, a new item is created for that key and returned.

delete

Removes the item with the given string key from the pool.

virtual function string get_type_name()

static function this_type get_global_pool ()

static function T get_global (
 string key
)

virtual function T get (
 string key
)

virtual function void delete (
 string key
)

UVM 1.2 Class Reference 237

12.2 uvm_queue #(T)

Implements a class-based dynamic queue. Allows queues to be allocated on demand,
and passed and stored by reference.

Summary

uvm_queue #(T)

Implements a class-based dynamic queue.

CLAss HIERARchY

uvm_void

uvm_object

uvm_queue#(T)

CLAss DEcLARAtION

MEthOds

new Creates a new queue with the given name.
get_global_queue Returns the singleton global queue for the item type, T.
get_global Returns the specified item instance from the global item

queue.
get Returns the item at the given index.
size Returns the number of items stored in the queue.
insert Inserts the item at the given index in the queue.
delete Removes the item at the given index from the queue; if

index is not provided, the entire contents of the queue
are deleted.

pop_front Returns the first element in the queue (index=0), or null
if the queue is empty.

pop_back Returns the last element in the queue (index=size()-1),
or null if the queue is empty.

push_front Inserts the given item at the front of the queue.
push_back Inserts the given item at the back of the queue.

MEthOds

new

Creates a new queue with the given name.

get_global_queue

class uvm_queue #(
 type T = int
) extends uvm_object

function new (
 string name = ""
)

static function this_type get_global_queue ()

UVM 1.2 Class Reference 238

Returns the singleton global queue for the item type, T.

This allows items to be shared amongst components throughout the verification
environment.

get_global

Returns the specified item instance from the global item queue.

get

Returns the item at the given index.

If no item exists by that key, a new item is created with that key and returned.

size

Returns the number of items stored in the queue.

insert

Inserts the item at the given index in the queue.

delete

Removes the item at the given index from the queue; if index is not provided, the entire
contents of the queue are deleted.

pop_front

Returns the first element in the queue (index=0), or null if the queue is empty.

static function T get_global (
 int index
)

virtual function T get (
 int index
)

virtual function int size ()

virtual function void insert (
 int index,
 T item
)

virtual function void delete (
 int index = -1
)

virtual function T pop_front()

UVM 1.2 Class Reference 239

pop_back

Returns the last element in the queue (index=size()-1), or null if the queue is empty.

push_front

Inserts the given item at the front of the queue.

push_back

Inserts the given item at the back of the queue.

virtual function T pop_back()

virtual function void push_front(
 T item
)

virtual function void push_back(
 T item
)

UVM 1.2 Class Reference 240

13. TLM Interfaces

The UVM TLM library defines several abstract, transaction-level interfaces and the ports
and exports that facilitate their use. Each TLM interface consists of one or more methods
used to transport data, typically whole transactions (objects) at a time. Component
designs that use TLM ports and exports to communicate are inherently more reusable,
interoperable, and modular.

The UVM TLM library specifies the required behavior (semantic) of each interface
method. Classes (components) that implement a TLM interface must meet the specified
semantic.

Summary

TLM Interfaces

The UVM TLM library defines several abstract, transaction-level interfaces and the
ports and exports that facilitate their use.

TLM1 The TLM1 ports provide blocking and non-blocking pass-by-value
transaction-level interfaces.

TLM2 The TLM2 sockets provide blocking and non-blocking transaction-
level interfaces with well-defined completion semantics.

Sequencer
Port

A push or pull port, with well-defined completion semantics.

Analysis The analysis interface is used to perform non-blocking broadcasts
of transactions to connected components.

TLM1

The TLM1 ports provide blocking and non-blocking pass-by-value transaction-level
interfaces. The semantics of these interfaces are limited to message passing.

TLM2

The TLM2 sockets provide blocking and non-blocking transaction-level interfaces with
well-defined completion semantics.

Sequencer Port

A push or pull port, with well-defined completion semantics. It is used to connect
sequencers with drivers and layering sequences.

Analysis

The analysis interface is used to perform non-blocking broadcasts of transactions to
connected components. It is typically used by such components as monitors to publish
transactions observed on a bus to its subscribers, which are typically scoreboards and
response/coverage collectors.

UVM 1.2 Class Reference 241

14. TLM1 Interfaces, Ports, Exports and Transport
Interfaces

Each TLM1 interface is either blocking, non-blocking, or a combination of these two.

blocking A blocking interface conveys transactions in blocking fashion; its
methods do not return until the transaction has been
successfully sent or retrieved. Because delivery may consume
time to complete, the methods in such an interface are
declared as tasks.

non-blocking A non-blocking interface attempts to convey a transaction
without consuming simulation time. Its methods are declared
as functions. Because delivery may fail (e.g. the target
component is busy and cannot accept the request), the
methods may return with failed status.

combination A combination interface contains both the blocking and non-
blocking variants. In SystemC, combination interfaces are
defined through multiple inheritance. Because SystemVerilog
does not support multiple inheritance, the UVM emulates
hierarchical interfaces via a common base class and interface
mask.

Like their SystemC counterparts, the UVM’s TLM port and export implementations allow
connections between ports whose interfaces are not an exact match. For example, a
uvm_blocking_get_port can be connected to any port, export or imp port that provides at
the least an implementation of the blocking_get interface, which includes the uvm_get_*
ports and exports, uvm_blocking_get_peek_* ports and exports, and uvm_get_peek_*
ports and exports.

The sections below provide and overview of the unidirectional and bidirectional TLM
interfaces, ports, and exports.

Summary

TLM1 Interfaces, Ports, Exports and Transport Interfaces

Each TLM1 interface is either blocking, non-blocking, or a combination of these
two.

UNiDiReCtiONAl

INteRFACes &
PORts

The unidirectional TLM interfaces consist of blocking, non-
blocking, and combined blocking and non-blocking variants of
the put, get and peek interfaces, plus a non-blocking analysis
interface.

Put The put interfaces are used to send, or put, transactions to
other components.

Get and
Peek

The get interfaces are used to retrieve transactions from
other components.

Ports,
Exports,
and Imps

The UVM provides unidirectional ports, exports, and
implementation ports for connecting your components via the
TLM interfaces.

BiDiReCtiONAl

INteRFACes &
PORts

The bidirectional interfaces consist of blocking, non-blocking,
and combined blocking and non-blocking variants of the
transport, master, and slave interfaces.

Transport The transport interface sends a request transaction and
returns a response transaction in a single task call, thereby
enforcing an in-order execution semantic.

Master and
Slave

The primitive, unidirectional put, get, and peek interfaces are
combined to form bidirectional master and slave interfaces.

UVM 1.2 Class Reference 242

Ports,
Exports,
and Imps

The UVM provides bidirectional ports, exports, and
implementation ports for connecting your components via the
TLM interfaces.

UsAGe This example illustrates basic TLM connectivity using the
blocking put interface.

UNiDiReCtiONAl INteRFACes & PORts

The unidirectional TLM interfaces consist of blocking, non-blocking, and combined
blocking and non-blocking variants of the put, get and peek interfaces, plus a non-
blocking analysis interface.

Put

The put interfaces are used to send, or put, transactions to other components.
Successful completion of a put guarantees its delivery, not execution.

Get and Peek

The get interfaces are used to retrieve transactions from other components. The peek
interfaces are used for the same purpose, except the retrieved transaction is not
consumed; successive calls to peek will return the same object. Combined get_peek
interfaces are also defined.

UVM 1.2 Class Reference 243

Ports, Exports, and Imps

The UVM provides unidirectional ports, exports, and implementation ports for connecting
your components via the TLM interfaces.

Ports instantiated in components that require, or use, the associate
interface to initiate transaction requests.

Exports instantiated by components that forward an implementation of the
methods defined in the associated interface. The implementation is
typically provided by an imp port in a child component.

Imps instantiated by components that provide or implement an
implementation of the methods defined in the associated interface.

UVM 1.2 Class Reference 244

A summary of port, export, and imp declarations are

where the asterisk can be any of

BiDiReCtiONAl INteRFACes & PORts

The bidirectional interfaces consist of blocking, non-blocking, and combined blocking and
non-blocking variants of the transport, master, and slave interfaces.

Bidirectional interfaces involve both a transaction request and response.

Transport

The transport interface sends a request transaction and returns a response transaction in
a single task call, thereby enforcing an in-order execution semantic. The request and
response transactions can be different types.

Master and Slave

The primitive, unidirectional put, get, and peek interfaces are combined to form

class uvm_*_export #(type T=int)
 extends uvm_port_base #(tlm_if_base #(T,T));

class uvm_*_port #(type T=int)
 extends uvm_port_base #(tlm_if_base #(T,T));

class uvm_*_imp #(type T=int)
 extends uvm_port_base #(tlm_if_base #(T,T));

blocking_put
nonblocking_put
put

blocking_get
nonblocking_get
get

blocking_peek
nonblocking_peek
peek

blocking_get_peek
nonblocking_get_peek
get_peek

analysis

UVM 1.2 Class Reference 245

bidirectional master and slave interfaces. The master puts requests and gets or peeks
responses. The slave gets or peeks requests and puts responses. Because the put and
the get come from different function interface methods, the requests and responses are
not coupled as they are with the transport interface.

Ports, Exports, and Imps

The UVM provides bidirectional ports, exports, and implementation ports for connecting
your components via the TLM interfaces.

Ports instantiated in components that require, or use, the associate
interface to initiate transaction requests.

Exports instantiated by components that forward an implementation of the
methods defined in the associated interface. The implementation is
typically provided by an imp port in a child component.

Imps instantiated by components that provide or implement an
implementation of the methods defined in the associated interface.

UVM 1.2 Class Reference 246

A summary of port, export, and imp declarations are

where the asterisk can be any of

UsAGe

This example illustrates basic TLM connectivity using the blocking put interface.

class uvm_*_port #(type REQ=int, RSP=int)
 extends uvm_port_base #(tlm_if_base #(REQ, RSP));

class uvm_*_export #(type REQ=int, RSP=int)
 extends uvm_port_base #(tlm_if_base #(REQ, RSP));

class uvm_*_imp #(type REQ=int, RSP=int)
 extends uvm_port_base #(tlm_if_base #(REQ, RSP));

transport
blocking_transport
nonblocking_transport

blocking_master
nonblocking_master
master

blocking_slave
nonblocking_slave
slave

UVM 1.2 Class Reference 247

port-to-port leaf1’s out port is connected to its parent’s (comp1)
out port

port-to-export comp1’s out port is connected to comp2’s in export
export-to-export comp2’s in export is connected to its child’s

(subcomp2) in export
export-to-imp subcomp2’s in export is connected leaf2’s in imp

port.
imp-to-implementation leaf2’s in imp port is connected to its implementation,

leaf2

Hierarchical port connections are resolved and optimized just before
uvm_component::end_of_elaboration_phase. After optimization, calling any port’s
interface method (e.g. leaf1.out.put(trans)) incurs a single hop to get to the
implementation (e.g. leaf2’s put task), no matter how far up and down the hierarchy the
implementation resides.

`include "uvm_pkg.sv"
import uvm_pkg::*;

class trans extends uvm_transaction;
 rand int addr;
 rand int data;
 rand bit write;
endclass

class leaf1 extends uvm_component;

 `uvm_component_utils(leaf1)

 uvm_blocking_put_port #(trans) out;

 function new(string name, uvm_component parent=null);
 super.new(name,parent);
 out = new("out",this);
 endfunction

 virtual task run_phase(uvm_phase phase);
 trans t;
 phase.raise_objection(this, "prolonging run_phase");
 t = new;
 t.randomize();
 out.put(t);
 phase.drop_objection(this, "prolonging run_phase");
 endtask

endclass

class comp1 extends uvm_component;

 `uvm_component_utils(comp1)

 uvm_blocking_put_port #(trans) out;

 leaf1 leaf;

 function new(string name, uvm_component parent=null);
 super.new(name,parent);
 endfunction

 virtual function void build_phase(uvm_phase phase);
 out = new("out",this);
 leaf = new("leaf1",this);
 endfunction

 // connect port to port
 virtual function void connect_phase(uvm_phase phase);
 leaf.out.connect(out);
 endfunction

endclass

class leaf2 extends uvm_component;

 `uvm_component_utils(leaf2)

 uvm_blocking_put_imp #(trans,leaf2) in;

 function new(string name, uvm_component parent=null);
 super.new(name,parent);

UVM 1.2 Class Reference 248

 // connect imp to implementation (this)
 in = new("in",this);
 endfunction

 virtual task put(trans t);
 $display("Got trans: addr=%0d, data=%0d, write=%0d",
 t.addr, t.data, t.write);
 endtask

endclass

class subcomp2 extends uvm_component;

 `uvm_component_utils(subcomp2)

 uvm_blocking_put_export #(trans) in;

 leaf2 leaf;

 function new(string name, uvm_component parent=null);
 super.new(name,parent);
 endfunction

 virtual function void build_phase(uvm_phase phase);
 in = new("in",this);
 leaf = new("leaf2",this);
 endfunction

 // connect export to imp
 virtual function void connect_phase(uvm_phase phase);
 in.connect(leaf.in);
 endfunction

endclass

class comp2 extends uvm_component;

 `uvm_component_utils(comp2)

 uvm_blocking_put_export #(trans) in;

 subcomp2 subcomp;

 function new(string name, uvm_component parent=null);
 super.new(name,parent);
 endfunction

 virtual function void build_phase(uvm_phase phase);
 in = new("in",this);
 subcomp = new("subcomp2",this);
 endfunction

 // connect export to export
 virtual function void connect_phase(uvm_phase phase);
 in.connect(subcomp.in);
 endfunction

endclass

class env extends uvm_component;

 `uvm_component_utils(comp1)

 comp1 comp1_i;
 comp2 comp2_i;

 function new(string name, uvm_component parent=null);
 super.new(name,parent);
 endfunction

 virtual function void build_phase(uvm_phase phase);
 comp1_i = new("comp1",this);
 comp2_i = new("comp2",this);
 endfunction

 // connect port to export
 virtual function void connect_phase(uvm_phase phase);
 comp1_i.out.connect(comp2_i.in);
 endfunction

endclass

module top;
 env e = new("env");
 initial run_test();
 initial #10 uvm_top.stop_request();
endmodule

UVM 1.2 Class Reference 249

14.1 uvm_tlm_if_base #(T1,T2)

This class declares all of the methods of the TLM API.

Various subsets of these methods are combined to form primitive TLM interfaces, which
are then paired in various ways to form more abstract “combination” TLM interfaces.
Components that require a particular interface use ports to convey that requirement.
Components that provide a particular interface use exports to convey its availability.

Communication between components is established by connecting ports to compatible
exports, much like connecting module signal-level output ports to compatible input
ports. The difference is that UVM ports and exports bind interfaces (groups of methods),
not signals and wires. The methods of the interfaces so bound pass data as whole
transactions (e.g. objects). The set of primitive and combination TLM interfaces afford
many choices for designing components that communicate at the transaction level.

Summary

uvm_tlm_if_base #(T1,T2)

This class declares all of the methods of the TLM API.

CLAss DEcLARAtION

BLOcKING PUt

put Sends a user-defined transaction of type T.
BLOcKING GEt

get Provides a new transaction of type T.
BLOcKING PEEK

peek Obtain a new transaction without consuming it.
NON-bLOcKING

PUt

try_put Sends a transaction of type T, if possible.
can_put Returns 1 if the component is ready to accept the

transaction; 0 otherwise.
NON-bLOcKING

GEt

try_get Provides a new transaction of type T.
can_get Returns 1 if a new transaction can be provided immediately

upon request, 0 otherwise.
NON-bLOcKING

PEEK

try_peek Provides a new transaction without consuming it.
can_peek Returns 1 if a new transaction is available; 0 otherwise.

BLOcKING

tRANsPORt

transport Executes the given request and returns the response in the
given output argument.

NON-bLOcKING

tRANsPORt

nb_transport Executes the given request and returns the response in the
given output argument.

ANALYsIs

virtual class uvm_tlm_if_base #(
 type T1 = int,
 type T2 = int
)

UVM 1.2 Class Reference 250

write Broadcasts a user-defined transaction of type T to any
number of listeners.

BLOcKING PUt

put

Sends a user-defined transaction of type T.

Components implementing the put method will block the calling thread if it cannot
immediately accept delivery of the transaction.

BLOcKING GEt

get

Provides a new transaction of type T.

The calling thread is blocked if the requested transaction cannot be provided
immediately. The new transaction is returned in the provided output argument.

The implementation of get must regard the transaction as consumed. Subsequent calls
to get must return a different transaction instance.

BLOcKING PEEK

peek

Obtain a new transaction without consuming it.

If a transaction is available, then it is written to the provided output argument. If a
transaction is not available, then the calling thread is blocked until one is available.

The returned transaction is not consumed. A subsequent peek or get will return the
same transaction.

virtual task put(
 input T1 t
)

virtual task get(
 output T2 t
)

virtual task peek(
 output T2 t
)

UVM 1.2 Class Reference 251

NON-bLOcKING PUt

try_put

Sends a transaction of type T, if possible.

If the component is ready to accept the transaction argument, then it does so and
returns 1, otherwise it returns 0.

can_put

Returns 1 if the component is ready to accept the transaction; 0 otherwise.

NON-bLOcKING GEt

try_get

Provides a new transaction of type T.

If a transaction is immediately available, then it is written to the output argument and 1
is returned. Otherwise, the output argument is not modified and 0 is returned.

can_get

Returns 1 if a new transaction can be provided immediately upon request, 0 otherwise.

NON-bLOcKING PEEK

try_peek

Provides a new transaction without consuming it.

If available, a transaction is written to the output argument and 1 is returned. A

virtual function bit try_put(
 input T1 t
)

virtual function bit can_put()

virtual function bit try_get(
 output T2 t
)

virtual function bit can_get()

virtual function bit try_peek(
 output T2 t
)

UVM 1.2 Class Reference 252

subsequent peek or get will return the same transaction. If a transaction is not
available, then the argument is unmodified and 0 is returned.

can_peek

Returns 1 if a new transaction is available; 0 otherwise.

BLOcKING tRANsPORt

transport

Executes the given request and returns the response in the given output argument. The
calling thread may block until the operation is complete.

NON-bLOcKING tRANsPORt

nb_transport

Executes the given request and returns the response in the given output argument.
Completion of this operation must occur without blocking.

If for any reason the operation could not be executed immediately, then a 0 must be
returned; otherwise 1.

ANALYsIs

write

Broadcasts a user-defined transaction of type T to any number of listeners. The
operation must complete without blocking.

virtual function bit can_peek()

virtual task transport(
 input T1 req ,
 output T2 rsp
)

virtual function bit nb_transport(
 input T1 req,
 output T2 rsp
)

virtual function void write(
 input T1 t
)

UVM 1.2 Class Reference 253

14.2 TLM Export Classes

The following classes define the TLM export classes.

Contents

TLM Export
Classes

The following classes define the TLM export classes.

uvm_*_export
#(T)

The unidirectional uvm_*_export is a port that forwards or
promotes an interface implementation from a child component to
its parent.

uvm_*_export
#(REQ,RSP)

The bidirectional uvm_*_export is a port that forwards or
promotes an interface implementation from a child component to
its parent.

uvm_*_export #(T)

The unidirectional uvm_*_export is a port that forwards or promotes an interface
implementation from a child component to its parent. An export can be connected to
any compatible child export or imp port. It must ultimately be connected to at least one
implementation of its associated interface.

The interface type represented by the asterisk is any of the following

Type parameters

T The type of transaction to be communicated by the export

Exports are connected to interface implementations directly via uvm_*_imp #(T,IMP)
ports or indirectly via other uvm_*_export #(T) exports.

Summary

uvm_*_export #(T)

The unidirectional uvm_*_export is a port that forwards or promotes an interface
implementation from a child component to its parent.

MetHODs

blocking_put
nonblocking_put
put

blocking_get
nonblocking_get
get

blocking_peek
nonblocking_peek
peek

blocking_get_peek
nonblocking_get_peek
get_peek

UVM 1.2 Class Reference 254

new The name and parent are the standard uvm_component
constructor arguments.

MetHODs

new

The name and parent are the standard uvm_component constructor arguments. The
min_size and max_size specify the minimum and maximum number of interfaces that
must have been supplied to this port by the end of elaboration.

uvm_*_export #(REQ,RSP)

The bidirectional uvm_*_export is a port that forwards or promotes an interface
implementation from a child component to its parent. An export can be connected to
any compatible child export or imp port. It must ultimately be connected to at least one
implementation of its associated interface.

The interface type represented by the asterisk is any of the following

Type parameters

REQ The type of request transaction to be communicated by the export
RSP The type of response transaction to be communicated by the export

Exports are connected to interface implementations directly via uvm_*_imp #(REQ, RSP,
IMP, REQ_IMP, RSP_IMP) ports or indirectly via other uvm_*_export #(REQ,RSP)
exports.

Summary

uvm_*_export #(REQ,RSP)

The bidirectional uvm_*_export is a port that forwards or promotes an interface

function new (string name,
 uvm_component parent,
 int min_size=1,
 int max_size=1)

blocking_transport
nonblocking_transport
transport

blocking_master
nonblocking_master
master

blocking_slave
nonblocking_slave
slave

UVM 1.2 Class Reference 255

implementation from a child component to its parent.

MetHODs

new The name and parent are the standard uvm_component
constructor arguments.

MetHODs

new

The name and parent are the standard uvm_component constructor arguments. The
min_size and max_size specify the minimum and maximum number of interfaces that
must have been supplied to this port by the end of elaboration.

function new (string name,
 uvm_component parent,
 int min_size=1,
 int max_size=1)

UVM 1.2 Class Reference 256

14.3 TLM Port Classes

The following classes define the TLM port classes.

Contents

TLM Port
Classes

The following classes define the TLM port classes.

uvm_*_port
#(T)

These unidirectional ports are instantiated by components that
require, or use, the associated interface to convey transactions.

uvm_*_port
#(REQ,RSP)

These bidirectional ports are instantiated by components that
require, or use, the associated interface to convey transactions.

uvm_*_port #(T)

These unidirectional ports are instantiated by components that require, or use, the
associated interface to convey transactions. A port can be connected to any compatible
port, export, or imp port. Unless its min_size is 0, a port must be connected to at least
one implementation of its associated interface.

The asterisk in uvm_*_port is any of the following

Type parameters

T The type of transaction to be communicated by the export. The type T is
not restricted to class handles and may be a value type such as
int,enum,struct or similar.

Ports are connected to interface implementations directly via uvm_*_imp #(T,IMP) ports
or indirectly via hierarchical connections to uvm_*_port #(T) and uvm_*_export #(T)
ports.

Summary

uvm_*_port #(T)

These unidirectional ports are instantiated by components that require, or use,
the associated interface to convey transactions.

blocking_put
nonblocking_put
put

blocking_get
nonblocking_get
get

blocking_peek
nonblocking_peek
peek

blocking_get_peek
nonblocking_get_peek
get_peek

UVM 1.2 Class Reference 257

MEtHODs

new The name and parent are the standard uvm_component
constructor arguments.

MEtHODs

new

The name and parent are the standard uvm_component constructor arguments. The
min_size and max_size specify the minimum and maximum number of interfaces that
must have been connected to this port by the end of elaboration.

uvm_*_port #(REQ,RSP)

These bidirectional ports are instantiated by components that require, or use, the
associated interface to convey transactions. A port can be connected to any compatible
port, export, or imp port. Unless its min_size is 0, a port must be connected to at least
one implementation of its associated interface.

The asterisk in uvm_*_port is any of the following

Ports are connected to interface implementations directly via uvm_*_imp
#(REQ,RSP,IMP,REQ_IMP,RSP_IMP) ports or indirectly via hierarchical connections to
uvm_*_port #(REQ,RSP) and uvm_*_export #(REQ,RSP) ports.

Type parameters

REQ The type of request transaction to be communicated by the export
RSP The type of response transaction to be communicated by the export

Summary

uvm_*_port #(REQ,RSP)

function new (string name,
 uvm_component parent,
 int min_size=1,
 int max_size=1)

blocking_transport
nonblocking_transport
transport

blocking_master
nonblocking_master
master

blocking_slave
nonblocking_slave
slave

UVM 1.2 Class Reference 258

These bidirectional ports are instantiated by components that require, or use, the
associated interface to convey transactions.

MEtHODs

new The name and parent are the standard uvm_component
constructor arguments.

MEtHODs

new

The name and parent are the standard uvm_component constructor arguments. The
min_size and max_size specify the minimum and maximum number of interfaces that
must have been supplied to this port by the end of elaboration.

function new (string name, uvm_component parent, int min_size=1, int max_size=1)

UVM 1.2 Class Reference 259

14.4 uvm_*_imp ports

The following defines the TLM implementation (imp) classes.

Contents

uvm_*_imp
ports

The following defines the TLM implementation (imp) classes.

uvm_*_imp
#(T,IMP)

Unidirectional implementation (imp) port classes--An imp
port provides access to an implementation of the associated
interface to all connected ports and exports.

uvm_*_imp
#(REQ, RSP, IMP,
REQ_IMP,
RSP_IMP)

Bidirectional implementation (imp) port classes--An imp port
provides access to an implementation of the associated
interface to all connected ports and exports.

uvm_*_imp #(T,IMP)

Unidirectional implementation (imp) port classes--An imp port provides access to an
implementation of the associated interface to all connected ports and exports. Each imp
port instance must be connected to the component instance that implements the
associated interface, typically the imp port’s parent. All other connections-- e.g. to other
ports and exports-- are prohibited.

The asterisk in uvm_*_imp may be any of the following

Type parameters

T The type of transaction to be communicated by the imp
IMP The type of the component implementing the interface. That is, the

class to which this imp will delegate.

The interface methods are implemented in a component of type IMP, a handle to which is
passed in a constructor argument. The imp port delegates all interface calls to this
component.

Summary

uvm_*_imp #(T,IMP)

blocking_put
nonblocking_put
put

blocking_get
nonblocking_get
get

blocking_peek
nonblocking_peek
peek

blocking_get_peek
nonblocking_get_peek
get_peek

UVM 1.2 Class Reference 260

Unidirectional implementation (imp) port classes--An imp port provides access to
an implementation of the associated interface to all connected ports and exports.

MEtHODs

new Creates a new unidirectional imp port with the given name and
parent.

MEtHODs

new

Creates a new unidirectional imp port with the given name and parent. The parent must
implement the interface associated with this port. Its type must be the type specified in
the imp’s type-parameter, IMP.

uvm_*_imp #(REQ, RSP, IMP, REQ_IMP,
RSP_IMP)

Bidirectional implementation (imp) port classes--An imp port provides access to an
implementation of the associated interface to all connected ports and exports. Each imp
port instance must be connected to the component instance that implements the
associated interface, typically the imp port’s parent. All other connections-- e.g. to other
ports and exports-- are prohibited.

The interface represented by the asterisk is any of the following

Type parameters

REQ Request transaction type
RSP Response transaction type
IMP Component type that implements the interface methods, typically

the parent of this imp port.
REQ_IMP Component type that implements the request side of the interface.

Defaults to IMP. For master and slave imps only.

function new (string name, IMP parent);

blocking_transport
nonblocking_transport
transport

blocking_master
nonblocking_master
master

blocking_slave
nonblocking_slave
slave

UVM 1.2 Class Reference 261

RSP_IMP Component type that implements the response side of the
interface. Defaults to IMP. For master and slave imps only.

The interface methods are implemented in a component of type IMP, a handle to which is
passed in a constructor argument. The imp port delegates all interface calls to this
component.

The master and slave imps have two modes of operation.
A single component of type IMP implements the entire interface for both requests
and responses.
Two sibling components of type REQ_IMP and RSP_IMP implement the request and
response interfaces, respectively. In this case, the IMP parent instantiates this imp
port and the REQ_IMP and RSP_IMP components.

The second mode is needed when a component instantiates more than one imp port, as
in the uvm_tlm_req_rsp_channel #(REQ,RSP) channel.

Summary

uvm_*_imp #(REQ, RSP, IMP, REQ_IMP, RSP_IMP)

Bidirectional implementation (imp) port classes--An imp port provides access to
an implementation of the associated interface to all connected ports and exports.

MEtHODs

new Creates a new bidirectional imp port with the given name and
parent.

MEtHODs

new

Creates a new bidirectional imp port with the given name and parent. The parent, whose
type is specified by IMP type parameter, must implement the interface associated with
this port.

Transport imp constructor

Master and slave imp constructor

The optional req_imp and rsp_imp arguments, available to master and slave imp ports,
allow the requests and responses to be handled by different subcomponents. If they are
specified, they must point to the underlying component that implements the request and
response methods, respectively.

function new(string name, IMP imp)

function new(string name, IMP imp,
 REQ_IMP req_imp=imp, RSP_IMP rsp_imp=imp)

UVM 1.2 Class Reference 262

14.5 TLM FIFO Classes

This section defines TLM-based FIFO classes.

Contents

TLM FIFO Classes This section defines TLM-based FIFO classes.

uvm_tlm_fifo#(T) This class provides storage of transactions between
two independently running processes.

uvm_tlm_analysis_fifo#(T) An analysis_fifo is a uvm_tlm_fifo#(T) with an
unbounded size and a write interface.

uvm_tlm_fifo#(T)

This class provides storage of transactions between two independently running
processes. Transactions are put into the FIFO via the put_export. transactions are
fetched from the FIFO in the order they arrived via the get_peek_export. The put_export
and get_peek_export are inherited from the uvm_tlm_fifo_base #(T) super class, and the
interface methods provided by these exports are defined by the uvm_tlm_if_base
#(T1,T2) class.

Summary

uvm_tlm_fifo#(T)

This class provides storage of transactions between two independently running
processes.

MEtHoDs

new The name and parent are the normal uvm_component
constructor arguments.

size Returns the capacity of the FIFO-- that is, the number of entries
the FIFO is capable of holding.

used Returns the number of entries put into the FIFO.
is_empty Returns 1 when there are no entries in the FIFO, 0 otherwise.
is_full Returns 1 when the number of entries in the FIFO is equal to its

size, 0 otherwise.
flush Removes all entries from the FIFO, after which used returns 0

and is_empty returns 1.

MEtHoDs

new

function new(
 string name,
 uvm_component parent = null,
 int size = 1
)

UVM 1.2 Class Reference 263

The name and parent are the normal uvm_component constructor arguments. The
parent should be null if the uvm_tlm_fifo#(T) is going to be used in a statically
elaborated construct (e.g., a module). The size indicates the maximum size of the FIFO;
a value of zero indicates no upper bound.

size

Returns the capacity of the FIFO-- that is, the number of entries the FIFO is capable of
holding. A return value of 0 indicates the FIFO capacity has no limit.

used

Returns the number of entries put into the FIFO.

is_empty

Returns 1 when there are no entries in the FIFO, 0 otherwise.

is_full

Returns 1 when the number of entries in the FIFO is equal to its size, 0 otherwise.

flush

Removes all entries from the FIFO, after which used returns 0 and is_empty returns 1.

uvm_tlm_analysis_fifo#(T)

An analysis_fifo is a uvm_tlm_fifo#(T) with an unbounded size and a write interface. It
can be used any place a uvm_analysis_imp is used. Typical usage is as a buffer between
a uvm_analysis_port in an initiator component and TLM1 target component.

Summary

uvm_tlm_analysis_fifo#(T)

An analysis_fifo is a uvm_tlm_fifo#(T) with an unbounded size and a write

virtual function int size()

virtual function int used()

virtual function bit is_empty()

virtual function bit is_full()

virtual function void flush()

UVM 1.2 Class Reference 264

interface.

PoRts

analysis_export
#(T)

The analysis_export provides the write method to all
connected analysis ports and parent exports:

MEtHoDs

new This is the standard uvm_component constructor.

PoRts

analysis_export #(T)

The analysis_export provides the write method to all connected analysis ports and parent
exports:

Access via ports bound to this export is the normal mechanism for writing to an analysis
FIFO. See write method of uvm_tlm_if_base #(T1,T2) for more information.

MEtHoDs

new

This is the standard uvm_component constructor. name is the local name of this
component. The parent should be left unspecified when this component is instantiated in
statically elaborated constructs and must be specified when this component is a child of
another UVM component.

function void write (T t)

function new(
 string name ,
 uvm_component parent = null
)

UVM 1.2 Class Reference 265

14.6 uvm_tlm_fifo_base #(T)

This class is the base for uvm_tlm_fifo#(T). It defines the TLM exports through which all
transaction-based FIFO operations occur. It also defines default implementations for
each interface method provided by these exports.

The interface methods provided by the put_export and the get_peek_export are defined
and described by uvm_tlm_if_base #(T1,T2). See the TLM Overview section for a
general discussion of TLM interface definition and usage.

Parameter type

T The type of transactions to be stored by this FIFO.

Summary

uvm_tlm_fifo_base #(T)

This class is the base for uvm_tlm_fifo#(T).

CLAss HIERARchY

uvm_void

uvm_object

uvm_report_object

uvm_component

uvm_tlm_fifo_base#(T)

CLAss DEcLARAtION

PORts

put_export The put_export provides both the blocking and non-
blocking put interface methods to any attached port:

get_peek_export The get_peek_export provides all the blocking and non-
blocking get and peek interface methods:

put_ap Transactions passed via put or try_put (via any port
connected to the put_export) are sent out this port via
its write method.

get_ap Transactions passed via get, try_get, peek, or try_peek
(via any port connected to the get_peek_export) are sent
out this port via its write method.

MEthOds

new The name and parent are the normal uvm_component
constructor arguments.

PORts

put_export

virtual class uvm_tlm_fifo_base #(
 type T = int
) extends uvm_component

UVM 1.2 Class Reference 266

The put_export provides both the blocking and non-blocking put interface methods to
any attached port:

Any put port variant can connect and send transactions to the FIFO via this export,
provided the transaction types match. See uvm_tlm_if_base #(T1,T2) for more
information on each of the above interface methods.

get_peek_export

The get_peek_export provides all the blocking and non-blocking get and peek interface
methods:

Any get or peek port variant can connect to and retrieve transactions from the FIFO via
this export, provided the transaction types match. See uvm_tlm_if_base #(T1,T2) for
more information on each of the above interface methods.

put_ap

Transactions passed via put or try_put (via any port connected to the put_export) are
sent out this port via its write method.

All connected analysis exports and imps will receive put transactions. See
uvm_tlm_if_base #(T1,T2) for more information on the write interface method.

get_ap

Transactions passed via get, try_get, peek, or try_peek (via any port connected to the
get_peek_export) are sent out this port via its write method.

All connected analysis exports and imps will receive get transactions. See
uvm_tlm_if_base #(T1,T2) for more information on the write method.

task put (input T t)
function bit can_put ()
function bit try_put (input T t)

task get (output T t)
function bit can_get ()
function bit try_get (output T t)
task peek (output T t)
function bit can_peek ()
function bit try_peek (output T t)

function void write (T t)

function void write (T t)

UVM 1.2 Class Reference 267

MEthOds

new

The name and parent are the normal uvm_component constructor arguments. The
parent should be null if the uvm_tlm_fifo is going to be used in a statically elaborated
construct (e.g., a module). The size indicates the maximum size of the FIFO. A value of
zero indicates no upper bound.

function new(
 string name,
 uvm_component parent = null
)

UVM 1.2 Class Reference 268

14.7 TLM Channel Classes

This section defines built-in TLM channel classes.

Contents

TLM Channel Classes This section defines built-in TLM channel classes.

uvm_tlm_req_rsp_channel
#(REQ,RSP)

The uvm_tlm_req_rsp_channel contains a request
FIFO of type REQ and a response FIFO of type RSP.

uvm_tlm_transport_channel
#(REQ,RSP)

A uvm_tlm_transport_channel is a
uvm_tlm_req_rsp_channel #(REQ,RSP) that
implements the transport interface.

uvm_tlm_req_rsp_channel #(REQ,RSP)

The uvm_tlm_req_rsp_channel contains a request FIFO of type REQ and a response FIFO
of type RSP. These FIFOs can be of any size. This channel is particularly useful for
dealing with pipelined protocols where the request and response are not tightly coupled.

Type parameters

REQ Type of the request transactions conveyed by this channel.
RSP Type of the response transactions conveyed by this channel.

Summary

uvm_tlm_req_rsp_channel #(REQ,RSP)

The uvm_tlm_req_rsp_channel contains a request FIFO of type REQ and a
response FIFO of type RSP.

ClAss HIerArchY

uvm_void

uvm_object

uvm_report_object

uvm_component

uvm_tlm_req_rsp_channel#(REQ,RSP)

ClAss DeclArAtION

POrts

put_request_export The put_export provides both the blocking and
non-blocking put interface methods to the
request FIFO:

get_peek_response_export The get_peek_response_export provides all the
blocking and non-blocking get and peek

class uvm_tlm_req_rsp_channel #(
 type REQ = int,
 type RSP = REQ
) extends uvm_component

UVM 1.2 Class Reference 269

interface methods to the response FIFO:
get_peek_request_export The get_peek_export provides all the blocking

and non-blocking get and peek interface
methods to the response FIFO:

put_response_export The put_export provides both the blocking and
non-blocking put interface methods to the
response FIFO:

request_ap Transactions passed via put or try_put (via any
port connected to the put_request_export) are
sent out this port via its write method.

response_ap Transactions passed via put or try_put (via any
port connected to the put_response_export)
are sent out this port via its write method.

master_export Exports a single interface that allows a master
to put requests and get or peek responses.

slave_export Exports a single interface that allows a slave to
get or peek requests and to put responses.

MethOds

new The name and parent are the standard
uvm_component constructor arguments.

POrts

put_request_export

The put_export provides both the blocking and non-blocking put interface methods to the
request FIFO:

Any put port variant can connect and send transactions to the request FIFO via this
export, provided the transaction types match.

get_peek_response_export

The get_peek_response_export provides all the blocking and non-blocking get and peek
interface methods to the response FIFO:

Any get or peek port variant can connect to and retrieve transactions from the response
FIFO via this export, provided the transaction types match.

get_peek_request_export

task put (input T t);
function bit can_put ();
function bit try_put (input T t);

task get (output T t);
function bit can_get ();
function bit try_get (output T t);
task peek (output T t);
function bit can_peek ();
function bit try_peek (output T t);

UVM 1.2 Class Reference 270

The get_peek_export provides all the blocking and non-blocking get and peek interface
methods to the response FIFO:

Any get or peek port variant can connect to and retrieve transactions from the response
FIFO via this export, provided the transaction types match.

put_response_export

The put_export provides both the blocking and non-blocking put interface methods to the
response FIFO:

Any put port variant can connect and send transactions to the response FIFO via this
export, provided the transaction types match.

request_ap

Transactions passed via put or try_put (via any port connected to the
put_request_export) are sent out this port via its write method.

All connected analysis exports and imps will receive these transactions.

response_ap

Transactions passed via put or try_put (via any port connected to the
put_response_export) are sent out this port via its write method.

All connected analysis exports and imps will receive these transactions.

master_export

Exports a single interface that allows a master to put requests and get or peek

task get (output T t);
function bit can_get ();
function bit try_get (output T t);
task peek (output T t);
function bit can_peek ();
function bit try_peek (output T t);

task put (input T t);
function bit can_put ();
function bit try_put (input T t);

function void write (T t);

function void write (T t);

UVM 1.2 Class Reference 271

responses. It is a combination of the put_request_export and
get_peek_response_export.

slave_export

Exports a single interface that allows a slave to get or peek requests and to put
responses. It is a combination of the get_peek_request_export and
put_response_export.

MethOds

new

The name and parent are the standard uvm_component constructor arguments. The
parent must be null if this component is defined within a static component such as a
module, program block, or interface. The last two arguments specify the request and
response FIFO sizes, which have default values of 1.

uvm_tlm_transport_channel #(REQ,RSP)

A uvm_tlm_transport_channel is a uvm_tlm_req_rsp_channel #(REQ,RSP) that
implements the transport interface. It is useful when modeling a non-pipelined bus at
the transaction level. Because the requests and responses have a tightly coupled one-
to-one relationship, the request and response FIFO sizes are both set to one.

Summary

uvm_tlm_transport_channel #(REQ,RSP)

A uvm_tlm_transport_channel is a uvm_tlm_req_rsp_channel #(REQ,RSP) that
implements the transport interface.

ClAss HIerArchY

uvm_void

uvm_object

uvm_report_object

uvm_component

uvm_tlm_req_rsp_channel#(REQ,RSP)

uvm_tlm_transport_channel#(REQ,RSP)

ClAss DeclArAtION

function new (
 string name,
 uvm_component parent = null,
 int request_fifo_size = 1,
 int response_fifo_size = 1
)

UVM 1.2 Class Reference 272

POrts

transport_export The put_export provides both the blocking and non-
blocking transport interface methods to the response
FIFO:

MethOds

new The name and parent are the standard uvm_component
constructor arguments.

POrts

transport_export

The put_export provides both the blocking and non-blocking transport interface methods
to the response FIFO:

Any transport port variant can connect to and send requests and retrieve responses via
this export, provided the transaction types match. Upon return, the response argument
carries the response to the request.

MethOds

new

The name and parent are the standard uvm_component constructor arguments. The
parent must be null if this component is defined within a statically elaborated construct
such as a module, program block, or interface.

class uvm_tlm_transport_channel #(
 type REQ = int,
 type RSP = REQ
) extends uvm_tlm_req_rsp_channel #(REQ, RSP)

task transport(REQ request, output RSP response);
function bit nb_transport(REQ request, output RSP response);

function new (
 string name,
 uvm_component parent = null
)

UVM 1.2 Class Reference 273

14.8 Sequence Item Pull Ports

This section defines the port, export, and imp port classes for communicating sequence
items between uvm_sequencer #(REQ,RSP) and uvm_driver #(REQ,RSP).

Contents

Sequence Item Pull
Ports

This section defines the port, export, and imp port
classes for communicating sequence items between
uvm_sequencer #(REQ,RSP) and uvm_driver
#(REQ,RSP).

uvm_seq_item_pull_port
#(REQ,RSP)

UVM provides a port, export, and imp connector for
use in sequencer-driver communication.

uvm_seq_item_pull_export
#(REQ,RSP)

This export type is used in sequencer-driver
communication.

uvm_seq_item_pull_imp
#(REQ,RSP,IMP)

This imp type is used in sequencer-driver
communication.

uvm_seq_item_pull_port #(REQ,RSP)

UVM provides a port, export, and imp connector for use in sequencer-driver
communication. All have standard port connector constructors, except that
uvm_seq_item_pull_port’s default min_size argument is 0; it can be left unconnected.

Summary

uvm_seq_item_pull_port #(REQ,RSP)

UVM provides a port, export, and imp connector for use in sequencer-driver
communication.

CLAss HierArchY

uvm_port_base#(uvm_sqr_if_base#(REQ,RSP))

uvm_seq_item_pull_port#(REQ,RSP)

CLAss DecLArATiON

uvm_seq_item_pull_export #(REQ,RSP)

This export type is used in sequencer-driver communication. It has the standard
constructor for exports.

Summary

class uvm_seq_item_pull_port #(
 type REQ = int,
 type RSP = REQ
) extends uvm_port_base #(uvm_sqr_if_base #(REQ, RSP))

UVM 1.2 Class Reference 274

uvm_seq_item_pull_export #(REQ,RSP)

This export type is used in sequencer-driver communication.

CLAss HierArchY

uvm_port_base#(uvm_sqr_if_base#(REQ,RSP))

uvm_seq_item_pull_export#(REQ,RSP)

CLAss DecLArATiON

uvm_seq_item_pull_imp #(REQ,RSP,IMP)

This imp type is used in sequencer-driver communication. It has the standard
constructor for imp-type ports.

Summary

uvm_seq_item_pull_imp #(REQ,RSP,IMP)

This imp type is used in sequencer-driver communication.

CLAss HierArchY

uvm_port_base#(uvm_sqr_if_base#(REQ,RSP))

uvm_seq_item_pull_imp#(REQ,RSP,IMP)

CLAss DecLArATiON

MeThOds

new

MeThOds

new

class uvm_seq_item_pull_export #(
 type REQ = int,
 type RSP = REQ
) extends uvm_port_base #(uvm_sqr_if_base #(REQ, RSP))

class uvm_seq_item_pull_imp #(
 type REQ = int,
 type RSP = REQ,
 type IMP = int
) extends uvm_port_base #(uvm_sqr_if_base #(REQ, RSP))

UVM 1.2 Class Reference 275

14.9 uvm_sqr_if_base #(REQ,RSP)

This class defines an interface for sequence drivers to communicate with sequencers.
The driver requires the interface via a port, and the sequencer implements it and
provides it via an export.

Summary

uvm_sqr_if_base #(REQ,RSP)

This class defines an interface for sequence drivers to communicate with
sequencers.

CLAss DecLArATION

MeTHOds

get_next_item Retrieves the next available item from a
sequence.

try_next_item Retrieves the next available item from a
sequence if one is available.

item_done Indicates that the request is completed to
the sequencer.

wait_for_sequences Waits for a sequence to have a new item
available.

has_do_available Indicates whether a sequence item is
available for immediate processing.

get Retrieves the next available item from a
sequence.

peek Returns the current request item if one is
in the sequencer FIFO.

put Sends a response back to the sequence
that issued the request.

put_response Sends a response back to the sequence
that issued the request.

disable_auto_item_recording By default, item recording is performed
automatically when get_next_item() and
item_done() are called.

is_auto_item_recording_enabled Return TRUE if automatic item recording
is enabled for this port instance.

MeTHOds

get_next_item

Retrieves the next available item from a sequence. The call will block until an item is
available. The following steps occur on this call:

1 Arbitrate among requesting, unlocked, relevant sequences - choose the
highest priority sequence based on the current sequencer arbitration

virtual class uvm_sqr_if_base #(
 type T1 = uvm_object,
 T2 = T1
)

virtual task get_next_item(
 output T1 t
)

UVM 1.2 Class Reference 276

mode. If no sequence is available, wait for a requesting unlocked relevant
sequence, then re-arbitrate.

2 The chosen sequence will return from wait_for_grant
3 The chosen sequence uvm_sequence_base::pre_do is called
4 The chosen sequence item is randomized
5 The chosen sequence uvm_sequence_base::post_do is called
6 Return with a reference to the item

Once get_next_item is called, item_done must be called to indicate the completion of the
request to the sequencer. This will remove the request item from the sequencer FIFO.

try_next_item

Retrieves the next available item from a sequence if one is available. Otherwise, the
function returns immediately with request set to null. The following steps occur on this
call:

1 Arbitrate among requesting, unlocked, relevant sequences - choose the
highest priority sequence based on the current sequencer arbitration
mode. If no sequence is available, return null.

2 The chosen sequence will return from wait_for_grant
3 The chosen sequence uvm_sequence_base::pre_do is called
4 The chosen sequence item is randomized
5 The chosen sequence uvm_sequence_base::post_do is called
6 Return with a reference to the item

Once try_next_item is called, item_done must be called to indicate the completion of the
request to the sequencer. This will remove the request item from the sequencer FIFO.

item_done

Indicates that the request is completed to the sequencer. Any
uvm_sequence_base::wait_for_item_done calls made by a sequence for this item will
return.

The current item is removed from the sequencer FIFO.

If a response item is provided, then it will be sent back to the requesting sequence. The
response item must have its sequence ID and transaction ID set correctly, using the
uvm_sequence_item::set_id_info method:

Before item_done is called, any calls to peek will retrieve the current item that was

virtual task try_next_item(
 output T1 t
)

virtual function void item_done(
 input T2 t = null
)

rsp.set_id_info(req);

UVM 1.2 Class Reference 277

obtained by get_next_item. After item_done is called, peek will cause the sequencer to
arbitrate for a new item.

wait_for_sequences

Waits for a sequence to have a new item available. The default implementation in the
sequencer calls uvm_wait_for_nba_region. User-derived sequencers may override its
wait_for_sequences implementation to perform some other application-specific
implementation.

has_do_available

Indicates whether a sequence item is available for immediate processing.
Implementations should return 1 if an item is available, 0 otherwise.

get

Retrieves the next available item from a sequence. The call blocks until an item is
available. The following steps occur on this call:

1 Arbitrate among requesting, unlocked, relevant sequences - choose the
highest priority sequence based on the current sequencer arbitration
mode. If no sequence is available, wait for a requesting unlocked relevant
sequence, then re-arbitrate.

2 The chosen sequence will return from uvm_sequence_base::wait_for_grant
3 The chosen sequence uvm_sequence_base::pre_do is called
4 The chosen sequence item is randomized
5 The chosen sequence uvm_sequence_base::post_do is called
6 Indicate item_done to the sequencer
7 Return with a reference to the item

When get is called, item_done may not be called. A new item can be obtained by calling
get again, or a response may be sent using either put, or uvm_driver::rsp_port.write().

peek

Returns the current request item if one is in the sequencer FIFO. If no item is in the
FIFO, then the call will block until the sequencer has a new request. The following steps
will occur if the sequencer FIFO is empty:

1 Arbitrate among requesting, unlocked, relevant sequences - choose the

virtual task wait_for_sequences()

virtual function bit has_do_available()

virtual task get(
 output T1 t
)

virtual task peek(
 output T1 t
)

UVM 1.2 Class Reference 278

highest priority sequence based on the current sequencer arbitration
mode. If no sequence is available, wait for a requesting unlocked relevant
sequence, then re-arbitrate.

2 The chosen sequence will return from uvm_sequence_base::wait_for_grant
3 The chosen sequence uvm_sequence_base::pre_do is called
4 The chosen sequence item is randomized
5 The chosen sequence uvm_sequence_base::post_do is called

Once a request item has been retrieved and is in the sequencer FIFO, subsequent calls to
peek will return the same item. The item will stay in the FIFO until either get or
item_done is called.

put

Sends a response back to the sequence that issued the request. Before the response is
put, it must have its sequence ID and transaction ID set to match the request. This can
be done using the uvm_sequence_item::set_id_info call:

rsp.set_id_info(req);

While this is a task, it will not consume time (including delta cycles). The response will
be put into the sequence response queue or it will be sent to the sequence response
handler.

put_response

Sends a response back to the sequence that issued the request. Before the response is
put, it must have its sequence ID and transaction ID set to match the request. This can
be done using the uvm_sequence_item::set_id_info call:

rsp.set_id_info(req);

disable_auto_item_recording

By default, item recording is performed automatically when get_next_item() and
item_done() are called. However, this works only for simple, in-order, blocking
transaction execution. For pipelined and out-of-order transaction execution, the driver
must turn off this automatic recording and call uvm_transaction::accept_tr,
uvm_transaction::begin_tr and uvm_transaction::end_tr explicitly at appropriate points in
time.

This methods be called at the beginning of the driver’s run_phase() method. Once
disabled, automatic recording cannot be re-enabled.

For backward-compatibility, automatic item recording can be globally turned off at

virtual task put(
 input T2 t
)

virtual function void put_response(
 input T2 t
)

virtual function void disable_auto_item_recording()

UVM 1.2 Class Reference 279

compile time by defining UVM_DISABLE_AUTO_ITEM_RECORDING

is_auto_item_recording_enabled

Return TRUE if automatic item recording is enabled for this port instance.

virtual function bit is_auto_item_recording_enabled()

UVM 1.2 Class Reference 280

15. TLM2 Interfaces, Ports, Exports and Transport
Interfaces Subset

Sockets group together all the necessary core interfaces for transportation and binding,
allowing more generic usage models than just TLM core interfaces.

A socket is like a port or export; in fact it is derived from the same base class as ports
and export, namely uvm_port_base #(IF). However, unlike a port or export a socket
provides both a forward and backward path. Thus you can enable asynchronous
(pipelined) bi-directional communication by connecting sockets together. To enable this,
a socket contains both a port and an export. Components that initiate transactions are
called initiators, and components that receive transactions sent by an initiator are called
targets. Initiators have initiator sockets and targets have target sockets. Initiator
sockets can connect to target sockets. You cannot connect initiator sockets to other
initiator sockets and you cannot connect target sockets to target sockets.

The UVM TLM2 subset provides the following two transport interfaces

Blocking (b_transport) completes the entire transaction within a single
method call

Non-blocking (nb_transport) describes the progress of a transaction using
multiple nb_transport() method calls going back-
and-forth between initiator and target

In general, any component might modify a transaction object during its lifetime (subject
to the rules of the protocol). Significant timing points during the lifetime of a transaction
(for example: start of response- phase) are indicated by calling nb_transport() in either
forward or backward direction, the specific timing point being given by the phase
argument. Protocol-specific rules for reading or writing the attributes of a transaction
can be expressed relative to the phase. The phase can be used for flow control, and for
that reason might have a different value at each hop taken by a transaction; the phase is
not an attribute of the transaction object.

A call to nb_transport() always represents a phase transition. However, the return from
nb_transport() might or might not do so, the choice being indicated by the value
returned from the function (UVM_TLM_ACCEPTED versus UVM_TLM_UPDATED).
Generally, you indicate the completion of a transaction over a particular hop using the
value of the phase argument. As a shortcut, a target might indicate the completion of
the transaction by returning a special value of UVM_TLM_COMPLETED. However, this is
an option, not a necessity.

The transaction object itself does not contain any timing information by design. Or even
events and status information concerning the API. You can pass the delays as
arguments to b_transport()/ nb_transport() and push the actual realization of any delay
in the simulator kernel downstream and defer (for simulation speed).

Use Models

Since sockets are derived from uvm_port_base #(IF) they are created and connected in
the same way as port, and exports. Create them in the build phase and connect them in
the connect phase by calling connect(). Initiator and target termination sockets are on
the ends of any connection. There can be an arbitrary number of pass-through sockets
in the path between initiator and target. Some socket types must be bound to imps
implementations of the transport tasks and functions. Blocking terminator sockets must
be bound to an implementation of b_transport(), for example. Nonblocking initiator
sockets must be bound to an implementation of nb_transport_bw() and nonblocking
target sockets must be bound to an implementation of nb_transport_fw(). Typically, the

UVM 1.2 Class Reference 281

task or function is implemented in the component in which the socket is instantiated and
the component type and instance are provided to complete the binding.

Consider for example a consumer component with a blocking target socket.

Example

The interface task b_transport() is implemented in the consumer component. The
consumer component type is used in the declaration of the target socket. This informs
the socket object the type of the object that contains the interface task, in this case
b_transport(). When the socket is instantiated “this” is passed in twice, once as the
parent just like any other component instantiation and again to identify the object that
holds the implementation of b_transport(). Finally, in order to complete the binding, an
implementation of b_transport() must be present in the consumer component. Any
component that has either a blocking termination socket, a nonblocking initiator socket,
or a nonblocking termination socket must provide implementations of the relevant
components. This includes initiator and target components as well as interconnect
components that have these kinds of sockets. Components with pass-through sockets do
not need to provide implementations of any sort. Of course, they must ultimately be
connected to sockets that do that the necessary implementations.

In summary

Call to b_transport() start-of-life of transaction
Return from b_transport() end-of-life of transaction
Phase argument to nb_transport() timing point within lifetime of

transaction
Return value of nb_transport() whether return path is being used

(also shortcut to final phase)
Response status within transaction object protocol-specific status,

success/failure of transaction

On top of this, TLM-2.0 defines a generic payload and base protocol to enhance
interoperability for models with a memory-mapped bus interface.

It is possible to use the interfaces described above with user-defined transaction types
and protocols for the sake of interoperability. However, TLM-2.0 strongly recommends
either using the base protocol off-the-shelf or creating models of specific protocols on top
of the base protocol.

The UVM 1.2 standard only defines and supports this TLM2 style interface for
SystemVerilog to SystemVerilog communication. Mixed language TLM communication is
saved for future extension.

Summary

class consumer extends uvm_component;
 tlm2_b_target_socket #(consumer, trans) target_socket;
 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction
 function void build();
 target_socket = new("target_socket", this, this);
 endfunction
 task b_transport(trans t, uvm_tlm_time delay);
 #5;
 uvm_report_info("consumer", t.convert2string());
 endtask
endclass

UVM 1.2 Class Reference 282

TLM2 Interfaces, Ports, Exports and Transport Interfaces Subset

Sockets group together all the necessary core interfaces for transportation and
binding, allowing more generic usage models than just TLM core interfaces.

UVM 1.2 Class Reference 283

15.1 Interface Masks

Each of the following macros is a mask that identifies which interfaces a particular port
requires or export provides. The interfaces are identified by bit position and can be
OR’ed together for combination ports/exports. The mask is used to do run-time interface
type checking of port/export connections.

Summary

Interface Masks

Each of the following macros is a mask that identifies which interfaces a particular
port requires or export provides.

MACROs

`UVM_TLM_NB_FW_MASK Define Non blocking Forward mask onehot
assignment = ‘b001

`UVM_TLM_NB_BW_MASK Define Non blocking backward mask onehot
assignment = ‘b010

`UVM_TLM_B_MASK Define blocking mask onehot assignment =
‘b100

MACROs

`UVM_TLM_NB_FW_MASK

Define Non blocking Forward mask onehot assignment = ‘b001

`UVM_TLM_NB_BW_MASK

Define Non blocking backward mask onehot assignment = ‘b010

`UVM_TLM_B_MASK

Define blocking mask onehot assignment = ‘b100

UVM 1.2 Class Reference 284

15.2 TLM2 Types

Summary

TLM2 Types

ENUmeRAtIONs

uvm_tlm_phase_e Nonblocking transport synchronization state
values between an initiator and a target.

uvm_tlm_sync_e Pre-defined phase state values for the
nonblocking transport Base Protocol between
an initiator and a target.

MACROs

`UVM_TLM_TASK_ERROR Defines Not-Yet-Implemented TLM tasks
`UVM_TLM_FUNCTION_ERROR Defines Not-Yet-Implemented TLM functions

ENUmeRAtIONs

uvm_tlm_phase_e

Nonblocking transport synchronization state values between an initiator and a target.

UNINITIALIZED_PHASE Defaults for constructor
BEGIN_REQ Beginning of request phase
END_REQ End of request phase
BEGIN_RESP Beginning of response phase
END_RESP End of response phase

uvm_tlm_sync_e

Pre-defined phase state values for the nonblocking transport Base Protocol between an
initiator and a target.

UVM_TLM_ACCEPTED Transaction has been accepted
UVM_TLM_UPDATED Transaction has been modified
UVM_TLM_COMPLETED Execution of transaction is complete

MACROs

`UVM_TLM_TASK_ERROR

Defines Not-Yet-Implemented TLM tasks

UVM 1.2 Class Reference 285

`UVM_TLM_FUNCTION_ERROR

Defines Not-Yet-Implemented TLM functions

uvm_tlm_if

Base class type to define the transport functions.
nb_transport_fw
nb_transport_bw
b_transport

Summary

uvm_tlm_if

Base class type to define the transport functions.

ClAss DeClARAtION

tlm tRANsPORt

metHOds

Each of the interface methods take a handle to the
transaction to be transported and a reference argument
for the delay.

nb_transport_fw Forward path call.
nb_transport_bw Implementation of the backward path.
b_transport Execute a blocking transaction.

tlm tRANsPORt metHOds

Each of the interface methods take a handle to the transaction to be transported and a
reference argument for the delay. In addition, the nonblocking interfaces take a
reference argument for the phase.

nb_transport_fw

Forward path call. The first call to this method for a transaction marks the initial timing
point. Every call to this method may mark a timing point in the execution of the
transaction. The timing annotation argument allows the timing points to be offset from
the simulation times at which the forward path is used. The final timing point of a
transaction may be marked by a call to nb_transport_bw or a return from this or
subsequent call to nb_transport_fw.

See TLM2 Interfaces, Ports, Exports and Transport Interfaces Subset for more details on

class uvm_tlm_if #(
 type T = uvm_tlm_generic_payload,
 type P = uvm_tlm_phase_e
)

virtual function uvm_tlm_sync_e nb_transport_fw(
 T t,
 ref P p,
 input uvm_tlm_time delay
)

UVM 1.2 Class Reference 286

the semantics and rules of the nonblocking transport interface.

nb_transport_bw

Implementation of the backward path. This function MUST be implemented in the
INITIATOR component class.

Every call to this method may mark a timing point, including the final timing point, in the
execution of the transaction. The timing annotation argument allows the timing point to
be offset from the simulation times at which the backward path is used. The final timing
point of a transaction may be marked by a call to nb_transport_fw or a return from this
or subsequent call to nb_transport_bw.

See TLM2 Interfaces, Ports, Exports and Transport Interfaces Subset for more details on
the semantics and rules of the nonblocking transport interface.

Example

uvm_tlm_nb_initiator_socket #(trans, uvm_tlm_phase_e, this_t) initiator_socket;

initiator_socket = new(“initiator_socket”, this, this);

b_transport

Execute a blocking transaction. Once this method returns, the transaction is assumed to
have been executed. Whether that execution is successful or not must be indicated by

virtual function uvm_tlm_sync_e nb_transport_bw(
 T t,
 ref P p,
 input uvm_tlm_time delay
)

class master extends uvm_component;

...
function void build_phase(uvm_phase phase);

 endfunction

 function uvm_tlm_sync_e nb_transport_bw(ref trans t,
 ref uvm_tlm_phase_e p,
 input uvm_tlm_time delay);
 transaction = t;
 state = p;
 return UVM_TLM_ACCEPTED;
 endfunction

 ...
endclass

virtual task b_transport(
 T t,
 uvm_tlm_time delay
)

UVM 1.2 Class Reference 287

the transaction itself.

The callee may modify or update the transaction object, subject to any constraints
imposed by the transaction class. The initiator may re-use a transaction object from one
call to the next and across calls to b_transport().

The call to b_transport shall mark the first timing point of the transaction. The return
from b_transport shall mark the final timing point of the transaction. The timing
annotation argument allows the timing points to be offset from the simulation times at
which the task call and return are executed.

UVM 1.2 Class Reference 288

15.3 TLM Generic Payload & Extensions

The Generic Payload transaction represents a generic bus read/write access. It is used as
the default transaction in TLM2 blocking and nonblocking transport interfaces.

Contents

TLM Generic Payload &
Extensions

The Generic Payload transaction represents a
generic bus read/write access.

GlOBAlS Defines, Constants, enums.
uvm_tlm_command_e Command attribute type definition
uvm_tlm_response_status_e Response status attribute type definition

GeNeRIc PAYlOAD

uvm_tlm_generic_payload This class provides a transaction definition
commonly used in memory-mapped bus-based
systems.

uvm_tlm_gp This typedef provides a short, more convenient
name for the uvm_tlm_generic_payload type.

uvm_tlm_extension_base The class uvm_tlm_extension_base is the non-
parameterized base class for all generic payload
extensions.

uvm_tlm_extension TLM extension class.

GlOBAlS

Defines, Constants, enums.

uvm_tlm_command_e

Command attribute type definition

UVM_TLM_READ_COMMAND Bus read operation
UVM_TLM_WRITE_COMMAND Bus write operation
UVM_TLM_IGNORE_COMMAND No bus operation.

uvm_tlm_response_status_e

Response status attribute type definition

UVM_TLM_OK_RESPONSE Bus operation completed
successfully

UVM_TLM_INCOMPLETE_RESPONSE Transaction was not delivered
to target

UVM_TLM_GENERIC_ERROR_RESPONSE Bus operation had an error
UVM_TLM_ADDRESS_ERROR_RESPONSE Invalid address specified
UVM_TLM_COMMAND_ERROR_RESPONSE Invalid command specified
UVM_TLM_BURST_ERROR_RESPONSE Invalid burst specified
UVM_TLM_BYTE_ENABLE_ERROR_RESPONSE Invalid byte enabling specified

UVM 1.2 Class Reference 289

GeNeRIc PAYlOAD

uvm_tlm_generic_payload

This class provides a transaction definition commonly used in memory-mapped bus-based
systems. It’s intended to be a general purpose transaction class that lends itself to many
applications. The class is derived from uvm_sequence_item which enables it to be
generated in sequences and transported to drivers through sequencers.

Summary

uvm_tlm_generic_payload

This class provides a transaction definition commonly used in memory-mapped
bus-based systems.

ClASS HIeRARchY

uvm_void

uvm_object

uvm_transaction

uvm_sequence_item

uvm_tlm_generic_payload

ClASS DeclARAtION

m_address Address for the bus operation.
m_command Bus operation type.
m_data Data read or to be written.
m_length The number of bytes to be copied to or from the

m_data array, inclusive of any bytes disabled by
the m_byte_enable attribute.

m_response_status Status of the bus operation.
m_dmi DMI mode is not yet supported in the UVM TLM2

subset.
m_byte_enable Indicates valid m_data array elements.
m_byte_enable_length The number of elements in the m_byte_enable

array.
m_streaming_width Number of bytes transferred on each beat.
new Create a new instance of the generic payload.
AcceSSORS The accessor functions let you set and get each of

the members of the generic payload.
get_command Get the value of the m_command variable
set_command Set the value of the m_command variable
is_read Returns true if the current value of the

m_command variable is
UVM_TLM_READ_COMMAND.

set_read Set the current value of the m_command variable
to UVM_TLM_READ_COMMAND.

is_write Returns true if the current value of the
m_command variable is
UVM_TLM_WRITE_COMMAND.

set_write Set the current value of the m_command variable

class uvm_tlm_generic_payload extends uvm_sequence_item

UVM 1.2 Class Reference 290

to UVM_TLM_WRITE_COMMAND.
set_address Set the value of the m_address variable
get_address Get the value of the m_address variable
get_data Return the value of the m_data array
set_data Set the value of the m_data array
get_data_length Return the current size of the m_data array
set_data_length Set the value of the m_length
get_streaming_width Get the value of the m_streaming_width array
set_streaming_width Set the value of the m_streaming_width array
get_byte_enable Return the value of the m_byte_enable array
set_byte_enable Set the value of the m_byte_enable array
get_byte_enable_length Return the current size of the m_byte_enable

array
set_byte_enable_length Set the size m_byte_enable_length of the

m_byte_enable array
set_dmi_allowed DMI hint.
is_dmi_allowed DMI hint.
get_response_status Return the current value of the

m_response_status variable
set_response_status Set the current value of the m_response_status

variable
is_response_ok Return TRUE if the current value of the

m_response_status variable is
UVM_TLM_OK_RESPONSE

is_response_error Return TRUE if the current value of the
m_response_status variable is not
UVM_TLM_OK_RESPONSE

get_response_string Return the current value of the
m_response_status variable as a string

EXteNSIONS MechANISm

set_extension Add an instance-specific extension.
get_num_extensions Return the current number of instance specific

extensions.
get_extension Return the instance specific extension bound

under the specified key.
clear_extension Remove the instance-specific extension bound

under the specified key.
clear_extensions Remove all instance-specific extensions
pre_randomize() Prepare this class instance for randomization
post_randomize() Clean-up this class instance after randomization

m_address

Address for the bus operation. Should be set or read using the set_address and
get_address methods. The variable should be used only when constraining.

For a read command or a write command, the target shall interpret the current value of
the address attribute as the start address in the system memory map of the contiguous
block of data being read or written. The address associated with any given byte in the
data array is dependent upon the address attribute, the array index, the streaming width
attribute, the endianness and the width of the physical bus.

If the target is unable to execute the transaction with the given address attribute
(because the address is out-of-range, for example) it shall generate a standard error
response. The recommended response status is UVM_TLM_ADDRESS_ERROR_RESPONSE.

m_command

rand bit [63:0] m_address

UVM 1.2 Class Reference 291

Bus operation type. Should be set using the set_command, set_read or set_write
methods and read using the get_command, is_read or is_write methods. The variable
should be used only when constraining.

If the target is unable to execute a read or write command, it shall generate a standard
error response. The recommended response status is
UVM_TLM_COMMAND_ERROR_RESPONSE.

On receipt of a generic payload transaction with the command attribute equal to
UVM_TLM_IGNORE_COMMAND, the target shall not execute a write command or a read
command not modify any data. The target may, however, use the value of any attribute
in the generic payload, including any extensions.

The command attribute shall be set by the initiator, and shall not be overwritten by any
interconnect

m_data

Data read or to be written. Should be set and read using the set_data or get_data
methods The variable should be used only when constraining.

For a read command or a write command, the target shall copy data to or from the data
array, respectively, honoring the semantics of the remaining attributes of the generic
payload.

For a write command or UVM_TLM_IGNORE_COMMAND, the contents of the data array
shall be set by the initiator, and shall not be overwritten by any interconnect component
or target. For a read command, the contents of the data array shall be overwritten by
the target (honoring the semantics of the byte enable) but by no other component.

Unlike the OSCI TLM-2.0 LRM, there is no requirement on the endiannes of multi-byte
data in the generic payload to match the host endianness. Unlike C++, it is not possible
in SystemVerilog to cast an arbitrary data type as an array of bytes. Therefore,
matching the host endianness is not necessary. In contrast, arbitrary data types may be
converted to and from a byte array using the streaming operator and uvm_object objects
may be further converted using the uvm_object::pack_bytes() and
uvm_object::unpack_bytes() methods. All that is required is that a consistent
mechanism is used to fill the payload data array and later extract data from it.

Should a generic payload be transferred to/from a SystemC model, it will be necessary
for any multi-byte data in that generic payload to use/be interpreted using the host
endianness. However, this process is currently outside the scope of this standard.

m_length

The number of bytes to be copied to or from the m_data array, inclusive of any bytes
disabled by the m_byte_enable attribute.

The data length attribute shall be set by the initiator, and shall not be overwritten by any
interconnect component or target.

The data length attribute shall not be set to 0. In order to transfer zero bytes, the

rand uvm_tlm_command_e m_command

rand byte unsigned m_data[]

rand int unsigned m_length

UVM 1.2 Class Reference 292

m_command attribute should be set to UVM_TLM_IGNORE_COMMAND.

m_response_status

Status of the bus operation. Should be set using the set_response_status method and
read using the get_response_status, get_response_string, is_response_ok or
is_response_error methods. The variable should be used only when constraining.

The response status attribute shall be set to UVM_TLM_INCOMPLETE_RESPONSE by the
initiator, and may be overwritten by the target. The response status attribute should not
be overwritten by any interconnect component, because the default value
UVM_TLM_INCOMPLETE_RESPONSE indicates that the transaction was not delivered to
the target.

The target may set the response status attribute to UVM_TLM_OK_RESPONSE to indicate
that it was able to execute the command successfully, or to one of the five error
responses to indicate an error. The target should choose the appropriate error response
depending on the cause of the error. If a target detects an error but is unable to select
a specific error response, it may set the response status to
UVM_TLM_GENERIC_ERROR_RESPONSE.

The target shall be responsible for setting the response status attribute at the
appropriate point in the lifetime of the transaction. In the case of the blocking transport
interface, this means before returning control from b_transport. In the case of the non-
blocking transport interface and the base protocol, this means before sending the
BEGIN_RESP phase or returning a value of UVM_TLM_COMPLETED.

It is recommended that the initiator should always check the response status attribute on
receiving a transition to the BEGIN_RESP phase or after the completion of the
transaction. An initiator may choose to ignore the response status if it is known in
advance that the value will be UVM_TLM_OK_RESPONSE, perhaps because it is known in
advance that the initiator is only connected to targets that always return
UVM_TLM_OK_RESPONSE, but in general this will not be the case. In other words, the
initiator ignores the response status at its own risk.

m_dmi

DMI mode is not yet supported in the UVM TLM2 subset. This variable is provided for
completeness and interoperability with SystemC.

m_byte_enable

Indicates valid m_data array elements. Should be set and read using the
set_byte_enable or get_byte_enable methods The variable should be used only when
constraining.

The elements in the byte enable array shall be interpreted as follows. A value of 8’h00
shall indicate that that corresponding byte is disabled, and a value of 8’hFF shall indicate
that the corresponding byte is enabled.

rand uvm_tlm_response_status_e m_response_status

bit m_dmi

rand byte unsigned m_byte_enable[]

UVM 1.2 Class Reference 293

Byte enables may be used to create burst transfers where the address increment
between each beat is greater than the number of significant bytes transferred on each
beat, or to place words in selected byte lanes of a bus. At a more abstract level, byte
enables may be used to create “lacy bursts” where the data array of the generic payload
has an arbitrary pattern of holes punched in it.

The byte enable mask may be defined by a small pattern applied repeatedly or by a large
pattern covering the whole data array. The byte enable array may be empty, in which
case byte enables shall not be used for the current transaction.

The byte enable array shall be set by the initiator and shall not be overwritten by any
interconnect component or target.

If the byte enable pointer is not empty, the target shall either implement the semantics
of the byte enable as defined below or shall generate a standard error response. The
recommended response status is UVM_TLM_BYTE_ENABLE_ERROR_RESPONSE.

In the case of a write command, any interconnect component or target should ignore the
values of any disabled bytes in the m_data array. In the case of a read command, any
interconnect component or target should not modify the values of disabled bytes in the
m_data array.

m_byte_enable_length

The number of elements in the m_byte_enable array.

It shall be set by the initiator, and shall not be overwritten by any interconnect
component or target.

m_streaming_width

Number of bytes transferred on each beat. Should be set and read using the
set_streaming_width or get_streaming_width methods The variable should be used only
when constraining.

Streaming affects the way a component should interpret the data array. A stream
consists of a sequence of data transfers occurring on successive notional beats, each beat
having the same start address as given by the generic payload address attribute. The
streaming width attribute shall determine the width of the stream, that is, the number of
bytes transferred on each beat. In other words, streaming affects the local address
associated with each byte in the data array. In all other respects, the organization of the
data array is unaffected by streaming.

The bytes within the data array have a corresponding sequence of local addresses within
the component accessing the generic payload transaction. The lowest address is given by
the value of the address attribute. The highest address is given by the formula
address_attribute + streaming_width - 1. The address to or from which each byte is
being copied in the target shall be set to the value of the address attribute at the start
of each beat.

With respect to the interpretation of the data array, a single transaction with a streaming
width shall be functionally equivalent to a sequence of transactions each having the same
address as the original transaction, each having a data length attribute equal to the
streaming width of the original, and each with a data array that is a different subset of

rand int unsigned m_byte_enable_length

rand int unsigned m_streaming_width

UVM 1.2 Class Reference 294

the original data array on each beat. This subset effectively steps down the original data
array maintaining the sequence of bytes.

A streaming width of 0 indicates that a streaming transfer is not required. it is equivalent
to a streaming width value greater than or equal to the size of the m_data array.

Streaming may be used in conjunction with byte enables, in which case the streaming
width would typically be equal to the byte enable length. It would also make sense to
have the streaming width a multiple of the byte enable length. Having the byte enable
length a multiple of the streaming width would imply that different bytes were enabled
on each beat.

If the target is unable to execute the transaction with the given streaming width, it shall
generate a standard error response. The recommended response status is
TLM_BURST_ERROR_RESPONSE.

new

Create a new instance of the generic payload. Initialize all the members to their default
values.

AcceSSORS

The accessor functions let you set and get each of the members of the generic payload.
All of the accessor methods are virtual. This implies a slightly different use model for
the generic payload than in SystemC. The way the generic payload is defined in
SystemC does not encourage you to create new transaction types derived from
uvm_tlm_generic_payload. Instead, you would use the extensions mechanism. Thus in
SystemC none of the accessors are virtual.

get_command

Get the value of the m_command variable

set_command

Set the value of the m_command variable

is_read

Returns true if the current value of the m_command variable is

function new(
 string name = ""
)

virtual function uvm_tlm_command_e get_command()

virtual function void set_command(
 uvm_tlm_command_e command
)

virtual function bit is_read()

UVM 1.2 Class Reference 295

UVM_TLM_READ_COMMAND.

set_read

Set the current value of the m_command variable to UVM_TLM_READ_COMMAND.

is_write

Returns true if the current value of the m_command variable is
UVM_TLM_WRITE_COMMAND.

set_write

Set the current value of the m_command variable to UVM_TLM_WRITE_COMMAND.

set_address

Set the value of the m_address variable

get_address

Get the value of the m_address variable

get_data

Return the value of the m_data array

set_data

Set the value of the m_data array

virtual function void set_read()

virtual function bit is_write()

virtual function void set_write()

virtual function void set_address(
 bit [63:0] addr
)

virtual function bit [63:0] get_address()

virtual function void get_data (
 output byte unsigned p []
)

virtual function void set_data(
 ref byte unsigned p []
)

UVM 1.2 Class Reference 296

get_data_length

Return the current size of the m_data array

set_data_length

Set the value of the m_length

get_streaming_width

Get the value of the m_streaming_width array

set_streaming_width

Set the value of the m_streaming_width array

get_byte_enable

Return the value of the m_byte_enable array

set_byte_enable

Set the value of the m_byte_enable array

get_byte_enable_length

Return the current size of the m_byte_enable array

virtual function int unsigned get_data_length()

virtual function void set_data_length(
 int unsigned length
)

virtual function int unsigned get_streaming_width()

virtual function void set_streaming_width(
 int unsigned width
)

virtual function void get_byte_enable(
 output byte unsigned p[]
)

virtual function void set_byte_enable(
 ref byte unsigned p[]
)

virtual function int unsigned get_byte_enable_length()

UVM 1.2 Class Reference 297

set_byte_enable_length

Set the size m_byte_enable_length of the m_byte_enable array i.e.
m_byte_enable.size()

set_dmi_allowed

DMI hint. Set the internal flag m_dmi to allow dmi access

is_dmi_allowed

DMI hint. Query the internal flag m_dmi if allowed dmi access

get_response_status

Return the current value of the m_response_status variable

set_response_status

Set the current value of the m_response_status variable

is_response_ok

Return TRUE if the current value of the m_response_status variable is
UVM_TLM_OK_RESPONSE

is_response_error

Return TRUE if the current value of the m_response_status variable is not
UVM_TLM_OK_RESPONSE

virtual function void set_byte_enable_length(
 int unsigned length
)

virtual function void set_dmi_allowed(
 bit dmi
)

virtual function bit is_dmi_allowed()

virtual function uvm_tlm_response_status_e get_response_status()

virtual function void set_response_status(
 uvm_tlm_response_status_e status
)

virtual function bit is_response_ok()

virtual function bit is_response_error()

UVM 1.2 Class Reference 298

get_response_string

Return the current value of the m_response_status variable as a string

EXteNSIONS MechANISm

set_extension

Add an instance-specific extension. Only one instance of any given extension type is
allowed. If there is an existing extension instance of the type of ext, ext replaces it and
its handle is returned. Otherwise, null is returned.

get_num_extensions

Return the current number of instance specific extensions.

get_extension

Return the instance specific extension bound under the specified key. If no extension is
bound under that key, null is returned.

clear_extension

Remove the instance-specific extension bound under the specified key.

clear_extensions

Remove all instance-specific extensions

pre_randomize()

virtual function string get_response_string()

function uvm_tlm_extension_base set_extension(
 uvm_tlm_extension_base ext
)

function int get_num_extensions()

function uvm_tlm_extension_base get_extension(
 uvm_tlm_extension_base ext_handle
)

function void clear_extension(
 uvm_tlm_extension_base ext_handle
)

function void clear_extensions()

UVM 1.2 Class Reference 299

Prepare this class instance for randomization

post_randomize()

Clean-up this class instance after randomization

uvm_tlm_gp

This typedef provides a short, more convenient name for the uvm_tlm_generic_payload
type.

Summary

uvm_tlm_gp

This typedef provides a short, more convenient name for the
uvm_tlm_generic_payload type.

ClASS DeclARAtION

uvm_tlm_extension_base

The class uvm_tlm_extension_base is the non-parameterized base class for all generic
payload extensions. It includes the utility do_copy() and create(). The pure virtual
function get_type_handle() allows you to get a unique handle that represents the derived
type. This is implemented in derived classes.

This class is never used directly by users. The uvm_tlm_extension class is used instead.

Summary

uvm_tlm_extension_base

The class uvm_tlm_extension_base is the non-parameterized base class for all
generic payload extensions.

ClASS HIeRARchY

uvm_void

uvm_object

uvm_tlm_extension_base

ClASS DeclARAtION

function void pre_randomize()

function void post_randomize()

typedef uvm_tlm_generic_payload uvm_tlm_gp

UVM 1.2 Class Reference 300

MethODS

new
get_type_handle An interface to polymorphically retrieve a handle

that uniquely identifies the type of the sub-class
get_type_handle_name An interface to polymorphically retrieve the name

that uniquely identifies the type of the sub-class
create

MethODS

new

get_type_handle

An interface to polymorphically retrieve a handle that uniquely identifies the type of the
sub-class

get_type_handle_name

An interface to polymorphically retrieve the name that uniquely identifies the type of the
sub-class

create

uvm_tlm_extension

TLM extension class. The class is parameterized with arbitrary type which represents the
type of the extension. An instance of the generic payload can contain one extension
object of each type; it cannot contain two instances of the same extension type.

The extension type can be identified using the ID() method.

To implement a generic payload extension, simply derive a new class from this class and
specify the name of the derived class as the extension parameter.

virtual class uvm_tlm_extension_base extends uvm_object

function new(
 string name = ""
)

pure virtual function uvm_tlm_extension_base get_type_handle()

pure virtual function string get_type_handle_name()

virtual function uvm_object create (
 string name = ""
)

UVM 1.2 Class Reference 301

Summary

uvm_tlm_extension

TLM extension class.

ClASS HIeRARchY

uvm_void

uvm_object

uvm_tlm_extension_base

uvm_tlm_extension

ClASS DeclARAtION

MethODS

new creates a new extension object.
ID() Return the unique ID of this TLM extension type.

MethODS

new

creates a new extension object.

ID()

Return the unique ID of this TLM extension type. This method is used to identify the
type of the extension to retrieve from a uvm_tlm_generic_payload instance, using the
uvm_tlm_generic_payload::get_extension() method.

class my_ID extends uvm_tlm_extension#(my_ID);
 int ID;

 `uvm_object_utils_begin(my_ID)
 `uvm_field_int(ID, UVM_ALL_ON)
 `uvm_object_utils_end

 function new(string name = "my_ID");
 super.new(name);
 endfunction
endclass

class uvm_tlm_extension #(
 type T = int
) extends uvm_tlm_extension_base

function new(
 string name = ""
)

static function this_type ID()

UVM 1.2 Class Reference 302

15.4 TLM Socket Base Classes

A collection of base classes, one for each socket type. The reason for having a base
class for each socket is that all the socket (base) types must be known before connect is
defined. Socket connection semantics are provided in the derived classes, which are user
visible.

Termination Sockets A termination socket must be the terminus of every
TLM path. A transaction originates with an initiator
socket and ultimately ends up in a target socket.
There may be zero or more pass-through sockets
between initiator and target.

Pass-through Sockets Pass-through initiators are ports and contain exports
for instance IS-A port and HAS-A export. Pass-
through targets are the opposite, they are exports and
contain ports.

Contents

TLM Socket Base Classes A collection of base classes,
one for each socket type.

uvm_tlm_b_target_socket_base IS-A forward imp; has no
backward path except via the
payload contents.

uvm_tlm_b_initiator_socket_base IS-A forward port; has no
backward path except via the
payload contents

uvm_tlm_nb_target_socket_base IS-A forward imp; HAS-A
backward port

uvm_tlm_nb_initiator_socket_base IS-A forward port; HAS-A
backward imp

uvm_tlm_nb_passthrough_initiator_socket_base IS-A forward port; HAS-A
backward export

uvm_tlm_nb_passthrough_target_socket_base IS-A forward export; HAS-A
backward port

uvm_tlm_b_passthrough_initiator_socket_base IS-A forward port
uvm_tlm_b_passthrough_target_socket_base IS-A forward export

uvm_tlm_b_target_socket_base

IS-A forward imp; has no backward path except via the payload contents.

Summary

uvm_tlm_b_target_socket_base

IS-A forward imp; has no backward path except via the payload contents.

ClAss HIERARchY

uvm_port_base#(uvm_tlm_if#(T))

uvm_tlm_b_target_socket_base

UVM 1.2 Class Reference 303

ClAss DEclARAtION

uvm_tlm_b_initiator_socket_base

IS-A forward port; has no backward path except via the payload contents

Summary

uvm_tlm_b_initiator_socket_base

IS-A forward port; has no backward path except via the payload contents

ClAss HIERARchY

uvm_port_base#(uvm_tlm_if#(T))

uvm_tlm_b_initiator_socket_base

ClAss DEclARAtION

uvm_tlm_nb_target_socket_base

IS-A forward imp; HAS-A backward port

Summary

uvm_tlm_nb_target_socket_base

IS-A forward imp; HAS-A backward port

ClAss HIERARchY

uvm_port_base#(uvm_tlm_if#(T,P))

uvm_tlm_nb_target_socket_base

ClAss DEclARAtION

class uvm_tlm_b_target_socket_base #(
 type T = uvm_tlm_generic_payload
) extends uvm_port_base #(uvm_tlm_if #(T))

class uvm_tlm_b_initiator_socket_base #(
 type T = uvm_tlm_generic_payload
) extends uvm_port_base #(uvm_tlm_if #(T))

class uvm_tlm_nb_target_socket_base #(
 type T = uvm_tlm_generic_payload,
 type P = uvm_tlm_phase_e
) extends uvm_port_base #(uvm_tlm_if #(T,P))

UVM 1.2 Class Reference 304

uvm_tlm_nb_initiator_socket_base

IS-A forward port; HAS-A backward imp

Summary

uvm_tlm_nb_initiator_socket_base

IS-A forward port; HAS-A backward imp

ClAss HIERARchY

uvm_port_base#(uvm_tlm_if#(T,P))

uvm_tlm_nb_initiator_socket_base

ClAss DEclARAtION

uvm_tlm_nb_passthrough_initiator_socket_base

IS-A forward port; HAS-A backward export

Summary

uvm_tlm_nb_passthrough_initiator_socket_base

IS-A forward port; HAS-A backward export

ClAss HIERARchY

uvm_port_base#(uvm_tlm_if#(T,P))

uvm_tlm_nb_passthrough_initiator_socket_base

ClAss DEclARAtION

uvm_tlm_nb_passthrough_target_socket_base

IS-A forward export; HAS-A backward port

Summary

class uvm_tlm_nb_initiator_socket_base #(
 type T = uvm_tlm_generic_payload,
 type P = uvm_tlm_phase_e
) extends uvm_port_base #(uvm_tlm_if #(T,P))

class uvm_tlm_nb_passthrough_initiator_socket_base #(
 type T = uvm_tlm_generic_payload,
 type P = uvm_tlm_phase_e
) extends uvm_port_base #(uvm_tlm_if #(T,P))

UVM 1.2 Class Reference 305

uvm_tlm_nb_passthrough_target_socket_base

IS-A forward export; HAS-A backward port

ClAss HIERARchY

uvm_port_base#(uvm_tlm_if#(T,P))

uvm_tlm_nb_passthrough_target_socket_base

ClAss DEclARAtION

uvm_tlm_b_passthrough_initiator_socket_base

IS-A forward port

Summary

uvm_tlm_b_passthrough_initiator_socket_base

IS-A forward port

ClAss HIERARchY

uvm_port_base#(uvm_tlm_if#(T))

uvm_tlm_b_passthrough_initiator_socket_base

ClAss DEclARAtION

uvm_tlm_b_passthrough_target_socket_base

IS-A forward export

Summary

uvm_tlm_b_passthrough_target_socket_base

IS-A forward export

ClAss HIERARchY

uvm_port_base#(uvm_tlm_if#(T))

uvm_tlm_b_passthrough_target_socket_base

class uvm_tlm_nb_passthrough_target_socket_base #(
 type T = uvm_tlm_generic_payload,
 type P = uvm_tlm_phase_e
) extends uvm_port_base #(uvm_tlm_if #(T,P))

class uvm_tlm_b_passthrough_initiator_socket_base #(
 type T = uvm_tlm_generic_payload
) extends uvm_port_base #(uvm_tlm_if #(T))

UVM 1.2 Class Reference 306

ClAss DEclARAtION

class uvm_tlm_b_passthrough_target_socket_base #(
 type T = uvm_tlm_generic_payload
) extends uvm_port_base #(uvm_tlm_if #(T))

UVM 1.2 Class Reference 307

15.5 TLM Sockets

Each uvm_tlm_*_socket class is derived from a corresponding uvm_tlm_*_socket_base
class. The base class contains most of the implementation of the class, The derived
classes (in this file) contain the connection semantics.

Sockets come in several flavors: Each socket is either an initiator or a target, a pass-
through or a terminator. Further, any particular socket implements either the blocking
interfaces or the nonblocking interfaces. Terminator sockets are used on initiators and
targets as well as interconnect components as shown in the figure above. Pass-through
sockets are used to enable connections to cross hierarchical boundaries.

There are eight socket types: the cross of blocking and nonblocking, pass-through and
termination, target and initiator

Sockets are specified based on what they are (IS-A) and what they contains (HAS-A).
IS-A and HAS-A are types of object relationships. IS-A refers to the inheritance
relationship and HAS-A refers to the ownership relationship. For example if you say D is
a B that means that D is derived from base B. If you say object A HAS-A B that means
that B is a member of A.

Contents

TLM Sockets Each uvm_tlm_*_socket class is
derived from a corresponding
uvm_tlm_*_socket_base class.

uvm_tlm_b_initiator_socket IS-A forward port; has no backward
path except via the payload contents

uvm_tlm_b_target_socket IS-A forward imp; has no backward
path except via the payload contents.

uvm_tlm_nb_initiator_socket IS-A forward port; HAS-A backward
imp

uvm_tlm_nb_target_socket IS-A forward imp; HAS-A backward
port

uvm_tlm_b_passthrough_initiator_socket IS-A forward port;
uvm_tlm_b_passthrough_target_socket IS-A forward export;
uvm_tlm_nb_passthrough_initiator_socket IS-A forward port; HAS-A backward

export
uvm_tlm_nb_passthrough_target_socket IS-A forward export; HAS-A

backward port

uvm_tlm_b_initiator_socket

IS-A forward port; has no backward path except via the payload contents

Summary

uvm_tlm_b_initiator_socket

IS-A forward port; has no backward path except via the payload contents

ClAss HIERARchY

uvm_tlm_b_initiator_socket_base#(T)

UVM 1.2 Class Reference 308

uvm_tlm_b_initiator_socket

ClAss DEclARAtION

MEthOds

new Construct a new instance of this socket
Connect Connect this socket to the specified uvm_tlm_b_target_socket

MEthOds

new

Construct a new instance of this socket

Connect

Connect this socket to the specified uvm_tlm_b_target_socket

uvm_tlm_b_target_socket

IS-A forward imp; has no backward path except via the payload contents.

The component instantiating this socket must implement a b_transport() method with the
following signature

Summary

uvm_tlm_b_target_socket

IS-A forward imp; has no backward path except via the payload contents.

ClAss HIERARchY

uvm_tlm_b_target_socket_base#(T)

uvm_tlm_b_target_socket

ClAss DEclARAtION

class uvm_tlm_b_initiator_socket #(
 type T = uvm_tlm_generic_payload
) extends uvm_tlm_b_initiator_socket_base #(T)

function new(
 string name,
 uvm_component parent
)

task b_transport(T t, uvm_tlm_time delay);

class uvm_tlm_b_target_socket #(

UVM 1.2 Class Reference 309

MEthOds

new Construct a new instance of this socket imp is a reference to the
class implementing the b_transport() method.

Connect Connect this socket to the specified uvm_tlm_b_initiator_socket

MEthOds

new

Construct a new instance of this socket imp is a reference to the class implementing the
b_transport() method. If not specified, it is assume to be the same as parent.

Connect

Connect this socket to the specified uvm_tlm_b_initiator_socket

uvm_tlm_nb_initiator_socket

IS-A forward port; HAS-A backward imp

The component instantiating this socket must implement a nb_transport_bw() method
with the following signature

Summary

uvm_tlm_nb_initiator_socket

IS-A forward port; HAS-A backward imp

ClAss HIERARchY

uvm_tlm_nb_initiator_socket_base#(T,P)

uvm_tlm_nb_initiator_socket

ClAss DEclARAtION

 type IMP = int,
 type T = uvm_tlm_generic_payload
) extends uvm_tlm_b_target_socket_base #(T)

function new (
 string name,
 uvm_component parent,
 IMP imp = null
)

function uvm_tlm_sync_e nb_transport_bw(T t, ref P p, input uvm_tlm_time
delay);

class uvm_tlm_nb_initiator_socket #(

UVM 1.2 Class Reference 310

MEthOds

new Construct a new instance of this socket imp is a reference to the
class implementing the nb_transport_bw() method.

Connect Connect this socket to the specified uvm_tlm_nb_target_socket

MEthOds

new

Construct a new instance of this socket imp is a reference to the class implementing the
nb_transport_bw() method. If not specified, it is assume to be the same as parent.

Connect

Connect this socket to the specified uvm_tlm_nb_target_socket

uvm_tlm_nb_target_socket

IS-A forward imp; HAS-A backward port

The component instantiating this socket must implement a nb_transport_fw() method
with the following signature

Summary

uvm_tlm_nb_target_socket

IS-A forward imp; HAS-A backward port

ClAss HIERARchY

uvm_tlm_nb_target_socket_base#(T,P)

uvm_tlm_nb_target_socket

ClAss DEclARAtION

 type IMP = int,
 type T = uvm_tlm_generic_payload,
 type P = uvm_tlm_phase_e
) extends uvm_tlm_nb_initiator_socket_base #(T,P)

function new(
 string name,
 uvm_component parent,
 IMP imp = null
)

function uvm_tlm_sync_e nb_transport_fw(T t, ref P p, input uvm_tlm_time
delay);

UVM 1.2 Class Reference 311

MEthOds

new Construct a new instance of this socket imp is a reference to the
class implementing the nb_transport_fw() method.

connect Connect this socket to the specified uvm_tlm_nb_initiator_socket

MEthOds

new

Construct a new instance of this socket imp is a reference to the class implementing the
nb_transport_fw() method. If not specified, it is assume to be the same as parent.

connect

Connect this socket to the specified uvm_tlm_nb_initiator_socket

uvm_tlm_b_passthrough_initiator_socket

IS-A forward port;

Summary

uvm_tlm_b_passthrough_initiator_socket

IS-A forward port;

ClAss HIERARchY

uvm_tlm_b_passthrough_initiator_socket_base#(T)

uvm_tlm_b_passthrough_initiator_socket

ClAss DEclARAtION

class uvm_tlm_nb_target_socket #(
 type IMP = int,
 type T = uvm_tlm_generic_payload,
 type P = uvm_tlm_phase_e
) extends uvm_tlm_nb_target_socket_base #(T,P)

function new (
 string name,
 uvm_component parent,
 IMP imp = null
)

function void connect(
 this_type provider
)

class uvm_tlm_b_passthrough_initiator_socket #(
 type T = uvm_tlm_generic_payload
) extends uvm_tlm_b_passthrough_initiator_socket_base
#(T)

UVM 1.2 Class Reference 312

uvm_tlm_b_passthrough_target_socket

IS-A forward export;

Summary

uvm_tlm_b_passthrough_target_socket

IS-A forward export;

ClAss HIERARchY

uvm_tlm_b_passthrough_target_socket_base#(T)

uvm_tlm_b_passthrough_target_socket

ClAss DEclARAtION

uvm_tlm_nb_passthrough_initiator_socket

IS-A forward port; HAS-A backward export

Summary

uvm_tlm_nb_passthrough_initiator_socket

IS-A forward port; HAS-A backward export

ClAss HIERARchY

uvm_tlm_nb_passthrough_initiator_socket_base#(T,P)

uvm_tlm_nb_passthrough_initiator_socket

ClAss DEclARAtION

uvm_tlm_nb_passthrough_target_socket

IS-A forward export; HAS-A backward port

class uvm_tlm_b_passthrough_target_socket #(
 type T = uvm_tlm_generic_payload
) extends uvm_tlm_b_passthrough_target_socket_base #(T)

class uvm_tlm_nb_passthrough_initiator_socket #(
 type T = uvm_tlm_generic_payload,
 type P = uvm_tlm_phase_e
) extends uvm_tlm_nb_passthrough_initiator_socket_base
#(T,P)

UVM 1.2 Class Reference 313

Summary

uvm_tlm_nb_passthrough_target_socket

IS-A forward export; HAS-A backward port

ClAss HIERARchY

uvm_tlm_nb_passthrough_target_socket_base#(T,P)

uvm_tlm_nb_passthrough_target_socket

ClAss DEclARAtION

MEthOds

connect Connect this socket to the specified uvm_tlm_nb_initiator_socket

MEthOds

connect

Connect this socket to the specified uvm_tlm_nb_initiator_socket

class uvm_tlm_nb_passthrough_target_socket #(
 type T = uvm_tlm_generic_payload,
 type P = uvm_tlm_phase_e
) extends uvm_tlm_nb_passthrough_target_socket_base #(T,P)

function void connect(
 this_type provider
)

UVM 1.2 Class Reference 314

15.6 TLM2 Export Classes

This section defines the export classes for connecting TLM2 interfaces.

Contents

TLM2 Export Classes This section defines the export classes for
connecting TLM2 interfaces.

uvm_tlm_b_transport_export Blocking transport export class.
uvm_tlm_nb_transport_fw_export Non-blocking forward transport export class
uvm_tlm_nb_transport_bw_export Non-blocking backward transport export class

uvm_tlm_b_transport_export

Blocking transport export class.

Summary

uvm_tlm_b_transport_export

Blocking transport export class.

ClAss HIeRARchY

uvm_port_base#(uvm_tlm_if#(T))

uvm_tlm_b_transport_export

ClAss DeclARAtION

uvm_tlm_nb_transport_fw_export

Non-blocking forward transport export class

Summary

uvm_tlm_nb_transport_fw_export

Non-blocking forward transport export class

ClAss HIeRARchY

uvm_port_base#(uvm_tlm_if#(T,P))

uvm_tlm_nb_transport_fw_export

class uvm_tlm_b_transport_export #(
 type T = uvm_tlm_generic_payload
) extends uvm_port_base #(uvm_tlm_if #(T))

UVM 1.2 Class Reference 315

ClAss DeclARAtION

uvm_tlm_nb_transport_bw_export

Non-blocking backward transport export class

Summary

uvm_tlm_nb_transport_bw_export

Non-blocking backward transport export class

ClAss HIeRARchY

uvm_port_base#(uvm_tlm_if#(T,P))

uvm_tlm_nb_transport_bw_export

ClAss DeclARAtION

MethOds

new

MethOds

new

class uvm_tlm_nb_transport_fw_export #(
 type T = uvm_tlm_generic_payload,
 type P = uvm_tlm_phase_e
) extends uvm_port_base #(uvm_tlm_if #(T,P))

class uvm_tlm_nb_transport_bw_export #(
 type T = uvm_tlm_generic_payload,
 type P = uvm_tlm_phase_e
) extends uvm_port_base #(uvm_tlm_if #(T,P))

UVM 1.2 Class Reference 316

15.7 TLM2 imps (interface implementations)

This section defines the implementation classes for connecting TLM2 interfaces.

TLM imps bind a TLM interface with the object that contains the interface
implementation. In addition to the transaction type and the phase type, the imps are
parameterized with the type of the object that will provide the implementation. Most
often this will be the type of the component where the imp resides. The constructor of
the imp takes as an argument an object of type IMP and installs it as the
implementation object. Most often the imp constructor argument is “this”.

Contents

TLM2 imps (interface
implementations)

This section defines the implementation
classes for connecting TLM2 interfaces.

IMP BiNDiNG mAcROS

`UVM_TLM_NB_TRANSPORT_FW_IMP The macro wraps the forward path call
function nb_transport_fw()

`UVM_TLM_NB_TRANSPORT_BW_IMP Implementation of the backward path.
`UVM_TLM_B_TRANSPORT_IMP The macro wraps the function

b_transport() Execute a blocking
transaction.

IMP BiNDiNG clASSES

uvm_tlm_b_transport_imp Used like exports, except an additional
class parameter specifies the type of
the implementation object.

uvm_tlm_nb_transport_fw_imp Used like exports, except an additional
class parameter specifies the type of
the implementation object.

uvm_tlm_nb_transport_bw_imp Used like exports, except an additional
class parameter specifies the type of
the implementation object.

IMP BiNDiNG mAcROS

`UVM_TLM_NB_TRANSPORT_FW_IMP

The macro wraps the forward path call function nb_transport_fw()

The first call to this method for a transaction marks the initial timing point. Every call to
this method may mark a timing point in the execution of the transaction. The timing
annotation argument allows the timing points to be offset from the simulation times at
which the forward path is used. The final timing point of a transaction may be marked
by a call to nb_transport_bw() within `UVM_TLM_NB_TRANSPORT_BW_IMP or a return
from this or subsequent call to nb_transport_fw().

See TLM2 Interfaces, Ports, Exports and Transport Interfaces Subset for more details on
the semantics and rules of the nonblocking transport interface.

`UVM_TLM_NB_TRANSPORT_BW_IMP

Implementation of the backward path. The macro wraps the function called

UVM 1.2 Class Reference 317

nb_transport_bw(). This function MUST be implemented in the INITIATOR component
class.

Every call to this method may mark a timing point, including the final timing point, in the
execution of the transaction. The timing annotation argument allows the timing point to
be offset from the simulation times at which the backward path is used. The final timing
point of a transaction may be marked by a call to nb_transport_fw() within
`UVM_TLM_NB_TRANSPORT_FW_IMP or a return from this or subsequent call to
nb_transport_bw().

See TLM2 Interfaces, Ports, Exports and Transport Interfaces Subset for more details on
the semantics and rules of the nonblocking transport interface.

Example

`UVM_TLM_B_TRANSPORT_IMP

The macro wraps the function b_transport() Execute a blocking transaction. Once this
method returns, the transaction is assumed to have been executed. Whether that
execution is successful or not must be indicated by the transaction itself.

The callee may modify or update the transaction object, subject to any constraints
imposed by the transaction class. The initiator may re-use a transaction object from one
call to the next and across calls to b_transport().

The call to b_transport shall mark the first timing point of the transaction. The return
from b_transport() shall mark the final timing point of the transaction. The timing
annotation argument allows the timing points to be offset from the simulation times at
which the task call and return are executed.

IMP BiNDiNG clASSES

uvm_tlm_b_transport_imp

Used like exports, except an additional class parameter specifies the type of the
implementation object. When the imp is instantiated the implementation object is
bound.

class master extends uvm_component;
 uvm_tlm_nb_initiator_socket
 #(trans, uvm_tlm_phase_e, this_t) initiator_socket;

 function void build_phase(uvm_phase phase);
 initiator_socket = new("initiator_socket", this, this);
 endfunction

 function uvm_tlm_sync_e nb_transport_bw(trans t,
 ref uvm_tlm_phase_e p,
 input uvm_tlm_time delay);
 transaction = t;
 state = p;
 return UVM_TLM_ACCEPTED;
 endfunction

 ...
endclass

UVM 1.2 Class Reference 318

Summary

uvm_tlm_b_transport_imp

Used like exports, except an additional class parameter specifies the type of the
implementation object.

ClASS HiERARchY

uvm_port_base#(uvm_tlm_if#(T))

uvm_tlm_b_transport_imp

ClASS DEclARAtiON

uvm_tlm_nb_transport_fw_imp

Used like exports, except an additional class parameter specifies the type of the
implementation object. When the imp is instantiated the implementation object is
bound.

Summary

uvm_tlm_nb_transport_fw_imp

Used like exports, except an additional class parameter specifies the type of the
implementation object.

ClASS HiERARchY

uvm_port_base#(uvm_tlm_if#(T,P))

uvm_tlm_nb_transport_fw_imp

ClASS DEclARAtiON

uvm_tlm_nb_transport_bw_imp

Used like exports, except an additional class parameter specifies the type of the
implementation object. When the imp is instantiated the implementation object is
bound.

class uvm_tlm_b_transport_imp #(
 type T = uvm_tlm_generic_payload,
 type IMP = int
) extends uvm_port_base #(uvm_tlm_if #(T))

class uvm_tlm_nb_transport_fw_imp #(
 type T = uvm_tlm_generic_payload,
 type P = uvm_tlm_phase_e,
 type IMP = int
) extends uvm_port_base #(uvm_tlm_if #(T,P))

UVM 1.2 Class Reference 319

Summary

uvm_tlm_nb_transport_bw_imp

Used like exports, except an additional class parameter specifies the type of the
implementation object.

ClASS HiERARchY

uvm_port_base#(uvm_tlm_if#(T,P))

uvm_tlm_nb_transport_bw_imp

ClASS DEclARAtiON

class uvm_tlm_nb_transport_bw_imp #(
 type T = uvm_tlm_generic_payload,
 type P = uvm_tlm_phase_e,
 type IMP = int
) extends uvm_port_base #(uvm_tlm_if #(T,P))

UVM 1.2 Class Reference 320

15.8 TLM2 ports

The following defines TLM2 port classes.

Contents

TLM2 ports The following defines TLM2 port classes.

uvm_tlm_b_transport_port Class providing the blocking transport port.
uvm_tlm_nb_transport_fw_port Class providing the non-blocking backward

transport port.
uvm_tlm_nb_transport_bw_port Class providing the non-blocking backward

transport port.

uvm_tlm_b_transport_port

Class providing the blocking transport port. The port can be bound to one export. There
is no backward path for the blocking transport.

Summary

uvm_tlm_b_transport_port

Class providing the blocking transport port.

ClAss HIERARchY

uvm_port_base#(uvm_tlm_if#(T))

uvm_tlm_b_transport_port

ClAss DEclARAtION

uvm_tlm_nb_transport_fw_port

Class providing the non-blocking backward transport port. Transactions received from
the producer, on the forward path, are sent back to the producer on the backward path
using this non-blocking transport port. The port can be bound to one export.

Summary

uvm_tlm_nb_transport_fw_port

Class providing the non-blocking backward transport port.

ClAss HIERARchY

class uvm_tlm_b_transport_port #(
 type T = uvm_tlm_generic_payload
) extends uvm_port_base #(uvm_tlm_if #(T))

UVM 1.2 Class Reference 321

uvm_port_base#(uvm_tlm_if#(T,P))

uvm_tlm_nb_transport_fw_port

ClAss DEclARAtION

uvm_tlm_nb_transport_bw_port

Class providing the non-blocking backward transport port. Transactions received from
the producer, on the forward path, are sent back to the producer on the backward path
using this non-blocking transport port The port can be bound to one export.

Summary

uvm_tlm_nb_transport_bw_port

Class providing the non-blocking backward transport port.

ClAss HIERARchY

uvm_port_base#(uvm_tlm_if#(T,P))

uvm_tlm_nb_transport_bw_port

ClAss DEclARAtION

MEthOds

new

MEthOds

new

class uvm_tlm_nb_transport_fw_port #(
 type T = uvm_tlm_generic_payload,
 type P = uvm_tlm_phase_e
) extends uvm_port_base #(uvm_tlm_if #(T,P))

class uvm_tlm_nb_transport_bw_port #(
 type T = uvm_tlm_generic_payload,
 type P = uvm_tlm_phase_e
) extends uvm_port_base #(uvm_tlm_if #(T,P))

UVM 1.2 Class Reference 322

15.9 uvm_tlm_time

Canonical time type that can be used in different timescales

This time type is used to represent time values in a canonical form that can bridge
initiators and targets located in different timescales and time precisions.

For a detailed explanation of the purpose for this class, see Why is this necessary.

Summary

uvm_tlm_time

Canonical time type that can be used in different timescales

CLAss DEcLARATION

set_time_resolution Set the default canonical time resolution.
new Create a new canonical time value.
get_name Return the name of this instance
reset Reset the value to 0
get_realtime Return the current canonical time value, scaled for the

caller’s timescale
incr Increment the time value by the specified number of

scaled time unit
decr Decrement the time value by the specified number of

scaled time unit
get_abstime Return the current canonical time value, in the number of

specified time unit, regardless of the current timescale of
the caller.

set_abstime Set the current canonical time value, to the number of
specified time unit, regardless of the current timescale of
the caller.

WHY Is THIs

NEcEssARY

Integers are not sufficient, on their own, to represent
time without any ambiguity: you need to know the scale
of that integer value.

set_time_resolution

Set the default canonical time resolution.

Must be a power of 10. When co-simulating with SystemC, it is recommended that
default canonical time resolution be set to the SystemC time resolution.

By default, the default resolution is 1.0e-12 (ps)

new

class uvm_tlm_time

static function void set_time_resolution(
 real res
)

function new(
 string name = "uvm_tlm_time",
 real res = 0
)

UVM 1.2 Class Reference 323

Create a new canonical time value.

The new value is initialized to 0. If a resolution is not specified, the default resolution,
as specified by set_time_resolution(), is used.

get_name

Return the name of this instance

reset

Reset the value to 0

get_realtime

Return the current canonical time value, scaled for the caller’s timescale

scaled must be a time literal value that corresponds to the number of seconds specified
in secs (1ns by default). It must be a time literal value that is greater or equal to the
current timescale.

incr

Increment the time value by the specified number of scaled time unit

t is a time value expressed in the scale and precision of the caller. scaled must be a
time literal value that corresponds to the number of seconds specified in secs (1ns by
default). It must be a time literal value that is greater or equal to the current timescale.

function string get_name()

function void reset()

function real get_realtime(
 time scaled,
 real secs = 1.0e-9
)

#(delay.get_realtime(1ns));
#(delay.get_realtime(1fs, 1.0e-15));

function void incr(
 real t,
 time scaled,
 real secs = 1.0e-9
)

delay.incr(1.5ns, 1ns);
delay.incr(1.5ns, 1ps, 1.0e-12);

UVM 1.2 Class Reference 324

decr

Decrement the time value by the specified number of scaled time unit

t is a time value expressed in the scale and precision of the caller. scaled must be a
time literal value that corresponds to the number of seconds specified in secs (1ns by
default). It must be a time literal value that is greater or equal to the current timescale.

get_abstime

Return the current canonical time value, in the number of specified time unit, regardless
of the current timescale of the caller.

secs is the number of seconds in the desired time unit e.g. 1e-9 for nanoseconds.

set_abstime

Set the current canonical time value, to the number of specified time unit, regardless of
the current timescale of the caller.

secs is the number of seconds in the time unit in the value t e.g. 1e-9 for nanoseconds.

WHY Is THIs NEcEssARY

Integers are not sufficient, on their own, to represent time without any ambiguity: you
need to know the scale of that integer value. That scale is information conveyed outside
of that integer. In SystemVerilog, it is based on the timescale that was active when the
code was compiled. SystemVerilog properly scales time literals, but not integer values.

function void decr(
 real t,
 time scaled,
 real secs
)

delay.decr(200ps, 1ns);

function real get_abstime(
 real secs
)

$write("%.3f ps\n", delay.get_abstime(1e-12));

function void set_abstime(
 real t,
 real secs
)

delay.set_abstime(1.5, 1e-12));

UVM 1.2 Class Reference 325

That’s because it does not know the difference between an integer that carries an
integer value and an integer that carries a time value. The ‘time’ variables are simply
64-bit integers, they are not scaled back and forth to the underlying precision.

yields

Within SystemVerilog, we have to worry about
different time scale
different time precision

Because each endpoint in a socket could be coded in different packages and thus be
executing under different timescale directives, a simple integer cannot be used to
exchange time information across a socket.

For example

`timescale 1ns/1ps

module m();

time t;

initial
begin
 #1.5;
 $write("T=%f ns (1.5)\n", $realtime());
 t = 1.5;
 #t;
 $write("T=%f ns (3.0)\n", $realtime());
 #10ps;
 $write("T=%f ns (3.010)\n", $realtime());
 t = 10ps;
 #t;
 $write("T=%f ns (3.020)\n", $realtime());
end
endmodule

T=1.500000 ns (1.5)
T=3.500000 ns (3.0)
T=3.510000 ns (3.010)
T=3.510000 ns (3.020)

`timescale 1ns/1ps

package a_pkg;

class a;
 function void f(inout time t);
 t += 10ns;
 endfunction
endclass

endpackage

`timescale 1ps/1ps

program p;

import a_pkg::*;

time t;

initial
begin
 a A = new;
 A.f(t);
 #t;
 $write("T=%0d ps (10,000)\n", $realtime());
end
endprogram

UVM 1.2 Class Reference 326

yields

Scaling is needed every time you make a procedural call to code that may interpret a
time value in a different timescale.

Using the uvm_tlm_time type

yields

A similar procedure is required when crossing any simulator or language boundary, such
as interfacing between SystemVerilog and SystemC.

T=10 ps (10,000)

`timescale 1ns/1ps

 package a_pkg;

import uvm_pkg::*;

class a;
 function void f(uvm_tlm_time t);
 t.incr(10ns, 1ns);
 endfunction
endclass

endpackage

`timescale 1ps/1ps

program p;

import uvm_pkg::*;
import a_pkg::*;

uvm_tlm_time t = new;

initial
 begin
 a A = new;
 A.f(t);
 #(t.get_realtime(1ns));
 $write("T=%0d ps (10,000)\n", $realtime());
end
endprogram

T=10000 ps (10,000)

UVM 1.2 Class Reference 327

16. Analysis Ports

This section defines the port, export, and imp classes used for transaction analysis.

Contents

Analysis Ports This section defines the port, export, and imp classes used
for transaction analysis.

uvm_analysis_port Broadcasts a value to all subscribers implementing a
uvm_analysis_imp.

uvm_analysis_imp Receives all transactions broadcasted by a
uvm_analysis_port.

uvm_analysis_export Exports a lower-level uvm_analysis_imp to its parent.

uvm_analysis_port

Broadcasts a value to all subscribers implementing a uvm_analysis_imp.

Summary

uvm_analysis_port

Broadcasts a value to all subscribers implementing a uvm_analysis_imp.

CLass HIERaRchY

uvm_port_base#(uvm_tlm_if_base#(T,T))

uvm_analysis_port

CLass DEcLaRaTION

METhOds

write Send specified value to all connected interface

class mon extends uvm_component;
 uvm_analysis_port#(trans) ap;

 function new(string name = "sb", uvm_component parent = null);
 super.new(name, parent);
 ap = new("ap", this);
 endfunction

 task run_phase(uvm_phase phase);
 trans t;
 ...
 ap.write(t);
 ...
 endfunction
endclass

class uvm_analysis_port # (
 type T = int
) extends uvm_port_base # (uvm_tlm_if_base #(T,T))

UVM 1.2 Class Reference 328

METhOds

write

Send specified value to all connected interface

uvm_analysis_imp

Receives all transactions broadcasted by a uvm_analysis_port. It serves as the
termination point of an analysis port/export/imp connection. The component attached to
the imp class--called a subscriber-- implements the analysis interface.

Will invoke the write(T) method in the parent component. The implementation of the
write(T) method must not modify the value passed to it.

Summary

uvm_analysis_imp

Receives all transactions broadcasted by a uvm_analysis_port.

CLass HIERaRchY

uvm_port_base#(uvm_tlm_if_base#(T,T))

uvm_analysis_imp

CLass DEcLaRaTION

uvm_analysis_export

function void write (
 input T t
)

class sb extends uvm_component;
 uvm_analysis_imp#(trans, sb) ap;

 function new(string name = "sb", uvm_component parent = null);
 super.new(name, parent);
 ap = new("ap", this);
 endfunction

 function void write(trans t);
 ...
 endfunction
endclass

class uvm_analysis_imp #(
 type T = int,
 type IMP = int
) extends uvm_port_base #(uvm_tlm_if_base #(T,T))

UVM 1.2 Class Reference 329

Exports a lower-level uvm_analysis_imp to its parent.

Summary

uvm_analysis_export

Exports a lower-level uvm_analysis_imp to its parent.

CLass HIERaRchY

uvm_port_base#(uvm_tlm_if_base#(T,T))

uvm_analysis_export

CLass DEcLaRaTION

METhOds

new Instantiate the export.

METhOds

new

Instantiate the export.

class uvm_analysis_export #(
 type T = int
) extends uvm_port_base #(uvm_tlm_if_base #(T,T))

function new (
 string name,
 uvm_component parent = null
)

UVM 1.2 Class Reference 330

17. PREDEFINED COMpONENT CLASSES

Components form the foundation of the UVM. They encapsulate behavior of drivers,
scoreboards, and other objects in a testbench. The UVM library provides a set of
predefined component types, all derived directly or indirectly from uvm_component.

Predefined Components

Summary

Predefined Component Classes

Components form the foundation of the UVM.

UVM 1.2 Class Reference 331

17.1 uvm_component

The uvm_component class is the root base class for UVM components. In addition to the
features inherited from uvm_object and uvm_report_object, uvm_component provides
the following interfaces:

Hierarchy provides methods for searching and traversing the
component hierarchy.

Phasing defines a phased test flow that all components follow,
with a group of standard phase methods and an API
for custom phases and multiple independent phasing
domains to mirror DUT behavior e.g. power

Reporting provides a convenience interface to the
uvm_report_handler. All messages, warnings, and
errors are processed through this interface.

Transaction recording provides methods for recording the transactions
produced or consumed by the component to a
transaction database (vendor specific).

Factory provides a convenience interface to the uvm_factory.
The factory is used to create new components and
other objects based on type-wide and instance-specific
configuration.

The uvm_component is automatically seeded during construction using UVM seeding, if
enabled. All other objects must be manually reseeded, if appropriate. See
uvm_object::reseed for more information.

Summary

uvm_component

The uvm_component class is the root base class for UVM components.

CLAss HIERARchY

uvm_void

uvm_object

uvm_report_object

uvm_component

CLAss DEcLARATION

new Creates a new component with the given leaf
instance name and handle to its parent.

HIERARchY INTERFAcE These methods provide user access to
information about the component hierarchy,
i.e., topology.

get_parent Returns a handle to this component’s
parent, or null if it has no parent.

get_full_name Returns the full hierarchical name of this
object.

get_children This function populates the end of the
children array with the list of this
component’s children.

get_child

virtual class uvm_component extends uvm_report_object

UVM 1.2 Class Reference 332

get_next_child
get_first_child These methods are used to iterate through

this component’s children, if any.
get_num_children Returns the number of this component’s

children.
has_child Returns 1 if this component has a child

with the given name, 0 otherwise.
lookup Looks for a component with the given

hierarchical name relative to this
component.

get_depth Returns the component’s depth from the
root level.

PhAsING INTERFAcE These methods implement an interface which
allows all components to step through a
standard schedule of phases, or a
customized schedule, and also an API to
allow independent phase domains which can
jump like state machines to reflect behavior
e.g.

build_phase The uvm_build_phase phase
implementation method.

connect_phase The uvm_connect_phase phase
implementation method.

end_of_elaboration_phase The uvm_end_of_elaboration_phase phase
implementation method.

start_of_simulation_phase The uvm_start_of_simulation_phase phase
implementation method.

run_phase The uvm_run_phase phase implementation
method.

pre_reset_phase The uvm_pre_reset_phase phase
implementation method.

reset_phase The uvm_reset_phase phase
implementation method.

post_reset_phase The uvm_post_reset_phase phase
implementation method.

pre_configure_phase The uvm_pre_configure_phase phase
implementation method.

configure_phase The uvm_configure_phase phase
implementation method.

post_configure_phase The uvm_post_configure_phase phase
implementation method.

pre_main_phase The uvm_pre_main_phase phase
implementation method.

main_phase The uvm_main_phase phase
implementation method.

post_main_phase The uvm_post_main_phase phase
implementation method.

pre_shutdown_phase The uvm_pre_shutdown_phase phase
implementation method.

shutdown_phase The uvm_shutdown_phase phase
implementation method.

post_shutdown_phase The uvm_post_shutdown_phase phase
implementation method.

extract_phase The uvm_extract_phase phase
implementation method.

check_phase The uvm_check_phase phase
implementation method.

report_phase The uvm_report_phase phase
implementation method.

final_phase The uvm_final_phase phase
implementation method.

phase_started Invoked at the start of each phase.
phase_ready_to_end Invoked when all objections to ending the

given phase and all sibling phases have
been dropped, thus indicating that phase is
ready to begin a clean exit.

phase_ended Invoked at the end of each phase.

UVM 1.2 Class Reference 333

set_domain Apply a phase domain to this component
and, if hier is set, recursively to all its
children.

get_domain Return handle to the phase domain set on
this component

define_domain Builds custom phase schedules into the
provided domain handle.

set_phase_imp Override the default implementation for a
phase on this component (tree) with a
custom one, which must be created as a
singleton object extending the default one
and implementing required behavior in
exec and traverse methods

suspend Suspend this component.
resume Resume this component.
resolve_bindings Processes all port, export, and imp

connections.
CONFIGURATION INTERFAcE Components can be designed to be user-

configurable in terms of its topology (the
type and number of children it has), mode of
operation, and run-time parameters (knobs).

check_config_usage Check all configuration settings in a
components configuration table to
determine if the setting has been used,
overridden or not used.

apply_config_settings Searches for all config settings matching
this component’s instance path.

print_config_settings Called without arguments,
print_config_settings prints all configuration
information for this component, as set by
previous calls to
uvm_config_db#(T)::set().

print_config Print_config_settings prints all configuration
information for this component, as set by
previous calls to
uvm_config_db#(T)::set() and exports
to the resources pool.

print_config_with_audit Operates the same as print_config except
that the audit bit is forced to 1.

print_config_matches Setting this static variable causes
uvm_config_db#(T)::get() to print info
about matching configuration settings as
they are being applied.

OBJEcTION INTERFAcE These methods provide object level hooks
into the uvm_objection mechanism.

raised The raised callback is called when this or a
descendant of this component instance
raises the specified objection.

dropped The dropped callback is called when this or
a descendant of this component instance
drops the specified objection.

all_dropped The all_droppped callback is called when all
objections have been dropped by this
component and all its descendants.

FAcTORY INTERFAcE The factory interface provides convenient
access to a portion of UVM’s uvm_factory
interface.

create_component A convenience function for
uvm_factory::create_component_by_name,
this method calls upon the factory to create
a new child component whose type
corresponds to the preregistered type
name, requested_type_name, and instance
name, name.

create_object A convenience function for
uvm_factory::create_object_by_name, this

UVM 1.2 Class Reference 334

method calls upon the factory to create a
new object whose type corresponds to the
preregistered type name,
requested_type_name, and instance name,
name.

set_type_override_by_type A convenience function for
uvm_factory::set_type_override_by_type,
this method registers a factory override for
components and objects created at this
level of hierarchy or below.

set_inst_override_by_type A convenience function for
uvm_factory::set_inst_override_by_type,
this method registers a factory override for
components and objects created at this
level of hierarchy or below.

set_type_override A convenience function for
uvm_factory::set_type_override_by_name,
this method configures the factory to create
an object of type override_type_name
whenever the factory is asked to produce a
type represented by original_type_name.

set_inst_override A convenience function for
uvm_factory::set_inst_override_by_name,
this method registers a factory override for
components created at this level of
hierarchy or below.

print_override_info This factory debug method performs the
same lookup process as create_object and
create_component, but instead of creating
an object, it prints information about what
type of object would be created given the
provided arguments.

HIERARchIcAL REpORTING INTERFAcE This interface provides versions of the
set_report_* methods in the
uvm_report_object base class that are
applied recursively to this component and all
its children.

set_report_id_verbosity_hier
set_report_severity_id_verbosity_hier These methods recursively associate the

specified verbosity with reports of the given
severity, id, or severity-id pair.

set_report_severity_action_hier
set_report_id_action_hier
set_report_severity_id_action_hier These methods recursively associate the

specified action with reports of the given
severity, id, or severity-id pair.

set_report_default_file_hier
set_report_severity_file_hier
set_report_id_file_hier
set_report_severity_id_file_hier These methods recursively associate the

specified FILE descriptor with reports of the
given severity, id, or severity-id pair.

set_report_verbosity_level_hier This method recursively sets the maximum
verbosity level for reports for this
component and all those below it.

pre_abort This callback is executed when the
message system is executing a UVM_EXIT
action.

REcORdING INTERFAcE These methods comprise the component-
based transaction recording interface.

accept_tr This function marks the acceptance of a
transaction, tr, by this component.

do_accept_tr The accept_tr method calls this function to
accommodate any user-defined post-
accept action.

begin_tr This function marks the start of a
transaction, tr, by this component.

UVM 1.2 Class Reference 335

begin_child_tr This function marks the start of a child
transaction, tr, by this component.

do_begin_tr The begin_tr and begin_child_tr methods
call this function to accommodate any
user-defined post-begin action.

end_tr This function marks the end of a
transaction, tr, by this component.

do_end_tr The end_tr method calls this function to
accommodate any user-defined post-end
action.

record_error_tr This function marks an error transaction by
a component.

record_event_tr This function marks an event transaction by
a component.

get_tr_stream Returns a tr stream with this component’s
full name as a scope.

free_tr_stream Frees the internal references associated
with stream.

print_enabled This bit determines if this component
should automatically be printed as a child
of its parent object.

tr_database Specifies the uvm_tr_database object to
use for begin_tr and other methods in the
Recording Interface.

new

Creates a new component with the given leaf instance name and handle to its parent. If
the component is a top-level component (i.e. it is created in a static module or
interface), parent should be null.

The component will be inserted as a child of the parent object, if any. If parent already
has a child by the given name, an error is produced.

If parent is null, then the component will become a child of the implicit top-level
component, uvm_top.

All classes derived from uvm_component must call super.new(name,parent).

HIERARchY INTERFAcE

These methods provide user access to information about the component hierarchy, i.e.,
topology.

get_parent

Returns a handle to this component’s parent, or null if it has no parent.

get_full_name

function new (
 string name,
 uvm_component parent
)

virtual function uvm_component get_parent ()

UVM 1.2 Class Reference 336

Returns the full hierarchical name of this object. The default implementation
concatenates the hierarchical name of the parent, if any, with the leaf name of this
object, as given by uvm_object::get_name.

get_children

This function populates the end of the children array with the list of this component’s
children.

get_child

get_next_child

get_first_child

These methods are used to iterate through this component’s children, if any. For
example, given a component with an object handle, comp, the following code calls
uvm_object::print for each child:

get_num_children

virtual function string get_full_name ()

function void get_children(
 ref uvm_component children[$]
)

uvm_component array[$];
my_comp.get_children(array);
foreach(array[i])
 do_something(array[i]);

function uvm_component get_child (
 string name
)

function int get_next_child (
 ref string name
)

function int get_first_child (
 ref string name
)

string name;
uvm_component child;
if (comp.get_first_child(name))
 do begin
 child = comp.get_child(name);
 child.print();
 end while (comp.get_next_child(name));

UVM 1.2 Class Reference 337

Returns the number of this component’s children.

has_child

Returns 1 if this component has a child with the given name, 0 otherwise.

lookup

Looks for a component with the given hierarchical name relative to this component. If
the given name is preceded with a ‘.’ (dot), then the search begins relative to the top
level (absolute lookup). The handle of the matching component is returned, else null.
The name must not contain wildcards.

get_depth

Returns the component’s depth from the root level. uvm_top has a depth of 0. The test
and any other top level components have a depth of 1, and so on.

PhAsING INTERFAcE

These methods implement an interface which allows all components to step through a
standard schedule of phases, or a customized schedule, and also an API to allow
independent phase domains which can jump like state machines to reflect behavior e.g.
power domains on the DUT in different portions of the testbench. The phase tasks and
functions are the phase name with the _phase suffix. For example, the build phase
function is build_phase.

All processes associated with a task-based phase are killed when the phase ends. See
uvm_task_phase for more details.

build_phase

The uvm_build_phase phase implementation method.

Any override should call super.build_phase(phase) to execute the automatic configuration
of fields registered in the component by calling apply_config_settings. To turn off
automatic configuration for a component, do not call super.build_phase(phase).

function int get_num_children ()

function int has_child (
 string name
)

function uvm_component lookup (
 string name
)

function int unsigned get_depth()

virtual function void build_phase(
 uvm_phase phase
)

UVM 1.2 Class Reference 338

This method should never be called directly.

connect_phase

The uvm_connect_phase phase implementation method.

This method should never be called directly.

end_of_elaboration_phase

The uvm_end_of_elaboration_phase phase implementation method.

This method should never be called directly.

start_of_simulation_phase

The uvm_start_of_simulation_phase phase implementation method.

This method should never be called directly.

run_phase

The uvm_run_phase phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. Thus
the phase will automatically end once all objections are dropped using
phase.drop_objection().

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

The run_phase task should never be called directly.

pre_reset_phase

virtual function void connect_phase(
 uvm_phase phase
)

virtual function void end_of_elaboration_phase(
 uvm_phase phase
)

virtual function void start_of_simulation_phase(
 uvm_phase phase
)

virtual task run_phase(
 uvm_phase phase
)

virtual task pre_reset_phase(
 uvm_phase phase
)

UVM 1.2 Class Reference 339

The uvm_pre_reset_phase phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

reset_phase

The uvm_reset_phase phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

post_reset_phase

The uvm_post_reset_phase phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

pre_configure_phase

The uvm_pre_configure_phase phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to

virtual task reset_phase(
 uvm_phase phase
)

virtual task post_reset_phase(
 uvm_phase phase
)

virtual task pre_configure_phase(
 uvm_phase phase
)

UVM 1.2 Class Reference 340

persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

configure_phase

The uvm_configure_phase phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

post_configure_phase

The uvm_post_configure_phase phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

pre_main_phase

The uvm_pre_main_phase phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be

virtual task configure_phase(
 uvm_phase phase
)

virtual task post_configure_phase(
 uvm_phase phase
)

virtual task pre_main_phase(
 uvm_phase phase
)

UVM 1.2 Class Reference 341

killed once the phase ends.

This method should not be called directly.

main_phase

The uvm_main_phase phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

post_main_phase

The uvm_post_main_phase phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

pre_shutdown_phase

The uvm_pre_shutdown_phase phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

virtual task main_phase(
 uvm_phase phase
)

virtual task post_main_phase(
 uvm_phase phase
)

virtual task pre_shutdown_phase(
 uvm_phase phase
)

UVM 1.2 Class Reference 342

shutdown_phase

The uvm_shutdown_phase phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

post_shutdown_phase

The uvm_post_shutdown_phase phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

extract_phase

The uvm_extract_phase phase implementation method.

This method should never be called directly.

check_phase

The uvm_check_phase phase implementation method.

This method should never be called directly.

virtual task shutdown_phase(
 uvm_phase phase
)

virtual task post_shutdown_phase(
 uvm_phase phase
)

virtual function void extract_phase(
 uvm_phase phase
)

virtual function void check_phase(
 uvm_phase phase
)

UVM 1.2 Class Reference 343

report_phase

The uvm_report_phase phase implementation method.

This method should never be called directly.

final_phase

The uvm_final_phase phase implementation method.

This method should never be called directly.

phase_started

Invoked at the start of each phase. The phase argument specifies the phase being
started. Any threads spawned in this callback are not affected when the phase ends.

phase_ready_to_end

Invoked when all objections to ending the given phase and all sibling phases have been
dropped, thus indicating that phase is ready to begin a clean exit. Sibling phases are
any phases that have a common successor phase in the schedule plus any phases that
sync’d to the current phase. Components needing to consume delta cycles or advance
time to perform a clean exit from the phase may raise the phase’s objection.

It is the responsibility of this component to drop the objection once it is ready for this
phase to end (and processes killed). If no objection to the given phase or sibling phases
are raised, then phase_ended() is called after a delta cycle. If any objection is raised,
then when all objections to ending the given phase and siblings are dropped, another
iteration of phase_ready_to_end is called. To prevent endless iterations due to coding
error, after 20 iterations, phase_ended() is called regardless of whether previous iteration
had any objections raised.

phase_ended

virtual function void report_phase(
 uvm_phase phase
)

virtual function void final_phase(
 uvm_phase phase
)

virtual function void phase_started (
 uvm_phase phase
)

virtual function void phase_ready_to_end (
 uvm_phase phase
)

phase.raise_objection(this,"Reason");

UVM 1.2 Class Reference 344

Invoked at the end of each phase. The phase argument specifies the phase that is
ending. Any threads spawned in this callback are not affected when the phase ends.

set_domain

Apply a phase domain to this component and, if hier is set, recursively to all its children.

Calls the virtual define_domain method, which derived components can override to
augment or replace the domain definition of its base class.

get_domain

Return handle to the phase domain set on this component

define_domain

Builds custom phase schedules into the provided domain handle.

This method is called by set_domain, which integrators use to specify this component
belongs in a domain apart from the default ‘uvm’ domain.

Custom component base classes requiring a custom phasing schedule can augment or
replace the domain definition they inherit by overriding their defined_domain. To
augment, overrides would call super.define_domain(). To replace, overrides would not
call super.define_domain().

The default implementation adds a copy of the uvm phasing schedule to the given
domain, if one doesn’t already exist, and only if the domain is currently empty.

Calling set_domain with the default uvm domain (i.e. uvm_domain::get_uvm_domain)
on a component with no define_domain override effectively reverts the that component
to using the default uvm domain. This may be useful if a branch of the testbench
hierarchy defines a custom domain, but some child sub-branch should remain in the
default uvm domain, call set_domain with a new domain instance handle with hier set.
Then, in the sub-branch, call set_domain with the default uvm domain handle, obtained
via uvm_domain::get_uvm_domain.

Alternatively, the integrator may define the graph in a new domain externally, then call
set_domain to apply it to a component.

set_phase_imp

virtual function void phase_ended (
 uvm_phase phase
)

function void set_domain(
 uvm_domain domain,
 int hier = 1
)

function uvm_domain get_domain()

virtual protected function void define_domain(
 uvm_domain domain
)

UVM 1.2 Class Reference 345

Override the default implementation for a phase on this component (tree) with a custom
one, which must be created as a singleton object extending the default one and
implementing required behavior in exec and traverse methods

The hier specifies whether to apply the custom functor to the whole tree or just this
component.

suspend

Suspend this component.

This method must be implemented by the user to suspend the component according to
the protocol and functionality it implements. A suspended component can be
subsequently resumed using resume().

resume

Resume this component.

This method must be implemented by the user to resume a component that was
previously suspended using suspend(). Some component may start in the suspended
state and may need to be explicitly resumed.

resolve_bindings

Processes all port, export, and imp connections. Checks whether each port’s min and
max connection requirements are met.

It is called just before the end_of_elaboration phase.

Users should not call directly.

CONFIGURATION INTERFAcE

Components can be designed to be user-configurable in terms of its topology (the type
and number of children it has), mode of operation, and run-time parameters (knobs).
The configuration interface accommodates this common need, allowing component
composition and state to be modified without having to derive new classes or new class
hierarchies for every configuration scenario.

check_config_usage

function void set_phase_imp(
 uvm_phase phase,
 uvm_phase imp,
 int hier = 1
)

virtual task suspend ()

virtual task resume ()

virtual function void resolve_bindings ()

UVM 1.2 Class Reference 346

Check all configuration settings in a components configuration table to determine if the
setting has been used, overridden or not used. When recurse is 1 (default),
configuration for this and all child components are recursively checked. This function is
automatically called in the check phase, but can be manually called at any time.

To get all configuration information prior to the run phase, do something like this in your
top object:

apply_config_settings

Searches for all config settings matching this component’s instance path. For each
match, the appropriate set_*_local method is called using the matching config setting’s
field_name and value. Provided the set_*_local method is implemented, the component
property associated with the field_name is assigned the given value.

This function is called by uvm_component::build_phase.

The apply_config_settings method determines all the configuration settings targeting this
component and calls the appropriate set_*_local method to set each one. To work, you
must override one or more set_*_local methods to accommodate setting of your
component’s specific properties. Any properties registered with the optional
`uvm_*_field macros do not require special handling by the set_*_local methods; the
macros provide the set_*_local functionality for you.

If you do not want apply_config_settings to be called for a component, then the
build_phase() method should be overloaded and you should not call
super.build_phase(phase). Likewise, apply_config_settings can be overloaded to
customize automated configuration.

When the verbose bit is set, all overrides are printed as they are applied. If the
component’s print_config_matches property is set, then apply_config_settings is
automatically called with verbose = 1.

print_config_settings

Called without arguments, print_config_settings prints all configuration information for
this component, as set by previous calls to uvm_config_db#(T)::set(). The settings
are printing in the order of their precedence.

function void check_config_usage (
 bit recurse = 1
)

function void start_of_simulation_phase(uvm_phase phase);
 check_config_usage();
endfunction

virtual function void apply_config_settings (
 bit verbose = 0
)

function void print_config_settings (
 string field = "",
 uvm_component comp = null,
 bit recurse = 0
)

UVM 1.2 Class Reference 347

If field is specified and non-empty, then only configuration settings matching that field, if
any, are printed. The field may not contain wildcards.

If comp is specified and non-null, then the configuration for that component is printed.

If recurse is set, then configuration information for all comp’s children and below are
printed as well.

This function has been deprecated. Use print_config instead.

print_config

Print_config_settings prints all configuration information for this component, as set by
previous calls to uvm_config_db#(T)::set() and exports to the resources pool. The
settings are printing in the order of their precedence.

If recurse is set, then configuration information for all children and below are printed as
well.

if audit is set then the audit trail for each resource is printed along with the resource
name and value

print_config_with_audit

Operates the same as print_config except that the audit bit is forced to 1. This interface
makes user code a bit more readable as it avoids multiple arbitrary bit settings in the
argument list.

If recurse is set, then configuration information for all children and below are printed as
well.

print_config_matches

Setting this static variable causes uvm_config_db#(T)::get() to print info about matching
configuration settings as they are being applied.

OBJEcTION INTERFAcE

These methods provide object level hooks into the uvm_objection mechanism.

raised

function void print_config(
 bit recurse = 0,
 bit audit = 0
)

function void print_config_with_audit(
 bit recurse = 0
)

static bit print_config_matches

virtual function void raised (

UVM 1.2 Class Reference 348

The raised callback is called when this or a descendant of this component instance raises
the specified objection. The source_obj is the object that originally raised the objection.
The description is optionally provided by the source_obj to give a reason for raising the
objection. The count indicates the number of objections raised by the source_obj.

dropped

The dropped callback is called when this or a descendant of this component instance
drops the specified objection. The source_obj is the object that originally dropped the
objection. The description is optionally provided by the source_obj to give a reason for
dropping the objection. The count indicates the number of objections dropped by the
source_obj.

all_dropped

The all_droppped callback is called when all objections have been dropped by this
component and all its descendants. The source_obj is the object that dropped the last
objection. The description is optionally provided by the source_obj to give a reason for
raising the objection. The count indicates the number of objections dropped by the
source_obj.

FAcTORY INTERFAcE

The factory interface provides convenient access to a portion of UVM’s uvm_factory
interface. For creating new objects and components, the preferred method of accessing
the factory is via the object or component wrapper (see uvm_component_registry
#(T,Tname) and uvm_object_registry #(T,Tname)). The wrapper also provides functions
for setting type and instance overrides.

create_component

A convenience function for uvm_factory::create_component_by_name, this method calls

 uvm_objection objection,
 uvm_object source_obj,
 string description,
 int count
)

virtual function void dropped (
 uvm_objection objection,
 uvm_object source_obj,
 string description,
 int count
)

virtual task all_dropped (
 uvm_objection objection,
 uvm_object source_obj,
 string description,
 int count
)

function uvm_component create_component (
 string requested_type_name,
 string name
)

UVM 1.2 Class Reference 349

upon the factory to create a new child component whose type corresponds to the
preregistered type name, requested_type_name, and instance name, name. This method
is equivalent to:

If the factory determines that a type or instance override exists, the type of the
component created may be different than the requested type. See set_type_override
and set_inst_override. See also uvm_factory for details on factory operation.

create_object

A convenience function for uvm_factory::create_object_by_name, this method calls upon
the factory to create a new object whose type corresponds to the preregistered type
name, requested_type_name, and instance name, name. This method is equivalent to:

If the factory determines that a type or instance override exists, the type of the object
created may be different than the requested type. See uvm_factory for details on
factory operation.

set_type_override_by_type

A convenience function for uvm_factory::set_type_override_by_type, this method
registers a factory override for components and objects created at this level of hierarchy
or below. This method is equivalent to:

The relative_inst_path is relative to this component and may include wildcards. The
original_type represents the type that is being overridden. In subsequent calls to
uvm_factory::create_object_by_type or uvm_factory::create_component_by_type, if the
requested_type matches the original_type and the instance paths match, the factory will
produce the override_type.

The original and override type arguments are lightweight proxies to the types they
represent. See set_inst_override_by_type for information on usage.

factory.create_component_by_name(requested_type_name,
 get_full_name(), name, this);

function uvm_object create_object (
 string requested_type_name,
 string name = ""
)

factory.create_object_by_name(requested_type_name,
 get_full_name(), name);

static function void set_type_override_by_type (
 uvm_object_wrapper original_type,
 uvm_object_wrapper override_type,
 bit replace = 1
)

factory.set_type_override_by_type(original_type, override_type,replace);

UVM 1.2 Class Reference 350

set_inst_override_by_type

A convenience function for uvm_factory::set_inst_override_by_type, this method registers
a factory override for components and objects created at this level of hierarchy or
below. In typical usage, this method is equivalent to:

The relative_inst_path is relative to this component and may include wildcards. The
original_type represents the type that is being overridden. In subsequent calls to
uvm_factory::create_object_by_type or uvm_factory::create_component_by_type, if the
requested_type matches the original_type and the instance paths match, the factory will
produce the override_type.

The original and override types are lightweight proxies to the types they represent. They
can be obtained by calling type::get_type(), if implemented by type, or by directly calling
type::type_id::get(), where type is the user type and type_id is the name of the typedef
to uvm_object_registry #(T,Tname) or uvm_component_registry #(T,Tname).

If you are employing the `uvm_*_utils macros, the typedef and the get_type method
will be implemented for you. For details on the utils macros refer to Utility and Field
Macros for Components and Objects.

The following example shows `uvm_*_utils usage

set_type_override

function void set_inst_override_by_type(
 string relative_inst_path,
 uvm_object_wrapper original_type,
 uvm_object_wrapper override_type
)

factory.set_inst_override_by_type(original_type,
 override_type,
 {get_full_name(),".",
 relative_inst_path});

class comp extends uvm_component;
 `uvm_component_utils(comp)
 ...
endclass

class mycomp extends uvm_component;
 `uvm_component_utils(mycomp)
 ...
endclass

class block extends uvm_component;
 `uvm_component_utils(block)
 comp c_inst;
 virtual function void build_phase(uvm_phase phase);
 set_inst_override_by_type("c_inst",comp::get_type(),
 mycomp::get_type());
 endfunction
 ...
endclass

static function void set_type_override(
 string original_type_name,
 string override_type_name,
 bit replace = 1
)

UVM 1.2 Class Reference 351

A convenience function for uvm_factory::set_type_override_by_name, this method
configures the factory to create an object of type override_type_name whenever the
factory is asked to produce a type represented by original_type_name. This method is
equivalent to:

The original_type_name typically refers to a preregistered type in the factory. It may,
however, be any arbitrary string. Subsequent calls to create_component or
create_object with the same string and matching instance path will produce the type
represented by override_type_name. The override_type_name must refer to a
preregistered type in the factory.

set_inst_override

A convenience function for uvm_factory::set_inst_override_by_name, this method
registers a factory override for components created at this level of hierarchy or below. In
typical usage, this method is equivalent to:

The relative_inst_path is relative to this component and may include wildcards. The
original_type_name typically refers to a preregistered type in the factory. It may,
however, be any arbitrary string. Subsequent calls to create_component or
create_object with the same string and matching instance path will produce the type
represented by override_type_name. The override_type_name must refer to a
preregistered type in the factory.

print_override_info

This factory debug method performs the same lookup process as create_object and
create_component, but instead of creating an object, it prints information about what
type of object would be created given the provided arguments.

HIERARchIcAL REpORTING INTERFAcE

This interface provides versions of the set_report_* methods in the uvm_report_object

factory.set_type_override_by_name(original_type_name,
 override_type_name, replace);

function void set_inst_override(
 string relative_inst_path,
 string original_type_name,
 string override_type_name
)

factory.set_inst_override_by_name(original_type_name,
 override_type_name,
 {get_full_name(),".",
 relative_inst_path}
);

function void print_override_info(
 string requested_type_name,
 string name = ""
)

UVM 1.2 Class Reference 352

base class that are applied recursively to this component and all its children.

When a report is issued and its associated action has the LOG bit set, the report will be
sent to its associated FILE descriptor.

set_report_id_verbosity_hier

set_report_severity_id_verbosity_hier

These methods recursively associate the specified verbosity with reports of the given
severity, id, or severity-id pair. A verbosity associated with a particular severity-id pair
takes precedence over a verbosity associated with id, which takes precedence over a
verbosity associated with a severity.

For a list of severities and their default verbosities, refer to uvm_report_handler.

set_report_severity_action_hier

set_report_id_action_hier

set_report_severity_id_action_hier

These methods recursively associate the specified action with reports of the given
severity, id, or severity-id pair. An action associated with a particular severity-id pair
takes precedence over an action associated with id, which takes precedence over an
action associated with a severity.

For a list of severities and their default actions, refer to uvm_report_handler.

function void set_report_id_verbosity_hier (
 string id,
 int verbosity
)

function void set_report_severity_id_verbosity_hier(
 uvm_severity severity,
 string id,
 int verbosity
)

function void set_report_severity_action_hier (
 uvm_severity severity,
 uvm_action action
)

function void set_report_id_action_hier (
 string id,
 uvm_action action
)

function void set_report_severity_id_action_hier(
 uvm_severity severity,
 string id,
 uvm_action action
)

UVM 1.2 Class Reference 353

set_report_default_file_hier

set_report_severity_file_hier

set_report_id_file_hier

set_report_severity_id_file_hier

These methods recursively associate the specified FILE descriptor with reports of the
given severity, id, or severity-id pair. A FILE associated with a particular severity-id pair
takes precedence over a FILE associated with id, which take precedence over an a FILE
associated with a severity, which takes precedence over the default FILE descriptor.

For a list of severities and other information related to the report mechanism, refer to
uvm_report_handler.

set_report_verbosity_level_hier

This method recursively sets the maximum verbosity level for reports for this component
and all those below it. Any report from this component subtree whose verbosity exceeds
this maximum will be ignored.

See uvm_report_handler for a list of predefined message verbosity levels and their
meaning.

pre_abort

This callback is executed when the message system is executing a UVM_EXIT action.

function void set_report_default_file_hier (
 UVM_FILE file
)

function void set_report_severity_file_hier (
 uvm_severity severity,
 UVM_FILE file
)

function void set_report_id_file_hier (
 string id,
 UVM_FILE file
)

function void set_report_severity_id_file_hier(
 uvm_severity severity,
 string id,
 UVM_FILE file
)

function void set_report_verbosity_level_hier (
 int verbosity
)

virtual function void pre_abort

UVM 1.2 Class Reference 354

The exit action causes an immediate termination of the simulation, but the pre_abort
callback hook gives components an opportunity to provide additional information to the
user before the termination happens. For example, a test may want to executed the
report function of a particular component even when an error condition has happened to
force a premature termination you would write a function like:

The pre_abort() callback hooks are called in a bottom-up fashion.

REcORdING INTERFAcE

These methods comprise the component-based transaction recording interface. The
methods can be used to record the transactions that this component “sees”, i.e. produces
or consumes.

The API and implementation are subject to change once a vendor-independent use-model
is determined.

accept_tr

This function marks the acceptance of a transaction, tr, by this component. Specifically,
it performs the following actions:

Calls the tr’s uvm_transaction::accept_tr method, passing to it the accept_time
argument.
Calls this component’s do_accept_tr method to allow for any post-begin action in
derived classes.
Triggers the component’s internal accept_tr event. Any processes waiting on this
event will resume in the next delta cycle.

do_accept_tr

The accept_tr method calls this function to accommodate any user-defined post-accept
action. Implementations should call super.do_accept_tr to ensure correct operation.

begin_tr

function void mycomponent::pre_abort();
 report();
endfunction

function void accept_tr (
 uvm_transaction tr,
 time accept_time = 0
)

virtual protected function void do_accept_tr (
 uvm_transaction tr
)

function integer begin_tr (
 uvm_transaction tr,
 string stream_name = "main",
 string label = "",
 string desc = "",

UVM 1.2 Class Reference 355

This function marks the start of a transaction, tr, by this component. Specifically, it
performs the following actions:

Calls tr’s uvm_transaction::begin_tr method, passing to it the begin_time
argument. The begin_time should be greater than or equal to the accept time. By
default, when begin_time = 0, the current simulation time is used.

If recording is enabled (recording_detail != UVM_OFF), then a new database-transaction
is started on the component’s transaction stream given by the stream argument. No
transaction properties are recorded at this time.

Calls the component’s do_begin_tr method to allow for any post-begin action in
derived classes.
Triggers the component’s internal begin_tr event. Any processes waiting on this
event will resume in the next delta cycle.

A handle to the transaction is returned. The meaning of this handle, as well as the
interpretation of the arguments stream_name, label, and desc are vendor specific.

begin_child_tr

This function marks the start of a child transaction, tr, by this component. Its operation
is identical to that of begin_tr, except that an association is made between this
transaction and the provided parent transaction. This association is vendor-specific.

do_begin_tr

The begin_tr and begin_child_tr methods call this function to accommodate any user-
defined post-begin action. Implementations should call super.do_begin_tr to ensure
correct operation.

end_tr

This function marks the end of a transaction, tr, by this component. Specifically, it
performs the following actions:

 time begin_time = 0,
 integer parent_handle = 0
)

function integer begin_child_tr (
 uvm_transaction tr,
 integer parent_handle = 0,
 string stream_name = "main",
 string label = "",
 string desc = "",
 time begin_time = 0
)

virtual protected function void do_begin_tr (
 uvm_transaction tr,
 string stream_name,
 integer tr_handle
)

function void end_tr (
 uvm_transaction tr,
 time end_time = 0,
 bit free_handle = 1
)

UVM 1.2 Class Reference 356

Calls tr’s uvm_transaction::end_tr method, passing to it the end_time argument.
The end_time must at least be greater than the begin time. By default, when
end_time = 0, the current simulation time is used.

The transaction’s properties are recorded to the database-transaction on which it was
started, and then the transaction is ended. Only those properties handled by the
transaction’s do_record method (and optional `uvm_*_field macros) are recorded.

Calls the component’s do_end_tr method to accommodate any post-end action in
derived classes.
Triggers the component’s internal end_tr event. Any processes waiting on this
event will resume in the next delta cycle.

The free_handle bit indicates that this transaction is no longer needed. The
implementation of free_handle is vendor-specific.

do_end_tr

The end_tr method calls this function to accommodate any user-defined post-end action.
Implementations should call super.do_end_tr to ensure correct operation.

record_error_tr

This function marks an error transaction by a component. Properties of the given
uvm_object, info, as implemented in its uvm_object::do_record method, are recorded to
the transaction database.

An error_time of 0 indicates to use the current simulation time. The keep_active bit
determines if the handle should remain active. If 0, then a zero-length error transaction
is recorded. A handle to the database-transaction is returned.

Interpretation of this handle, as well as the strings stream_name, label, and desc, are
vendor-specific.

record_event_tr

This function marks an event transaction by a component.

virtual protected function void do_end_tr (
 uvm_transaction tr,
 integer tr_handle
)

function integer record_error_tr (
 string stream_name = "main",
 uvm_object info = null,
 string label = "error_tr",
 string desc = "",
 time error_time = 0,
 bit keep_active = 0
)

function integer record_event_tr (
 string stream_name = "main",
 uvm_object info = null,
 string label = "event_tr",
 string desc = "",
 time event_time = 0,
 bit keep_active = 0
)

UVM 1.2 Class Reference 357

An event_time of 0 indicates to use the current simulation time.

A handle to the transaction is returned. The keep_active bit determines if the handle
may be used for other vendor-specific purposes.

The strings for stream_name, label, and desc are vendor-specific identifiers for the
transaction.

get_tr_stream

Returns a tr stream with this component’s full name as a scope.

Streams which are retrieved via this method will be stored internally, such that later calls
to get_tr_stream will return the same stream reference.

The stream can be removed from the internal storage via a call to free_tr_stream.

Parameters

name Name for the stream
stream_type_name Type name for the stream (Default = “”)

free_tr_stream

Frees the internal references associated with stream.

The next call to get_tr_stream will result in a newly created uvm_tr_stream. If the
current stream is open (or closed), then it will be freed.

print_enabled

This bit determines if this component should automatically be printed as a child of its
parent object.

By default, all children are printed. However, this bit allows a parent component to
disable the printing of specific children.

tr_database

Specifies the uvm_tr_database object to use for begin_tr and other methods in the
Recording Interface. Default is uvm_coreservice_t::get_default_tr_database.

virtual function uvm_tr_stream get_tr_stream(
 string name,
 string stream_type_name = ""
)

virtual function void free_tr_stream(
 uvm_tr_stream stream
)

bit print_enabled = 1

uvm_tr_database tr_database

UVM 1.2 Class Reference 358

17.2 uvm_test

This class is the virtual base class for the user-defined tests.

The uvm_test virtual class should be used as the base class for user-defined tests.
Doing so provides the ability to select which test to execute using the UVM_TESTNAME
command line or argument to the uvm_root::run_test task.

For example

The global run_test() task should be specified inside an initial block such as

Multiple tests, identified by their type name, are compiled in and then selected for
execution from the command line without need for recompilation. Random seed selection
is also available on the command line.

If +UVM_TESTNAME=test_name is specified, then an object of type ‘test_name’ is
created by factory and phasing begins. Here, it is presumed that the test will instantiate
the test environment, or the test environment will have already been instantiated before
the call to run_test().

If the specified test_name cannot be created by the uvm_factory, then a fatal error
occurs. If run_test() is called without UVM_TESTNAME being specified, then all
components constructed before the call to run_test will be cycled through their
simulation phases.

Deriving from uvm_test will allow you to distinguish tests from other component types
that inherit from uvm_component directly. Such tests will automatically inherit features
that may be added to uvm_test in the future.

Summary

uvm_test

This class is the virtual base class for the user-defined tests.

CLAss HIERARchY

uvm_void

uvm_object

uvm_report_object

uvm_component

uvm_test

CLAss DEcLARATION

prompt> SIM_COMMAND +UVM_TESTNAME=test_bus_retry

initial run_test();

virtual class uvm_test extends uvm_component

UVM 1.2 Class Reference 359

METhOds

new Creates and initializes an instance of this class using the normal
constructor arguments for uvm_component: name is the name of
the instance, and parent is the handle to the hierarchical parent, if
any.

METhOds

new

Creates and initializes an instance of this class using the normal constructor arguments
for uvm_component: name is the name of the instance, and parent is the handle to the
hierarchical parent, if any.

function new (
 string name,
 uvm_component parent
)

UVM 1.2 Class Reference 360

17.3 uvm_env

The base class for hierarchical containers of other components that together comprise a
complete environment. The environment may initially consist of the entire testbench.
Later, it can be reused as a sub-environment in even larger system-level environments.

Summary

uvm_env

The base class for hierarchical containers of other components that together
comprise a complete environment.

CLAss HIERARchY

uvm_void

uvm_object

uvm_report_object

uvm_component

uvm_env

CLAss DEcLARATION

METhOds

new Creates and initializes an instance of this class using the normal
constructor arguments for uvm_component: name is the name of
the instance, and parent is the handle to the hierarchical parent, if
any.

METhOds

new

Creates and initializes an instance of this class using the normal constructor arguments
for uvm_component: name is the name of the instance, and parent is the handle to the
hierarchical parent, if any.

virtual class uvm_env extends uvm_component

function new (
 string name = "env",
 uvm_component parent = null
)

UVM 1.2 Class Reference 361

17.4 uvm_agent

The uvm_agent virtual class should be used as the base class for the user- defined
agents. Deriving from uvm_agent will allow you to distinguish agents from other
component types also using its inheritance. Such agents will automatically inherit
features that may be added to uvm_agent in the future.

While an agent’s build function, inherited from uvm_component, can be implemented to
define any agent topology, an agent typically contains three subcomponents: a driver,
sequencer, and monitor. If the agent is active, subtypes should contain all three
subcomponents. If the agent is passive, subtypes should contain only the monitor.

Summary

uvm_agent

The uvm_agent virtual class should be used as the base class for the user-
defined agents.

CLAss HIERARchY

uvm_void

uvm_object

uvm_report_object

uvm_component

uvm_agent

CLAss DEcLARATION

METhOds

new Creates and initializes an instance of this class using the
normal constructor arguments for uvm_component: name is
the name of the instance, and parent is the handle to the
hierarchical parent, if any.

get_is_active Returns UVM_ACTIVE is the agent is acting as an active
agent and UVM_PASSIVE if it is acting as a passive agent.

METhOds

new

Creates and initializes an instance of this class using the normal constructor arguments
for uvm_component: name is the name of the instance, and parent is the handle to the
hierarchical parent, if any.

The int configuration parameter is_active is used to identify whether this agent should be

virtual class uvm_agent extends uvm_component

function new (
 string name,
 uvm_component parent
)

UVM 1.2 Class Reference 362

acting in active or passive mode. This parameter can be set by doing:

get_is_active

Returns UVM_ACTIVE is the agent is acting as an active agent and UVM_PASSIVE if it is
acting as a passive agent. The default implementation is to just return the is_active flag,
but the component developer may override this behavior if a more complex algorithm is
needed to determine the active/passive nature of the agent.

uvm_config_int::set(this, "<relative_path_to_agent>, "is_active",
UVM_ACTIVE);

virtual function uvm_active_passive_enum get_is_active()

UVM 1.2 Class Reference 363

17.5 uvm_monitor

This class should be used as the base class for user-defined monitors.

Deriving from uvm_monitor allows you to distinguish monitors from generic component
types inheriting from uvm_component. Such monitors will automatically inherit features
that may be added to uvm_monitor in the future.

Summary

uvm_monitor

This class should be used as the base class for user-defined monitors.

CLAss HIERARchY

uvm_void

uvm_object

uvm_report_object

uvm_component

uvm_monitor

CLAss DEcLARATION

METhOds

new Creates and initializes an instance of this class using the normal
constructor arguments for uvm_component: name is the name of
the instance, and parent is the handle to the hierarchical parent, if
any.

METhOds

new

Creates and initializes an instance of this class using the normal constructor arguments
for uvm_component: name is the name of the instance, and parent is the handle to the
hierarchical parent, if any.

virtual class uvm_monitor extends uvm_component

function new (
 string name,
 uvm_component parent
)

UVM 1.2 Class Reference 364

17.6 uvm_scoreboard

The uvm_scoreboard virtual class should be used as the base class for user-defined
scoreboards.

Deriving from uvm_scoreboard will allow you to distinguish scoreboards from other
component types inheriting directly from uvm_component. Such scoreboards will
automatically inherit and benefit from features that may be added to uvm_scoreboard in
the future.

Summary

uvm_scoreboard

The uvm_scoreboard virtual class should be used as the base class for user-
defined scoreboards.

CLAss HIERARchY

uvm_void

uvm_object

uvm_report_object

uvm_component

uvm_scoreboard

CLAss DEcLARATION

METhOds

new Creates and initializes an instance of this class using the normal
constructor arguments for uvm_component: name is the name of
the instance, and parent is the handle to the hierarchical parent, if
any.

METhOds

new

Creates and initializes an instance of this class using the normal constructor arguments
for uvm_component: name is the name of the instance, and parent is the handle to the
hierarchical parent, if any.

virtual class uvm_scoreboard extends uvm_component

function new (
 string name,
 uvm_component parent
)

UVM 1.2 Class Reference 365

17.7 uvm_driver #(REQ,RSP)

The base class for drivers that initiate requests for new transactions via a
uvm_seq_item_pull_port. The ports are typically connected to the exports of an
appropriate sequencer component.

This driver operates in pull mode. Its ports are typically connected to the corresponding
exports in a pull sequencer as follows:

The rsp_port needs connecting only if the driver will use it to write responses to the
analysis export in the sequencer.

Summary

uvm_driver #(REQ,RSP)

The base class for drivers that initiate requests for new transactions via a
uvm_seq_item_pull_port.

CLAss HIerArchY

uvm_void

uvm_object

uvm_report_object

uvm_component

uvm_driver#(REQ,RSP)

CLAss DecLArATION

POrTs

seq_item_port Derived driver classes should use this port to request items
from the sequencer.

rsp_port This port provides an alternate way of sending responses
back to the originating sequencer.

MeThOds

new Creates and initializes an instance of this class using the
normal constructor arguments for uvm_component: name
is the name of the instance, and parent is the handle to the
hierarchical parent, if any.

POrTs

seq_item_port

driver.seq_item_port.connect(sequencer.seq_item_export);
driver.rsp_port.connect(sequencer.rsp_export);

class uvm_driver #(
 type REQ = uvm_sequence_item,
 type RSP = REQ
) extends uvm_component

UVM 1.2 Class Reference 366

Derived driver classes should use this port to request items from the sequencer. They
may also use it to send responses back.

rsp_port

This port provides an alternate way of sending responses back to the originating
sequencer. Which port to use depends on which export the sequencer provides for
connection.

MeThOds

new

Creates and initializes an instance of this class using the normal constructor arguments
for uvm_component: name is the name of the instance, and parent is the handle to the
hierarchical parent, if any.

function new (
 string name,
 uvm_component parent
)

UVM 1.2 Class Reference 367

17.8 uvm_push_driver #(REQ,RSP)

Base class for a driver that passively receives transactions, i.e. does not initiate requests
transactions. Also known as push mode. Its ports are typically connected to the
corresponding ports in a push sequencer as follows:

The rsp_port needs connecting only if the driver will use it to write responses to the
analysis export in the sequencer.

Summary

uvm_push_driver #(REQ,RSP)

Base class for a driver that passively receives transactions.

CLAss HIerArchY

uvm_void

uvm_object

uvm_report_object

uvm_component

uvm_push_driver#(REQ,RSP)

CLAss DecLArATION

POrTs

req_export This export provides the blocking put interface whose default
implementation produces an error.

rsp_port This analysis port is used to send response transactions back
to the originating sequencer.

MeThOds

new Creates and initializes an instance of this class using the
normal constructor arguments for uvm_component: name is
the name of the instance, and parent is the handle to the
hierarchical parent, if any.

POrTs

req_export

This export provides the blocking put interface whose default implementation produces
an error. Derived drivers must override put with an appropriate implementation (and not
call super.put). Ports connected to this export will supply the driver with transactions.

push_sequencer.req_port.connect(push_driver.req_export);
push_driver.rsp_port.connect(push_sequencer.rsp_export);

class uvm_push_driver #(
 type REQ = uvm_sequence_item,
 type RSP = REQ
) extends uvm_component

UVM 1.2 Class Reference 368

rsp_port

This analysis port is used to send response transactions back to the originating
sequencer.

MeThOds

new

Creates and initializes an instance of this class using the normal constructor arguments
for uvm_component: name is the name of the instance, and parent is the handle to the
hierarchical parent, if any.

function new (
 string name,
 uvm_component parent
)

UVM 1.2 Class Reference 369

17.9 uvm_random_stimulus #(T)

A general purpose unidirectional random stimulus class.

The uvm_random_stimulus class generates streams of T transactions. These streams
may be generated by the randomize method of T, or the randomize method of one of its
subclasses. The stream may go indefinitely, until terminated by a call to
stop_stimulus_generation, or we may specify the maximum number of transactions to be
generated.

By using inheritance, we can add directed initialization or tidy up after random stimulus
generation. Simply extend the class and define the run task, calling super.run() when
you want to begin the random stimulus phase of simulation.

While very useful in its own right, this component can also be used as a template for
defining other stimulus generators, or it can be extended to add additional stimulus
generation methods and to simplify test writing.

Summary

uvm_random_stimulus #(T)

A general purpose unidirectional random stimulus class.

CLAss HIERARchY

uvm_void

uvm_object

uvm_report_object

uvm_component

uvm_random_stimulus#(T)

CLAss DEcLARAtION

PORts

blocking_put_port The blocking_put_port is used to send the
generated stimulus to the rest of the testbench.

MEthOds

new Creates a new instance of a specialization of this
class.

generate_stimulus Generate up to max_count transactions of type
T.

stop_stimulus_generation Stops the generation of stimulus.

PORts

blocking_put_port

The blocking_put_port is used to send the generated stimulus to the rest of the

class uvm_random_stimulus #(
 type T = uvm_transaction
) extends uvm_component

UVM 1.2 Class Reference 370

testbench.

MEthOds

new

Creates a new instance of a specialization of this class. Also, displays the random state
obtained from a get_randstate call. In subsequent simulations, set_randstate can be
called with the same value to reproduce the same sequence of transactions.

generate_stimulus

Generate up to max_count transactions of type T. If t is not specified, a default instance
of T is allocated and used. If t is specified, that transaction is used when randomizing.
It must be a subclass of T.

max_count is the maximum number of transactions to be generated. A value of zero
indicates no maximum - in this case, generate_stimulus will go on indefinitely unless
stopped by some other process

The transactions are cloned before they are sent out over the blocking_put_port

stop_stimulus_generation

Stops the generation of stimulus. If a subclass of this method has forked additional
processes, those processes will also need to be stopped in an overridden version of this
method

function new(
 string name,
 uvm_component parent
)

virtual task generate_stimulus(
 T t = null,
 int max_count = 0
)

virtual function void stop_stimulus_generation

UVM 1.2 Class Reference 371

17.10 uvm_subscriber

This class provides an analysis export for receiving transactions from a connected
analysis export. Making such a connection “subscribes” this component to any
transactions emitted by the connected analysis port.

Subtypes of this class must define the write method to process the incoming
transactions. This class is particularly useful when designing a coverage collector that
attaches to a monitor.

Summary

uvm_subscriber

This class provides an analysis export for receiving transactions from a connected
analysis export.

CLAss HIERARchY

uvm_void

uvm_object

uvm_report_object

uvm_component

uvm_subscriber

CLAss DEcLARATION

PORTs

analysis_export This export provides access to the write method, which
derived subscribers must implement.

METhOds

new Creates and initializes an instance of this class using the
normal constructor arguments for uvm_component: name
is the name of the instance, and parent is the handle to
the hierarchical parent, if any.

write A pure virtual method that must be defined in each
subclass.

PORTs

analysis_export

This export provides access to the write method, which derived subscribers must
implement.

METhOds

virtual class uvm_subscriber #(
 type T = int
) extends uvm_component

UVM 1.2 Class Reference 372

new

Creates and initializes an instance of this class using the normal constructor arguments
for uvm_component: name is the name of the instance, and parent is the handle to the
hierarchical parent, if any.

write

A pure virtual method that must be defined in each subclass. Access to this method by
outside components should be done via the analysis_export.

function new (
 string name,
 uvm_component parent
)

pure virtual function void write(
 T t
)

UVM 1.2 Class Reference 373

18. COMPARATORS

A common function of testbenches is to compare streams of transactions for
equivalence. For example, a testbench may compare a stream of transactions from a
DUT with expected results.

The UVM library provides a base class called uvm_in_order_comparator and two derived
classes: uvm_in_order_built_in_comparator for comparing streams of built-in types and
uvm_in_order_class_comparator for comparing streams of class objects.

The uvm_algorithmic_comparator also compares two streams of transactions, but the
transaction streams might be of different type objects. Thus, this comparator will employ
a user-defined transformation function to convert one type to another before performing
a comparison.

Summary

Comparators

A common function of testbenches is to compare streams of transactions for
equivalence.

UVM 1.2 Class Reference 374

18.1 Comparators

The following classes define comparators for objects and built-in types.

Contents

Comparators The following classes define comparators for
objects and built-in types.

uvm_in_order_comparator
#(T,comp_type,convert,pair_type)

Compares two streams of data objects of
the type parameter, T.

uvm_in_order_built_in_comparator
#(T)

This class uses the uvm_built_in_*
comparison, converter, and pair classes.

uvm_in_order_class_comparator
#(T)

This class uses the uvm_class_*
comparison, converter, and pair classes.

uvm_in_order_comparator
#(T,comp_type,convert,pair_type)

Compares two streams of data objects of the type parameter, T. These transactions may
either be classes or built-in types. To be successfully compared, the two streams of data
must be in the same order. Apart from that, there are no assumptions made about the
relative timing of the two streams of data.

Type parameters

T Specifies the type of transactions to be compared.
comp_type A policy class to compare the two transaction streams. It must

provide the static method “function bit comp(T a, T b)” which
returns TRUE if a and b are the same.

convert A policy class to convert the transactions being compared to a
string. It must provide the static method “function string
convert2string(T a)”.

pair_type A policy class to allow pairs of transactions to be handled as a
single uvm_object type.

Built in types (such as ints, bits, logic, and structs) can be compared using the default
values for comp_type, convert, and pair_type. For convenience, you can use the
subtype, uvm_in_order_built_in_comparator #(T) for built-in types.

When T is a uvm_object, you can use the convenience subtype
uvm_in_order_class_comparator #(T).

Comparisons are commutative, meaning it does not matter which data stream is
connected to which export, before_export or after_export.

Comparisons are done in order and as soon as a transaction is received from both
streams. Internal fifos are used to buffer incoming transactions on one stream until a
transaction to compare arrives on the other stream.

Summary

uvm_in_order_comparator
#(T,comp_type,convert,pair_type)

Compares two streams of data objects of the type parameter, T.

PORts

before_export The export to which one stream of data is written.

UVM 1.2 Class Reference 375

after_export The export to which the other stream of data is written.
pair_ap The comparator sends out pairs of transactions across this

analysis port.
MEtHODs

flush This method sets m_matches and m_mismatches back to
zero.

PORts

before_export

The export to which one stream of data is written. The port must be connected to an
analysis port that will provide such data.

after_export

The export to which the other stream of data is written. The port must be connected to
an analysis port that will provide such data.

pair_ap

The comparator sends out pairs of transactions across this analysis port. Both matched
and unmatched pairs are published via a pair_type objects. Any connected analysis
export(s) will receive these transaction pairs.

MEtHODs

flush

This method sets m_matches and m_mismatches back to zero. The
uvm_tlm_fifo::flush takes care of flushing the FIFOs.

uvm_in_order_built_in_comparator #(T)

This class uses the uvm_built_in_* comparison, converter, and pair classes. Use this
class for built-in types (int, bit, string, etc.)

Summary

uvm_in_order_built_in_comparator #(T)

This class uses the uvm_built_in_* comparison, converter, and pair classes.

CLAss HIERARcHY

uvm_in_order_comparator#(T)

uvm_in_order_built_in_comparator#(T)

CLAss DEcLARAtION

virtual function void flush()

UVM 1.2 Class Reference 376

uvm_in_order_class_comparator #(T)

This class uses the uvm_class_* comparison, converter, and pair classes. Use this class
for comparing user-defined objects of type T, which must provide compare() and
convert2string() method.

Summary

uvm_in_order_class_comparator #(T)

This class uses the uvm_class_* comparison, converter, and pair classes.

CLAss HIERARcHY

uvm_in_order_comparator#(T,uvm_class_comp#(T),uvm_class_converter#(T),uvm_class_pair#(T,T))

uvm_in_order_class_comparator#(T)

CLAss DEcLARAtION

class uvm_in_order_built_in_comparator #(
 type T = int
) extends uvm_in_order_comparator #(T)

class uvm_in_order_class_comparator #(
 type T = int
) extends uvm_in_order_comparator #(T , uvm_class_comp #(T) , uvm_class_converter #(
T) , uvm_class_pair #(T, T))

UVM 1.2 Class Reference 377

18.2 Algorithmic Comparator

A common function of testbenches is to compare streams of transactions for
equivalence. For example, a testbench may compare a stream of transactions from a
DUT with expected results.

The UVM library provides a base class called uvm_in_order_comparator
#(T,comp_type,convert,pair_type) and two derived classes, which are
uvm_in_order_built_in_comparator #(T) for comparing streams of built-in types and
uvm_in_order_class_comparator #(T) for comparing streams of class objects.

The uvm_algorithmic_comparator also compares two streams of transactions; however,
the transaction streams might be of different type objects. This device will use a user-
written transformation function to convert one type to another before performing a
comparison.

Summary

Algorithmic Comparator

A common function of testbenches is to compare streams of transactions for
equivalence.

uvm_algorithmic_comparator
#(BEFORE,AFTER,TRANSFORMER)

Compares two streams of data objects of different types, BEFORE and AFTER.

The algorithmic comparator is a wrapper around uvm_in_order_class_comparator #(T).
Like the in-order comparator, the algorithmic comparator compares two streams of
transactions, the BEFORE stream and the AFTER stream. It is often the case when two
streams of transactions need to be compared that the two streams are in different
forms. That is, the type of the BEFORE transaction stream is different than the type of
the AFTER transaction stream.

The uvm_algorithmic_comparator’s TRANSFORMER type parameter specifies the class
responsible for converting transactions of type BEFORE into those of type AFTER. This
transformer class must provide a transform() method with the following prototype:

Matches and mismatches are reported in terms of the AFTER transactions. For more
information, see the uvm_in_order_comparator #(T,comp_type,convert,pair_type) class.

Summary

uvm_algorithmic_comparator
#(BEFORE,AFTER,TRANSFORMER)

function AFTER transform (BEFORE b);

UVM 1.2 Class Reference 378

Compares two streams of data objects of different types, BEFORE and AFTER.

CLass HIerarchY

uvm_void

uvm_object

uvm_report_object

uvm_component

uvm_algorithmic_comparator#(BEFORE,AFTER,TRANSFORMER)

CLass DecLaratIon

Ports

before_export The export to which a data stream of type BEFORE is sent via a
connected analysis port.

after_export The export to which a data stream of type AFTER is sent via a
connected analysis port.

Methods

new Creates an instance of a specialization of this class.

Ports

before_export

The export to which a data stream of type BEFORE is sent via a connected analysis port.
Publishers (monitors) can send in an ordered stream of transactions against which the
transformed BEFORE transactions will (be compared.

after_export

The export to which a data stream of type AFTER is sent via a connected analysis port.
Publishers (monitors) can send in an ordered stream of transactions to be transformed
and compared to the AFTER transactions.

Methods

new

Creates an instance of a specialization of this class. In addition to the standard

class uvm_algorithmic_comparator #(
 type BEFORE = int,
 type AFTER = int,
 type TRANSFORMER = int
) extends uvm_component

function new(
 string name,
 uvm_component parent = null,
 TRANSFORMER transformer = null
)

UVM 1.2 Class Reference 379

uvm_component constructor arguments, name and parent, the constructor takes a
handle to a transformer object, which must already be allocated (handles can’t be null)
and must implement the transform() method.

UVM 1.2 Class Reference 380

18.3 uvm_pair classes

This section defines container classes for handling value pairs.

Contents

uvm_pair
classes

This section defines container classes for handling value pairs.

uvm_class_pair
#(T1,T2)

Container holding handles to two objects whose types are
specified by the type parameters, T1 and T2.

uvm_built_in_pair
#(T1,T2)

Container holding two variables of built-in types (int, string,
etc.)

uvm_class_pair #(T1,T2)

Container holding handles to two objects whose types are specified by the type
parameters, T1 and T2.

Summary

uvm_class_pair #(T1,T2)

Container holding handles to two objects whose types are specified by the type
parameters, T1 and T2.

CLAss HIERARchY

uvm_void

uvm_object

uvm_class_pair#(T1,T2)

CLAss DEcLARAtION

VARIABLEs

T1 first The handle to the first object in the pair
T2 second The handle to the second object in the pair

MEthOds

new Creates an instance that holds a handle to two objects.

VARIABLEs

T1 first

class uvm_class_pair #(
 type T1 = int,
 T2 = T1
) extends uvm_object

UVM 1.2 Class Reference 381

The handle to the first object in the pair

T2 second

The handle to the second object in the pair

MEthOds

new

Creates an instance that holds a handle to two objects. The optional name argument
gives a name to the new pair object.

uvm_built_in_pair #(T1,T2)

Container holding two variables of built-in types (int, string, etc.). The types are
specified by the type parameters, T1 and T2.

Summary

uvm_built_in_pair #(T1,T2)

Container holding two variables of built-in types (int, string, etc.)

CLAss HIERARchY

uvm_void

uvm_object

uvm_built_in_pair#(T1,T2)

CLAss DEcLARAtION

VARIABLEs

T1 first The first value in the pair
T2 second The second value in the pair

MEthOds

new Creates an instance that holds two built-in type values.

T1 first

T2 second

function new (
 string name = "",
 T1 f = null,
 T2 s = null
)

class uvm_built_in_pair #(
 type T1 = int,
 T2 = T1
) extends uvm_object

UVM 1.2 Class Reference 382

VARIABLEs

T1 first

The first value in the pair

T2 second

The second value in the pair

MEthOds

new

Creates an instance that holds two built-in type values. The optional name argument
gives a name to the new pair object.

T1 first

T2 second

function new (
 string name = ""
)

UVM 1.2 Class Reference 383

18.4 Policy Classes

Policy classes are used to implement polymorphic operations that differ between built-in
types and class-based types. Generic components can then be built that work with either
classes or built-in types, depending on what policy class is used.

Contents

Policy Classes Policy classes are used to implement polymorphic
operations that differ between built-in types and class-
based types.

uvm_built_in_comp
#(T)

This policy class is used to compare built-in types.

uvm_built_in_converter
#(T)

This policy class is used to convert built-in types to
strings.

uvm_built_in_clone
#(T)

This policy class is used to clone built-in types via the =
operator.

uvm_class_comp #(T) This policy class is used to compare two objects of the
same type.

uvm_class_converter
#(T)

This policy class is used to convert a class object to a
string.

uvm_class_clone #(T) This policy class is used to clone class objects.

uvm_built_in_comp #(T)

This policy class is used to compare built-in types.

Provides a comp method that compares the built-in type, T, for which the == operator is
defined.

Summary

uvm_built_in_comp #(T)

This policy class is used to compare built-in types.

CLAss DEcLARAtION

uvm_built_in_converter #(T)

This policy class is used to convert built-in types to strings.

Provides a convert2string method that converts the built-in type, T, to a string using the
%p format specifier.

class uvm_built_in_comp #(
 type T = int
)

UVM 1.2 Class Reference 384

Summary

uvm_built_in_converter #(T)

This policy class is used to convert built-in types to strings.

CLAss DEcLARAtION

uvm_built_in_clone #(T)

This policy class is used to clone built-in types via the = operator.

Provides a clone method that returns a copy of the built-in type, T.

Summary

uvm_built_in_clone #(T)

This policy class is used to clone built-in types via the = operator.

CLAss DEcLARAtION

uvm_class_comp #(T)

This policy class is used to compare two objects of the same type.

Provides a comp method that compares two objects of type T. The class T must provide
the method “function bit compare(T rhs)”, similar to the uvm_object::compare method.

Summary

uvm_class_comp #(T)

This policy class is used to compare two objects of the same type.

CLAss DEcLARAtION

class uvm_built_in_converter #(
 type T = int
)

class uvm_built_in_clone #(
 type T = int
)

class uvm_class_comp #(
 type T = int
)

UVM 1.2 Class Reference 385

uvm_class_converter #(T)

This policy class is used to convert a class object to a string.

Provides a convert2string method that converts an instance of type T to a string. The
class T must provide the method “function string convert2string()”, similar to the
uvm_object::convert2string method.

Summary

uvm_class_converter #(T)

This policy class is used to convert a class object to a string.

CLAss DEcLARAtION

uvm_class_clone #(T)

This policy class is used to clone class objects.

Provides a clone method that returns a copy of the built-in type, T. The class T must
implement the clone method, to which this class delegates the operation. If T is derived
from uvm_object, then T must instead implement uvm_object::do_copy, either directly
or indirectly through use of the `uvm_field macros.

Summary

uvm_class_clone #(T)

This policy class is used to clone class objects.

CLAss DEcLARAtION

class uvm_class_converter #(
 type T = int
)

class uvm_class_clone #(
 type T = int
)

UVM 1.2 Class Reference 386

19. Sequencer Classes

The sequencer serves as an arbiter for controlling transaction flow from multiple stimulus
generators. More specifically, the sequencer controls the flow of uvm_sequence_item-
based transactions generated by one or more uvm_sequence #(REQ,RSP)-based
sequences.

There are two sequencer variants available.
uvm_sequencer #(REQ,RSP) - Requests for new sequence items are initiated by
the driver. Upon such requests, the sequencer selects a sequence from a list of
available sequences to produce and deliver the next item to execute. This
sequencer is typically connected to a user-extension of uvm_driver #(REQ,RSP).
uvm_push_sequencer #(REQ,RSP) - Sequence items (from the currently running
sequences) are pushed by the sequencer to the driver, which blocks item flow
when it is not ready to accept new transactions. This sequencer is typically
connected to a user-extension of uvm_push_driver #(REQ,RSP).

Sequencer-driver communication follows a pull or push semantic, depending on which
sequencer type is used. However, sequence-sequencer communication is always initiated
by the user-defined sequence, i.e. follows a push semantic.

See Sequence Classes for an overview on sequences and sequence items.

Sequence Item Ports

As with all UVM components, the sequencers and drivers described above use TLM
Interfaces to communicate transactions.

The uvm_sequencer #(REQ,RSP) and uvm_driver #(REQ,RSP) pair also uses a sequence
item pull port to achieve the special execution semantic needed by the sequencer-driver
pair.

UVM 1.2 Class Reference 387

Sequencers and drivers use a seq_item_port specifically supports sequencer-driver
communication. Connections to these ports are made in the same fashion as the TLM
ports.

Summary

Sequencer Classes

The sequencer serves as an arbiter for controlling transaction flow from multiple
stimulus generators.

UVM 1.2 Class Reference 388

19.1 uvm_sequencer_base

Controls the flow of sequences, which generate the stimulus (sequence item
transactions) that is passed on to drivers for execution.

Summary

uvm_sequencer_base

Controls the flow of sequences, which generate the stimulus (sequence item
transactions) that is passed on to drivers for execution.

CLAss HIERARchY

uvm_void

uvm_object

uvm_report_object

uvm_component

uvm_sequencer_base

CLAss DEcLARATION

METhOds

new Creates and initializes an
instance of this class using the
normal constructor arguments
for uvm_component: name is the
name of the instance, and parent
is the handle to the hierarchical
parent.

is_child Returns 1 if the child sequence is
a child of the parent sequence, 0
otherwise.

user_priority_arbitration When the sequencer arbitration
mode is set to
UVM_SEQ_ARB_USER (via the
set_arbitration method), the
sequencer will call this function
each time that it needs to
arbitrate among sequences.

execute_item Executes the given transaction
item directly on this sequencer.

start_phase_sequence Start the default sequence for
this phase, if any.

stop_phase_sequence Stop the default sequence for
this phase, if any exists, and it is
still executing.

wait_for_grant This task issues a request for the
specified sequence.

wait_for_item_done A sequence may optionally call
wait_for_item_done.

is_blocked Returns 1 if the sequence
referred to by sequence_ptr is
currently locked out of the
sequencer.

has_lock Returns 1 if the sequence
referred to in the parameter
currently has a lock on this
sequencer, 0 otherwise.

class uvm_sequencer_base extends uvm_component

UVM 1.2 Class Reference 389

lock Requests a lock for the sequence
specified by sequence_ptr.

grab Requests a lock for the sequence
specified by sequence_ptr.

unlock Removes any locks and grabs
obtained by the specified
sequence_ptr.

ungrab Removes any locks and grabs
obtained by the specified
sequence_ptr.

stop_sequences Tells the sequencer to kill all
sequences and child sequences
currently operating on the
sequencer, and remove all
requests, locks and responses
that are currently queued.

is_grabbed Returns 1 if any sequence
currently has a lock or grab on
this sequencer, 0 otherwise.

current_grabber Returns a reference to the
sequence that currently has a
lock or grab on the sequence.

has_do_available Returns 1 if any sequence
running on this sequencer is
ready to supply a transaction, 0
otherwise.

set_arbitration Specifies the arbitration mode for
the sequencer.

get_arbitration Return the current arbitration
mode set for this sequencer.

wait_for_sequences Waits for a sequence to have a
new item available.

send_request Derived classes implement this
function to send a request item
to the sequencer, which will
forward it to the driver.

set_max_zero_time_wait_relevant_count Can be called at any time to
change the maximum number of
times wait_for_relevant() can be
called by the sequencer in zero
time before an error is declared.

METhOds

new

Creates and initializes an instance of this class using the normal constructor arguments
for uvm_component: name is the name of the instance, and parent is the handle to the
hierarchical parent.

is_child

function new (
 string name,
 uvm_component parent
)

function bit is_child (
 uvm_sequence_base parent,
 uvm_sequence_base child

UVM 1.2 Class Reference 390

Returns 1 if the child sequence is a child of the parent sequence, 0 otherwise.

user_priority_arbitration

When the sequencer arbitration mode is set to UVM_SEQ_ARB_USER (via the
set_arbitration method), the sequencer will call this function each time that it needs to
arbitrate among sequences.

Derived sequencers may override this method to perform a custom arbitration policy.
The override must return one of the entries from the avail_sequences queue, which are
indexes into an internal queue, arb_sequence_q.

The default implementation behaves like UVM_SEQ_ARB_FIFO, which returns the entry at
avail_sequences[0].

execute_item

Executes the given transaction item directly on this sequencer. A temporary parent
sequence is automatically created for the item. There is no capability to retrieve
responses. If the driver returns responses, they will accumulate in the sequencer,
eventually causing response overflow unless
uvm_sequence_base::set_response_queue_error_report_disabled is called.

start_phase_sequence

Start the default sequence for this phase, if any. The default sequence is configured via
resources using either a sequence instance or sequence type (object wrapper). If both
are used, the sequence instance takes precedence. When attempting to override a
previous default sequence setting, you must override both the instance and type
(wrapper) resources, else your override may not take effect.

When setting the resource using set, the 1st argument specifies the context pointer,
usually this for components or null when executed from outside the component hierarchy
(i.e. in module). The 2nd argument is the instance string, which is a path name to the
target sequencer, relative to the context pointer. The path must include the name of the
phase with a “_phase” suffix. The 3rd argument is the resource name, which is
“default_sequence”. The 4th argument is either an object wrapper for the sequence
type, or an instance of a sequence.

Configuration by instances allows pre-initialization, setting rand_mode, use of inline
constraints, etc.

)

virtual function integer user_priority_arbitration(
 integer avail_sequences[$]
)

virtual task execute_item(
 uvm_sequence_item item
)

virtual function void start_phase_sequence(
 uvm_phase phase
)

UVM 1.2 Class Reference 391

Configuration by type is shorter and can be substituted via the factory.

The uvm_resource_db can similarly be used.

stop_phase_sequence

Stop the default sequence for this phase, if any exists, and it is still executing.

wait_for_grant

This task issues a request for the specified sequence. If item_priority is not specified,
then the current sequence priority will be used by the arbiter. If a lock_request is made,
then the sequencer will issue a lock immediately before granting the sequence. (Note
that the lock may be granted without the sequence being granted if is_relevant is not
asserted).

When this method returns, the sequencer has granted the sequence, and the sequence
must call send_request without inserting any simulation delay other than delta cycles.
The driver is currently waiting for the next item to be sent via the send_request call.

myseq_t myseq = new("myseq");
myseq.randomize() with { ... };
uvm_config_db #(uvm_sequence_base)::set(null, "top.agent.myseqr.main_phase",
 "default_sequence",
 myseq);

uvm_config_db #(uvm_object_wrapper)::set(null,
"top.agent.myseqr.main_phase",
 "default_sequence",
 myseq_type::type_id::get());

myseq_t myseq = new("myseq");
myseq.randomize() with { ... };
uvm_resource_db #(uvm_sequence_base)::set({get_full_name(),
".myseqr.main_phase",
 "default_sequence",
 myseq, this);

uvm_resource_db #(uvm_object_wrapper)::set({get_full_name(),
".myseqr.main_phase",
 "default_sequence",
 myseq_t::type_id::get(),
 this);

virtual function void stop_phase_sequence(
 uvm_phase phase
)

virtual task wait_for_grant(
 uvm_sequence_base sequence_ptr,
 int item_priority = -1,
 bit lock_request = 0
)

UVM 1.2 Class Reference 392

wait_for_item_done

A sequence may optionally call wait_for_item_done. This task will block until the driver
calls item_done() or put() on a transaction issued by the specified sequence. If no
transaction_id parameter is specified, then the call will return the next time that the
driver calls item_done() or put(). If a specific transaction_id is specified, then the call
will only return when the driver indicates that it has completed that specific item.

Note that if a specific transaction_id has been specified, and the driver has already
issued an item_done or put for that transaction, then the call will hang waiting for that
specific transaction_id.

is_blocked

Returns 1 if the sequence referred to by sequence_ptr is currently locked out of the
sequencer. It will return 0 if the sequence is currently allowed to issue operations.

Note that even when a sequence is not blocked, it is possible for another sequence to
issue a lock before this sequence is able to issue a request or lock.

has_lock

Returns 1 if the sequence referred to in the parameter currently has a lock on this
sequencer, 0 otherwise.

Note that even if this sequence has a lock, a child sequence may also have a lock, in
which case the sequence is still blocked from issuing operations on the sequencer

lock

Requests a lock for the sequence specified by sequence_ptr.

A lock request will be arbitrated the same as any other request. A lock is granted after
all earlier requests are completed and no other locks or grabs are blocking this sequence.

The lock call will return when the lock has been granted.

grab

virtual task wait_for_item_done(
 uvm_sequence_base sequence_ptr,
 int transaction_id
)

function bit is_blocked(
 uvm_sequence_base sequence_ptr
)

function bit has_lock(
 uvm_sequence_base sequence_ptr
)

virtual task lock(
 uvm_sequence_base sequence_ptr
)

virtual task grab(

UVM 1.2 Class Reference 393

Requests a lock for the sequence specified by sequence_ptr.

A grab request is put in front of the arbitration queue. It will be arbitrated before any
other requests. A grab is granted when no other grabs or locks are blocking this
sequence.

The grab call will return when the grab has been granted.

unlock

Removes any locks and grabs obtained by the specified sequence_ptr.

ungrab

Removes any locks and grabs obtained by the specified sequence_ptr.

stop_sequences

Tells the sequencer to kill all sequences and child sequences currently operating on the
sequencer, and remove all requests, locks and responses that are currently queued. This
essentially resets the sequencer to an idle state.

is_grabbed

Returns 1 if any sequence currently has a lock or grab on this sequencer, 0 otherwise.

current_grabber

Returns a reference to the sequence that currently has a lock or grab on the sequence.
If multiple hierarchical sequences have a lock, it returns the child that is currently
allowed to perform operations on the sequencer.

has_do_available

 uvm_sequence_base sequence_ptr
)

virtual function void unlock(
 uvm_sequence_base sequence_ptr
)

virtual function void ungrab(
 uvm_sequence_base sequence_ptr
)

virtual function void stop_sequences()

virtual function bit is_grabbed()

virtual function uvm_sequence_base current_grabber()

virtual function bit has_do_available()

UVM 1.2 Class Reference 394

Returns 1 if any sequence running on this sequencer is ready to supply a transaction, 0
otherwise. A sequence is ready if it is not blocked (via grab or lock and is_relevant
returns 1.

set_arbitration

Specifies the arbitration mode for the sequencer. It is one of

UVM_SEQ_ARB_FIFO Requests are granted in FIFO order
(default)

UVM_SEQ_ARB_WEIGHTED Requests are granted randomly by weight
UVM_SEQ_ARB_RANDOM Requests are granted randomly
UVM_SEQ_ARB_STRICT_FIFO Requests at highest priority granted in

FIFO order
UVM_SEQ_ARB_STRICT_RANDOM Requests at highest priority granted in

randomly
UVM_SEQ_ARB_USER Arbitration is delegated to the user-defined

function, user_priority_arbitration. That
function will specify the next sequence to
grant.

The default user function specifies FIFO order.

get_arbitration

Return the current arbitration mode set for this sequencer. See set_arbitration for a list
of possible modes.

wait_for_sequences

Waits for a sequence to have a new item available. Uses uvm_wait_for_nba_region to
give a sequence as much time as possible to deliver an item before advancing time.

send_request

Derived classes implement this function to send a request item to the sequencer, which
will forward it to the driver. If the rerandomize bit is set, the item will be randomized
before being sent to the driver.

function void set_arbitration(
 UVM_SEQ_ARB_TYPE val
)

function UVM_SEQ_ARB_TYPE get_arbitration()

virtual task wait_for_sequences()

virtual function void send_request(
 uvm_sequence_base sequence_ptr,
 uvm_sequence_item t,
 bit rerandomize = 0
)

UVM 1.2 Class Reference 395

This function may only be called after a wait_for_grant call.

set_max_zero_time_wait_relevant_count

Can be called at any time to change the maximum number of times wait_for_relevant()
can be called by the sequencer in zero time before an error is declared. The default
maximum is 10.

virtual function void set_max_zero_time_wait_relevant_count(
 int new_val
)

UVM 1.2 Class Reference 396

19.2 uvm_sequencer_param_base #(REQ,RSP)

Extends uvm_sequencer_base with an API depending on specific request (REQ) and
response (RSP) types.

Summary

uvm_sequencer_param_base #(REQ,RSP)

Extends uvm_sequencer_base with an API depending on specific request (REQ)
and response (RSP) types.

CLAss HIerArchY

uvm_void

uvm_object

uvm_report_object

uvm_component

uvm_sequencer_base

uvm_sequencer_param_base#(REQ,RSP)

CLAss DecLArATION

new Creates and initializes an instance of this class using
the normal constructor arguments for
uvm_component: name is the name of the instance,
and parent is the handle to the hierarchical parent,
if any.

send_request The send_request function may only be called after
a wait_for_grant call.

get_current_item Returns the request_item currently being executed
by the sequencer.

ReqUesTs

get_num_reqs_sent Returns the number of requests that have been
sent by this sequencer.

set_num_last_reqs Sets the size of the last_requests buffer.
get_num_last_reqs Returns the size of the last requests buffer, as set

by set_num_last_reqs.
last_req Returns the last request item by default.

RespONses

rsp_export Drivers or monitors can connect to this port to
send responses to the sequencer.

get_num_rsps_received Returns the number of responses received thus far
by this sequencer.

set_num_last_rsps Sets the size of the last_responses buffer.
get_num_last_rsps Returns the max size of the last responses buffer,

as set by set_num_last_rsps.
last_rsp Returns the last response item by default.

new

class uvm_sequencer_param_base #(
 type REQ = uvm_sequence_item,
 type RSP = REQ
) extends uvm_sequencer_base

UVM 1.2 Class Reference 397

Creates and initializes an instance of this class using the normal constructor arguments
for uvm_component: name is the name of the instance, and parent is the handle to the
hierarchical parent, if any.

send_request

The send_request function may only be called after a wait_for_grant call. This call will
send the request item, t, to the sequencer pointed to by sequence_ptr. The sequencer
will forward it to the driver. If rerandomize is set, the item will be randomized before
being sent to the driver.

get_current_item

Returns the request_item currently being executed by the sequencer. If the sequencer is
not currently executing an item, this method will return null.

The sequencer is executing an item from the time that get_next_item or peek is called
until the time that get or item_done is called.

Note that a driver that only calls get() will never show a current item, since the item is
completed at the same time as it is requested.

ReqUesTs

get_num_reqs_sent

Returns the number of requests that have been sent by this sequencer.

set_num_last_reqs

Sets the size of the last_requests buffer. Note that the maximum buffer size is 1024. If
max is greater than 1024, a warning is issued, and the buffer is set to 1024. The
default value is 1.

function new (
 string name,
 uvm_component parent
)

virtual function void send_request(
 uvm_sequence_base sequence_ptr,
 uvm_sequence_item t,
 bit rerandomize = 0
)

function REQ get_current_item()

function int get_num_reqs_sent()

function void set_num_last_reqs(
 int unsigned max
)

UVM 1.2 Class Reference 398

get_num_last_reqs

Returns the size of the last requests buffer, as set by set_num_last_reqs.

last_req

Returns the last request item by default. If n is not 0, then it will get the nï¿½th before
last request item. If n is greater than the last request buffer size, the function will
return null.

RespONses

rsp_export

Drivers or monitors can connect to this port to send responses to the sequencer.
Alternatively, a driver can send responses via its seq_item_port.

The rsp_port in the driver and/or monitor must be connected to the rsp_export in this
sequencer in order to send responses through the response analysis port.

get_num_rsps_received

Returns the number of responses received thus far by this sequencer.

set_num_last_rsps

Sets the size of the last_responses buffer. The maximum buffer size is 1024. If max is
greater than 1024, a warning is issued, and the buffer is set to 1024. The default value
is 1.

get_num_last_rsps

function int unsigned get_num_last_reqs()

function REQ last_req(
 int unsigned n = 0
)

seq_item_port.item_done(response)
seq_item_port.put(response)
rsp_port.write(response) <--- via this export

function int get_num_rsps_received()

function void set_num_last_rsps(
 int unsigned max
)

function int unsigned get_num_last_rsps()

UVM 1.2 Class Reference 399

Returns the max size of the last responses buffer, as set by set_num_last_rsps.

last_rsp

Returns the last response item by default. If n is not 0, then it will get the nth-before-
last response item. If n is greater than the last response buffer size, the function will
return null.

function RSP last_rsp(
 int unsigned n = 0
)

UVM 1.2 Class Reference 400

19.3 uvm_sequencer #(REQ,RSP)

Summary

uvm_sequencer #(REQ,RSP)

CLAss HIerArchY

uvm_void

uvm_object

uvm_report_object

uvm_component

uvm_sequencer_base

uvm_sequencer_param_base#(REQ,RSP)

uvm_sequencer#(REQ,RSP)

CLAss DecLArATION

new Standard component constructor that creates an
instance of this class using the given name and parent,
if any.

stop_sequences Tells the sequencer to kill all sequences and child
sequences currently operating on the sequencer, and
remove all requests, locks and responses that are
currently queued.

SeqUeNcer INTerFAce This is an interface for communicating with sequencers.
seq_item_export This export provides access to this sequencer’s

implementation of the sequencer interface.
get_next_item Retrieves the next available item from a sequence.
try_next_item Retrieves the next available item from a sequence if

one is available.
item_done Indicates that the request is completed.
put Sends a response back to the sequence that issued

the request.
get Retrieves the next available item from a sequence.
peek Returns the current request item if one is in the FIFO.
wait_for_sequences Waits for a sequence to have a new item available.
has_do_available Returns 1 if any sequence running on this sequencer is

ready to supply a transaction, 0 otherwise.

new

Standard component constructor that creates an instance of this class using the given
name and parent, if any.

class uvm_sequencer #(
 type REQ = uvm_sequence_item,
 RSP = REQ
) extends uvm_sequencer_param_base #(REQ, RSP)

function new (
 string name,
 uvm_component parent = null
)

UVM 1.2 Class Reference 401

stop_sequences

Tells the sequencer to kill all sequences and child sequences currently operating on the
sequencer, and remove all requests, locks and responses that are currently queued. This
essentially resets the sequencer to an idle state.

SeqUeNcer INTerFAce

This is an interface for communicating with sequencers.

The interface is defined as

See uvm_sqr_if_base #(REQ,RSP) for information about this interface.

seq_item_export

This export provides access to this sequencer’s implementation of the sequencer
interface.

get_next_item

Retrieves the next available item from a sequence.

try_next_item

Retrieves the next available item from a sequence if one is available.

virtual function void stop_sequences()

Requests:
 virtual task get_next_item (output REQ request);
 virtual task try_next_item (output REQ request);
 virtual task get (output REQ request);
 virtual task peek (output REQ request);
Responses:
 virtual function void item_done (input RSP response=null);
 virtual task put (input RSP response);
Sync Control:
 virtual task wait_for_sequences ();
 virtual function bit has_do_available ();

uvm_seq_item_pull_imp #(
 REQ,
 RSP,
 this_type
) seq_item_export

virtual task get_next_item (
 output REQ t
)

virtual task try_next_item (
 output REQ t
)

UVM 1.2 Class Reference 402

item_done

Indicates that the request is completed.

put

Sends a response back to the sequence that issued the request.

get

Retrieves the next available item from a sequence.

peek

Returns the current request item if one is in the FIFO.

wait_for_sequences

Waits for a sequence to have a new item available.

has_do_available

Returns 1 if any sequence running on this sequencer is ready to supply a transaction, 0
otherwise.

virtual function void item_done (
 RSP item = null
)

virtual task put (
 RSP t
)

task get (
 output REQ t
)

task peek (
 output REQ t
)

UVM 1.2 Class Reference 403

19.4 uvm_push_sequencer #(REQ,RSP)

Summary

uvm_push_sequencer #(REQ,RSP)

CLAss HIerArchY

uvm_void

uvm_object

uvm_report_object

uvm_component

uvm_sequencer_base

uvm_sequencer_param_base#(REQ,RSP)

uvm_push_sequencer#(REQ,RSP)

CLAss DecLArATION

POrTs

req_port The push sequencer requires access to a blocking put interface.
MeThOds

new Standard component constructor that creates an instance of
this class using the given name and parent, if any.

run_phase The push sequencer continuously selects from its list of
available sequences and sends the next item from the selected
sequence out its req_port using req_port.put(item).

POrTs

req_port

The push sequencer requires access to a blocking put interface. A continuous stream of
sequence items are sent out this port, based on the list of available sequences loaded
into this sequencer.

MeThOds

new

class uvm_push_sequencer #(
 type REQ = uvm_sequence_item,
 RSP = REQ
) extends uvm_sequencer_param_base #(REQ, RSP)

function new (
 string name,
 uvm_component parent = null

UVM 1.2 Class Reference 404

Standard component constructor that creates an instance of this class using the given
name and parent, if any.

run_phase

The push sequencer continuously selects from its list of available sequences and sends
the next item from the selected sequence out its req_port using req_port.put(item).
Typically, the req_port would be connected to the req_export on an instance of a
uvm_push_driver #(REQ,RSP), which would be responsible for executing the item.

)

task run_phase(
 uvm_phase phase
)

UVM 1.2 Class Reference 405

20. Sequence Classes

Sequences encapsulate user-defined procedures that generate multiple
uvm_sequence_item-based transactions. Such sequences can be reused, extended,
randomized, and combined sequentially and hierarchically in interesting ways to produce
realistic stimulus to your DUT.

With uvm_sequence objects, users can encapsulate DUT initialization code, bus-based
stress tests, network protocol stacks-- anything procedural-- then have them all execute
in specific or random order to more quickly reach corner cases and coverage goals.

The UVM sequence item and sequence class hierarchy is shown below.

uvm_sequence_item - The uvm_sequence_item is the base class for user-defined
transactions that leverage the stimulus generation and control capabilities of the
sequence-sequencer mechanism.
uvm_sequence #(REQ,RSP) - The uvm_sequence extends uvm_sequence_item to
add the ability to generate streams of uvm_sequence_items, either directly or by
recursively executing other uvm_sequences.

Summary

Sequence Classes

Sequences encapsulate user-defined procedures that generate multiple
uvm_sequence_item-based transactions.

UVM 1.2 Class Reference 406

20.1 uvm_sequence_item

The base class for user-defined sequence items and also the base class for the
uvm_sequence class. The uvm_sequence_item class provides the basic functionality for
objects, both sequence items and sequences, to operate in the sequence mechanism.

Summary

uvm_sequence_item

The base class for user-defined sequence items and also the base class for the
uvm_sequence class.

CLAss HIERARchY

uvm_void

uvm_object

uvm_transaction

uvm_sequence_item

CLAss DEcLARATION

new The constructor method for uvm_sequence_item.
get_sequence_id private
set_item_context Set the sequence and sequencer execution context

for a sequence item
set_use_sequence_info
get_use_sequence_info These methods are used to set and get the status

of the use_sequence_info bit.
set_id_info Copies the sequence_id and transaction_id from

the referenced item into the calling item.
set_sequencer Sets the default sequencer for the sequence to

sequencer.
get_sequencer Returns a reference to the default sequencer used

by this sequence.
set_parent_sequence Sets the parent sequence of this sequence_item.
get_parent_sequence Returns a reference to the parent sequence of any

sequence on which this method was called.
set_depth The depth of any sequence is calculated

automatically.
get_depth Returns the depth of a sequence from its parent.
is_item This function may be called on any sequence_item

or sequence.
get_root_sequence_name Provides the name of the root sequence (the top-

most parent sequence).
get_root_sequence Provides a reference to the root sequence (the top-

most parent sequence).
get_sequence_path Provides a string of names of each sequence in the

full hierarchical path.
REPORTING INTERFAcE Sequence items and sequences will use the

sequencer which they are associated with for
reporting messages.

uvm_report
uvm_report_info
uvm_report_warning
uvm_report_error
uvm_report_fatal These are the primary reporting methods in the

UVM.

class uvm_sequence_item extends uvm_transaction

UVM 1.2 Class Reference 407

new

The constructor method for uvm_sequence_item.

get_sequence_id

private

Get_sequence_id is an internal method that is not intended for user code. The
sequence_id is not a simple integer. The get_transaction_id is meant for users to
identify specific transactions.

These methods allow access to the sequence_item sequence and transaction IDs.
get_transaction_id and set_transaction_id are methods on the uvm_transaction
base_class. These IDs are used to identify sequences to the sequencer, to route
responses back to the sequence that issued a request, and to uniquely identify
transactions.

The sequence_id is assigned automatically by a sequencer when a sequence initiates
communication through any sequencer calls (i.e. `uvm_do_*, wait_for_grant). A
sequence_id will remain unique for this sequence until it ends or it is killed. However, a
single sequence may have multiple valid sequence ids at any point in time. Should a
sequence start again after it has ended, it will be given a new unique sequence_id.

The transaction_id is assigned automatically by the sequence each time a transaction is
sent to the sequencer with the transaction_id in its default (-1) value. If the user sets
the transaction_id to any non-default value, that value will be maintained.

Responses are routed back to this sequences based on sequence_id. The sequence may
use the transaction_id to correlate responses with their requests.

set_item_context

Set the sequence and sequencer execution context for a sequence item

set_use_sequence_info

get_use_sequence_info

function new (
 string name = "uvm_sequence_item"
)

function int get_sequence_id()

function void set_item_context(
 uvm_sequence_base parent_seq,
 uvm_sequencer_base sequencer = null
)

function void set_use_sequence_info(
 bit value
)

UVM 1.2 Class Reference 408

These methods are used to set and get the status of the use_sequence_info bit.
Use_sequence_info controls whether the sequence information (sequencer,
parent_sequence, sequence_id, etc.) is printed, copied, or recorded. When
use_sequence_info is the default value of 0, then the sequence information is not used.
When use_sequence_info is set to 1, the sequence information will be used in printing
and copying.

set_id_info

Copies the sequence_id and transaction_id from the referenced item into the calling
item. This routine should always be used by drivers to initialize responses for future
compatibility.

set_sequencer

Sets the default sequencer for the sequence to sequencer. It will take effect
immediately, so it should not be called while the sequence is actively communicating with
the sequencer.

get_sequencer

Returns a reference to the default sequencer used by this sequence.

set_parent_sequence

Sets the parent sequence of this sequence_item. This is used to identify the source
sequence of a sequence_item.

get_parent_sequence

Returns a reference to the parent sequence of any sequence on which this method was
called. If this is a parent sequence, the method returns null.

set_depth

function bit get_use_sequence_info()

function void set_id_info(
 uvm_sequence_item item
)

virtual function void set_sequencer(
 uvm_sequencer_base sequencer
)

function uvm_sequencer_base get_sequencer()

function void set_parent_sequence(
 uvm_sequence_base parent
)

function uvm_sequence_base get_parent_sequence()

UVM 1.2 Class Reference 409

The depth of any sequence is calculated automatically. However, the user may use
set_depth to specify the depth of a particular sequence. This method will override the
automatically calculated depth, even if it is incorrect.

get_depth

Returns the depth of a sequence from its parent. A parent sequence will have a depth of
1, its child will have a depth of 2, and its grandchild will have a depth of 3.

is_item

This function may be called on any sequence_item or sequence. It will return 1 for items
and 0 for sequences (which derive from this class).

get_root_sequence_name

Provides the name of the root sequence (the top-most parent sequence).

get_root_sequence

Provides a reference to the root sequence (the top-most parent sequence).

get_sequence_path

Provides a string of names of each sequence in the full hierarchical path. A “.” is used as
the separator between each sequence.

REPORTING INTERFAcE

Sequence items and sequences will use the sequencer which they are associated with for
reporting messages. If no sequencer has been set for the item/sequence using
set_sequencer or indirectly via uvm_sequence_base::start_item or
uvm_sequence_base::start), then the global reporter will be used.

function void set_depth(
 int value
)

function int get_depth()

virtual function bit is_item()

function string get_root_sequence_name()

function uvm_sequence_base get_root_sequence()

function string get_sequence_path()

UVM 1.2 Class Reference 410

uvm_report

uvm_report_info

uvm_report_warning

uvm_report_error

uvm_report_fatal

virtual function void uvm_report(
 uvm_severity severity,
 string id,
 string message,
 int verbosity = (severity ==

uvm_severity'(UVM_ERROR)) ?
UVM_LOW : (severity ==
uvm_severity'(UVM_FATAL)) ?
UVM_NONE : UVM_MEDIUM,

 string filename = "",
 int line = 0,
 string context_name = "",
 bit report_enabled_checked = 0
)

virtual function void uvm_report_info(
 string id,
 string message,
 int verbosity = UVM_MEDIUM,
 string filename = "",
 int line = 0,
 string context_name = "",
 bit report_enabled_checked = 0
)

virtual function void uvm_report_warning(
 string id,
 string message,
 int verbosity = UVM_MEDIUM,
 string filename = "",
 int line = 0,
 string context_name = "",
 bit report_enabled_checked = 0
)

virtual function void uvm_report_error(
 string id,
 string message,
 int verbosity = UVM_LOW,
 string filename = "",
 int line = 0,
 string context_name = "",
 bit report_enabled_checked = 0
)

virtual function void uvm_report_fatal(
 string id,
 string message,
 int verbosity = UVM_NONE,
 string filename = "",
 int line = 0,
 string context_name = "",
 bit report_enabled_checked = 0
)

UVM 1.2 Class Reference 411

These are the primary reporting methods in the UVM. uvm_sequence_item derived types
delegate these functions to their associated sequencer if they have one, or to the global
reporter. See uvm_report_object::Reporting for details on the messaging functions.

UVM 1.2 Class Reference 412

20.2 uvm_sequence_base

The uvm_sequence_base class provides the interfaces needed to create streams of
sequence items and/or other sequences.

A sequence is executed by calling its start method, either directly or invocation of any of
the `uvm_do_* macros.

Executing sequences via start

A sequence’s start method has a parent_sequence argument that controls whether
pre_do, mid_do, and post_do are called in the parent sequence. It also has a
call_pre_post argument that controls whether its pre_body and post_body methods are
called. In all cases, its pre_start and post_start methods are always called.

When start is called directly, you can provide the appropriate arguments according to
your application.

The sequence execution flow looks like this

User code

The following methods are called, in order

Executing sub-sequences via `uvm_do macros

A sequence can also be indirectly started as a child in the body of a parent sequence.
The child sequence’s start method is called indirectly by invoking any of the `uvm_do
macros. In these cases, start is called with call_pre_post set to 0, preventing the started
sequence’s pre_body and post_body methods from being called. During execution of the
child sequence, the parent’s pre_do, mid_do, and post_do methods are called.

The sub-sequence execution flow looks like

User code

The following methods are called, in order

sub_seq.randomize(...); // optional
sub_seq.start(seqr, parent_seq, priority, call_pre_post)

sub_seq.pre_start() (task)
sub_seq.pre_body() (task) if call_pre_post==1
 parent_seq.pre_do(0) (task) if parent_sequence!=null
 parent_seq.mid_do(this) (func) if parent_sequence!=null
sub_seq.body (task) YOUR STIMULUS CODE
 parent_seq.post_do(this) (func) if parent_sequence!=null
sub_seq.post_body() (task) if call_pre_post==1
sub_seq.post_start() (task)

`uvm_do_with_prior(seq_seq, { constraints }, priority)

sub_seq.pre_start() (task)
parent_seq.pre_do(0) (task)

UVM 1.2 Class Reference 413

Remember, it is the parent sequence’s pre|mid|post_do that are called, not the
sequence being executed.

Executing sequence items via start_item/finish_item or `uvm_do macros

Items are started in the body of a parent sequence via calls to start_item/finish_item or
invocations of any of the `uvm_do macros. The pre_do, mid_do, and post_do methods
of the parent sequence will be called as the item is executed.

The sequence-item execution flow looks like

User code

The following methods are called, in order

Attempting to execute a sequence via start_item/finish_item will produce a run-time
error.

Summary

uvm_sequence_base

The uvm_sequence_base class provides the interfaces needed to create streams
of sequence items and/or other sequences.

CLAss HIeRARchY

uvm_void

uvm_object

uvm_transaction

uvm_sequence_item

uvm_sequence_base

CLAss DecLARATION

parent_req.mid_do(sub_seq) (func)
 sub_seq.body() (task)
parent_seq.post_do(sub_seq) (func)
sub_seq.post_start() (task)

parent_seq.start_item(item, priority);
item.randomize(...) [with {constraints}];
parent_seq.finish_item(item);

or

`uvm_do_with_prior(item, constraints, priority)

sequencer.wait_for_grant(prior) (task) \ start_item \
parent_seq.pre_do(1) (task) / \
 `uvm_do* macros
parent_seq.mid_do(item) (func) \ /
sequencer.send_request(item) (func) \finish_item /
sequencer.wait_for_item_done() (task) /
parent_seq.post_do(item) (func) /

class uvm_sequence_base extends uvm_sequence_item

UVM 1.2 Class Reference 414

do_not_randomize If set, prevents the sequence
from being randomized before
being executed by the
`uvm_do*() and
`uvm_rand_send*() macros, or
as a default sequence.

new The constructor for
uvm_sequence_base.

is_item Returns 1 on items and 0 on
sequences.

get_sequence_state Returns the sequence state as
an enumerated value.

wait_for_sequence_state Waits until the sequence
reaches one of the given state.

get_tr_handle Returns the integral recording
transaction handle for this
sequence.

SeQUeNce EXecUTION

start Executes this sequence,
returning when the sequence
has completed.

pre_start This task is a user-definable
callback that is called before
the optional execution of
pre_body.

pre_body This task is a user-definable
callback that is called before
the execution of body only
when the sequence is started
with start.

pre_do This task is a user-definable
callback task that is called on
the parent sequence, if any
sequence has issued a
wait_for_grant() call and after
the sequencer has selected
this sequence, and before the
item is randomized.

mid_do This function is a user-
definable callback function that
is called after the sequence
item has been randomized,
and just before the item is
sent to the driver.

body This is the user-defined task
where the main sequence code
resides.

post_do This function is a user-
definable callback function that
is called after the driver has
indicated that it has completed
the item, using either this
item_done or put methods.

post_body This task is a user-definable
callback task that is called
after the execution of body
only when the sequence is
started with start.

post_start This task is a user-definable
callback that is called after the
optional execution of
post_body.

RUN-TIMe PhAsING

get_starting_phase Returns the ‘starting phase’.
set_starting_phase Sets the ‘starting phase’.
set_automatic_phase_objection Sets the ‘automatically object

to starting phase’ bit.

UVM 1.2 Class Reference 415

get_automatic_phase_objection Returns (and locks) the value
of the ‘automatically object to
starting phase’ bit.

SeQUeNce CONTROL

set_priority The priority of a sequence may
be changed at any point in
time.

get_priority This function returns the
current priority of the
sequence.

is_relevant The default is_relevant
implementation returns 1,
indicating that the sequence is
always relevant.

wait_for_relevant This method is called by the
sequencer when all available
sequences are not relevant.

lock Requests a lock on the
specified sequencer.

grab Requests a lock on the
specified sequencer.

unlock Removes any locks or grabs
obtained by this sequence on
the specified sequencer.

ungrab Removes any locks or grabs
obtained by this sequence on
the specified sequencer.

is_blocked Returns a bit indicating
whether this sequence is
currently prevented from
running due to another lock or
grab.

has_lock Returns 1 if this sequence has
a lock, 0 otherwise.

kill This function will kill the
sequence, and cause all
current locks and requests in
the sequence’s default
sequencer to be removed.

do_kill This function is a user hook
that is called whenever a
sequence is terminated by
using either sequence.kill() or
sequencer.stop_sequences()
(which effectively calls
sequence.kill()).

SeQUeNce ITeM EXecUTION

create_item Create_item will create and
initialize a sequence_item or
sequence using the factory.

start_item start_item and finish_item
together will initiate operation
of a sequence item.

finish_item finish_item, together with
start_item together will initiate
operation of a sequence_item.

wait_for_grant This task issues a request to
the current sequencer.

send_request The send_request function
may only be called after a
wait_for_grant call.

wait_for_item_done A sequence may optionally call
wait_for_item_done.

RespONse API
use_response_handler When called with enable set to

1, responses will be sent to

UVM 1.2 Class Reference 416

the response handler.
get_use_response_handler Returns the state of the

use_response_handler bit.
response_handler When the

use_response_handler bit is
set to 1, this virtual task is
called by the sequencer for
each response that arrives for
this sequence.

set_response_queue_error_report_disabled By default, if the
response_queue overflows, an
error is reported.

get_response_queue_error_report_disabled When this bit is 0 (default
value), error reports are
generated when the response
queue overflows.

set_response_queue_depth The default maximum depth of
the response queue is 8.

get_response_queue_depth Returns the current depth
setting for the response
queue.

clear_response_queue Empties the response queue
for this sequence.

do_not_randomize

If set, prevents the sequence from being randomized before being executed by the
`uvm_do*() and `uvm_rand_send*() macros, or as a default sequence.

new

The constructor for uvm_sequence_base.

is_item

Returns 1 on items and 0 on sequences. As this object is a sequence, is_item will
always return 0.

get_sequence_state

Returns the sequence state as an enumerated value. Can use to wait on the sequence
reaching or changing from one or more states.

bit do_not_randomize

function new (
 string name = "uvm_sequence"
)

virtual function bit is_item()

function uvm_sequence_state_enum get_sequence_state()

wait(get_sequence_state() & (UVM_STOPPED|UVM_FINISHED));

UVM 1.2 Class Reference 417

wait_for_sequence_state

Waits until the sequence reaches one of the given state. If the sequence is already in
one of the state, this method returns immediately.

get_tr_handle

Returns the integral recording transaction handle for this sequence. Can be used to
associate sub-sequences and sequence items as child transactions when calling
uvm_component::begin_child_tr.

SeQUeNce EXecUTION

start

Executes this sequence, returning when the sequence has completed.

The sequencer argument specifies the sequencer on which to run this sequence. The
sequencer must be compatible with the sequence.

If parent_sequence is null, then this sequence is a root parent, otherwise it is a child of
parent_sequence. The parent_sequence’s pre_do, mid_do, and post_do methods will be
called during the execution of this sequence.

By default, the priority of a sequence is the priority of its parent sequence. If it is a root
sequence, its default priority is 100. A different priority may be specified by
this_priority. Higher numbers indicate higher priority.

If call_pre_post is set to 1 (default), then the pre_body and post_body tasks will be
called before and after the sequence body is called.

pre_start

task wait_for_sequence_state(
 int unsigned state_mask
)

wait_for_sequence_state(UVM_STOPPED|UVM_FINISHED);

function integer get_tr_handle()

virtual task start (
 uvm_sequencer_base sequencer,
 uvm_sequence_base parent_sequence = null,
 int this_priority = -1,
 bit call_pre_post = 1
)

virtual task pre_start()

UVM 1.2 Class Reference 418

This task is a user-definable callback that is called before the optional execution of
pre_body. This method should not be called directly by the user.

pre_body

This task is a user-definable callback that is called before the execution of body only
when the sequence is started with start. If start is called with call_pre_post set to 0,
pre_body is not called. This method should not be called directly by the user.

pre_do

This task is a user-definable callback task that is called on the parent sequence, if any
sequence has issued a wait_for_grant() call and after the sequencer has selected this
sequence, and before the item is randomized.

Although pre_do is a task, consuming simulation cycles may result in unexpected
behavior on the driver.

This method should not be called directly by the user.

mid_do

This function is a user-definable callback function that is called after the sequence item
has been randomized, and just before the item is sent to the driver. This method should
not be called directly by the user.

body

This is the user-defined task where the main sequence code resides. This method should
not be called directly by the user.

post_do

This function is a user-definable callback function that is called after the driver has
indicated that it has completed the item, using either this item_done or put methods.
This method should not be called directly by the user.

virtual task pre_body()

virtual task pre_do(
 bit is_item
)

virtual function void mid_do(
 uvm_sequence_item this_item
)

virtual task body()

virtual function void post_do(
 uvm_sequence_item this_item
)

UVM 1.2 Class Reference 419

post_body

This task is a user-definable callback task that is called after the execution of body only
when the sequence is started with start. If start is called with call_pre_post set to 0,
post_body is not called. This task is a user-definable callback task that is called after
the execution of the body, unless the sequence is started with call_pre_post=0. This
method should not be called directly by the user.

post_start

This task is a user-definable callback that is called after the optional execution of
post_body. This method should not be called directly by the user.

RUN-TIMe PhAsING

get_starting_phase

Returns the ‘starting phase’.

If non-null, the starting phase specifies the phase in which this sequence was started.
The starting phase is set automatically when this sequence is started as the default
sequence on a sequencer. See uvm_sequencer_base::start_phase_sequence for more
information.

Internally, the uvm_sequence_base uses a uvm_get_to_lock_dap to protect the starting
phase value from being modified after the reference has been read. Once the sequence
has ended its execution (either via natural termination, or being killed), then the starting
phase value can be modified again.

set_starting_phase

Sets the ‘starting phase’.

Internally, the uvm_sequence_base uses a uvm_get_to_lock_dap to protect the starting
phase value from being modified after the reference has been read. Once the sequence
has ended its execution (either via natural termination, or being killed), then the starting
phase value can be modified again.

set_automatic_phase_objection

virtual task post_body()

virtual task post_start()

function uvm_phase get_starting_phase()

function void set_starting_phase(
 uvm_phase phase
)

function void set_automatic_phase_objection(
 bit value

UVM 1.2 Class Reference 420

Sets the ‘automatically object to starting phase’ bit.

The most common interaction with the starting phase within a sequence is to simply
raise the phase’s objection prior to executing the sequence, and drop the objection after
ending the sequence (either naturally, or via a call to kill). In order to simplify this
interaction for the user, the UVM provides the ability to perform this functionality
automatically.

For example

From a timeline point of view, the automatic phase objection looks like:

This functionality can also be enabled in sequences which were not written with UVM
Run-Time Phasing in mind:

Internally, the uvm_sequence_base uses a uvm_get_to_lock_dap to protect the
automatic_phase_objection value from being modified after the reference has been read.
Once the sequence has ended its execution (either via natural termination, or being
killed), then the automatic_phase_objection value can be modified again.

NEVER set the automatic phase objection bit to 1 if your sequence runs with a forever
loop inside of the body, as the objection will never get dropped!

get_automatic_phase_objection

Returns (and locks) the value of the ‘automatically object to starting phase’ bit.

If 1, then the sequence will automatically raise an objection to the starting phase (if the
starting phase is not null) immediately prior to pre_start being called. The objection will
be dropped after post_start has executed, or kill has been called.

)

function my_sequence::new(string name="unnamed");
 super.new(name);
 set_automatic_phase_objection(1);
endfunction : new

start() is executed
 --! Objection is raised !--
 pre_start() is executed
 pre_body() is optionally executed
 body() is executed
 post_body() is optionally executed
 post_start() is executed
 --! Objection is dropped !--
start() unblocks

my_legacy_seq_type seq = new("seq");
seq.set_automatic_phase_objection(1);
seq.start(my_sequencer);

function bit get_automatic_phase_objection()

UVM 1.2 Class Reference 421

SeQUeNce CONTROL

set_priority

The priority of a sequence may be changed at any point in time. When the priority of a
sequence is changed, the new priority will be used by the sequencer the next time that it
arbitrates between sequences.

The default priority value for a sequence is 100. Higher values result in higher priorities.

get_priority

This function returns the current priority of the sequence.

is_relevant

The default is_relevant implementation returns 1, indicating that the sequence is always
relevant.

Users may choose to override with their own virtual function to indicate to the sequencer
that the sequence is not currently relevant after a request has been made.

When the sequencer arbitrates, it will call is_relevant on each requesting, unblocked
sequence to see if it is relevant. If a 0 is returned, then the sequence will not be
chosen.

If all requesting sequences are not relevant, then the sequencer will call
wait_for_relevant on all sequences and re-arbitrate upon its return.

Any sequence that implements is_relevant must also implement wait_for_relevant so that
the sequencer has a way to wait for a sequence to become relevant.

wait_for_relevant

This method is called by the sequencer when all available sequences are not relevant.
When wait_for_relevant returns the sequencer attempt to re-arbitrate.

Returning from this call does not guarantee a sequence is relevant, although that would
be the ideal. The method provide some delay to prevent an infinite loop.

If a sequence defines is_relevant so that it is not always relevant (by default, a sequence
is always relevant), then the sequence must also supply a wait_for_relevant method.

function void set_priority (
 int value
)

function int get_priority()

virtual function bit is_relevant()

virtual task wait_for_relevant()

UVM 1.2 Class Reference 422

lock

Requests a lock on the specified sequencer. If sequencer is null, the lock will be
requested on the current default sequencer.

A lock request will be arbitrated the same as any other request. A lock is granted after
all earlier requests are completed and no other locks or grabs are blocking this sequence.

The lock call will return when the lock has been granted.

grab

Requests a lock on the specified sequencer. If no argument is supplied, the lock will be
requested on the current default sequencer.

A grab request is put in front of the arbitration queue. It will be arbitrated before any
other requests. A grab is granted when no other grabs or locks are blocking this
sequence.

The grab call will return when the grab has been granted.

unlock

Removes any locks or grabs obtained by this sequence on the specified sequencer. If
sequencer is null, then the unlock will be done on the current default sequencer.

ungrab

Removes any locks or grabs obtained by this sequence on the specified sequencer. If
sequencer is null, then the unlock will be done on the current default sequencer.

is_blocked

Returns a bit indicating whether this sequence is currently prevented from running due
to another lock or grab. A 1 is returned if the sequence is currently blocked. A 0 is
returned if no lock or grab prevents this sequence from executing. Note that even if a
sequence is not blocked, it is possible for another sequence to issue a lock or grab
before this sequence can issue a request.

task lock(
 uvm_sequencer_base sequencer = null
)

task grab(
 uvm_sequencer_base sequencer = null
)

function void unlock(
 uvm_sequencer_base sequencer = null
)

function void ungrab(
 uvm_sequencer_base sequencer = null
)

function bit is_blocked()

UVM 1.2 Class Reference 423

has_lock

Returns 1 if this sequence has a lock, 0 otherwise.

Note that even if this sequence has a lock, a child sequence may also have a lock, in
which case the sequence is still blocked from issuing operations on the sequencer.

kill

This function will kill the sequence, and cause all current locks and requests in the
sequence’s default sequencer to be removed. The sequence state will change to
UVM_STOPPED, and the post_body() and post_start() callback methods will not be
executed.

If a sequence has issued locks, grabs, or requests on sequencers other than the default
sequencer, then care must be taken to unregister the sequence with the other
sequencer(s) using the sequencer unregister_sequence() method.

do_kill

This function is a user hook that is called whenever a sequence is terminated by using
either sequence.kill() or sequencer.stop_sequences() (which effectively calls
sequence.kill()).

SeQUeNce ITeM EXecUTION

create_item

Create_item will create and initialize a sequence_item or sequence using the factory.
The sequence_item or sequence will be initialized to communicate with the specified
sequencer.

start_item

function bit has_lock()

function void kill()

virtual function void do_kill()

protected function uvm_sequence_item create_item(
 uvm_object_wrapper type_var,
 uvm_sequencer_base l_sequencer,
 string name
)

virtual task start_item (
 uvm_sequence_item item,
 int set_priority = -1,
 uvm_sequencer_base sequencer = null
)

UVM 1.2 Class Reference 424

start_item and finish_item together will initiate operation of a sequence item. If the item
has not already been initialized using create_item, then it will be initialized here to use
the default sequencer specified by m_sequencer. Randomization may be done between
start_item and finish_item to ensure late generation

finish_item

finish_item, together with start_item together will initiate operation of a sequence_item.
Finish_item must be called after start_item with no delays or delta-cycles.
Randomization, or other functions may be called between the start_item and finish_item
calls.

wait_for_grant

This task issues a request to the current sequencer. If item_priority is not specified,
then the current sequence priority will be used by the arbiter. If a lock_request is made,
then the sequencer will issue a lock immediately before granting the sequence. (Note
that the lock may be granted without the sequence being granted if is_relevant is not
asserted).

When this method returns, the sequencer has granted the sequence, and the sequence
must call send_request without inserting any simulation delay other than delta cycles.
The driver is currently waiting for the next item to be sent via the send_request call.

send_request

The send_request function may only be called after a wait_for_grant call. This call will
send the request item to the sequencer, which will forward it to the driver. If the
rerandomize bit is set, the item will be randomized before being sent to the driver.

wait_for_item_done

A sequence may optionally call wait_for_item_done. This task will block until the driver
calls item_done or put. If no transaction_id parameter is specified, then the call will
return the next time that the driver calls item_done or put. If a specific transaction_id is
specified, then the call will return when the driver indicates completion of that specific
item.

virtual task finish_item (
 uvm_sequence_item item,
 int set_priority = -1
)

virtual task wait_for_grant(
 int item_priority = -1,
 bit lock_request = 0
)

virtual function void send_request(
 uvm_sequence_item request,
 bit rerandomize = 0
)

virtual task wait_for_item_done(
 int transaction_id = -1
)

UVM 1.2 Class Reference 425

Note that if a specific transaction_id has been specified, and the driver has already
issued an item_done or put for that transaction, then the call will hang, having missed
the earlier notification.

RespONse API

use_response_handler

When called with enable set to 1, responses will be sent to the response handler.
Otherwise, responses must be retrieved using get_response.

By default, responses from the driver are retrieved in the sequence by calling
get_response.

An alternative method is for the sequencer to call the response_handler function with
each response.

get_use_response_handler

Returns the state of the use_response_handler bit.

response_handler

When the use_response_handler bit is set to 1, this virtual task is called by the
sequencer for each response that arrives for this sequence.

set_response_queue_error_report_disabled

By default, if the response_queue overflows, an error is reported. The response_queue
will overflow if more responses are sent to this sequence from the driver than
get_response calls are made. Setting value to 0 disables these errors, while setting it to
1 enables them.

get_response_queue_error_report_disabled

function void use_response_handler(
 bit enable
)

function bit get_use_response_handler()

virtual function void response_handler(
 uvm_sequence_item response
)

function void set_response_queue_error_report_disabled(
 bit value
)

function bit get_response_queue_error_report_disabled()

UVM 1.2 Class Reference 426

When this bit is 0 (default value), error reports are generated when the response queue
overflows. When this bit is 1, no such error reports are generated.

set_response_queue_depth

The default maximum depth of the response queue is 8. These method is used to
examine or change the maximum depth of the response queue.

Setting the response_queue_depth to -1 indicates an arbitrarily deep response queue.
No checking is done.

get_response_queue_depth

Returns the current depth setting for the response queue.

clear_response_queue

Empties the response queue for this sequence.

function void set_response_queue_depth(
 int value
)

function int get_response_queue_depth()

virtual function void clear_response_queue()

UVM 1.2 Class Reference 427

20.3 uvm_sequence #(REQ,RSP)

The uvm_sequence class provides the interfaces necessary in order to create streams of
sequence items and/or other sequences.

Summary

uvm_sequence #(REQ,RSP)

The uvm_sequence class provides the interfaces necessary in order to create
streams of sequence items and/or other sequences.

CLAss HIerArchY

uvm_void

uvm_object

uvm_transaction

uvm_sequence_item

uvm_sequence_base

uvm_sequence#(REQ,RSP)

CLAss DecLArATION

VArIABLes

req The sequence contains a field of the request type called
req.

rsp The sequence contains a field of the response type called
rsp.

MeThOds

new Creates and initializes a new sequence object.
send_request This method will send the request item to the sequencer,

which will forward it to the driver.
get_current_item Returns the request item currently being executed by the

sequencer.
get_response By default, sequences must retrieve responses by calling

get_response.

VArIABLes

req

The sequence contains a field of the request type called req. The user can use this field,
if desired, or create another field to use. The default do_print will print this field.

virtual class uvm_sequence #(
 type REQ = uvm_sequence_item,
 type RSP = REQ
) extends uvm_sequence_base

REQ req

UVM 1.2 Class Reference 428

rsp

The sequence contains a field of the response type called rsp. The user can use this
field, if desired, or create another field to use. The default do_print will print this field.

MeThOds

new

Creates and initializes a new sequence object.

send_request

This method will send the request item to the sequencer, which will forward it to the
driver. If the rerandomize bit is set, the item will be randomized before being sent to
the driver. The send_request function may only be called after
uvm_sequence_base::wait_for_grant returns.

get_current_item

Returns the request item currently being executed by the sequencer. If the sequencer is
not currently executing an item, this method will return null.

The sequencer is executing an item from the time that get_next_item or peek is called
until the time that get or item_done is called.

Note that a driver that only calls get will never show a current item, since the item is
completed at the same time as it is requested.

get_response

By default, sequences must retrieve responses by calling get_response. If no
transaction_id is specified, this task will return the next response sent to this sequence.
If no response is available in the response queue, the method will block until a response
is received.

RSP rsp

function new (
 string name = "uvm_sequence"
)

function void send_request(
 uvm_sequence_item request,
 bit rerandomize = 0
)

function REQ get_current_item()

virtual task get_response(
 output RSP response,
 input int transaction_id = -1
)

UVM 1.2 Class Reference 429

If a transaction_id is parameter is specified, the task will block until a response with that
transaction_id is received in the response queue.

The default size of the response queue is 8. The get_response method must be called
soon enough to avoid an overflow of the response queue to prevent responses from
being dropped.

If a response is dropped in the response queue, an error will be reported unless the error
reporting is disabled via set_response_queue_error_report_disabled.

UVM 1.2 Class Reference 430

20.4 uvm_sequence_library

The uvm_sequence_library is a sequence that contains a list of registered sequence
types. It can be configured to create and execute these sequences any number of times
using one of several modes of operation, including a user-defined mode.

When started (as any other sequence), the sequence library will randomly select and
execute a sequence from its sequences queue. If in UVM_SEQ_LIB_RAND mode, its
select_rand property is randomized and used as an index into sequences. When in
UVM_SEQ_LIB_RANDC mode, the select_randc property is used. When in
UVM_SEQ_LIB_ITEM mode, only sequence items of the REQ type are generated and
executed--no sequences are executed. Finally, when in UVM_SEQ_LIB_USER mode, the
select_sequence method is called to obtain the index for selecting the next sequence to
start. Users can override this method in subtypes to implement custom selection
algorithms.

Creating a subtype of a sequence library requires invocation of the
`uvm_sequence_library_utils macro in its declaration and calling the
init_sequence_library method in its constructor. The macro and function are needed to
populate the sequence library with any sequences that were statically registered with it
or any of its base classes.

Contents

uvm_sequence_library The uvm_sequence_library is a sequence that
contains a list of registered sequence types.

uvm_sequence_library_cfg A convenient container class for configuring all the
sequence library parameters using a single set
command.

new

Create a new instance of this class

get_type_name

Get the type name of this class

class my_seq_lib extends uvm_sequence_library #(my_item);
 `uvm_object_utils(my_seq_lib)
 `uvm_sequence_library_utils(my_seq_lib)
 function new(string name="");
 super.new(name);
 init_sequence_library();
 endfunction
 ...
endclass

function new(
 string name = ""
)

virtual function string get_type_name()

UVM 1.2 Class Reference 431

SEQUENcE sELEcTION

selection_mode

Specifies the mode used to select sequences for execution

If you do not have access to an instance of the library, use the configuration resource
interface.

The following example sets the config_seq_lib as the default sequence for the ‘main’
phase on the sequencer to be located at “env.agent.sequencer” and set the selection
mode to UVM_SEQ_LIB_RANDC. If the settings are being done from within a
component, the first argument must be this and the second argument a path relative to
that component.

Alternatively, you may create an instance of the sequence library a priori, initialize all its
parameters, randomize it, then set it to run as-is on the sequencer.

min_random_count

Sets the minimum number of items to execute. Use the configuration mechanism to
set. See selection_mode for an example.

max_random_count

Sets the maximum number of items to execute. Use the configuration mechanism to
set. See selection_mode for an example.

uvm_sequence_lib_mode selection_mode

uvm_config_db #(uvm_object_wrapper)::set(null,
 "env.agent.sequencer.main_phase",
 "default_sequence",
 main_seq_lib::get_type());

uvm_config_db #(uvm_sequence_lib_mode)::set(null,
 "env.agent.sequencer.main_phase",
 "default_sequence.selection_mode",
 UVM_SEQ_LIB_RANDC);

main_seq_lib my_seq_lib;
my_seq_lib = new("my_seq_lib");

my_seq_lib.selection_mode = UVM_SEQ_LIB_RANDC;
my_seq_lib.min_random_count = 500;
my_seq_lib.max_random_count = 1000;
void'(my_seq_lib.randomize());

uvm_config_db #(uvm_sequence_base)::set(null,
 "env.agent.sequencer.main_phase",
 "default_sequence",
 my_seq_lib);

int unsigned min_random_count=10

int unsigned max_random_count=10

UVM 1.2 Class Reference 432

sequences_executed

Indicates the number of sequences executed, not including the currently executing
sequence, if any.

sequence_count

Specifies the number of sequences to execute when this sequence library is started. If in
UVM_SEQ_LIB_ITEM mode, specifies the number of sequence items that will be
generated.

select_rand

The index variable that is randomized to select the next sequence to execute when in
UVM_SEQ_LIB_RAND mode

Extensions may place additional constraints on this variable.

select_randc

The index variable that is randomized to select the next sequence to execute when in
UVM_SEQ_LIB_RANDC mode

Extensions may place additional constraints on this variable.

select_sequence

Generates an index used to select the next sequence to execute. Overrides must return
a value between 0 and max, inclusive. Used only for UVM_SEQ_LIB_USER selection
mode. The default implementation returns 0, incrementing on successive calls, wrapping
back to 0 when reaching max.

SEQUENcE REGIsTRATION

add_typewide_sequence

protected int unsigned sequences_executed

rand int unsigned sequence_count = 10

rand int unsigned select_rand

randc bit [15:0] select_randc

virtual function int unsigned select_sequence(
 int unsigned max
)

static function void add typewide sequence(

UVM 1.2 Class Reference 433

Registers the provided sequence type with this sequence library type. The sequence type
will be available for selection by all instances of this class. Sequence types already
registered are silently ignored.

add_typewide_sequences

Registers the provided sequence types with this sequence library type. The sequence
types will be available for selection by all instances of this class. Sequence types already
registered are silently ignored.

add_sequence

Registers the provided sequence type with this sequence library instance. Sequence
types already registered are silently ignored.

add_sequences

Registers the provided sequence types with this sequence library instance. Sequence
types already registered are silently ignored.

remove_sequence

Removes the given sequence type from this sequence library instance. If the type was
registered statically, the sequence queues of all instances of this library will be updated
accordingly. A warning is issued if the sequence is not registered.

get_sequences

Append to the provided seq_types array the list of registered sequences.

 uvm_object_wrapper seq_type
)

static function void add_typewide_sequences(
 uvm_object_wrapper seq_types[$]
)

function void add_sequence(
 uvm_object_wrapper seq_type
)

virtual function void add_sequences(
 uvm_object_wrapper seq_types[$]
)

virtual function void remove_sequence(
 uvm_object_wrapper seq_type
)

virtual function void get_sequences(
 ref uvm_object_wrapper seq_types[$]
)

UVM 1.2 Class Reference 434

init_sequence_library

All subtypes of this class must call init_sequence_library in its constructor.

uvm_sequence_library_utils

All subtypes of this class must invoke the `uvm_sequence_library_utils macro.

uvm_sequence_library_cfg

A convenient container class for configuring all the sequence library parameters using a
single set command.

Summary

uvm_sequence_library_cfg

A convenient container class for configuring all the sequence library parameters
using a single set command.

CLAss HIERARchY

uvm_void

uvm_object

uvm_sequence_library_cfg

CLAss DEcLARATION

function void init_sequence_library()

class my_seq_lib extends uvm_sequence_library #(my_item);
 `uvm_object_utils(my_seq_lib)
 `uvm_sequence_library_utils(my_seq_lib)
 function new(string name="");
 super.new(name);
 init_sequence_library();
 endfunction
 ...
endclass

uvm_sequence_library_cfg cfg;
cfg = new("seqlib_cfg", UVM_SEQ_LIB_RANDC, 1000, 2000);

uvm_config_db #(uvm_sequence_library_cfg)::set(null,
 "env.agent.sequencer.main_ph",
 "default_sequence.config",
 cfg);

class uvm_sequence_library_cfg extends uvm_object

UVM 1.2 Class Reference 435

21. Macros and Defines

UVM includes some macros to allow the user to specify intent without the need to
specify multiple types of SystemVerilog constructs. These macros assist with reporting,
object behavior (interaction with the factory and field usage in comparing/copying/etc),
sequence specification, and TLM connection.

UVM also includes some defines to specify sizing in the register space and to determine
version of the UVM standard and/or implementation.

Summary

Macros and Defines

UVM includes some macros to allow the user to specify intent without the need to
specify multiple types of SystemVerilog constructs.

UVM 1.2 Class Reference 436

21.1 Report Macros

This set of macros provides wrappers around the uvm_report_* Reporting functions. The
macros serve two essential purposes:

To reduce the processing overhead associated with filtered out messages, a check
is made against the report’s verbosity setting and the action for the id/severity
pair before any string formatting is performed. This affects only `uvm_info
reports.
The `__FILE__ and `__LINE__ information is automatically provided to the
underlying uvm_report_* call. Having the file and line number from where a
report was issued aides in debug. You can disable display of file and line
information in reports by defining UVM_REPORT_DISABLE_FILE_LINE on the
command line.

The macros also enforce a verbosity setting of UVM_NONE for warnings, errors and fatals
so that they cannot be mistakenly turned off by setting the verbosity level too low
(warning and errors can still be turned off by setting the actions appropriately).

To use the macros, replace the previous call to uvm_report_* with the corresponding
macro.

The above code is replaced by

Macros represent text substitutions, not statements, so they should not be terminated
with semi-colons.

Summary

Report Macros

This set of macros provides wrappers around the uvm_report_* Reporting
functions.

BAsIC MEssAGING MACrOs

`uvm_info Calls uvm_report_info if VERBOSITY is lower
than the configured verbosity of the
associated reporter.

`uvm_warning Calls uvm_report_warning with a verbosity
of UVM_NONE.

`uvm_error Calls uvm_report_error with a verbosity of
UVM_NONE.

`uvm_fatal Calls uvm_report_fatal with a verbosity of
UVM_NONE.

`uvm_info_context

//Previous calls to uvm_report_*
uvm_report_info("MYINFO1", $sformatf("val: %0d", val), UVM_LOW);
uvm_report_warning("MYWARN1", "This is a warning");
uvm_report_error("MYERR", "This is an error");
uvm_report_fatal("MYFATAL", "A fatal error has occurred");

//New calls to `uvm_*
`uvm_info("MYINFO1", $sformatf("val: %0d", val), UVM_LOW)
`uvm_warning("MYWARN1", "This is a warning")
`uvm_error("MYERR", "This is an error")
`uvm_fatal("MYFATAL", "A fatal error has occurred")

UVM 1.2 Class Reference 437

`uvm_warning_context
`uvm_error_context
`uvm_fatal_context

MEssAGE TrACE MACrOs

`uvm_info_begin
`uvm_info_end This macro pair provides the ability to add

elements to messages.
`uvm_warning_begin
`uvm_warning_end This macro pair operates identically to

`uvm_info_begin/`uvm_info_end with
exception that the message severity is
UVM_WARNING and has no verbosity
threshold.

`uvm_error_begin
`uvm_error_end This macro pair operates identically to

`uvm_info_begin/`uvm_info_end with
exception that the message severity is
UVM_ERROR and has no verbosity
threshold.

`uvm_fatal_begin
`uvm_fatal_end This macro pair operates identically to

`uvm_info_begin/`uvm_info_end with
exception that the message severity is
UVM_FATAL and has no verbosity threshold.

`uvm_info_context_begin
`uvm_info_context_end
`uvm_warning_context_begin
`uvm_warning_context_end
`uvm_error_context_begin
`uvm_error_context_end
`uvm_fatal_context_begin
`uvm_fatal_context_end

MEssAGE ELEmENt MACrOs

`uvm_message_add_tag
`uvm_message_add_int
`uvm_message_add_string
`uvm_message_add_object These macros allow the user to provide

elements that are associated with
uvm_report_messages.

BAsIC MEssAGING MACrOs

`uvm_info

Calls uvm_report_info if VERBOSITY is lower than the configured verbosity of the
associated reporter. ID is given as the message tag and MSG is given as the message
text. The file and line are also sent to the uvm_report_info call.

`uvm_warning

Calls uvm_report_warning with a verbosity of UVM_NONE. The message cannot be
turned off using the reporter’s verbosity setting, but can be turned off by setting the

`uvm_info(ID, MSG, VERBOSITY)

UVM 1.2 Class Reference 438

action for the message. ID is given as the message tag and MSG is given as the
message text. The file and line are also sent to the uvm_report_warning call.

`uvm_error

Calls uvm_report_error with a verbosity of UVM_NONE. The message cannot be turned
off using the reporter’s verbosity setting, but can be turned off by setting the action for
the message. ID is given as the message tag and MSG is given as the message text.
The file and line are also sent to the uvm_report_error call.

`uvm_fatal

Calls uvm_report_fatal with a verbosity of UVM_NONE. The message cannot be turned
off using the reporter’s verbosity setting, but can be turned off by setting the action for
the message. ID is given as the message tag and MSG is given as the message text.
The file and line are also sent to the uvm_report_fatal call.

`uvm_info_context

Operates identically to `uvm_info but requires that the context, or uvm_report_object, in
which the message is printed be explicitly supplied as a macro argument.

`uvm_warning_context

Operates identically to `uvm_warning but requires that the context, or
uvm_report_object, in which the message is printed be explicitly supplied as a macro
argument.

`uvm_warning(ID, MSG)

`uvm_error(ID, MSG)

`uvm_fatal(ID, MSG)

`uvm_info_context(ID, MSG, VERBOSITY, RO)

`uvm_warning_context(ID, MSG, RO)

UVM 1.2 Class Reference 439

`uvm_error_context

Operates identically to `uvm_error but requires that the context, or uvm_report_object
in which the message is printed be explicitly supplied as a macro argument.

`uvm_fatal_context

Operates identically to `uvm_fatal but requires that the context, or uvm_report_object,
in which the message is printed be explicitly supplied as a macro argument.

MEssAGE TrACE MACrOs

`uvm_info_begin

`uvm_info_end

This macro pair provides the ability to add elements to messages.

Example usage is shown here.

`uvm_error_context(ID, MSG, RO)

`uvm_fatal_context(ID, MSG, RO)

`uvm_info_begin(ID, MSG, VERBOSITY, RM = __uvm_msg)

`uvm_info_end

...
task my_task();
 ...
 `uvm_info_begin("MY_ID", "This is my message...", UVM_LOW)
 `uvm_message_add_tag("my_color", "red")
 `uvm_message_add_int(my_int, UVM_DEC)
 `uvm_message_add_string(my_string)
 `uvm_message_add_object(my_obj)
 `uvm_info_end
 ...
endtask

UVM 1.2 Class Reference 440

`uvm_warning_begin

`uvm_warning_end

This macro pair operates identically to `uvm_info_begin/`uvm_info_end with exception
that the message severity is UVM_WARNING and has no verbosity threshold.

The usage shown in `uvm_info_end works identically for this pair.

`uvm_error_begin

`uvm_error_end

This macro pair operates identically to `uvm_info_begin/`uvm_info_end with exception
that the message severity is UVM_ERROR and has no verbosity threshold.

The usage shown in `uvm_info_end works identically for this pair.

`uvm_fatal_begin

`uvm_fatal_end

This macro pair operates identically to `uvm_info_begin/`uvm_info_end with exception
that the message severity is UVM_FATAL and has no verbosity threshold.

`uvm_warning_begin(ID, MSG, RM = __uvm_msg)

`uvm_warning_end

`uvm_error_begin(ID, MSG, RM = __uvm_msg)

`uvm_error_end

`uvm_fatal_begin(ID, MSG, RM = __uvm_msg)

`uvm_fatal_end

UVM 1.2 Class Reference 441

The usage shown in `uvm_info_end works identically for this pair.

`uvm_info_context_begin

`uvm_info_context_end

This macro pair operates identically to `uvm_info_begin/`uvm_info_end, but requires
that the context, or uvm_report_object in which the message is printed be explicitly
supplied as a macro argument.

`uvm_warning_context_begin

`uvm_warning_context_end

This macro pair operates identically to `uvm_warning_begin/`uvm_warning_end, but
requires that the context, or uvm_report_object in which the message is printed be
explicitly supplied as a macro argument.

`uvm_error_context_begin

`uvm_error_context_end

`uvm_info_context_begin(ID, MSG, UVM_NONE, RO, RM = __uvm_msg)

`uvm_info_context_end

`uvm_warning_context_begin(ID, MSG, RO, RM = __uvm_msg)

`uvm_warning_context_end

`uvm_error_context_begin(ID, MSG, RO, RM = __uvm_msg)

UVM 1.2 Class Reference 442

This macro pair operates identically to `uvm_error_begin/`uvm_error_end, but requires
that the context, or uvm_report_object in which the message is printed be explicitly
supplied as a macro argument.

`uvm_fatal_context_begin

`uvm_fatal_context_end

This macro pair operates identically to `uvm_fatal_begin/`uvm_fatal_end, but requires
that the context, or uvm_report_object in which the message is printed be explicitly
supplied as a macro argument.

MEssAGE ELEmENt MACrOs

`uvm_message_add_tag

`uvm_message_add_int

`uvm_message_add_string

`uvm_error_context_end

`uvm_fatal_context_begin(ID, MSG, RO, RM = __uvm_msg)

`uvm_fatal_context_end

`uvm_message_add_tag(NAME, VALUE, ACTION=(UVM_LOG|UVM_RM_RECORD))

`uvm_message_add_int(VAR, RADIX, LABEL = "", ACTION=(UVM_LOG|UVM_RM_RECORD))

`uvm_message_add_string(VAR, LABEL = "", ACTION=(UVM_LOG|UVM_RM_RECORD))

UVM 1.2 Class Reference 443

`uvm_message_add_object

These macros allow the user to provide elements that are associated with
uvm_report_messages. Separate macros are provided such that the user can supply
arbitrary string/string pairs using `uvm_message_add_tag, integral types along with a
radix using `uvm_message_add_int, string using `uvm_message_add_string and
uvm_objects using `uvm_message_add_object.

Example usage is shown in `uvm_info_end.

`uvm_message_add_object(VAR, LABEL = "", ACTION=(UVM_LOG|UVM_RM_RECORD))

UVM 1.2 Class Reference 444

21.2 Utility and Field Macros for Components and
Objects

Summary

Utility and Field Macros for Components and Objects

UTILITY MAcRos The utils macros define the
infrastructure needed to enable the
object/component for correct factory
operation.

`uvm_field_utils_begin
`uvm_field_utils_end These macros form a block in which

`uvm_field_* macros can be placed.
`uvm_object_utils
`uvm_object_param_utils
`uvm_object_utils_begin
`uvm_object_param_utils_begin
`uvm_object_utils_end uvm_object-based class declarations

may contain one of the above forms
of utility macros.

`uvm_component_utils
`uvm_component_param_utils
`uvm_component_utils_begin
`uvm_component_param_utils_begin
`uvm_component_end uvm_component-based class

declarations may contain one of the
above forms of utility macros.

`uvm_object_registry Register a uvm_object-based class
with the factory

`uvm_component_registry Registers a uvm_component-based
class with the factory

FIELD MAcRos The `uvm_field_* macros are invoked
inside of the `uvm_*_utils_begin and
`uvm_*_utils_end macro blocks to
form “automatic” implementations of
the core data methods: copy,
compare, pack, unpack, record, print,
and sprint.

`uVm_fIELD_* mAcRos Macros that implement data
operations for scalar properties.

`uvm_field_int Implements the data operations for
any packed integral property.

`uvm_field_object Implements the data operations for
a uvm_object-based property.

`uvm_field_string Implements the data operations for
a string property.

`uvm_field_enum Implements the data operations for
an enumerated property.

`uvm_field_real Implements the data operations for
any real property.

`uvm_field_event Implements the data operations for
an event property.

`uVm_fIELD_sARRAY_* mAcRos Macros that implement data
operations for one-dimensional static
array properties.

`uvm_field_sarray_int Implements the data operations for
a one-dimensional static array of
integrals.

`uvm_field_sarray_object Implements the data operations for

UVM 1.2 Class Reference 445

a one-dimensional static array of
uvm_object-based objects.

`uvm_field_sarray_string Implements the data operations for
a one-dimensional static array of
strings.

`uvm_field_sarray_enum Implements the data operations for
a one-dimensional static array of
enums.

`uVm_fIELD_ARRAY_* mAcRos Macros that implement data
operations for one-dimensional
dynamic array properties.

`uvm_field_array_int Implements the data operations for
a one-dimensional dynamic array of
integrals.

`uvm_field_array_object Implements the data operations for
a one-dimensional dynamic array of
uvm_object-based objects.

`uvm_field_array_string Implements the data operations for
a one-dimensional dynamic array of
strings.

`uvm_field_array_enum Implements the data operations for
a one-dimensional dynamic array of
enums.

`uVm_fIELD_QuEuE_* mAcRos Macros that implement data
operations for dynamic queues.

`uvm_field_queue_int Implements the data operations for
a queue of integrals.

`uvm_field_queue_object Implements the data operations for
a queue of uvm_object-based
objects.

`uvm_field_queue_string Implements the data operations for
a queue of strings.

`uvm_field_queue_enum Implements the data operations for
a one-dimensional queue of enums.

`uVm_fIELD_AA_*_sTRING mAcRos Macros that implement data
operations for associative arrays
indexed by string.

`uvm_field_aa_int_string Implements the data operations for
an associative array of integrals
indexed by string.

`uvm_field_aa_object_string Implements the data operations for
an associative array of uvm_object-
based objects indexed by string.

`uvm_field_aa_string_string Implements the data operations for
an associative array of strings
indexed by string.

`uVm_fIELD_AA_*_INT mAcRos Macros that implement data
operations for associative arrays
indexed by an integral type.

`uvm_field_aa_object_int Implements the data operations for
an associative array of uvm_object-
based objects indexed by the int
data type.

`uvm_field_aa_int_int Implements the data operations for
an associative array of integral types
indexed by the int data type.

`uvm_field_aa_int_int_unsigned Implements the data operations for
an associative array of integral types
indexed by the int unsigned data
type.

`uvm_field_aa_int_integer Implements the data operations for
an associative array of integral types
indexed by the integer data type.

`uvm_field_aa_int_integer_unsigned Implements the data operations for
an associative array of integral types
indexed by the integer unsigned

UVM 1.2 Class Reference 446

data type.
`uvm_field_aa_int_byte Implements the data operations for

an associative array of integral types
indexed by the byte data type.

`uvm_field_aa_int_byte_unsigned Implements the data operations for
an associative array of integral types
indexed by the byte unsigned data
type.

`uvm_field_aa_int_shortint Implements the data operations for
an associative array of integral types
indexed by the shortint data type.

`uvm_field_aa_int_shortint_unsigned Implements the data operations for
an associative array of integral types
indexed by the shortint unsigned
data type.

`uvm_field_aa_int_longint Implements the data operations for
an associative array of integral types
indexed by the longint data type.

`uvm_field_aa_int_longint_unsigned Implements the data operations for
an associative array of integral types
indexed by the longint unsigned data
type.

`uvm_field_aa_int_key Implements the data operations for
an associative array of integral types
indexed by any integral key data
type.

`uvm_field_aa_int_enumkey Implements the data operations for
an associative array of integral types
indexed by any enumeration key
data type.

REcoRDING MAcRos The recording macros assist users who
implement the uvm_object::do_record
method.

`uvm_record_attribute Vendor-independent macro to hide
tool-specific interface for recording
attributes (fields) to a transaction
database.

`uvm_record_int
`uvm_record_string
`uvm_record_time
`uvm_record_real
`uvm_record_field Macro for recording arbitrary name-

value pairs into a transaction
recording database.

PAcKING MAcRos The packing macros assist users who
implement the uvm_object::do_pack
method.

PAcKING - WITH SIZE INfo

`uvm_pack_intN Pack an integral variable.
`uvm_pack_enumN Pack an integral variable.
`uvm_pack_sarrayN Pack a static array of integrals.
`uvm_pack_arrayN Pack a dynamic array of integrals.
`uvm_pack_queueN Pack a queue of integrals.

PAcKING - No SIZE INfo

`uvm_pack_int Pack an integral variable without
having to also specify the bit size.

`uvm_pack_enum Pack an enumeration value.
`uvm_pack_string Pack a string variable.
`uvm_pack_real Pack a variable of type real.
`uvm_pack_sarray Pack a static array without having to

also specify the bit size of its
elements.

`uvm_pack_array Pack a dynamic array without having
to also specify the bit size of its
elements.

`uvm_pack_queue Pack a queue without having to also

UVM 1.2 Class Reference 447

specify the bit size of its elements.
UNpAcKING MAcRos The unpacking macros assist users

who implement the
uvm_object::do_unpack method.

UNpAcKING - WITH SIZE INfo

`uvm_unpack_intN Unpack into an integral variable.
`uvm_unpack_enumN Unpack enum of type TYPE into VAR.
`uvm_unpack_sarrayN Unpack a static (fixed) array of

integrals.
`uvm_unpack_arrayN Unpack into a dynamic array of

integrals.
`uvm_unpack_queueN Unpack into a queue of integrals.

UNpAcKING - No SIZE INfo

`uvm_unpack_int Unpack an integral variable without
having to also specify the bit size.

`uvm_unpack_enum Unpack an enumeration value, which
requires its type be specified.

`uvm_unpack_string Unpack a string variable.
`uvm_unpack_real Unpack a variable of type real.
`uvm_unpack_sarray Unpack a static array without having

to also specify the bit size of its
elements.

`uvm_unpack_array Unpack a dynamic array without
having to also specify the bit size of
its elements.

`uvm_unpack_queue Unpack a queue without having to
also specify the bit size of its
elements.

UTILITY MAcRos

The utils macros define the infrastructure needed to enable the object/component for
correct factory operation. See `uvm_object_utils and `uvm_component_utils for details.

A utils macro should be used inside every user-defined class that extends uvm_object
directly or indirectly, including uvm_sequence_item and uvm_component.

Below is an example usage of the utils macro for a user-defined object.

Below is an example usage of a utils macro for a user-defined component.

class mydata extends uvm_object;

 `uvm_object_utils(mydata)

 // declare data properties

 function new(string name="mydata_inst");
 super.new(name);
 endfunction

endclass

class my_comp extends uvm_component;

 `uvm_component_utils(my_comp)

 // declare data properties

 function new(string name, uvm_component parent=null);
 super.new(name,parent);
 endfunction

UVM 1.2 Class Reference 448

`uvm_field_utils_begin

`uvm_field_utils_end

These macros form a block in which `uvm_field_* macros can be placed. Used as

These macros do not perform factory registration nor implement the get_type_name and
create methods. Use this form when you need custom implementations of these two
methods, or when you are setting up field macros for an abstract class (i.e. virtual
class).

`uvm_object_utils

`uvm_object_param_utils

`uvm_object_utils_begin

`uvm_object_param_utils_begin

`uvm_object_utils_end

uvm_object-based class declarations may contain one of the above forms of utility
macros.

For simple objects with no field macros, use

For simple objects with field macros, use

endclass

`uvm_field_utils_begin(TYPE)
 `uvm_field_* macros here
`uvm_field_utils_end

`uvm_object_utils(TYPE)

`uvm_object_utils_begin(TYPE)
 `uvm_field_* macro invocations here
`uvm_object_utils_end

UVM 1.2 Class Reference 449

For parameterized objects with no field macros, use

For parameterized objects, with field macros, use

Simple (non-parameterized) objects use the uvm_object_utils* versions, which do the
following:

Implements get_type_name, which returns TYPE as a string
Implements create, which allocates an object of type TYPE by calling its
constructor with no arguments. TYPE’s constructor, if defined, must have default
values on all it arguments.
Registers the TYPE with the factory, using the string TYPE as the factory lookup
string for the type.
Implements the static get_type() method which returns a factory proxy object for
the type.
Implements the virtual get_object_type() method which works just like the static
get_type() method, but operates on an already allocated object.

Parameterized classes must use the uvm_object_param_utils* versions. They differ from
`uvm_object_utils only in that they do not supply a type name when registering the
object with the factory. As such, name-based lookup with the factory for parameterized
classes is not possible.

The macros with _begin suffixes are the same as the non-suffixed versions except that
they also start a block in which `uvm_field_* macros can be placed. The block must be
terminated by `uvm_object_utils_end.

`uvm_component_utils

`uvm_component_param_utils

`uvm_component_utils_begin

`uvm_component_param_utils_begin

`uvm_component_end

uvm_component-based class declarations may contain one of the above forms of utility
macros.

For simple components with no field macros, use

`uvm_object_param_utils(TYPE)

`uvm_object_param_utils_begin(TYPE)
 `uvm_field_* macro invocations here
`uvm_object_utils_end

UVM 1.2 Class Reference 450

For simple components with field macros, use

For parameterized components with no field macros, use

For parameterized components with field macros, use

Simple (non-parameterized) components must use the uvm_components_utils* versions,
which do the following:

Implements get_type_name, which returns TYPE as a string.
Implements create, which allocates a component of type TYPE using a two
argument constructor. TYPE’s constructor must have a name and a parent
argument.
Registers the TYPE with the factory, using the string TYPE as the factory lookup
string for the type.
Implements the static get_type() method which returns a factory proxy object for
the type.
Implements the virtual get_object_type() method which works just like the static
get_type() method, but operates on an already allocated object.

Parameterized classes must use the uvm_object_param_utils* versions. They differ from
`uvm_object_utils only in that they do not supply a type name when registering the
object with the factory. As such, name-based lookup with the factory for parameterized
classes is not possible.

The macros with _begin suffixes are the same as the non-suffixed versions except that
they also start a block in which `uvm_field_* macros can be placed. The block must be
terminated by `uvm_component_utils_end.

`uvm_object_registry

Register a uvm_object-based class with the factory

`uvm_component_utils(TYPE)

`uvm_component_utils_begin(TYPE)
 `uvm_field_* macro invocations here
`uvm_component_utils_end

`uvm_component_param_utils(TYPE)

`uvm_component_param_utils_begin(TYPE)
 `uvm_field_* macro invocations here
`uvm_component_utils_end

`uvm_object_registry(T,S)

UVM 1.2 Class Reference 451

Registers a uvm_object-based class T and lookup string S with the factory. S typically is
the name of the class in quotes. The `uvm_object_utils family of macros uses this
macro.

`uvm_component_registry

Registers a uvm_component-based class with the factory

Registers a uvm_component-based class T and lookup string S with the factory. S
typically is the name of the class in quotes. The `uvm_object_utils family of macros
uses this macro.

FIELD MAcRos

The `uvm_field_* macros are invoked inside of the `uvm_*_utils_begin and
`uvm_*_utils_end macro blocks to form “automatic” implementations of the core data
methods: copy, compare, pack, unpack, record, print, and sprint.

By using the macros, you do not have to implement any of the do_* methods inherited
from uvm_object. However, be aware that the field macros expand into general inline
code that is not as run-time efficient nor as flexible as direct implementations of the
do_* methods.

Below is an example usage of the field macros for a sequence item.

Below is an example usage of the field macros for a component.

`uvm_component_registry(T,S)

class my_trans extends uvm_sequence_item;

 cmd_t cmd;
 int addr;
 int data[$];
 my_ext ext;
 string str;

 `uvm_object_utils_begin(my_trans)
 `uvm_field_enum (cmd_t, cmd, UVM_ALL_ON)
 `uvm_field_int (addr, UVM_ALL_ON)
 `uvm_field_queue_int(data, UVM_ALL_ON)
 `uvm_field_object (ext, UVM_ALL_ON)
 `uvm_field_string (str, UVM_ALL_ON)
 `uvm_object_utils_end

 function new(string name="mydata_inst");
 super.new(name);
 endfunction

endclass

class my_comp extends uvm_component;

 my_comp_cfg cfg;

 `uvm_component_utils_begin(my_comp)
 `uvm_field_object (cfg, UVM_ALL_ON)
 `uvm_object_utils_end

 function new(string name="my_comp_inst", uvm_component parent=null);
 super.new(name);

UVM 1.2 Class Reference 452

Each `uvm_field_* macro is named according to the particular data type it handles:
integrals, strings, objects, queues, etc., and each has at least two arguments: ARG and
FLAG.

ARG is the instance name of the variable, whose type must be compatible
with the macro being invoked. In the example, class variable addr is
an integral type, so we use the `uvm_field_int macro.

FLAG if set to UVM_ALL_ON, as in the example, the ARG variable will be
included in all data methods. If FLAG is set to something other than
UVM_ALL_ON or UVM_DEFAULT, it specifies which data method
implementations will not include the given variable. Thus, if FLAG is
specified as NO_COMPARE, the ARG variable will not affect comparison
operations, but it will be included in everything else.

All possible values for FLAG are listed and described below. Multiple flag values can be
bitwise OR’ed together (in most cases they may be added together as well, but care must
be taken when using the + operator to ensure that the same bit is not added more than
once).

UVM_ALL_ON Set all operations on.
UVM_DEFAULT This is the recommended set of flags to pass to the field

macros. Currently, it enables all of the operations,
making it functionally identical to UVM_ALL_ON. In the
future however, additional flags could be added with a
recommended default value of off.

UVM_NOCOPY Do not copy this field.
UVM_NOCOMPARE Do not compare this field.
UVM_NOPRINT Do not print this field.
UVM_NOPACK Do not pack or unpack this field.
UVM_REFERENCE For object types, operate only on the handle (e.g. no

deep copy)
UVM_PHYSICAL Treat as a physical field. Use physical setting in policy

class for this field.
UVM_ABSTRACT Treat as an abstract field. Use the abstract setting in the

policy class for this field.
UVM_READONLY Do not allow setting of this field from the set_*_local

methods or during uvm_component::apply_config_settings
operation.

A radix for printing and recording can be specified by OR’ing one of the following
constants in the FLAG argument

UVM_BIN Print / record the field in binary (base-2).
UVM_DEC Print / record the field in decimal (base-10).
UVM_UNSIGNED Print / record the field in unsigned decimal (base-10).
UVM_OCT Print / record the field in octal (base-8).
UVM_HEX Print / record the field in hexadecimal (base-16).
UVM_STRING Print / record the field in string format.
UVM_TIME Print / record the field in time format.

 endfunction

endclass

UVM 1.2 Class Reference 453

Radix settings for integral types. Hex is the default radix if none is specified.

A UVM component should not be specified using the `uvm_field_object macro unless its
flag includes UVM_REFERENCE. Otherwise, the field macro will implement deep copy,
which is an illegal operation for uvm_components. You will get a FATAL error if you tried
to copy or clone an object containing a component handle that was registered with a
field macro without the UVM_REFERENCE flag. You will also get duplicate entries when
printing component topology, as this functionality is already provided by UVM.

`uVm_fIELD_* mAcRos

Macros that implement data operations for scalar properties.

`uvm_field_int

Implements the data operations for any packed integral property.

ARG is an integral property of the class, and FLAG is a bitwise OR of one or more flag
settings as described in Field Macros above.

`uvm_field_object

Implements the data operations for a uvm_object-based property.

ARG is an object property of the class, and FLAG is a bitwise OR of one or more flag
settings as described in Field Macros above.

`uvm_field_string

Implements the data operations for a string property.

ARG is a string property of the class, and FLAG is a bitwise OR of one or more flag
settings as described in Field Macros above.

`uvm_field_enum

Implements the data operations for an enumerated property.

`uvm_field_int(ARG,FLAG)

`uvm_field_object(ARG,FLAG)

`uvm_field_string(ARG,FLAG)

UVM 1.2 Class Reference 454

T is an enumerated type, ARG is an instance of that type, and FLAG is a bitwise OR of
one or more flag settings as described in Field Macros above.

`uvm_field_real

Implements the data operations for any real property.

ARG is an real property of the class, and FLAG is a bitwise OR of one or more flag
settings as described in Field Macros above.

`uvm_field_event

Implements the data operations for an event property.

ARG is an event property of the class, and FLAG is a bitwise OR of one or more flag
settings as described in Field Macros above.

`uVm_fIELD_sARRAY_* mAcRos

Macros that implement data operations for one-dimensional static array properties.

`uvm_field_sarray_int

Implements the data operations for a one-dimensional static array of integrals.

ARG is a one-dimensional static array of integrals, and FLAG is a bitwise OR of one or
more flag settings as described in Field Macros above.

`uvm_field_sarray_object

Implements the data operations for a one-dimensional static array of uvm_object-based
objects.

`uvm_field_enum(T,ARG,FLAG)

`uvm_field_real(ARG,FLAG)

`uvm_field_event(ARG,FLAG)

`uvm_field_sarray_int(ARG,FLAG)

UVM 1.2 Class Reference 455

ARG is a one-dimensional static array of uvm_object-based objects, and FLAG is a
bitwise OR of one or more flag settings as described in Field Macros above.

`uvm_field_sarray_string

Implements the data operations for a one-dimensional static array of strings.

ARG is a one-dimensional static array of strings, and FLAG is a bitwise OR of one or
more flag settings as described in Field Macros above.

`uvm_field_sarray_enum

Implements the data operations for a one-dimensional static array of enums.

T is a one-dimensional dynamic array of enums type, ARG is an instance of that type,
and FLAG is a bitwise OR of one or more flag settings as described in Field Macros above.

`uVm_fIELD_ARRAY_* mAcRos

Macros that implement data operations for one-dimensional dynamic array properties.

Implementation note

lines flagged with empty multi-line comments, /**/, are not needed or need to be
different for fixed arrays, which cannot be resized. Fixed arrays do not need to
pack/unpack their size either, because their size is known; wouldn’t hurt though if it
allowed code consolidation. Unpacking would necessarily be different. */

`uvm_field_array_int

Implements the data operations for a one-dimensional dynamic array of integrals.

ARG is a one-dimensional dynamic array of integrals, and FLAG is a bitwise OR of one or
more flag settings as described in Field Macros above.

`uvm_field_sarray_object(ARG,FLAG)

`uvm_field_sarray_string(ARG,FLAG)

`uvm_field_sarray_enum(T,ARG,FLAG)

`uvm_field_array_int(ARG,FLAG)

UVM 1.2 Class Reference 456

`uvm_field_array_object

Implements the data operations for a one-dimensional dynamic array of uvm_object-
based objects.

ARG is a one-dimensional dynamic array of uvm_object-based objects, and FLAG is a
bitwise OR of one or more flag settings as described in Field Macros above.

`uvm_field_array_string

Implements the data operations for a one-dimensional dynamic array of strings.

ARG is a one-dimensional dynamic array of strings, and FLAG is a bitwise OR of one or
more flag settings as described in Field Macros above.

`uvm_field_array_enum

Implements the data operations for a one-dimensional dynamic array of enums.

T is a one-dimensional dynamic array of enums type, ARG is an instance of that type,
and FLAG is a bitwise OR of one or more flag settings as described in Field Macros above.

`uVm_fIELD_QuEuE_* mAcRos

Macros that implement data operations for dynamic queues.

`uvm_field_queue_int

Implements the data operations for a queue of integrals.

ARG is a one-dimensional queue of integrals, and FLAG is a bitwise OR of one or more
flag settings as described in Field Macros above.

`uvm_field_array_object(ARG,FLAG)

`uvm_field_array_string(ARG,FLAG)

`uvm_field_array_enum(T,ARG,FLAG)

`uvm_field_queue_int(ARG,FLAG)

UVM 1.2 Class Reference 457

`uvm_field_queue_object

Implements the data operations for a queue of uvm_object-based objects.

ARG is a one-dimensional queue of uvm_object-based objects, and FLAG is a bitwise OR
of one or more flag settings as described in Field Macros above.

`uvm_field_queue_string

Implements the data operations for a queue of strings.

ARG is a one-dimensional queue of strings, and FLAG is a bitwise OR of one or more flag
settings as described in Field Macros above.

`uvm_field_queue_enum

Implements the data operations for a one-dimensional queue of enums.

T is a queue of enums type, ARG is an instance of that type, and FLAG is a bitwise OR of
one or more flag settings as described in Field Macros above.

`uVm_fIELD_AA_*_sTRING mAcRos

Macros that implement data operations for associative arrays indexed by string.

`uvm_field_aa_int_string

Implements the data operations for an associative array of integrals indexed by string.

ARG is the name of a property that is an associative array of integrals with string key,
and FLAG is a bitwise OR of one or more flag settings as described in Field Macros above.

`uvm_field_aa_object_string

`uvm_field_queue_object(ARG,FLAG)

`uvm_field_queue_string(ARG,FLAG)

`uvm_field_queue_enum(T,ARG,FLAG)

`uvm_field_aa_int_string(ARG,FLAG)

UVM 1.2 Class Reference 458

Implements the data operations for an associative array of uvm_object-based objects
indexed by string.

ARG is the name of a property that is an associative array of objects with string key, and
FLAG is a bitwise OR of one or more flag settings as described in Field Macros above.

`uvm_field_aa_string_string

Implements the data operations for an associative array of strings indexed by string.

ARG is the name of a property that is an associative array of strings with string key, and
FLAG is a bitwise OR of one or more flag settings as described in Field Macros above.

`uVm_fIELD_AA_*_INT mAcRos

Macros that implement data operations for associative arrays indexed by an integral
type.

`uvm_field_aa_object_int

Implements the data operations for an associative array of uvm_object-based objects
indexed by the int data type.

ARG is the name of a property that is an associative array of objects with int key, and
FLAG is a bitwise OR of one or more flag settings as described in Field Macros above.

`uvm_field_aa_int_int

Implements the data operations for an associative array of integral types indexed by the
int data type.

ARG is the name of a property that is an associative array of integrals with int key, and
FLAG is a bitwise OR of one or more flag settings as described in Field Macros above.

`uvm_field_aa_object_string(ARG,FLAG)

`uvm_field_aa_string_string(ARG,FLAG)

`uvm_field_aa_object_int(ARG,FLAG)

`uvm_field_aa_int_int(ARG,FLAG)

UVM 1.2 Class Reference 459

`uvm_field_aa_int_int_unsigned

Implements the data operations for an associative array of integral types indexed by the
int unsigned data type.

ARG is the name of a property that is an associative array of integrals with int unsigned
key, and FLAG is a bitwise OR of one or more flag settings as described in Field Macros
above.

`uvm_field_aa_int_integer

Implements the data operations for an associative array of integral types indexed by the
integer data type.

ARG is the name of a property that is an associative array of integrals with integer key,
and FLAG is a bitwise OR of one or more flag settings as described in Field Macros above.

`uvm_field_aa_int_integer_unsigned

Implements the data operations for an associative array of integral types indexed by the
integer unsigned data type.

ARG is the name of a property that is an associative array of integrals with integer
unsigned key, and FLAG is a bitwise OR of one or more flag settings as described in Field
Macros above.

`uvm_field_aa_int_byte

Implements the data operations for an associative array of integral types indexed by the
byte data type.

ARG is the name of a property that is an associative array of integrals with byte key, and
FLAG is a bitwise OR of one or more flag settings as described in Field Macros above.

`uvm_field_aa_int_byte_unsigned

`uvm_field_aa_int_int_unsigned(ARG,FLAG)

`uvm_field_aa_int_integer(ARG,FLAG)

`uvm_field_aa_int_integer_unsigned(ARG,FLAG)

`uvm_field_aa_int_byte(ARG,FLAG)

UVM 1.2 Class Reference 460

Implements the data operations for an associative array of integral types indexed by the
byte unsigned data type.

ARG is the name of a property that is an associative array of integrals with byte
unsigned key, and FLAG is a bitwise OR of one or more flag settings as described in Field
Macros above.

`uvm_field_aa_int_shortint

Implements the data operations for an associative array of integral types indexed by the
shortint data type.

ARG is the name of a property that is an associative array of integrals with shortint key,
and FLAG is a bitwise OR of one or more flag settings as described in Field Macros above.

`uvm_field_aa_int_shortint_unsigned

Implements the data operations for an associative array of integral types indexed by the
shortint unsigned data type.

ARG is the name of a property that is an associative array of integrals with shortint
unsigned key, and FLAG is a bitwise OR of one or more flag settings as described in Field
Macros above.

`uvm_field_aa_int_longint

Implements the data operations for an associative array of integral types indexed by the
longint data type.

ARG is the name of a property that is an associative array of integrals with longint key,
and FLAG is a bitwise OR of one or more flag settings as described in Field Macros above.

`uvm_field_aa_int_longint_unsigned

Implements the data operations for an associative array of integral types indexed by the
longint unsigned data type.

`uvm_field_aa_int_byte_unsigned(ARG,FLAG)

`uvm_field_aa_int_shortint(ARG,FLAG)

`uvm_field_aa_int_shortint_unsigned(ARG,FLAG)

`uvm_field_aa_int_longint(ARG,FLAG)

UVM 1.2 Class Reference 461

ARG is the name of a property that is an associative array of integrals with longint
unsigned key, and FLAG is a bitwise OR of one or more flag settings as described in Field
Macros above.

`uvm_field_aa_int_key

Implements the data operations for an associative array of integral types indexed by any
integral key data type.

KEY is the data type of the integral key, ARG is the name of a property that is an
associative array of integrals, and FLAG is a bitwise OR of one or more flag settings as
described in Field Macros above.

`uvm_field_aa_int_enumkey

Implements the data operations for an associative array of integral types indexed by any
enumeration key data type.

KEY is the enumeration type of the key, ARG is the name of a property that is an
associative array of integrals, and FLAG is a bitwise OR of one or more flag settings as
described in Field Macros above.

REcoRDING MAcRos

The recording macros assist users who implement the uvm_object::do_record method.
They help ensure that the fields are recorded using a vendor- independent API. Unlike
the uvm_recorder policy, fields recorded using the macros do not lose type information--
they are passed directly to the vendor-specific API. This results in more efficient
recording and no artificial limit on bit-widths. See your simulator vendor’s
documentation for more information on its transaction recording capabilities.

`uvm_record_attribute

Vendor-independent macro to hide tool-specific interface for recording attributes (fields)
to a transaction database.

`uvm_field_aa_int_longint_unsigned(ARG,FLAG)

`uvm_field_aa_int_key(KEY,ARG,FLAG)

`uvm_field_aa_int_enumkey(KEY, ARG,FLAG)

`uvm_record_attribute(TR_HANDLE, NAME, VALUE)

UVM 1.2 Class Reference 462

The default implementation of the macro passes NAME and VALUE through to the
uvm_recorder::record_generic method.

This macro should not be called directly by the user, the other recording macros will call
it automatically if uvm_recorder::use_record_attribute returns true.

`uvm_record_int

The `uvm_record_int macro takes the same arguments as the
uvm_recorder::record_field method (including the optional RADIX).

The default implementation will pass the name/value pair to `uvm_record_attribute if
enabled, otherwise the information will be passed to uvm_recorder::record_field.

`uvm_record_string

The `uvm_record_string macro takes the same arguments as the
uvm_recorder::record_string method.

The default implementation will pass the name/value pair to `uvm_record_attribute if
enabled, otherwise the information will be passed to uvm_recorder::record_string.

`uvm_record_time

The `uvm_record_time macro takes the same arguments as the
uvm_recorder::record_time method.

The default implementation will pass the name/value pair to `uvm_record_attribute if
enabled, otherwise the information will be passed to uvm_recorder::record_time.

`uvm_record_real

`uvm_record_int(NAME,VALUE,SIZE[,RADIX])

`uvm_record_string(NAME,VALUE)

`uvm_record_time(NAME,VALUE)

`uvm_record_real(NAME,VALUE)

UVM 1.2 Class Reference 463

The `uvm_record_real macro takes the same arguments as the
uvm_recorder::record_field_real method.

The default implementation will pass the name/value pair to `uvm_record_attribute if
enabled, otherwise the information will be passed to uvm_recorder::record_field_real.

`uvm_record_field

Macro for recording arbitrary name-value pairs into a transaction recording database.
Requires a valid transaction handle, as provided by the uvm_transaction::begin_tr and
uvm_component::begin_tr methods.

The default implementation will pass the name/value pair to `uvm_record_attribute if
enabled, otherwise the information will be passed to uvm_recorder::record_generic, with
the VALUE being converted to a string using “%p” notation.

PAcKING MAcRos

The packing macros assist users who implement the uvm_object::do_pack method. They
help ensure that the pack operation is the exact inverse of the unpack operation. See
also Unpacking Macros.

The ‘N’ versions of these macros take an explicit size argument, which must be compile-
time constant value greater than 0.

PAcKING - WITH SIZE INfo

`uvm_pack_intN

Pack an integral variable.

`uvm_record_field(NAME, VALUE)

recorder.record_generic(NAME,$sformatf("%p",VALUE));

virtual function void do_pack(uvm_packer packer);
 `uvm_pack_int(cmd)
 `uvm_pack_int(addr)
 `uvm_pack_array(data)
endfunction

`uvm_pack_intN(VAR,SIZE)

UVM 1.2 Class Reference 464

`uvm_pack_enumN

Pack an integral variable.

`uvm_pack_sarrayN

Pack a static array of integrals.

`uvm_pack_arrayN

Pack a dynamic array of integrals.

`uvm_pack_queueN

Pack a queue of integrals.

PAcKING - No SIZE INfo

`uvm_pack_int

Pack an integral variable without having to also specify the bit size.

`uvm_pack_enum

Pack an enumeration value. Packing does not require its type be specified.

`uvm_pack_enumN(VAR,SIZE)

`uvm_pack_sarray(VAR,SIZE)

`uvm_pack_arrayN(VAR,SIZE)

`uvm_pack_queueN(VAR,SIZE)

`uvm_pack_int(VAR)

UVM 1.2 Class Reference 465

`uvm_pack_string

Pack a string variable.

`uvm_pack_real

Pack a variable of type real.

`uvm_pack_sarray

Pack a static array without having to also specify the bit size of its elements.

`uvm_pack_array

Pack a dynamic array without having to also specify the bit size of its elements. Array
size must be non-zero.

`uvm_pack_queue

Pack a queue without having to also specify the bit size of its elements. Queue must not
be empty.

`uvm_pack_enum(VAR)

`uvm_pack_string(VAR)

`uvm_pack_real(VAR)

`uvm_pack_sarray(VAR)

`uvm_pack_array(VAR)

`uvm_pack_queue(VAR)

UVM 1.2 Class Reference 466

UNpAcKING MAcRos

The unpacking macros assist users who implement the uvm_object::do_unpack method.
They help ensure that the unpack operation is the exact inverse of the pack operation.
See also Packing Macros.

The ‘N’ versions of these macros take an explicit size argument, which must be a compile-
time constant value greater than 0.

UNpAcKING - WITH SIZE INfo

`uvm_unpack_intN

Unpack into an integral variable.

`uvm_unpack_enumN

Unpack enum of type TYPE into VAR.

`uvm_unpack_enumN(VAR,SIZE,TYPE)

`uvm_unpack_sarrayN

Unpack a static (fixed) array of integrals.

`uvm_unpack_arrayN

Unpack into a dynamic array of integrals.

virtual function void do_unpack(uvm_packer packer);
 `uvm_unpack_enum(cmd,cmd_t)
 `uvm_unpack_int(addr)
 `uvm_unpack_array(data)
endfunction

`uvm_unpack_intN(VAR,SIZE)

`uvm_unpack_sarrayN(VAR,SIZE)

`uvm_unpack_arrayN(VAR,SIZE)

UVM 1.2 Class Reference 467

`uvm_unpack_queueN

Unpack into a queue of integrals.

UNpAcKING - No SIZE INfo

`uvm_unpack_int

Unpack an integral variable without having to also specify the bit size.

`uvm_unpack_enum

Unpack an enumeration value, which requires its type be specified.

`uvm_unpack_string

Unpack a string variable.

`uvm_unpack_real

Unpack a variable of type real.

`uvm_unpack_sarray

Unpack a static array without having to also specify the bit size of its elements.

`uvm_unpack_queue(VAR,SIZE)

`uvm_unpack_int(VAR)

`uvm_unpack_enum(VAR,TYPE)

`uvm_unpack_string(VAR)

`uvm_unpack_real(VAR)

UVM 1.2 Class Reference 468

`uvm_unpack_array

Unpack a dynamic array without having to also specify the bit size of its elements. Array
size must be non-zero.

`uvm_unpack_queue

Unpack a queue without having to also specify the bit size of its elements. Queue must
not be empty.

`uvm_unpack_sarray(VAR)

`uvm_unpack_array(VAR)

`uvm_unpack_queue(VAR)

UVM 1.2 Class Reference 469

21.3 Sequence-Related Macros

Summary

Sequence-Related Macros

SEQUENCE ACTION MaCrOs These macros are used to start sequences
and sequence items on the default
sequencer, m_sequencer.

`uvm_create
`uvm_do
`uvm_do_pri
`uvm_do_with
`uvm_do_pri_with

SEQUENCE ON SEQUENCEr ACTION

MaCrOs

These macros are used to start sequences
and sequence items on a specific
sequencer.

`uvm_create_on
`uvm_do_on
`uvm_do_on_pri
`uvm_do_on_with
`uvm_do_on_pri_with

SEQUENCE ACTION MaCrOs FOr PrE-
EXIsTING SEQUENCEs

These macros are used to start sequences
and sequence items that do not need to be
created.

`uvm_send
`uvm_send_pri
`uvm_rand_send
`uvm_rand_send_pri
`uvm_rand_send_with
`uvm_rand_send_pri_with
`uvm_add_to_sequence_library Adds the given sequence TYPE to the

given sequence library LIBTYPE
`uvm_sequence_library_utils

SEQUENCEr SUBTYpEs

`uvm_declare_p_sequencer This macro is used to declare a variable
p_sequencer whose type is specified by
SEQUENCER.

SEQUENCE ACTION MaCrOs

These macros are used to start sequences and sequence items on the default sequencer,
m_sequencer. This is determined a number of ways.

the sequencer handle provided in the uvm_sequence_base::start method
the sequencer used by the parent sequence
the sequencer that was set using the uvm_sequence_item::set_sequencer method

`uvm_create

`uvm_create(SEQ_OR_ITEM)

UVM 1.2 Class Reference 470

This action creates the item or sequence using the factory. It intentionally does zero
processing. After this action completes, the user can manually set values, manipulate
rand_mode and constraint_mode, etc.

`uvm_do

This macro takes as an argument a uvm_sequence_item variable or object. The
argument is created using `uvm_create if necessary, then randomized. In the case of an
item, it is randomized after the call to uvm_sequence_base::start_item() returns. This is
called late-randomization. In the case of a sequence, the sub-sequence is started using
uvm_sequence_base::start() with call_pre_post set to 0. In the case of an item, the
item is sent to the driver through the associated sequencer.

For a sequence item, the following are called, in order

For a sequence, the following are called, in order

`uvm_do_pri

This is the same as `uvm_do except that the sequence item or sequence is executed
with the priority specified in the argument

`uvm_do_with

`uvm_do(SEQ_OR_ITEM)

`uvm_create(item)
sequencer.wait_for_grant(prior) (task)
this.pre_do(1) (task)
item.randomize()
this.mid_do(item) (func)
sequencer.send_request(item) (func)
sequencer.wait_for_item_done() (task)
this.post_do(item) (func)

`uvm_create(sub_seq)
sub_seq.randomize()
sub_seq.pre_start() (task)
this.pre_do(0) (task)
this.mid_do(sub_seq) (func)
sub_seq.body() (task)
this.post_do(sub_seq) (func)
sub_seq.post_start() (task)

`uvm_do_pri(SEQ_OR_ITEM, PRIORITY)

`uvm do with(SEQ OR ITEM, CONSTRAINTS)

UVM 1.2 Class Reference 471

This is the same as `uvm_do except that the constraint block in the 2nd argument is
applied to the item or sequence in a randomize with statement before execution.

`uvm_do_pri_with

This is the same as `uvm_do_pri except that the given constraint block is applied to the
item or sequence in a randomize with statement before execution.

SEQUENCE ON SEQUENCEr ACTION MaCrOs

These macros are used to start sequences and sequence items on a specific sequencer.
The sequence or item is created and executed on the given sequencer.

`uvm_create_on

This is the same as `uvm_create except that it also sets the parent sequence to the
sequence in which the macro is invoked, and it sets the sequencer to the specified SEQR
argument.

`uvm_do_on

This is the same as `uvm_do except that it also sets the parent sequence to the
sequence in which the macro is invoked, and it sets the sequencer to the specified SEQR
argument.

`uvm_do_on_pri

This is the same as `uvm_do_pri except that it also sets the parent sequence to the

`uvm_do_pri_with(SEQ_OR_ITEM, PRIORITY, CONSTRAINTS)

`uvm_create_on(SEQ_OR_ITEM, SEQR)

`uvm_do_on(SEQ_OR_ITEM, SEQR)

`uvm_do_on_pri(SEQ_OR_ITEM, SEQR, PRIORITY)

UVM 1.2 Class Reference 472

sequence in which the macro is invoked, and it sets the sequencer to the specified SEQR
argument.

`uvm_do_on_with

This is the same as `uvm_do_with except that it also sets the parent sequence to the
sequence in which the macro is invoked, and it sets the sequencer to the specified SEQR
argument. The user must supply brackets around the constraints.

`uvm_do_on_pri_with

This is the same as `uvm_do_pri_with except that it also sets the parent sequence to
the sequence in which the macro is invoked, and it sets the sequencer to the specified
SEQR argument.

SEQUENCE ACTION MaCrOs FOr PrE-EXIsTING SEQUENCEs

These macros are used to start sequences and sequence items that do not need to be
created.

`uvm_send

This macro processes the item or sequence that has been created using `uvm_create.
The processing is done without randomization. Essentially, an `uvm_do without the
create or randomization.

`uvm_send_pri

This is the same as `uvm_send except that the sequence item or sequence is executed
with the priority specified in the argument.

`uvm_do_on_with(SEQ_OR_ITEM, SEQR, CONSTRAINTS)

`uvm_do_on_pri_with(SEQ_OR_ITEM, SEQR, PRIORITY, CONSTRAINTS)

`uvm_send(SEQ_OR_ITEM)

`uvm_send_pri(SEQ_OR_ITEM, PRIORITY)

UVM 1.2 Class Reference 473

`uvm_rand_send

This macro processes the item or sequence that has been already been allocated
(possibly with `uvm_create). The processing is done with randomization. Essentially, an
`uvm_do without the create.

`uvm_rand_send_pri

This is the same as `uvm_rand_send except that the sequence item or sequence is
executed with the priority specified in the argument.

`uvm_rand_send_with

This is the same as `uvm_rand_send except that the given constraint block is applied to
the item or sequence in a randomize with statement before execution.

`uvm_rand_send_pri_with

This is the same as `uvm_rand_send_pri except that the given constraint block is
applied to the item or sequence in a randomize with statement before execution.

`uvm_add_to_sequence_library

Adds the given sequence TYPE to the given sequence library LIBTYPE

Invoke any number of times within a sequence declaration to statically add that
sequence to one or more sequence library types. The sequence will then be available for
selection and execution in all instances of the given sequencer types.

`uvm_rand_send(SEQ_OR_ITEM)

`uvm_rand_send_pri(SEQ_OR_ITEM, PRIORITY)

`uvm_rand_send_with(SEQ_OR_ITEM, CONSTRAINTS)

`uvm_rand_send_pri_with(SEQ_OR_ITEM, PRIORITY, CONSTRAINTS)

`uvm_add_to_seq_lib(TYPE,LIBTYPE)

UVM 1.2 Class Reference 474

`uvm_sequence_library_utils

Declares the infrastructure needed to define extensions to the uvm_sequence_library
class. You define new sequence library subtypes to statically specify sequence
membership from within sequence definitions. See also `uvm_add_to_sequence_library
for more information.

Each library, itself a sequence, can then be started independently on different sequencers
or in different phases of the same sequencer. See
uvm_sequencer_base::start_phase_sequence for information on starting default
sequences.

SEQUENCEr SUBTYpEs

`uvm_declare_p_sequencer

This macro is used to declare a variable p_sequencer whose type is specified by
SEQUENCER.

class seqA extends uvm_sequence_base #(simple_item);

 function new(string name=`"TYPE`");
 super.new(name);
 endfunction

 `uvm_object_utils(seqA)

 `uvm_add_to_seq_lib(seqA, simple_seq_lib_RST)
 `uvm_add_to_seq_lib(seqA, simple_seq_lib_CFG)

 virtual task body(); \
 `uvm_info("SEQ_START", {"Executing sequence '", get_full_name(),
 "' (",get_type_name(),")"},UVM_HIGH)
 #10;
 endtask

 endclass

`uvm_sequence_library_utils(TYPE)

typedef simple_seq_lib uvm_sequence_library #(simple_item);

class simple_seq_lib_RST extends simple_seq_lib;

 `uvm_object_utils(simple_seq_lib_RST)

 `uvm_sequence_library_utils(simple_seq_lib_RST)

 function new(string name="");
 super.new(name);
 endfunction

endclass

`uvm_declare_p_sequencer(SEQUENCER)

UVM 1.2 Class Reference 475

The example below shows using the `uvm_declare_p_sequencer macro along with the
uvm_object_utils macros to set up the sequence but not register the sequence in the
sequencer’s library.

class mysequence extends uvm_sequence#(mydata);
 `uvm_object_utils(mysequence)
 `uvm_declare_p_sequencer(some_seqr_type)
 task body;
 //Access some variable in the user's custom sequencer
 if(p_sequencer.some_variable) begin
 ...
 end
 endtask
endclass

UVM 1.2 Class Reference 476

21.4 Callback Macros

These macros are used to register and execute callbacks extending from uvm_callbacks.

Summary

Callback Macros

These macros are used to register and execute callbacks extending from
uvm_callbacks.

MAcROs

`uvm_register_cb
`uvm_set_super_type
`uvm_do_callbacks
`uvm_do_obj_callbacks
`uvm_do_callbacks_exit_on
`uvm_do_obj_callbacks_exit_on

MAcROs

`uvm_register_cb

Registers the given CB callback type with the given T object type. If a type-callback pair
is not registered then a warning is issued if an attempt is made to use the pair (add,
delete, etc.).

The registration will typically occur in the component that executes the given type of
callback. For instance:

`uvm_set_super_type

`uvm_register_cb(T,CB)

virtual class mycb extends uvm_callback;
 virtual function void doit();
endclass

class my_comp extends uvm_component;
 `uvm_register_cb(my_comp,mycb)
 ...
 task run_phase(uvm_phase phase);
 ...
 `uvm_do_callbacks(my_comp, mycb, doit())
 endtask
endclass

`uvm_set_super_type(T,ST)

UVM 1.2 Class Reference 477

Defines the super type of T to be ST. This allows for derived class objects to inherit
typewide callbacks that are registered with the base class.

The registration will typically occur in the component that executes the given type of
callback. For instance:

`uvm_do_callbacks

Calls the given METHOD of all callbacks of type CB registered with the calling object (i.e.
this object), which is or is based on type T.

This macro executes all of the callbacks associated with the calling object (i.e. this
object). The macro takes three arguments:

CB is the class type of the callback objects to execute. The class type must have
a function signature that matches the METHOD argument.
T is the type associated with the callback. Typically, an instance of type T is
passed as one the arguments in the METHOD call.
METHOD is the method call to invoke, with all required arguments as if they were
invoked directly.

For example, given the following callback class definition

A component would invoke the macro as

virtual class mycb extend uvm_callback;
 virtual function void doit();
endclass

class my_comp extends uvm_component;
 `uvm_register_cb(my_comp,mycb)
 ...
 task run_phase(uvm_phase phase);
 ...
 `uvm_do_callbacks(my_comp, mycb, doit())
 endtask
endclass

class my_derived_comp extends my_comp;
 `uvm_set_super_type(my_derived_comp,my_comp)
 ...
 task run_phase(uvm_phase phase);
 ...
 `uvm_do_callbacks(my_comp, mycb, doit())
 endtask
endclass

`uvm_do_callbacks(T,CB,METHOD)

virtual class mycb extends uvm_cb;
 pure function void my_function (mycomp comp, int addr, int data);
endclass

task mycomp::run_phase(uvm_phase phase);
 int curr_addr, curr_data;
 ...
 `uvm_do_callbacks(mycb, mycomp, my_function(this, curr_addr, curr_data))

UVM 1.2 Class Reference 478

`uvm_do_obj_callbacks

Calls the given METHOD of all callbacks based on type CB registered with the given
object, OBJ, which is or is based on type T.

This macro is identical to `uvm_do_callbacks macro, but it has an additional OBJ
argument to allow the specification of an external object to associate the callback with.
For example, if the callbacks are being applied in a sequence, OBJ could be specified as
the associated sequencer or parent sequence.

`uvm_do_callbacks_exit_on

Calls the given METHOD of all callbacks of type CB registered with the calling object (i.e.
this object), which is or is based on type T, returning upon the first callback returning
the bit value given by VAL.

This macro executes all of the callbacks associated with the calling object (i.e. this
object). The macro takes three arguments:

CB is the class type of the callback objects to execute. The class type must have
a function signature that matches the METHOD argument.
T is the type associated with the callback. Typically, an instance of type T is
passed as one the arguments in the METHOD call.
METHOD is the method call to invoke, with all required arguments as if they were
invoked directly.
VAL, if 1, says return upon the first callback invocation that returns 1. If 0, says
return upon the first callback invocation that returns 0.

For example, given the following callback class definition

 ...
endtask

`uvm_do_obj_callbacks(T,CB,OBJ,METHOD)

...
`uvm_do_callbacks(mycb, mycomp, seqr, my_function(seqr, curr_addr,
curr_data))
...

`uvm_do_callbacks_exit_on(T,CB,METHOD,VAL)

virtual class mycb extends uvm_cb;
 pure function bit drop_trans (mycomp comp, my_trans trans);
endclass

UVM 1.2 Class Reference 479

A component would invoke the macro as

Because this macro calls return, its use is restricted to implementations of functions that
return a bit value, as in the above example.

`uvm_do_obj_callbacks_exit_on

Calls the given METHOD of all callbacks of type CB registered with the given object OBJ,
which must be or be based on type T, and returns upon the first callback that returns
the bit value given by VAL. It is exactly the same as the `uvm_do_callbacks_exit_on but
has a specific object instance (instead of the implicit this instance) as the third
argument.

Because this macro calls return, its use is restricted to implementations of functions that
return a bit value, as in the above example.

task mycomp::run_phase(uvm_phase phase);
 my_trans trans;
 forever begin
 get_port.get(trans);
 if(do_callbacks(trans) == 0)
 uvm_report_info("DROPPED",{"trans dropped:
%s",trans.convert2string()});
 else
 // execute transaction
 end
endtask
function bit do_callbacks(my_trans);
 // Returns 0 if drop happens and 1 otherwise
 `uvm_do_callbacks_exit_on(mycomp, mycb, extobj, drop_trans(this,trans), 1)
endfunction

`uvm_do_obj_callbacks_exit_on(T,CB,OBJ,METHOD,VAL)

...
 // Exit if a callback returns a 1
 `uvm_do_callbacks_exit_on(mycomp, mycb, seqr, drop_trans(seqr,trans), 1)
...

UVM 1.2 Class Reference 480

21.5 TLM Implementation Port Declaration Macros

The TLM implementation declaration macros provide a way for components to provide
multiple implementation ports of the same implementation interface. When an
implementation port is defined using the built-in set of imps, there must be exactly one
implementation of the interface.

For example, if a component needs to provide a put implementation then it would have
an implementation port defined like:

There are times, however, when you need more than one implementation for an
interface. This set of declarations allow you to easily create a new implementation class
to allow for multiple implementations. Although the new implementation class is a
different class, it can be bound to the same types of exports and ports as the original
class. Extending the put example above, let’s say that mycomp needs to provide two put
implementation ports. In that case, you would do something like:

The important thing to note is that each `uvm_<interface>_imp_decl creates a new class
of type uvm_<interface>_imp<suffix>, where suffix is the input argument to the macro.
For this reason, you will typically want to put these macros in a separate package to
avoid collisions and to allow sharing of the definitions.

Summary

TLM Implementation Port Declaration Macros

The TLM implementation declaration macros provide a way for components to
provide multiple implementation ports of the same implementation interface.

MACROs

`uvm_blocking_put_imp_decl
`uvm_nonblocking_put_imp_decl
`uvm_put_imp_decl
`uvm_blocking_get_imp_decl

class mycomp extends uvm_component;
 uvm_put_imp#(data_type, mycomp) put_imp;
 ...
 virtual task put (data_type t);
 ...
 endtask
endclass

//Define two new put interfaces which are compatible with uvm_put_ports
//and uvm_put_exports.

`uvm_put_imp_decl(_1)
`uvm_put_imp_decl(_2)

class my_put_imp#(type T=int) extends uvm_component;
 uvm_put_imp_1#(T,my_put_imp#(T)) put_imp1;
 uvm_put_imp_2#(T,my_put_imp#(T)) put_imp2;
 ...
 function void put_1 (input T t);
 //puts coming into put_imp1
 ...
 endfunction
 function void put_2(input T t);
 //puts coming into put_imp2
 ...
 endfunction
endclass

UVM 1.2 Class Reference 481

`uvm_nonblocking_get_imp_decl
`uvm_get_imp_decl
`uvm_blocking_peek_imp_decl
`uvm_nonblocking_peek_imp_decl
`uvm_peek_imp_decl
`uvm_blocking_get_peek_imp_decl
`uvm_nonblocking_get_peek_imp_decl
`uvm_get_peek_imp_decl
`uvm_blocking_master_imp_decl
`uvm_nonblocking_master_imp_decl
`uvm_master_imp_decl
`uvm_blocking_slave_imp_decl
`uvm_nonblocking_slave_imp_decl
`uvm_slave_imp_decl
`uvm_blocking_transport_imp_decl
`uvm_nonblocking_transport_imp_decl
`uvm_transport_imp_decl
`uvm_analysis_imp_decl

MACROs

`uvm_blocking_put_imp_decl

Define the class uvm_blocking_put_impSFX for providing blocking put implementations.
SFX is the suffix for the new class type.

`uvm_nonblocking_put_imp_decl

Define the class uvm_nonblocking_put_impSFX for providing non-blocking put
implementations. SFX is the suffix for the new class type.

`uvm_put_imp_decl

Define the class uvm_put_impSFX for providing both blocking and non-blocking put
implementations. SFX is the suffix for the new class type.

`uvm_blocking_get_imp_decl

`uvm_blocking_put_imp_decl(SFX)

`uvm_nonblocking_put_imp_decl(SFX)

`uvm_put_imp_decl(SFX)

UVM 1.2 Class Reference 482

Define the class uvm_blocking_get_impSFX for providing blocking get implementations.
SFX is the suffix for the new class type.

`uvm_nonblocking_get_imp_decl

Define the class uvm_nonblocking_get_impSFX for providing non-blocking get
implementations. SFX is the suffix for the new class type.

`uvm_get_imp_decl

Define the class uvm_get_impSFX for providing both blocking and non-blocking get
implementations. SFX is the suffix for the new class type.

`uvm_blocking_peek_imp_decl

Define the class uvm_blocking_peek_impSFX for providing blocking peek
implementations. SFX is the suffix for the new class type.

`uvm_nonblocking_peek_imp_decl

Define the class uvm_nonblocking_peek_impSFX for providing non-blocking peek
implementations. SFX is the suffix for the new class type.

`uvm_peek_imp_decl

`uvm_blocking_get_imp_decl(SFX)

`uvm_nonblocking_get_imp_decl(SFX)

`uvm_get_imp_decl(SFX)

`uvm_blocking_peek_imp_decl(SFX)

`uvm_nonblocking_peek_imp_decl(SFX)

UVM 1.2 Class Reference 483

Define the class uvm_peek_impSFX for providing both blocking and non-blocking peek
implementations. SFX is the suffix for the new class type.

`uvm_blocking_get_peek_imp_decl

Define the class uvm_blocking_get_peek_impSFX for providing the blocking get_peek
implementation.

`uvm_nonblocking_get_peek_imp_decl

Define the class uvm_nonblocking_get_peek_impSFX for providing non-blocking get_peek
implementation.

`uvm_get_peek_imp_decl

Define the class uvm_get_peek_impSFX for providing both blocking and non-blocking
get_peek implementations. SFX is the suffix for the new class type.

`uvm_blocking_master_imp_decl

Define the class uvm_blocking_master_impSFX for providing the blocking master
implementation.

`uvm_nonblocking_master_imp_decl

`uvm_peek_imp_decl(SFX)

`uvm_blocking_get_peek_imp_decl(SFX)

`uvm_nonblocking_get_peek_imp_decl(SFX)

`uvm_get_peek_imp_decl(SFX)

`uvm_blocking_master_imp_decl(SFX)

`uvm_nonblocking_master_imp_decl(SFX)

UVM 1.2 Class Reference 484

Define the class uvm_nonblocking_master_impSFX for providing the non-blocking master
implementation.

`uvm_master_imp_decl

Define the class uvm_master_impSFX for providing both blocking and non-blocking
master implementations. SFX is the suffix for the new class type.

`uvm_blocking_slave_imp_decl

Define the class uvm_blocking_slave_impSFX for providing the blocking slave
implementation.

`uvm_nonblocking_slave_imp_decl

Define the class uvm_nonblocking_slave_impSFX for providing the non-blocking slave
implementation.

`uvm_slave_imp_decl

Define the class uvm_slave_impSFX for providing both blocking and non-blocking slave
implementations. SFX is the suffix for the new class type.

`uvm_blocking_transport_imp_decl

`uvm_master_imp_decl(SFX)

`uvm_blocking_slave_imp_decl(SFX)

`uvm_nonblocking_slave_imp_decl(SFX)

`uvm_slave_imp_decl(SFX)

`uvm_blocking_transport_imp_decl(SFX)

UVM 1.2 Class Reference 485

Define the class uvm_blocking_transport_impSFX for providing the blocking transport
implementation.

`uvm_nonblocking_transport_imp_decl

Define the class uvm_nonblocking_transport_impSFX for providing the non-blocking
transport implementation.

`uvm_transport_imp_decl

Define the class uvm_transport_impSFX for providing both blocking and non-blocking
transport implementations. SFX is the suffix for the new class type.

`uvm_analysis_imp_decl

Define the class uvm_analysis_impSFX for providing an analysis implementation. SFX is
the suffix for the new class type. The analysis implementation is the write function. The
`uvm_analysis_imp_decl allows for a scoreboard (or other analysis component) to
support input from many places. For example:

`uvm_nonblocking_transport_imp_decl(SFX)

`uvm_transport_imp_decl(SFX)

`uvm_analysis_imp_decl(SFX)

`uvm_analysis_imp_decl(_ingress)
`uvm_analysis_imp_decl(_egress)

class myscoreboard extends uvm_component;
 uvm_analysis_imp_ingress#(mydata, myscoreboard) ingress;
 uvm_analysis_imp_egress#(mydata, myscoreboard) egress;
 mydata ingress_list[$];
 ...

 function new(string name, uvm_component parent);
 super.new(name,parent);
 ingress = new("ingress", this);
 egress = new("egress", this);
 endfunction

 function void write_ingress(mydata t);
 ingress_list.push_back(t);
 endfunction

 function void write_egress(mydata t);
 find_match_in_ingress_list(t);
 endfunction

 function void find_match_in_ingress_list(mydata t);
 //implement scoreboarding for this particular dut
 ...
 endfunction
endclass

UVM 1.2 Class Reference 486

21.6 Register Defines

Summary

Register Defines

MACrOs

`UVM_REG_ADDR_WIDTH Maximum address width in bits
`UVM_REG_DATA_WIDTH Maximum data width in bits
`UVM_REG_BYTENABLE_WIDTH Maximum number of byte enable bits
`UVM_REG_CVR_WIDTH Maximum number of bits in a uvm_reg_cvr_t

coverage model set.

MACrOs

`UVM_REG_ADDR_WIDTH

Maximum address width in bits

Default value is 64. Used to define the uvm_reg_addr_t type.

`UVM_REG_DATA_WIDTH

Maximum data width in bits

Default value is 64. Used to define the uvm_reg_data_t type.

`UVM_REG_BYTENABLE_WIDTH

Maximum number of byte enable bits

Default value is one per byte in `UVM_REG_DATA_WIDTH. Used to define the
uvm_reg_byte_en_t type.

`UVM_REG_CVR_WIDTH

Maximum number of bits in a uvm_reg_cvr_t coverage model set.

Default value is 32.

UVM 1.2 Class Reference 487

21.7 UVM Version Defines

Summary

UVM Version Defines

UVM REvIsION VALuEs These macros provide the current values for the
MAJOR, MINOR, and optionally the FIX revision.

UVM_MAJOR_REV Defines the MAJOR revision number.
UVM_MINOR_REV Defines the MINOR revision number.
UVM_FIX_REV (Optionally) Defines the FIX revision letter.
UVM_NAME The name used by the library when displaying

the name of the library.
UVM_VERSION_STRING Provides a string-ized version of the UVM

Library version number.
CONdITIONAL COmPILATION These macros provide the ability to conditionally

compile based on the revision of the library which
is being used.

UVM_MAJOR_REV_1 Indicates that the MAJOR version of this release
is ‘1’.

UVM_MINOR_REV_2 Indicates that the MINOR version of this release
is ‘2’.

UVM_VERSION_1_2 Indicates that the version of this release is
‘1.2’.

UVM VErsION LAddEr

UVM_POST_VERSION_1_1 Indicates that this version of the UVM came
after the 1.1 versions, including the various 1.1
fix revisions.

UVM REvIsION VALuEs

These macros provide the current values for the MAJOR, MINOR, and optionally the FIX
revision.

Example with UVM version 1.2

UVM_MAJOR_REV ’1’
UVM_MINOR_REV ’2’
UVM_FIX_REV ’undefined’

Example with UVM version 1.1a

UVM_MAJOR_REV ’1’
UVM_MINOR_REV ’1’
UVM_FIX_REV ’a’

UVM_MAJOR_REV

Defines the MAJOR revision number.

For UVM version 1.2, the MAJOR revision number is ‘1’

UVM 1.2 Class Reference 488

UVM_MINOR_REV

Defines the MINOR revision number.

For UVM version 1.2, the MINOR revision number is ‘2’

UVM_FIX_REV

(Optionally) Defines the FIX revision letter.

For the first “X.Y” release of the UVM, there is no FIX revision letter. In these cases, the
UVM_FIX_REV is left undefined.

For any subsequent “X.Y” fix releases, the UVM_FIX_REV value is set to the appropriate
fix release letter.

Example

1.1 First release, UVM_FIX_REV is undefined
1.1a Fix release, UVM_FIX_REV is ‘a’

UVM_NAME

The name used by the library when displaying the name of the library.

UVM_VERSION_STRING

Provides a string-ized version of the UVM Library version number.

When there is a FIX_REV, the string is “<name>-<major>.<minor><fix>” (such as
“UVM-1.1d”). When there is NO FIX_REV, the string is “<name>-<major>.<minor>”
(such as “UVM-1.2”).

CONdITIONAL COmPILATION

These macros provide the ability to conditionally compile based on the revision of the
library which is being used.

`define UVM_MAJOR_REV 1

`define UVM_MINOR_REV 2

`define UVM_NAME UVM

UVM 1.2 Class Reference 489

These macros are required for conditional compilation, as SystemVerilog does not support
conditionals with `ifdefs.

For example

UVM_MAJOR_REV_1

Indicates that the MAJOR version of this release is ‘1’.

UVM_MINOR_REV_2

Indicates that the MINOR version of this release is ‘2’.

UVM_VERSION_1_2

Indicates that the version of this release is ‘1.2’.

UVM VErsION LAddEr

UVM_POST_VERSION_1_1

Indicates that this version of the UVM came after the 1.1 versions, including the various
1.1 fix revisions.

The first UVM version wherein this macro is defined is 1.2, and the macro will continue to
be defined for all future revisions of the UVM library.

 // Illegal:
`if (UVM_MAJOR_REV == 1)

// Legal:
`ifdef UVM_MAJOR_REV_1

`define UVM_MAJOR_REV_1

`define UVM_MINOR_REV_2

`define UVM_VERSION_1_2

`define UVM_POST_VERSION_1_1

UVM 1.2 Class Reference 490

22. Policy Classes

Each of UVM’s policy classes perform a specific task for uvm_object-based objects:
printing, comparing, recording, packing, and unpacking. They are implemented
separately from uvm_object so that users can plug in different ways to print, compare,
etc. without modifying the object class being operated on. The user can simply apply a
different printer or compare “policy” to change how an object is printed or compared.

Each policy class includes several user-configurable parameters that control the
operation. Users may also customize operations by deriving new policy subtypes from
these base types. For example, the UVM provides four different uvm_printer-based
policy classes, each of which print objects in a different format.

uvm_printer - performs deep printing of uvm_object-based objects. The UVM
provides several subtypes to uvm_printer that print objects in a specific format:
uvm_table_printer, uvm_tree_printer, and uvm_line_printer. Each such printer
has many configuration options that govern what and how object members are
printed.
uvm_comparer - performs deep comparison of uvm_object-based objects. Users
may configure what is compared and how miscompares are reported.
uvm_recorder - performs the task of recording uvm_object-based objects to a
transaction data base. The implementation is vendor-specific.
uvm_packer - used to pack (serialize) and unpack uvm_object-based properties
into bit, byte, or int arrays and back again.

Summary

Policy Classes

Each of UVM’s policy classes perform a specific task for uvm_object-based
objects: printing, comparing, recording, packing, and unpacking.

UVM 1.2 Class Reference 491

22.1 uvm_printer

The uvm_printer class provides an interface for printing uvm_objects in various formats.
Subtypes of uvm_printer implement different print formats, or policies.

A user-defined printer format can be created, or one of the following four built-in printers
can be used:

uvm_printer - provides base printer functionality; must be overridden.
uvm_table_printer - prints the object in a tabular form.
uvm_tree_printer - prints the object in a tree form.
uvm_line_printer - prints the information on a single line, but uses the same
object separators as the tree printer.

Printers have knobs that you use to control what and how information is printed. These
knobs are contained in a separate knob class:

uvm_printer_knobs - common printer settings

For convenience, global instances of each printer type are available for direct reference in
your testbenches.

uvm_default_tree_printer
uvm_default_line_printer
uvm_default_table_printer
uvm_default_printer (set to default_table_printer by default)

When uvm_object::print and uvm_object::sprint are called without specifying a printer,
the uvm_default_printer is used.

Contents

uvm_printer The uvm_printer class provides an interface for printing
uvm_objects in various formats.

uvm_table_printer The table printer prints output in a tabular format.
uvm_tree_printer By overriding various methods of the uvm_printer super

class, the tree printer prints output in a tree format.
uvm_line_printer The line printer prints output in a line format.
uvm_printer_knobs The uvm_printer_knobs class defines the printer settings

available to all printer subtypes.

knobs

The knob object provides access to the variety of knobs associated with a specific printer
instance.

METHODS FOR PRINTER USAGE

print_field

uvm_printer_knobs knobs = new

UVM 1.2 Class Reference 492

Prints an integral field (up to 4096 bits).

name The name of the field.
value The value of the field.
size The number of bits of the field (maximum is 4096).
radix The radix to use for printing. The printer knob for radix is

used if no radix is specified.
scope_separator is used to find the leaf name since many printers only print

the leaf name of a field. Typical values for the separator
are . (dot) or [(open bracket).

print_field_int

Prints an integral field (up to 64 bits).

name The name of the field.
value The value of the field.
size The number of bits of the field (maximum is 64).
radix The radix to use for printing. The printer knob for radix is

used if no radix is specified.
scope_separator is used to find the leaf name since many printers only print

the leaf name of a field. Typical values for the separator
are . (dot) or [(open bracket).

print_object

Prints an object. Whether the object is recursed depends on a variety of knobs, such as
the depth knob; if the current depth is at or below the depth setting, then the object is
not recursed.

By default, the children of uvm_components are printed. To turn this behavior off, you
must set the uvm_component::print_enabled bit to 0 for the specific children you do not
want automatically printed.

virtual function void print_field (
 string name,
 uvm_bitstream_t value,
 int size,
 uvm_radix_enum radix = UVM_NORADIX,
 byte scope_separator = ".",
 string type_name = ""
)

virtual function void print_field_int (
 string name,
 uvm_integral_t value,
 int size,
 uvm_radix_enum radix = UVM_NORADIX,
 byte scope_separator = ".",
 string type_name = ""
)

virtual function void print_object (
 string name,
 uvm_object value,
 byte scope_separator = "."
)

UVM 1.2 Class Reference 493

print_string

Prints a string field.

print_time

Prints a time value. name is the name of the field, and value is the value to print.

The print is subject to the $timeformat system task for formatting time values.

print_real

Prints a real field.

print_generic

Prints a field having the given name, type_name, size, and value.

METHODS FOR PRINTER SUBTYPING

emit

Emits a string representing the contents of an object in a format defined by an extension
of this object.

virtual function void print_string (
 string name,
 string value,
 byte scope_separator = "."
)

virtual function void print_time (
 string name,
 time value,
 byte scope_separator = "."
)

virtual function void print_real (
 string name,
 real value,
 byte scope_separator = "."
)

virtual function void print_generic (
 string name,
 string type_name,
 int size,
 string value,
 byte scope_separator = "."
)

virtual function string emit ()

UVM 1.2 Class Reference 494

format_row

Hook for producing custom output of a single field (row).

format_row

Hook to override base header with a custom header.

format_header

Hook to override base footer with a custom footer.

adjust_name

Prints a field’s name, or id, which is the full instance name.

The intent of the separator is to mark where the leaf name starts if the printer if
configured to print only the leaf name of the identifier.

print_array_header

Prints the header of an array. This function is called before each individual element is
printed. print_array_footer is called to mark the completion of array printing.

print_array_range

Prints a range using ellipses for values. This method is used when honoring the array
knobs for partial printing of large arrays, uvm_printer_knobs::begin_elements and
uvm_printer_knobs::end_elements.

This function should be called after begin_elements have been printed and before
end_elements have been printed.

virtual function string format_row (
 uvm_printer_row_info row
)

virtual protected function string adjust_name (
 string id,
 byte scope_separator = "."
)

virtual function void print_array_header(
 string name,
 int size,
 string arraytype = "array",
 byte scope_separator = "."
)

virtual function void print_array_range (
 int min,
 int max
)

UVM 1.2 Class Reference 495

print_array_footer

Prints the header of a footer. This function marks the end of an array print. Generally,
there is no output associated with the array footer, but this method let’s the printer
know that the array printing is complete.

uvm_table_printer

The table printer prints output in a tabular format.

The following shows sample output from the table printer.

Summary

uvm_table_printer

The table printer prints output in a tabular format.

CLASS HIERARcHY

uvm_printer

uvm_table_printer

CLASS DEcLARATION

VARIABLES

new Creates a new instance of uvm_table_printer.
METHODS

emit Formats the collected information from prior calls to print_* into
table format.

VARIABLES

new

virtual function void print_array_footer (
 int size = 0
)

Name Type Size Value

c1 container - @1013
d1 mydata - @1022
v1 integral 32 'hcb8f1c97
e1 enum 32 THREE
str string 2 hi
value integral 12 'h2d

class uvm_table_printer extends uvm_printer

function new()

UVM 1.2 Class Reference 496

Creates a new instance of uvm_table_printer.

METHODS

emit

Formats the collected information from prior calls to print_* into table format.

uvm_tree_printer

By overriding various methods of the uvm_printer super class, the tree printer prints
output in a tree format.

The following shows sample output from the tree printer.

Summary

uvm_tree_printer

By overriding various methods of the uvm_printer super class, the tree printer
prints output in a tree format.

CLASS HIERARcHY

uvm_printer

uvm_tree_printer

CLASS DEcLARATION

VARIABLES

new Creates a new instance of uvm_tree_printer.
METHODS

emit Formats the collected information from prior calls to print_* into
hierarchical tree format.

VARIABLES

virtual function string emit()

c1: (container@1013) {
 d1: (mydata@1022) {
 v1: 'hcb8f1c97
 e1: THREE
 str: hi
 }
 value: 'h2d
}

class uvm_tree_printer extends uvm_printer

UVM 1.2 Class Reference 497

new

Creates a new instance of uvm_tree_printer.

METHODS

emit

Formats the collected information from prior calls to print_* into hierarchical tree format.

uvm_line_printer

The line printer prints output in a line format.

The following shows sample output from the line printer.

Summary

uvm_line_printer

The line printer prints output in a line format.

CLASS HIERARcHY

uvm_printer

uvm_tree_printer

uvm_line_printer

CLASS DEcLARATION

VARIABLES

new Creates a new instance of uvm_line_printer.

VARIABLES

function new()

virtual function string emit()

c1: (container@1013) { d1: (mydata@1022) { v1: 'hcb8f1c97 e1: THREE str: hi
} value: 'h2d }

class uvm_line_printer extends uvm_tree_printer

UVM 1.2 Class Reference 498

new

Creates a new instance of uvm_line_printer. It differs from the uvm_tree_printer only in
that the output contains no line-feeds and indentation.

uvm_printer_knobs

The uvm_printer_knobs class defines the printer settings available to all printer subtypes.

Summary

uvm_printer_knobs

The uvm_printer_knobs class defines the printer settings available to all printer
subtypes.

CLASS DEcLARATION

VARIABLES

header Indicates whether the uvm_printer::format_header
function should be called when printing an object.

footer Indicates whether the uvm_printer::format_footer
function should be called when printing an object.

full_name Indicates whether uvm_printer::adjust_name should print
the full name of an identifier or just the leaf name.

identifier Indicates whether uvm_printer::adjust_name should print
the identifier.

type_name Controls whether to print a field’s type name.
size Controls whether to print a field’s size.
depth Indicates how deep to recurse when printing objects.
reference Controls whether to print a unique reference ID for object

handles.
begin_elements Defines the number of elements at the head of a list to

print.
end_elements This defines the number of elements at the end of a list

that should be printed.
prefix Specifies the string prepended to each output line
indent This knob specifies the number of spaces to use for level

indentation.
show_root This setting indicates whether or not the initial object that

is printed (when current depth is 0) prints the full path
name.

mcd This is a file descriptor, or multi-channel descriptor, that
specifies where the print output should be directed.

separator For tree printers only, determines the opening and closing
separators used for nested objects.

show_radix Indicates whether the radix string (‘h, and so on) should
be prepended to an integral value when one is printed.

default_radix This knob sets the default radix to use for integral values
when no radix enum is explicitly supplied to the
uvm_printer::print_field or uvm_printer::print_field_int
methods.

dec_radix This string should be prepended to the value of an integral
type when a radix of UVM_DEC is used for the radix of the
integral object.

bin_radix This string should be prepended to the value of an integral
type when a radix of UVM_BIN is used for the radix of the

function new()

class uvm_printer_knobs

UVM 1.2 Class Reference 499

integral object.
oct_radix This string should be prepended to the value of an integral

type when a radix of UVM_OCT is used for the radix of the
integral object.

unsigned_radix This is the string which should be prepended to the value
of an integral type when a radix of UVM_UNSIGNED is
used for the radix of the integral object.

hex_radix This string should be prepended to the value of an integral
type when a radix of UVM_HEX is used for the radix of the
integral object.

METHODS

get_radix_str Converts the radix from an enumerated to a printable
radix according to the radix printing knobs (bin_radix, and
so on).

VARIABLES

header

Indicates whether the uvm_printer::format_header function should be called when
printing an object.

footer

Indicates whether the uvm_printer::format_footer function should be called when
printing an object.

full_name

Indicates whether uvm_printer::adjust_name should print the full name of an identifier or
just the leaf name.

identifier

Indicates whether uvm_printer::adjust_name should print the identifier. This is useful in
cases where you just want the values of an object, but no identifiers.

type_name

Controls whether to print a field’s type name.

bit header = 1

bit footer = 1

bit full_name = 0

bit identifier = 1

bit type_name = 1

UVM 1.2 Class Reference 500

size

Controls whether to print a field’s size.

depth

Indicates how deep to recurse when printing objects. A depth of -1 means to print
everything.

reference

Controls whether to print a unique reference ID for object handles. The behavior of this
knob is simulator-dependent.

begin_elements

Defines the number of elements at the head of a list to print. Use -1 for no max.

end_elements

This defines the number of elements at the end of a list that should be printed.

prefix

Specifies the string prepended to each output line

indent

This knob specifies the number of spaces to use for level indentation. The default level
indentation is two spaces.

show_root

bit size = 1

int depth = -1

bit reference = 1

int begin_elements = 5

int end_elements = 5

string prefix = ""

int indent = 2

UVM 1.2 Class Reference 501

This setting indicates whether or not the initial object that is printed (when current depth
is 0) prints the full path name. By default, the first object is treated like all other
objects and only the leaf name is printed.

mcd

This is a file descriptor, or multi-channel descriptor, that specifies where the print output
should be directed.

By default, the output goes to the standard output of the simulator.

separator

For tree printers only, determines the opening and closing separators used for nested
objects.

show_radix

Indicates whether the radix string (‘h, and so on) should be prepended to an integral
value when one is printed.

default_radix

This knob sets the default radix to use for integral values when no radix enum is
explicitly supplied to the uvm_printer::print_field or uvm_printer::print_field_int
methods.

dec_radix

This string should be prepended to the value of an integral type when a radix of
UVM_DEC is used for the radix of the integral object.

When a negative number is printed, the radix is not printed since only signed decimal
values can print as negative.

bin_radix

bit show_root = 0

int mcd = UVM_STDOUT

string separator = "{}"

bit show_radix = 1

uvm_radix_enum default_radix = UVM_HEX

string dec_radix = "'d"

string bin_radix = "'b"

UVM 1.2 Class Reference 502

This string should be prepended to the value of an integral type when a radix of
UVM_BIN is used for the radix of the integral object.

oct_radix

This string should be prepended to the value of an integral type when a radix of
UVM_OCT is used for the radix of the integral object.

unsigned_radix

This is the string which should be prepended to the value of an integral type when a
radix of UVM_UNSIGNED is used for the radix of the integral object.

hex_radix

This string should be prepended to the value of an integral type when a radix of
UVM_HEX is used for the radix of the integral object.

METHODS

get_radix_str

Converts the radix from an enumerated to a printable radix according to the radix
printing knobs (bin_radix, and so on).

string oct_radix = "'o"

string unsigned_radix = "'d"

string hex_radix = "'h"

function string get_radix_str(
 uvm_radix_enum radix
)

UVM 1.2 Class Reference 503

22.2 uvm_comparer

The uvm_comparer class provides a policy object for doing comparisons. The policies
determine how miscompares are treated and counted. Results of a comparison are
stored in the comparer object. The uvm_object::compare and uvm_object::do_compare
methods are passed a uvm_comparer policy object.

Summary

uvm_comparer

The uvm_comparer class provides a policy object for doing comparisons.

CLAss DEcLARATION

VARIABLEs

policy Determines whether comparison is UVM_DEEP,
UVM_REFERENCE, or UVM_SHALLOW.

show_max Sets the maximum number of messages to send to the
printer for miscompares of an object.

verbosity Sets the verbosity for printed messages.
sev Sets the severity for printed messages.
miscompares This string is reset to an empty string when a

comparison is started.
physical This bit provides a filtering mechanism for fields.
abstract This bit provides a filtering mechanism for fields.
check_type This bit determines whether the type, given by

uvm_object::get_type_name, is used to verify that the
types of two objects are the same.

result This bit stores the number of miscompares for a given
compare operation.

METHOds

compare_field Compares two integral values.
compare_field_int This method is the same as compare_field except that

the arguments are small integers, less than or equal to
64 bits.

compare_field_real This method is the same as compare_field except that
the arguments are real numbers.

compare_object Compares two class objects using the policy knob to
determine whether the comparison should be deep,
shallow, or reference.

compare_string Compares two string variables.
print_msg Causes the error count to be incremented and the

message, msg, to be appended to the miscompares
string (a newline is used to separate messages).

VARIABLEs

policy

Determines whether comparison is UVM_DEEP, UVM_REFERENCE, or UVM_SHALLOW.

class uvm_comparer

uvm_recursion_policy_enum policy = UVM_DEFAULT_POLICY

UVM 1.2 Class Reference 504

show_max

Sets the maximum number of messages to send to the printer for miscompares of an
object.

verbosity

Sets the verbosity for printed messages.

The verbosity setting is used by the messaging mechanism to determine whether
messages should be suppressed or shown.

sev

Sets the severity for printed messages.

The severity setting is used by the messaging mechanism for printing and filtering
messages.

miscompares

This string is reset to an empty string when a comparison is started.

The string holds the last set of miscompares that occurred during a comparison.

physical

This bit provides a filtering mechanism for fields.

The abstract and physical settings allow an object to distinguish between two different
classes of fields.

It is up to you, in the uvm_object::do_compare method, to test the setting of this field if
you want to use the physical trait as a filter.

abstract

This bit provides a filtering mechanism for fields.

The abstract and physical settings allow an object to distinguish between two different

int unsigned show_max = 1

int unsigned verbosity = UVM_LOW

uvm_severity sev = UVM_INFO

string miscompares = ""

bit physical = 1

bit abstract = 1

UVM 1.2 Class Reference 505

classes of fields.

It is up to you, in the uvm_object::do_compare method, to test the setting of this field if
you want to use the abstract trait as a filter.

check_type

This bit determines whether the type, given by uvm_object::get_type_name, is used to
verify that the types of two objects are the same.

This bit is used by the compare_object method. In some cases it is useful to set this to
0 when the two operands are related by inheritance but are different types.

result

This bit stores the number of miscompares for a given compare operation. You can use
the result to determine the number of miscompares that were found.

METHOds

compare_field

Compares two integral values.

The name input is used for purposes of storing and printing a miscompare.

The left-hand-side lhs and right-hand-side rhs objects are the two objects used for
comparison.

The size variable indicates the number of bits to compare; size must be less than or
equal to 4096.

The radix is used for reporting purposes, the default radix is hex.

compare_field_int

bit check_type = 1

int unsigned result = 0

virtual function bit compare_field (
 string name,
 uvm_bitstream_t lhs,
 uvm_bitstream_t rhs,
 int size,
 uvm_radix_enum radix = UVM_NORADIX
)

virtual function bit compare_field_int (
 string name,
 uvm_integral_t lhs,
 uvm_integral_t rhs,
 int size,
 uvm_radix_enum radix = UVM_NORADIX
)

UVM 1.2 Class Reference 506

This method is the same as compare_field except that the arguments are small integers,
less than or equal to 64 bits. It is automatically called by compare_field if the operand
size is less than or equal to 64.

compare_field_real

This method is the same as compare_field except that the arguments are real numbers.

compare_object

Compares two class objects using the policy knob to determine whether the comparison
should be deep, shallow, or reference.

The name input is used for purposes of storing and printing a miscompare.

The lhs and rhs objects are the two objects used for comparison.

The check_type determines whether or not to verify the object types match (the return
from lhs.get_type_name() matches rhs.get_type_name()).

compare_string

Compares two string variables.

The name input is used for purposes of storing and printing a miscompare.

The lhs and rhs objects are the two objects used for comparison.

print_msg

Causes the error count to be incremented and the message, msg, to be appended to the
miscompares string (a newline is used to separate messages).

If the message count is less than the show_max setting, then the message is printed to
standard-out using the current verbosity and severity settings. See the verbosity and
sev variables for more information.

virtual function bit compare_field_real (
 string name,
 real lhs,
 real rhs
)

virtual function bit compare_object (
 string name,
 uvm_object lhs,
 uvm_object rhs
)

virtual function bit compare_string (
 string name,
 string lhs,
 string rhs
)

function void print_msg (
 string msg
)

UVM 1.2 Class Reference 507

22.3 UVM Recorders

The uvm_recorder class serves two purposes
Firstly, it is an abstract representation of a record within a uvm_tr_stream.
Secondly, it is a policy object for recording fields into that record within the
stream.

Contents

UVM Recorders

uvm_recorder Abstract class which defines the recorder API.
uvm_text_recorder The uvm_text_recorder is the default recorder

implementation for the uvm_text_tr_database.

uvm_recorder

Abstract class which defines the recorder API.

Summary

uvm_recorder

Abstract class which defines the recorder API.

CLAss HIErArchY

uvm_void

uvm_object

uvm_recorder

CLAss DEcLArAtION

default_radix This is the default radix setting if record_field is
called without a radix.

physical This bit provides a filtering mechanism for
fields.

abstract This bit provides a filtering mechanism for
fields.

identifier This bit is used to specify whether or not an
object’s reference should be recorded when the
object is recorded.

recursion_policy Sets the recursion policy for recording objects.
CONFIGurAtION API

get_stream Returns a reference to the stream which
created this record.

TrANsActION REcOrdEr API Once a recorder has been opened via
uvm_tr_stream::open_recorder, the user can
close the recorder.

close Closes this recorder.
free Frees this recorder

virtual class uvm_recorder extends uvm_object

UVM 1.2 Class Reference 508

is_open Returns true if this uvm_recorder was opened
on its stream, but has not yet been closed.

get_open_time Returns the open_time
is_closed Returns true if this uvm_recorder was closed

on its stream, but has not yet been freed.
get_close_time Returns the close_time

HANdLEs

get_handle Returns a unique ID for this recorder.
get_recorder_from_handle Static accessor, returns a recorder reference

for a given unique id.
AttrIButE REcOrdING

record_field Records an integral field (less than or equal to
4096 bits).

record_field_int Records an integral field (less than or equal to
64 bits).

record_field_real Records a real field.
record_object Records an object field.
record_string Records a string field.
record_time Records a time field.
record_generic Records a name/value pair, where value has

been converted to a string.
use_record_attribute Indicates that this recorder does (or does

not) support usage of the
`uvm_record_attribute macro.

get_record_attribute_handle Provides a tool-specific handle which is
compatible with `uvm_record_attribute.

ImpLEmENtAtION AGNOstIc API
do_open Callback triggered via

uvm_tr_stream::open_recorder.
do_close Callback triggered via close.
do_free Callback triggered via free.
do_record_field Records an integral field (less than or equal to

4096 bits).
do_record_field_int Records an integral field (less than or equal to

64 bits).
do_record_field_real Records a real field.
do_record_object Records an object field.
do_record_string Records a string field.
do_record_time Records a time field.
do_record_generic Records a name/value pair, where value has

been converted to a string.

default_radix

This is the default radix setting if record_field is called without a radix.

physical

This bit provides a filtering mechanism for fields.

The abstract and physical settings allow an object to distinguish between two different
classes of fields.

It is up to you, in the uvm_object::do_record method, to test the setting of this field if
you want to use the physical trait as a filter.

uvm_radix_enum default_radix = UVM_HEX

bit physical = 1

UVM 1.2 Class Reference 509

abstract

This bit provides a filtering mechanism for fields.

The abstract and physical settings allow an object to distinguish between two different
classes of fields.

It is up to you, in the uvm_object::do_record method, to test the setting of this field if
you want to use the abstract trait as a filter.

identifier

This bit is used to specify whether or not an object’s reference should be recorded when
the object is recorded.

recursion_policy

Sets the recursion policy for recording objects.

The default policy is deep (which means to recurse an object).

CONFIGurAtION API

get_stream

Returns a reference to the stream which created this record.

A warning will be asserted if get_stream is called prior to the record being initialized via
do_open.

TrANsActION REcOrdEr API
Once a recorder has been opened via uvm_tr_stream::open_recorder, the user can close
the recorder.

Due to the fact that many database implementations will require crossing a language
boundary, an additional step of freeing the recorder is required.

A link can be established within the database any time between open and free, however
it is illegal to establish a link after freeing the recorder.

bit abstract = 1

bit identifier = 1

uvm_recursion_policy_enum policy = UVM_DEFAULT_POLICY

function uvm_tr_stream get_stream()

UVM 1.2 Class Reference 510

close

Closes this recorder.

Closing a recorder marks the end of the transaction in the stream.

Parameters

close_time Optional time to record as the closing time of this transaction.

This method will trigger a do_close call.

free

Frees this recorder

Freeing a recorder indicates that the stream and database can release any references to
the recorder.

Parameters

close_time Optional time to record as the closing time of this transaction.

If a recorder has not yet been closed (via a call to close), then close will automatically be
called, and passed the close_time. If the recorder has already been closed, then the
close_time will be ignored.

This method will trigger a do_free call.

is_open

Returns true if this uvm_recorder was opened on its stream, but has not yet been closed.

get_open_time

Returns the open_time

is_closed

Returns true if this uvm_recorder was closed on its stream, but has not yet been freed.

function void close(
 time close_time = 0
)

function void free(
 time close_time = 0
)

function bit is_open()

function time get_open_time()

function bit is_closed()

UVM 1.2 Class Reference 511

get_close_time

Returns the close_time

HANdLEs

get_handle

Returns a unique ID for this recorder.

A value of 0 indicates that the recorder has been freed, and no longer has a valid ID.

get_recorder_from_handle

Static accessor, returns a recorder reference for a given unique id.

If no recorder exists with the given id, or if the recorder with that id has been freed,
then null is returned.

This method can be used to access the recorder associated with a call to
uvm_transaction::begin_tr or uvm_component::begin_tr.

AttrIButE REcOrdING

record_field

Records an integral field (less than or equal to 4096 bits).

Parameters

function time get_close_time()

function integer get_handle()

static function uvm_recorder get_recorder_from_handle(
 integer id
)

integer handle = tr.begin_tr();
uvm_recorder recorder = uvm_recorder::get_recorder_from_handle(handle);
if (recorder != null) begin
 recorder.record_string("begin_msg", "Started recording transaction!");
end

function void record_field(
 string name,
 uvm_bitstream_t value,
 int size,
 uvm_radix_enum radix = UVM_NORADIX
)

UVM 1.2 Class Reference 512

name Name of the field
value Value of the field to record.
size Number of bits of the field which apply (Usually obtained via $bits).
radix The uvm_radix_enum to use.

This method will trigger a do_record_field call.

record_field_int

Records an integral field (less than or equal to 64 bits).

This optimized version of record_field is useful for sizes up to 64 bits.

Parameters

name Name of the field
value Value of the field to record
size Number of bits of the wfield which apply (Usually obtained via $bits).
radix The uvm_radix_enum to use.

This method will trigger a do_record_field_int call.

record_field_real

Records a real field.

Parameters

name Name of the field
value Value of the field to record

This method will trigger a do_record_field_real call.

record_object

Records an object field.

Parameters

function void record_field_int(
 string name,
 uvm_integral_t value,
 int size,
 uvm_radix_enum radix = UVM_NORADIX
)

function void record_field_real(
 string name,
 real value
)

function void record_object(
 string name,
 uvm_object value
)

UVM 1.2 Class Reference 513

name Name of the field
value Object to record

The implementation must use the recursion_policy and identifier to determine exactly
what should be recorded.

record_string

Records a string field.

Parameters

name Name of the field
value Value of the field

record_time

Records a time field.

Parameters

name Name of the field
value Value of the field

record_generic

Records a name/value pair, where value has been converted to a string.

For example

Parameters

name Name of the field
value Value of the field

function void record_string(
 string name,
 string value
)

function void record_time(
 string name,
 time value
)

function void record_generic(
 string name,
 string value,
 string type_name = ""
)

recorder.record_generic("myvar","var_type", $sformatf("%0d",myvar), 32);

UVM 1.2 Class Reference 514

type_name optional Type name of the field

use_record_attribute

Indicates that this recorder does (or does not) support usage of the
`uvm_record_attribute macro.

The default return value is 0 (not supported), developers can optionally extend
uvm_recorder and set the value to 1 if they support the `uvm_record_attribute macro.

get_record_attribute_handle

Provides a tool-specific handle which is compatible with `uvm_record_attribute.

By default, this method will return the same value as get_handle, however tool vendors
can override this method to provide tool-specific handles which will be passed to the
`uvm_record_attribute macro.

ImpLEmENtAtION AGNOstIc API

do_open

Callback triggered via uvm_tr_stream::open_recorder.

The do_open callback can be used to initialize any internal state within the recorder, as
well as providing a location to record any initial information.

do_close

Callback triggered via close.

The do_close callback can be used to set internal state within the recorder, as well as
providing a location to record any closing information.

do_free

virtual function bit use_record_attribute()

virtual function integer get_record_attribute_handle()

protected virtual function void do_open(
 uvm_tr_stream stream,
 time open_time,
 string type_name
)

protected virtual function void do_close(
 time close_time
)

protected virtual function void do_free()

UVM 1.2 Class Reference 515

Callback triggered via free.

The do_free callback can be used to release the internal state within the recorder, as well
as providing a location to record any “freeing” information.

do_record_field

Records an integral field (less than or equal to 4096 bits).

Mandatory Backend implementation of record_field

do_record_field_int

Records an integral field (less than or equal to 64 bits).

Mandatory Backend implementation of record_field_int

do_record_field_real

Records a real field.

Mandatory Backend implementation of record_field_real

do_record_object

Records an object field.

Mandatory Backend implementation of record_object

do_record_string

pure virtual protected function void do_record_field(
 string name,
 uvm_bitstream_t value,
 int size,
 uvm_radix_enum radix
)

pure virtual protected function void do_record_field_int(
 string name,
 uvm_integral_t value,
 int size,
 uvm_radix_enum radix
)

pure virtual protected function void do_record_field_real(
 string name,
 real value
)

pure virtual protected function void do_record_object(
 string name,
 uvm_object value
)

pure virtual protected function void do_record_string(
 string name,

UVM 1.2 Class Reference 516

Records a string field.

Mandatory Backend implementation of record_string

do_record_time

Records a time field.

Mandatory Backend implementation of record_time

do_record_generic

Records a name/value pair, where value has been converted to a string.

Mandatory Backend implementation of record_generic

uvm_text_recorder

The uvm_text_recorder is the default recorder implementation for the
uvm_text_tr_database.

Summary

uvm_text_recorder

The uvm_text_recorder is the default recorder implementation for the
uvm_text_tr_database.

CLAss HIErArchY

uvm_void

uvm_object

uvm_recorder

uvm_text_recorder

CLAss DEcLArAtION

new Constructor
ImpLEmENtAtION

 string value
)

pure virtual protected function void do_record_time(
 string name,
 time value
)

pure virtual protected function void do_record_generic(
 string name,
 string value,
 string type_name
)

class uvm_text_recorder extends uvm_recorder

UVM 1.2 Class Reference 517

AGNOstIc API
do_open Callback triggered via

uvm_tr_stream::open_recorder.
do_close Callback triggered via uvm_recorder::close.
do_free Callback triggered via uvm_recorder::free.
do_record_field Records an integral field (less than or equal to 4096

bits).
do_record_field_int Records an integral field (less than or equal to 64

bits).
do_record_field_real Record a real field.
do_record_object Record an object field.
do_record_string Records a string field.
do_record_time Records a time field.
do_record_generic Records a name/value pair, where value has been

converted to a string.
ImpLEmENtAtION

SpEcIFIc API
write_attribute Outputs an integral attribute to the textual log
write_attribute_int Outputs an integral attribute to the textual log

new

Constructor

Parameters

name Instance name

ImpLEmENtAtION AGNOstIc API

do_open

Callback triggered via uvm_tr_stream::open_recorder.

Text-backend specific implementation.

do_close

Callback triggered via uvm_recorder::close.

Text-backend specific implementation.

function new(
 string name = "unnamed-uvm_text_recorder"
)

protected virtual function void do_open(
 uvm_tr_stream stream,
 time open_time,
 string type_name
)

protected virtual function void do_close(
 time close_time
)

UVM 1.2 Class Reference 518

do_free

Callback triggered via uvm_recorder::free.

Text-backend specific implementation.

do_record_field

Records an integral field (less than or equal to 4096 bits).

Text-backend specific implementation.

do_record_field_int

Records an integral field (less than or equal to 64 bits).

Text-backend specific implementation.

do_record_field_real

Record a real field.

Text-backened specific implementation.

do_record_object

Record an object field.

Text-backend specific implementation.

The method uses identifier to determine whether or not to record the object instance id,

protected virtual function void do_free()

protected virtual function void do_record_field(
 string name,
 uvm_bitstream_t value,
 int size,
 uvm_radix_enum radix
)

protected virtual function void do_record_field_int(
 string name,
 uvm_integral_t value,
 int size,
 uvm_radix_enum radix
)

protected virtual function void do_record_field_real(
 string name,
 real value
)

protected virtual function void do_record_object(
 string name,
 uvm_object value
)

UVM 1.2 Class Reference 519

and recursion_policy to determine whether or not to recurse into the object.

do_record_string

Records a string field.

Text-backend specific implementation.

do_record_time

Records a time field.

Text-backend specific implementation.

do_record_generic

Records a name/value pair, where value has been converted to a string.

Text-backend specific implementation.

ImpLEmENtAtION SpEcIFIc API

write_attribute

Outputs an integral attribute to the textual log

Parameters

nm Name of the attribute
value Value
radix Radix of the output

numbits number of valid bits

protected virtual function void do_record_string(
 string name,
 string value
)

protected virtual function void do_record_time(
 string name,
 time value
)

protected virtual function void do_record_generic(
 string name,
 string value,
 string type_name
)

function void write_attribute(
 string nm,
 uvm_bitstream_t value,
 uvm_radix_enum radix,
 integer numbits = $bits(uvm_bitstream_t)
)

UVM 1.2 Class Reference 520

write_attribute_int

Outputs an integral attribute to the textual log

Parameters

nm Name of the attribute
value Value
radix Radix of the output
numbits number of valid bits

function void write_attribute_int(
 string nm,
 uvm_integral_t value,
 uvm_radix_enum radix,
 integer numbits = $bits(uvm_bitstream_t)
)

UVM 1.2 Class Reference 521

22.4 uvm_packer

The uvm_packer class provides a policy object for packing and unpacking uvm_objects.
The policies determine how packing and unpacking should be done. Packing an object
causes the object to be placed into a bit (byte or int) array. If the `uvm_field_* macro
are used to implement pack and unpack, by default no metadata information is stored
for the packing of dynamic objects (strings, arrays, class objects).

Summary

uvm_packer

The uvm_packer class provides a policy object for packing and unpacking
uvm_objects.

PACKING

pack_field Packs an integral value (less than or equal to 4096 bits)
into the packed array.

pack_field_int Packs the integral value (less than or equal to 64 bits)
into the pack array.

pack_bits Packs bits from upacked array of bits into the pack array.
pack_bytes Packs bits from an upacked array of bytes into the pack

array.
pack_ints Packs bits from an unpacked array of ints into the pack

array.
pack_string Packs a string value into the pack array.
pack_time Packs a time value as 64 bits into the pack array.
pack_real Packs a real value as 64 bits into the pack array.
pack_object Packs an object value into the pack array.

UNpACKING

is_null This method is used during unpack operations to peek at
the next 4-bit chunk of the pack data and determine if it
is 0.

unpack_field Unpacks bits from the pack array and returns the bit-
stream that was unpacked.

unpack_field_int Unpacks bits from the pack array and returns the bit-
stream that was unpacked.

unpack_bits Unpacks bits from the pack array into an unpacked array
of bits.

unpack_bytes Unpacks bits from the pack array into an unpacked array
of bytes.

unpack_ints Unpacks bits from the pack array into an unpacked array
of ints.

unpack_string Unpacks a string.
unpack_time Unpacks the next 64 bits of the pack array and places

them into a time variable.
unpack_real Unpacks the next 64 bits of the pack array and places

them into a real variable.
unpack_object Unpacks an object and stores the result into value.
get_packed_size Returns the number of bits that were packed.

VARIABLEs

physical This bit provides a filtering mechanism for fields.
abstract This bit provides a filtering mechanism for fields.
use_metadata This flag indicates whether to encode metadata when

packing dynamic data, or to decode metadata when
unpacking.

big_endian This bit determines the order that integral data is packed
(using pack_field, pack_field_int, pack_time, or
pack_real) and how the data is unpacked from the pack
array (using unpack_field, unpack_field_int,
unpack_time, or unpack_real).

UVM 1.2 Class Reference 522

PACKING

pack_field

Packs an integral value (less than or equal to 4096 bits) into the packed array. size is
the number of bits of value to pack.

pack_field_int

Packs the integral value (less than or equal to 64 bits) into the pack array. The size is
the number of bits to pack, usually obtained by $bits. This optimized version of
pack_field is useful for sizes up to 64 bits.

pack_bits

Packs bits from upacked array of bits into the pack array.

See pack_ints for additional information.

pack_bytes

Packs bits from an upacked array of bytes into the pack array.

See pack_ints for additional information.

pack_ints

virtual function void pack_field (
 uvm_bitstream_t value,
 int size
)

virtual function void pack_field_int (
 uvm_integral_t value,
 int size
)

virtual function void pack_bits(
 ref bit value[],
 input int size = -1
)

virtual function void pack_bytes(
 ref byte value[],
 input int size = -1
)

virtual function void pack_ints(
 ref int value[],
 input int size = -1
)

UVM 1.2 Class Reference 523

Packs bits from an unpacked array of ints into the pack array.

The bits are appended to the internal pack array. This method allows for fields of
arbitrary length to be passed in, using the SystemVerilog stream operator.

For example

When appending the stream to the internal pack array, the packer will obey the value of
big_endian (appending the array from MSB to LSB if set).

An optional size parameter is provided, which defaults to ‘-1’. If set to any value greater
than ‘-1’ (including 0), then the packer will use the size as the number of bits to pack,
otherwise the packer will simply pack the entire stream.

An error will be asserted if the size has been specified, and exceeds the size of the
source array.

pack_string

Packs a string value into the pack array.

When the metadata flag is set, the packed string is terminated by a null character to
mark the end of the string.

This is useful for mixed language communication where unpacking may occur outside of
SystemVerilog UVM.

pack_time

Packs a time value as 64 bits into the pack array.

pack_real

Packs a real value as 64 bits into the pack array.

The real value is converted to a 6-bit scalar value using the function $real2bits before it
is packed into the array.

bit[511:0] my_field;
begin
 int my_stream[];
 { << int {my_stream}} = my_field;
 packer.pack_ints(my_stream);
end

virtual function void pack_string (
 string value
)

virtual function void pack_time (
 time value
)

virtual function void pack_real (
 real value
)

UVM 1.2 Class Reference 524

pack_object

Packs an object value into the pack array.

A 4-bit header is inserted ahead of the string to indicate the number of bits that was
packed. If a null object was packed, then this header will be 0.

This is useful for mixed-language communication where unpacking may occur outside of
SystemVerilog UVM.

UNpACKING

is_null

This method is used during unpack operations to peek at the next 4-bit chunk of the
pack data and determine if it is 0.

If the next four bits are all 0, then the return value is a 1; otherwise it is 0.

This is useful when unpacking objects, to decide whether a new object needs to be
allocated or not.

unpack_field

Unpacks bits from the pack array and returns the bit-stream that was unpacked. size is
the number of bits to unpack; the maximum is 4096 bits.

unpack_field_int

Unpacks bits from the pack array and returns the bit-stream that was unpacked.

size is the number of bits to unpack; the maximum is 64 bits. This is a more efficient
variant than unpack_field when unpacking into smaller vectors.

unpack_bits

virtual function void pack_object (
 uvm_object value
)

virtual function bit is_null ()

virtual function uvm_bitstream_t unpack_field (
 int size
)

virtual function uvm_integral_t unpack_field_int (
 int size
)

virtual function void unpack_bits(
 ref bit value[],
 input int size = -1

UVM 1.2 Class Reference 525

Unpacks bits from the pack array into an unpacked array of bits.

unpack_bytes

Unpacks bits from the pack array into an unpacked array of bytes.

unpack_ints

Unpacks bits from the pack array into an unpacked array of ints.

The unpacked array is unpacked from the internal pack array. This method allows for
fields of arbitrary length to be passed in without expanding into a pre-defined integral
type first.

For example

When unpacking the stream from the internal pack array, the packer will obey the value
of big_endian (unpacking the array from MSB to LSB if set).

An optional size parameter is provided, which defaults to ‘-1’. If set to any value greater
than ‘-1’ (including 0), then the packer will use the size as the number of bits to unpack,
otherwise the packer will simply unpack the entire stream.

An error will be asserted if the size has been specified, and exceeds the size of the
target array.

unpack_string

Unpacks a string.

num_chars bytes are unpacked into a string. If num_chars is -1 then unpacking stops
on at the first null character that is encountered.

)

virtual function void unpack_bytes(
 ref byte value[],
 input int size = -1
)

virtual function void unpack_ints(
 ref int value[],
 input int size = -1
)

bit[511:0] my_field;
begin
 int my_stream[] = new[16]; // 512/32 = 16
 packer.unpack_ints(my_stream);
 my_field = {<<{my_stream}};
end

virtual function string unpack_string (
 int num_chars = -1
)

UVM 1.2 Class Reference 526

unpack_time

Unpacks the next 64 bits of the pack array and places them into a time variable.

unpack_real

Unpacks the next 64 bits of the pack array and places them into a real variable.

The 64 bits of packed data are converted to a real using the $bits2real system function.

unpack_object

Unpacks an object and stores the result into value.

value must be an allocated object that has enough space for the data being unpacked.
The first four bits of packed data are used to determine if a null object was packed into
the array.

The is_null function can be used to peek at the next four bits in the pack array before
calling this method.

get_packed_size

Returns the number of bits that were packed.

VARIABLEs

physical

This bit provides a filtering mechanism for fields.

The abstract and physical settings allow an object to distinguish between two different
classes of fields. It is up to you, in the uvm_object::do_pack and
uvm_object::do_unpack methods, to test the setting of this field if you want to use it as
a filter.

abstract

virtual function time unpack_time ()

virtual function real unpack_real ()

virtual function void unpack_object (
 uvm_object value
)

virtual function int get_packed_size()

bit physical = 1

bit abstract

UVM 1.2 Class Reference 527

This bit provides a filtering mechanism for fields.

The abstract and physical settings allow an object to distinguish between two different
classes of fields. It is up to you, in the uvm_object::do_pack and
uvm_object::do_unpack routines, to test the setting of this field if you want to use it as
a filter.

use_metadata

This flag indicates whether to encode metadata when packing dynamic data, or to
decode metadata when unpacking. Implementations of uvm_object::do_pack and
uvm_object::do_unpack should regard this bit when performing their respective
operation. When set, metadata should be encoded as follows:

For strings, pack an additional null byte after the string is packed.
For objects, pack 4 bits prior to packing the object itself. Use 4’b0000 to indicate
the object being packed is null, otherwise pack 4’b0001 (the remaining 3 bits are
reserved).
For queues, dynamic arrays, and associative arrays, pack 32 bits indicating the
size of the array prior to packing individual elements.

big_endian

This bit determines the order that integral data is packed (using pack_field,
pack_field_int, pack_time, or pack_real) and how the data is unpacked from the pack
array (using unpack_field, unpack_field_int, unpack_time, or unpack_real). When the bit
is set, data is associated msb to lsb; otherwise, it is associated lsb to msb.

The following code illustrates how data can be associated msb to lsb and lsb to msb:

bit use_metadata

bit big_endian = 1

class mydata extends uvm_object;

 logic[15:0] value = 'h1234;

 function void do_pack (uvm_packer packer);
 packer.pack_field_int(value, 16);
 endfunction

 function void do_unpack (uvm_packer packer);
 value = packer.unpack_field_int(16);
 endfunction
endclass

mydata d = new;
bit bits[];

initial begin
 d.pack(bits); // 'b0001001000110100
 uvm_default_packer.big_endian = 0;
 d.pack(bits); // 'b0010110001001000
end

UVM 1.2 Class Reference 528

22.5 UVM Links

The uvm_link_base class, and its extensions, are provided as a mechanism to allow for
compile-time safety when trying to establish links between records within a
uvm_tr_database.

Contents

UVM Links The uvm_link_base class, and its extensions, are
provided as a mechanism to allow for compile-time
safety when trying to establish links between records
within a uvm_tr_database.

uvm_link_base The uvm_link_base class presents a simple API for
defining a link between any two objects.

uvm_parent_child_link The uvm_parent_child_link is used to represent a
Parent/Child relationship between two objects.

uvm_cause_effect_link The uvm_cause_effect_link is used to represent a
Cause/Effect relationship between two objects.

uvm_related_link The uvm_related_link is used to represent a generic “is
related” link between two objects.

uvm_link_base

The uvm_link_base class presents a simple API for defining a link between any two
objects.

Using extensions of this class, a uvm_tr_database can determine the type of links being
passed, without relying on “magic” string names.

For example

Summary

uvm_link_base

The uvm_link_base class presents a simple API for defining a link between any
two objects.

ClAss HIERARchY

virtual function void do_establish_link(uvm_link_base link);
 uvm_parent_child_link pc_link;
 uvm_cause_effect_link ce_link;

 if ($cast(pc_link, link)) begin
 // Record the parent-child relationship
 end
 else if ($cast(ce_link, link)) begin
 // Record the cause-effect relationship
 end
 else begin
 // Unsupported relationship!
 end
endfunction : do_establish_link

UVM 1.2 Class Reference 529

uvm_void

uvm_object

uvm_link_base

ClAss DEclARATION

new Constructor
AccEssORs

set_lhs Sets the left-hand-side of the link
get_lhs Gets the left-hand-side of the link
set_rhs Sets the right-hand-side of the link
get_rhs Gets the right-hand-side of the link
set Convenience method for setting both sides in one

call.
ImPlEmENTATION

CAllBAcKs

do_set_lhs Callback for setting the left-hand-side
do_get_lhs Callback for retrieving the left-hand-side
do_set_rhs Callback for setting the right-hand-side
do_get_rhs Callback for retrieving the right-hand-side

new

Constructor

Parameters

name Instance name

AccEssORs

set_lhs

Sets the left-hand-side of the link

Triggers the do_set_lhs callback.

get_lhs

Gets the left-hand-side of the link

Triggers the do_get_lhs callback

virtual class uvm_link_base extends uvm_object

function new(
 string name = "unnamed-uvm_link_base"
)

function void set_lhs(
 uvm_object lhs
)

function uvm_object get_lhs()

UVM 1.2 Class Reference 530

set_rhs

Sets the right-hand-side of the link

Triggers the do_set_rhs callback.

get_rhs

Gets the right-hand-side of the link

Triggers the do_get_rhs callback

set

Convenience method for setting both sides in one call.

Triggers both the do_set_rhs and do_set_lhs callbacks.

ImPlEmENTATION CAllBAcKs

do_set_lhs

Callback for setting the left-hand-side

do_get_lhs

Callback for retrieving the left-hand-side

do_set_rhs

function void set_rhs(
 uvm_object rhs
)

function uvm_object get_rhs()

function void set(
 uvm_object lhs,
 rhs
)

pure virtual function void do_set_lhs(
 uvm_object lhs
)

pure virtual function uvm_object do_get_lhs()

pure virtual function void do_set_rhs(
 uvm_object rhs
)

UVM 1.2 Class Reference 531

Callback for setting the right-hand-side

do_get_rhs

Callback for retrieving the right-hand-side

uvm_parent_child_link

The uvm_parent_child_link is used to represent a Parent/Child relationship between two
objects.

Summary

uvm_parent_child_link

The uvm_parent_child_link is used to represent a Parent/Child relationship
between two objects.

ClAss HIERARchY

uvm_void

uvm_object

uvm_link_base

uvm_parent_child_link

ClAss DEclARATION

new Constructor
get_link Constructs a pre-filled link
ImPlEmENTATION CAllBAcKs

do_set_lhs Sets the left-hand-side (Parent)
do_get_lhs Retrieves the left-hand-side (Parent)
do_set_rhs Sets the right-hand-side (Child)
do_get_rhs Retrieves the right-hand-side (Child)

new

Constructor

Parameters

name Instance name

pure virtual function uvm_object do_get_rhs()

class uvm_parent_child_link extends uvm_link_base

function new(
 string name = "unnamed-uvm_parent_child_link"
)

UVM 1.2 Class Reference 532

get_link

Constructs a pre-filled link

This allows for simple one-line link creations.

Parameters

lhs Left hand side reference
rhs Right hand side reference
name Optional name for the link object

ImPlEmENTATION CAllBAcKs

do_set_lhs

Sets the left-hand-side (Parent)

do_get_lhs

Retrieves the left-hand-side (Parent)

do_set_rhs

Sets the right-hand-side (Child)

do_get_rhs

Retrieves the right-hand-side (Child)

static function uvm_parent_child_link get_link(
 uvm_object lhs,
 uvm_object rhs,
 string name = "pc_link"
)

my_db.establish_link(uvm_parent_child_link::get_link(record1, record2));

virtual function void do_set_lhs(
 uvm_object lhs
)

virtual function uvm_object do_get_lhs()

virtual function void do_set_rhs(
 uvm_object rhs
)

virtual function uvm_object do_get_rhs()

UVM 1.2 Class Reference 533

uvm_cause_effect_link

The uvm_cause_effect_link is used to represent a Cause/Effect relationship between two
objects.

Summary

uvm_cause_effect_link

The uvm_cause_effect_link is used to represent a Cause/Effect relationship
between two objects.

ClAss HIERARchY

uvm_void

uvm_object

uvm_link_base

uvm_cause_effect_link

ClAss DEclARATION

new Constructor
get_link Constructs a pre-filled link
ImPlEmENTATION CAllBAcKs

do_set_lhs Sets the left-hand-side (Cause)
do_get_lhs Retrieves the left-hand-side (Cause)
do_set_rhs Sets the right-hand-side (Effect)
do_get_rhs Retrieves the right-hand-side (Effect)

new

Constructor

Parameters

name Instance name

get_link

Constructs a pre-filled link

class uvm_cause_effect_link extends uvm_link_base

function new(
 string name = "unnamed-uvm_cause_effect_link"
)

static function uvm_cause_effect_link get_link(
 uvm_object lhs,
 uvm_object rhs,
 string name = "ce_link"
)

UVM 1.2 Class Reference 534

This allows for simple one-line link creations.

Parameters

lhs Left hand side reference
rhs Right hand side reference
name Optional name for the link object

ImPlEmENTATION CAllBAcKs

do_set_lhs

Sets the left-hand-side (Cause)

do_get_lhs

Retrieves the left-hand-side (Cause)

do_set_rhs

Sets the right-hand-side (Effect)

do_get_rhs

Retrieves the right-hand-side (Effect)

uvm_related_link

The uvm_related_link is used to represent a generic “is related” link between two
objects.

my_db.establish_link(uvm_cause_effect_link::get_link(record1, record2));

virtual function void do_set_lhs(
 uvm_object lhs
)

virtual function uvm_object do_get_lhs()

virtual function void do_set_rhs(
 uvm_object rhs
)

virtual function uvm_object do_get_rhs()

UVM 1.2 Class Reference 535

Summary

uvm_related_link

The uvm_related_link is used to represent a generic “is related” link between two
objects.

ClAss HIERARchY

uvm_void

uvm_object

uvm_link_base

uvm_related_link

ClAss DEclARATION

new Constructor
get_link Constructs a pre-filled link
ImPlEmENTATION CAllBAcKs

do_set_lhs Sets the left-hand-side
do_get_lhs Retrieves the left-hand-side
do_set_rhs Sets the right-hand-side
do_get_rhs Retrieves the right-hand-side

new

Constructor

Parameters

name Instance name

get_link

Constructs a pre-filled link

This allows for simple one-line link creations.

Parameters

lhs Left hand side reference

class uvm_related_link extends uvm_link_base

function new(
 string name = "unnamed-uvm_related_link"
)

static function uvm_related_link get_link(
 uvm_object lhs,
 uvm_object rhs,
 string name = "ce_link"
)

my_db.establish_link(uvm_related_link::get_link(record1, record2));

UVM 1.2 Class Reference 536

rhs Right hand side reference
name Optional name for the link object

ImPlEmENTATION CAllBAcKs

do_set_lhs

Sets the left-hand-side

do_get_lhs

Retrieves the left-hand-side

do_set_rhs

Sets the right-hand-side

do_get_rhs

Retrieves the right-hand-side

virtual function void do_set_lhs(
 uvm_object lhs
)

virtual function uvm_object do_get_lhs()

virtual function void do_set_rhs(
 uvm_object rhs
)

virtual function uvm_object do_get_rhs()

UVM 1.2 Class Reference 537

file:///C|/Users/Joe/Documents/accellera/uvm_1.2/ND%20material/html_RC7/src/base/uvm_links.svh

23. Data Access Policies

The UVM provides special objects as utility classes for applying common policies to data
access (such as ‘locking’ data, or ensuring that it remains constant after being read).

This is not intended to be a comprehensive list of all Data Access policies, and the user is
encouraged to write their own, and potentially contribute them to the community.

Summary

Data Access Policies

The UVM provides special objects as utility classes for applying common policies
to data access (such as ‘locking’ data, or ensuring that it remains constant after
being read).

UVM 1.2 Class Reference 538

23.1 uvm_set_get_dap_base

Provides the ‘set’ and ‘get’ interface for Data Access Policies (DAPs)

The ‘Set/Get’ base class simply provides a common interface for the various DAPs to
implement. This provides a mechanism for consistent implementations of similar DAPs.

Summary

uvm_set_get_dap_base

Provides the ‘set’ and ‘get’ interface for Data Access Policies (DAPs)

CLAss HIERARchY

uvm_void

uvm_object

uvm_set_get_dap_base

CLAss DEcLARATION

new Constructor
SET/GET

INTERFAcE

All implementations of the uvm_set_get_dap_base class must
provide an implementation of the four basic “Set and Get”
accessors.

set Sets the value contained within the resource.
try_set Attempts to set the value contained within the resource.
get Retrieves the value contained within the resource.
try_get Attempts to retrieve the value contained within the resource.

new

Constructor

SET/GET INTERFAcE

All implementations of the uvm_set_get_dap_base class must provide an implementation
of the four basic “Set and Get” accessors.

set

Sets the value contained within the resource.

virtual class uvm_set_get_dap_base#(
 type T = int
) extends uvm_object

function new(
 string name = "unnamed-uvm_set_get_dap_base#(T)"
)

pure virtual function void set(
 T value
)

UVM 1.2 Class Reference 539

Depending on the DAP policies, an error may be reported if it is illegal to ‘set’ the value
at this time.

try_set

Attempts to set the value contained within the resource.

If the DAP policies forbid setting at this time, then the method will return 0, however no
errors will be reported. Otherwise, the method will return 1, and will be treated like a
standard set call.

get

Retrieves the value contained within the resource.

Depending on the DAP policies, an error may be reported if it is illegal to ‘get’ the value
at this time.

try_get

Attempts to retrieve the value contained within the resource.

If the DAP policies forbid retrieving at this time, then the method will return 0, however
no errors will be reported. Otherwise, the method will return 1, and will be treated like a
standard get call.

pure virtual function bit try_set(
 T value
)

pure virtual function T get()

pure virtual function bit try_get(
 output T value
)

UVM 1.2 Class Reference 540

23.2 uvm_simple_lock_dap

Provides a ‘Simple Lock’ Data Access Policy.

The ‘Simple Lock’ Data Access Policy allows for any number of ‘sets’, so long as the
value is not ‘locked’. The value can be retrieved using ‘get’ at any time.

The UVM uses this policy to protect the file name value in the uvm_text_tr_database.

Summary

uvm_simple_lock_dap

Provides a ‘Simple Lock’ Data Access Policy.

CLAss HIERARchY

uvm_set_get_dap_base#(T)

uvm_simple_lock_dap

CLAss DEcLARATION

new Constructor
SET/GET

INTERFAcE

set Updates the value stored within the DAP.
try_set Attempts to update the value stored within the DAP.
get Returns the current value stored within the DAP
try_get Retrieves the current value stored within the DAP

LOcKINg

lock Locks the data value
unlock Unlocks the data value
is_locked Returns the state of the lock.

INTROsPEcTION The uvm_simple_lock_dap cannot support the standard UVM
instrumentation methods (copy, clone, pack and unpack), due
to the fact that they would potentially violate the access policy.

new

Constructor

SET/GET INTERFAcE

set

class uvm_simple_lock_dap#(
 type T = int
) extends uvm_set_get_dap_base#(T)

function new(
 string name = "unnamed-uvm_simple_lock_dap#(T)"
)

virtual function void set(

UVM 1.2 Class Reference 541

Updates the value stored within the DAP.

set will result in an error if the DAP has been locked.

try_set

Attempts to update the value stored within the DAP.

try_set will return a 1 if the value was successfully updated, or a 0 if the value cannot
be updated due to the DAP being locked. No errors will be reported if try_set fails.

get

Returns the current value stored within the DAP

try_get

Retrieves the current value stored within the DAP

try_get will always return 1.

LOcKINg

lock

Locks the data value

The data value cannot be updated via set or try_set while locked.

unlock

Unlocks the data value

 T value
)

virtual function bit try_set(
 T value
)

virtual function T get()

virtual function bit try_get(
 output T value
)

function void lock()

function void unlock()

UVM 1.2 Class Reference 542

is_locked

Returns the state of the lock.

Returns

1 The value is locked
0 The value is unlocked

INTROsPEcTION

The uvm_simple_lock_dap cannot support the standard UVM instrumentation methods
(copy, clone, pack and unpack), due to the fact that they would potentially violate the
access policy.

A call to any of these methods will result in an error.

function bit is_locked()

UVM 1.2 Class Reference 543

23.3 uvm_get_to_lock_dap

Provides a ‘Get-To-Lock’ Data Access Policy.

The ‘Get-To-Lock’ Data Access Policy allows for any number of ‘sets’, until the value is
retrieved via a ‘get’. Once ‘get’ has been called, it is illegal to ‘set’ a new value.

The UVM uses this policy to protect the starting phase and automatic objection values in
uvm_sequence_base.

Summary

uvm_get_to_lock_dap

Provides a ‘Get-To-Lock’ Data Access Policy.

CLAss HIERARchY

uvm_set_get_dap_base#(T)

uvm_get_to_lock_dap

CLAss DEcLARATION

new Constructor
SET/GET

INTERFAcE

set Updates the value stored within the DAP.
try_set Attempts to update the value stored within the DAP.
get Returns the current value stored within the DAP, and ‘locks’

the DAP.
try_get Retrieves the current value stored within the DAP, and ‘locks’

the DAP.
INTROsPEcTION The uvm_get_to_lock_dap cannot support the standard UVM

instrumentation methods (copy, clone, pack and unpack), due
to the fact that they would potentially violate the access policy.

new

Constructor

SET/GET INTERFAcE

set

class uvm_get_to_lock_dap#(
 type T = int
) extends uvm_set_get_dap_base#(T)

function new(
 string name = "unnamed-uvm_get_to_lock_dap#(T)"
)

virtual function void set(
 T value

UVM 1.2 Class Reference 544

Updates the value stored within the DAP.

set will result in an error if the value has already been retrieved via a call to get.

try_set

Attempts to update the value stored within the DAP.

try_set will return a 1 if the value was successfully updated, or a 0 if the value cannot
be updated due to get having been called. No errors will be reported if try_set fails.

get

Returns the current value stored within the DAP, and ‘locks’ the DAP.

After a ‘get’, the value contained within the DAP cannot be changed.

try_get

Retrieves the current value stored within the DAP, and ‘locks’ the DAP.

try_get will always return 1.

INTROsPEcTION

The uvm_get_to_lock_dap cannot support the standard UVM instrumentation methods
(copy, clone, pack and unpack), due to the fact that they would potentially violate the
access policy.

A call to any of these methods will result in an error.

)

virtual function bit try_set(
 T value
)

virtual function T get()

virtual function bit try_get(
 output T value
)

UVM 1.2 Class Reference 545

23.4 uvm_set_before_get_dap

Provides a ‘Set Before Get’ Data Access Policy.

The ‘Set Before Get’ Data Access Policy enforces that the value must be written at least
once before it is read. This DAP can be used to pass shared information to multiple
components during standard configuration, even if that information hasn’t yet been
determined.

Such DAP objects can be useful for passing a ‘placeholder’ reference, before the
information is actually available. A good example of this would be the virtual sequencer:

In the example above, the environment didn’t have a reference to the agent’s sequencer
yet, because the agent hadn’t executed its build_phase. The environment needed to
give the virtual sequencer a “Set before get” DAP so that the virtual sequencer (and any
sequences one it), could eventually see the agent’s sequencer, when the reference was
finally available. If the virtual sequencer (or any sequences on it) attempted to ‘get’ the
reference to the agent’s sequencer prior to the environment assigning it, an error would
have been reported.

Summary

uvm_set_before_get_dap

Provides a ‘Set Before Get’ Data Access Policy.

CLAss HIERARchY

uvm_set_get_dap_base#(T)

uvm_set_before_get_dap

CLAss DEcLARATION

new Constructor
SET/GET

INTERFAcE

typedef uvm_set_before_get_dap#(uvm_sequencer_base) seqr_dap_t;
virtual_seqeuncer_type virtual_sequencer;
agent_type my_agent;
seqr_dap_t seqr_dap;

function void my_env::build_phase(uvm_phase phase);
 seqr_dap = seqr_dap_t::type_id::create("seqr_dap");
 // Pass the DAP, because we don't have a reference to the
 // real sequencer yet...
 uvm_config_db#(seqr_dap_t)::set(this, "virtual_sequencer", "seqr_dap",
seqr_dap);

 // Create the virtual sequencer
 virtual_sequencer =
virtual_sequencer_type::type_id::create("virtual_sequencer", this);

 // Create the agent
 agent = agent_type::type_id::create("agent", this);
endfunction

function void my_env::connect_phase(uvm_phase phase);
 // Now that we know the value is good, we can set it
 seqr_dap.set(agent.sequencer);
endfunction

class uvm_set_before_get_dap#(
 type T = int
) extends uvm_set_get_dap_base#(T)

UVM 1.2 Class Reference 546

set Updates the value stored within the DAP.
try_set Attempts to update the value stored within the DAP.
get Returns the current value stored within the DAP.
try_get Attempts to retrieve the current value stored within the DAP

INTROsPEcTION The uvm_set_before_get_dap cannot support the standard UVM
instrumentation methods (copy, clone, pack and unpack), due
to the fact that they would potentially violate the access policy.

new

Constructor

SET/GET INTERFAcE

set

Updates the value stored within the DAP.

try_set

Attempts to update the value stored within the DAP.

try_set will always return a 1.

get

Returns the current value stored within the DAP.

If ‘get’ is called before a call to set or try_set, then an error will be reported.

try_get

Attempts to retrieve the current value stored within the DAP

function new(
 string name = "unnamed-uvm_set_before_get_dap#(T)"
)

virtual function void set(
 T value
)

virtual function bit try_set(
 T value
)

virtual function T get()

virtual function bit try_get(
 output T value
)

UVM 1.2 Class Reference 547

If the value has not been ‘set’, then try_get will return a 0, otherwise it will return a 1,
and set value to the current value stored within the DAP.

INTROsPEcTION

The uvm_set_before_get_dap cannot support the standard UVM instrumentation methods
(copy, clone, pack and unpack), due to the fact that they would potentially violate the
access policy.

A call to any of these methods will result in an error.

UVM 1.2 Class Reference 548

24.1 Register Layer

The UVM register layer defines several base classes that, when properly extended,
abstract the read/write operations to registers and memories in a design-under-
verification.

A register model is typically composed of a hierarchy of blocks that usually map to the
design hierarchy. Blocks contain registers, register files and memories.

The UVM register layer classes are not usable as-is. They only provide generic and
introspection capabilities. They must be specialized via extensions to provide an abstract
view that corresponds to the actual registers and memories in a design. Due to the
large number of registers in a design and the numerous small details involved in properly
configuring the UVM register layer classes, this specialization is normally done by a model
generator. Model generators work from a specification of the registers and memories in
a design and are thus able to provide an up-to-date, correct-by-construction register
model. Model generators are outside the scope of the UVM library.

The class diagram of a register layer model is shown below.

Summary

Register Layer

The UVM register layer defines several base classes that, when properly
extended, abstract the read/write operations to registers and memories in a

UVM 1.2 Class Reference 549

design-under-verification.

UVM 1.2 Class Reference 550

24.2 Global Declarations for the Register Layer

This section defines globally available types, enums, and utility classes.

Summary

Global Declarations for the Register Layer

This section defines globally available types, enums, and utility classes.

TYPEs

uvm_reg_data_t 2-state data value with `UVM_REG_DATA_WIDTH
bits

uvm_reg_data_logic_t 4-state data value with `UVM_REG_DATA_WIDTH
bits

uvm_reg_addr_t 2-state address value with
`UVM_REG_ADDR_WIDTH bits

uvm_reg_addr_logic_t 4-state address value with
`UVM_REG_ADDR_WIDTH bits

uvm_reg_byte_en_t 2-state byte_enable value with
`UVM_REG_BYTENABLE_WIDTH bits

uvm_reg_cvr_t Coverage model value set with
`UVM_REG_CVR_WIDTH bits.

uvm_hdl_path_slice Slice of an HDL path
ENUMErAtIONs

uvm_status_e Return status for register operations
uvm_path_e Path used for register operation
uvm_check_e Read-only or read-and-check
uvm_endianness_e Specifies byte ordering
uvm_elem_kind_e Type of element being read or written
uvm_access_e Type of operation begin performed
uvm_hier_e Whether to provide the requested information

from a hierarchical context.
uvm_predict_e How the mirror is to be updated
uvm_coverage_model_e Coverage models available or desired.
uvm_reg_mem_tests_e Select which pre-defined test sequence to

execute.
UtIlItY ClAssEs

TYPEs

uvm_reg_data_t

2-state data value with `UVM_REG_DATA_WIDTH bits

uvm_reg_data_logic_t

4-state data value with `UVM_REG_DATA_WIDTH bits

uvm_reg_addr_t

2-state address value with `UVM_REG_ADDR_WIDTH bits

UVM 1.2 Class Reference 551

uvm_reg_addr_logic_t

4-state address value with `UVM_REG_ADDR_WIDTH bits

uvm_reg_byte_en_t

2-state byte_enable value with `UVM_REG_BYTENABLE_WIDTH bits

uvm_reg_cvr_t

Coverage model value set with `UVM_REG_CVR_WIDTH bits.

Symbolic values for individual coverage models are defined by the
uvm_coverage_model_e type.

The following bits in the set are assigned as follows

0-7 UVM pre-defined coverage models
8-15 Coverage models defined by EDA vendors, implemented in a register

model generator.
16-23 User-defined coverage models
24.. Reserved

uvm_hdl_path_slice

Slice of an HDL path

Struct that specifies the HDL variable that corresponds to all or a portion of a register.

path Path to the HDL variable.
offset Offset of the LSB in the register that this variable implements
size Number of bits (toward the MSB) that this variable implements

If the HDL variable implements all of the register, offset and size are specified as -1. For
example:

ENUMErAtIONs

uvm_status_e

Return status for register operations

UVM_IS_OK Operation completed successfully

r1.add_hdl_path('{ '{"r1", -1, -1} });

UVM 1.2 Class Reference 552

UVM_NOT_OK Operation completed with error
UVM_HAS_X Operation completed successfully bit had unknown bits.

uvm_path_e

Path used for register operation

UVM_FRONTDOOR Use the front door
UVM_BACKDOOR Use the back door
UVM_PREDICT Operation derived from observations by a bus monitor

via the uvm_reg_predictor class.
UVM_DEFAULT_PATH Operation specified by the context

uvm_check_e

Read-only or read-and-check

UVM_NO_CHECK Read only
UVM_CHECK Read and check

uvm_endianness_e

Specifies byte ordering

UVM_NO_ENDIAN Byte ordering not applicable
UVM_LITTLE_ENDIAN Least-significant bytes first in consecutive addresses
UVM_BIG_ENDIAN Most-significant bytes first in consecutive addresses
UVM_LITTLE_FIFO Least-significant bytes first at the same address
UVM_BIG_FIFO Most-significant bytes first at the same address

uvm_elem_kind_e

Type of element being read or written

UVM_REG Register
UVM_FIELD Field
UVM_MEM Memory location

uvm_access_e

Type of operation begin performed

UVM_READ Read operation
UVM_WRITE Write operation

uvm_hier_e
UVM 1.2 Class Reference 553

Whether to provide the requested information from a hierarchical context.

UVM_NO_HIER Provide info from the local context
UVM_HIER Provide info based on the hierarchical context

uvm_predict_e

How the mirror is to be updated

UVM_PREDICT_DIRECT Predicted value is as-is
UVM_PREDICT_READ Predict based on the specified value having been

read
UVM_PREDICT_WRITE Predict based on the specified value having been

written

uvm_coverage_model_e

Coverage models available or desired. Multiple models may be specified by bitwise
OR’ing individual model identifiers.

UVM_NO_COVERAGE None
UVM_CVR_REG_BITS Individual register bits
UVM_CVR_ADDR_MAP Individual register and memory addresses
UVM_CVR_FIELD_VALS Field values
UVM_CVR_ALL All coverage models

uvm_reg_mem_tests_e

Select which pre-defined test sequence to execute.

Multiple test sequences may be selected by bitwise OR’ing their respective symbolic
values.

UVM_DO_REG_HW_RESET Run uvm_reg_hw_reset_seq
UVM_DO_REG_BIT_BASH Run uvm_reg_bit_bash_seq
UVM_DO_REG_ACCESS Run uvm_reg_access_seq
UVM_DO_MEM_ACCESS Run uvm_mem_access_seq
UVM_DO_SHARED_ACCESS Run uvm_reg_mem_shared_access_seq
UVM_DO_MEM_WALK Run uvm_mem_walk_seq
UVM_DO_ALL_REG_MEM_TESTS Run all of the above

Test sequences, when selected, are executed in the order in which they are specified
above.

UtIlItY ClAssEs

UVM 1.2 Class Reference 554

uvm_hdl_path_concat

Concatenation of HDL variables

A dArray of uvm_hdl_path_slice specifying a concatenation of HDL variables that
implement a register in the HDL.

Slices must be specified in most-to-least significant order. Slices must not overlap.
Gaps may exist in the concatenation if portions of the registers are not implemented.

For example, the following register

If the register is implemented using a single HDL variable, The array should specify a
single slice with its offset and size specified as -1. For example:

Summary

uvm_hdl_path_concat

Concatenation of HDL variables

ClAss DEclArAtION

VArIABlEs

slices Array of individual slices, stored in most-to-least significant
order

MEtHOds

set Initialize the concatenation using an array literal
add_slice Append the specified slice literal to the path concatenation
add_path Append the specified path to the path concatenation, for the

specified number of bits at the specified offset.

VArIABlEs

slices

Array of individual slices, stored in most-to-least significant order

 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
Bits: 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
 +-+---+-------------+---+-------+
 |A|xxx| B |xxx| C |
 +-+---+-------------+---+-------+

concat.set('{ '{"r1", -1, -1} });

class uvm_hdl_path_concat

uvm_hdl_path_slice slices[]

UVM 1.2 Class Reference 555

MEtHOds

set

Initialize the concatenation using an array literal

add_slice

Append the specified slice literal to the path concatenation

add_path

Append the specified path to the path concatenation, for the specified number of bits at
the specified offset.

function void set(
 uvm_hdl_path_slice t[]
)

function void add_slice(
 uvm_hdl_path_slice slice
)

function void add_path(
 string path,
 int unsigned offset = -1,
 int unsigned size = -1
)

UVM 1.2 Class Reference 556

25.1 uvm_reg_block

Block abstraction base class

A block represents a design hierarchy. It can contain registers, register files, memories
and sub-blocks.

A block has one or more address maps, each corresponding to a physical interface on the
block.

Summary

uvm_reg_block

Block abstraction base class

CLAss HIERARchY

uvm_void

uvm_object

uvm_reg_block

CLAss DEcLARATION

default_path Default access path for the registers and memories in
this block.

INITIALIZATION

new Create a new instance and type-specific
configuration

configure Instance-specific configuration
create_map Create an address map in this block
check_data_width Check that the specified data width (in bits) is less

than or equal to the value of
`UVM_REG_DATA_WIDTH

set_default_map Defines the default address map
default_map Default address map
lock_model Lock a model and build the address map.
is_locked Return TRUE if the model is locked.

INTROsPEcTION

get_name Get the simple name
get_full_name Get the hierarchical name
get_parent Get the parent block
get_root_blocks Get the all root blocks
find_blocks Find the blocks whose hierarchical names match the

specified name glob.
find_block Find the first block whose hierarchical names match

the specified name glob.
get_blocks Get the sub-blocks
get_maps Get the address maps
get_registers Get the registers
get_fields Get the fields
get_memories Get the memories
get_virtual_registers Get the virtual registers
get_virtual_fields Get the virtual fields
get_block_by_name Finds a sub-block with the specified simple name.
get_map_by_name Finds an address map with the specified simple

name.
get_reg_by_name Finds a register with the specified simple name.
get_field_by_name Finds a field with the specified simple name.

virtual class uvm_reg_block extends uvm_object

UVM 1.2 Class Reference 557

get_mem_by_name Finds a memory with the specified simple name.
get_vreg_by_name Finds a virtual register with the specified simple

name.
get_vfield_by_name Finds a virtual field with the specified simple name.

COVERAGE

build_coverage Check if all of the specified coverage model must be
built.

add_coverage Specify that additional coverage models are
available.

has_coverage Check if block has coverage model(s)
set_coverage Turns on coverage measurement.
get_coverage Check if coverage measurement is on.
sample Functional coverage measurement method
sample_values Functional coverage measurement method for field

values
AccEss

get_default_path Default access path
reset Reset the mirror for this block.
needs_update Check if DUT registers need to be written
update Batch update of register.
mirror Update the mirrored values
write_reg_by_name Write the named register
read_reg_by_name Read the named register
write_mem_by_name Write the named memory
read_mem_by_name Read the named memory

BAcKdOOR

get_backdoor Get the user-defined backdoor for all registers in
this block

set_backdoor Set the user-defined backdoor for all registers in this
block

clear_hdl_path Delete HDL paths
add_hdl_path Add an HDL path
has_hdl_path Check if a HDL path is specified
get_hdl_path Get the incremental HDL path(s)
get_full_hdl_path Get the full hierarchical HDL path(s)
set_default_hdl_path Set the default design abstraction
get_default_hdl_path Get the default design abstraction
set_hdl_path_root Specify a root HDL path
is_hdl_path_root Check if this block has an absolute path

default_path

Default access path for the registers and memories in this block.

INITIALIZATION

new

Create a new instance and type-specific configuration

uvm_path_e default_path = UVM_DEFAULT_PATH

function new(
 string name = "",
 int has_coverage = UVM_NO_COVERAGE
)

UVM 1.2 Class Reference 558

Creates an instance of a block abstraction class with the specified name.

has_coverage specifies which functional coverage models are present in the extension of
the block abstraction class. Multiple functional coverage models may be specified by
adding their symbolic names, as defined by the uvm_coverage_model_e type.

configure

Instance-specific configuration

Specify the parent block of this block. A block without parent is a root block.

If the block file corresponds to a hierarchical RTL structure, its contribution to the HDL
path is specified as the hdl_path. Otherwise, the block does not correspond to a
hierarchical RTL structure (e.g. it is physically flattened) and does not contribute to the
hierarchical HDL path of any contained registers or memories.

create_map

Create an address map in this block

Create an address map with the specified name, then configures it with the following
properties.

base_addr the base address for the map. All registers, memories, and
sub-blocks within the map will be at offsets to this address

n_bytes the byte-width of the bus on which this map is used
endian the endian format. See uvm_endianness_e for possible

values
byte_addressing specifies whether consecutive addresses refer are 1 byte

apart (TRUE) or n_bytes apart (FALSE). Default is TRUE.

check_data_width

Check that the specified data width (in bits) is less than or equal to the value of
`UVM_REG_DATA_WIDTH

function void configure(
 uvm_reg_block parent = null,
 string hdl_path = ""
)

virtual function uvm_reg_map create_map(
 string name,
 uvm_reg_addr_t base_addr,
 int unsigned n_bytes,
 uvm_endianness_e endian,
 bit byte_addressing = 1
)

APB = create_map("APB", 0, 1, UVM_LITTLE_ENDIAN, 1);

protected static function bit check_data_width(
 int unsigned width
)

UVM 1.2 Class Reference 559

This method is designed to be called by a static initializer

set_default_map

Defines the default address map

Set the specified address map as the default_map for this block. The address map must
be a map of this address block.

default_map

Default address map

Default address map for this block, to be used when no address map is specified for a
register operation and that register is accessible from more than one address map.

It is also the implicit address map for a block with a single, unnamed address map
because it has only one physical interface.

lock_model

Lock a model and build the address map.

Recursively lock an entire register model and build the address maps to enable the
uvm_reg_map::get_reg_by_offset() and uvm_reg_map::get_mem_by_offset() methods.

Once locked, no further structural changes, such as adding registers or memories, can be
made.

It is not possible to unlock a model.

is_locked

Return TRUE if the model is locked.

INTROsPEcTION

class my_blk extends uvm_reg_block;
 local static bit m_data_width = check_data_width(356);
 ...
endclass

function void set_default_map (
 uvm_reg_map map
)

uvm_reg_map default_map

virtual function void lock_model()

function bit is_locked()

UVM 1.2 Class Reference 560

get_name

Get the simple name

Return the simple object name of this block.

get_full_name

Get the hierarchical name

Return the hierarchal name of this block. The base of the hierarchical name is the root
block.

get_parent

Get the parent block

If this a top-level block, returns null.

get_root_blocks

Get the all root blocks

Returns an array of all root blocks in the simulation.

find_blocks

Find the blocks whose hierarchical names match the specified name glob. If a root block
is specified, the name of the blocks are relative to that block, otherwise they are
absolute.

Returns the number of blocks found.

find_block

virtual function string get_full_name()

virtual function uvm_reg_block get_parent()

static function void get_root_blocks(
 ref uvm_reg_block blks[$]
)

static function int find_blocks(
 input string name,
 ref uvm_reg_block blks[$],
 input uvm_reg_block root = null,
 input uvm_object accessor = null
)

static function uvm_reg_block find_block(
 input string name,
 input uvm reg block root = null,

UVM 1.2 Class Reference 561

Find the first block whose hierarchical names match the specified name glob. If a root
block is specified, the name of the blocks are relative to that block, otherwise they are
absolute.

Returns the first block found or null otherwise. A warning is issued if more than one
block is found.

get_blocks

Get the sub-blocks

Get the blocks instantiated in this blocks. If hier is TRUE, recursively includes any sub-
blocks.

get_maps

Get the address maps

Get the address maps instantiated in this block.

get_registers

Get the registers

Get the registers instantiated in this block. If hier is TRUE, recursively includes the
registers in the sub-blocks.

Note that registers may be located in different and/or multiple address maps. To get the
registers in a specific address map, use the uvm_reg_map::get_registers() method.

get_fields

Get the fields

Get the fields in the registers instantiated in this block. If hier is TRUE, recursively

 input uvm_object accessor = null
)

virtual function void get_blocks (
 ref uvm_reg_block blks[$],
 input uvm_hier_e hier = UVM_HIER
)

virtual function void get_maps (
 ref uvm_reg_map maps[$]
)

virtual function void get_registers (
 ref uvm_reg regs[$],
 input uvm_hier_e hier = UVM_HIER
)

virtual function void get_fields (
 ref uvm_reg_field fields[$],
 input uvm_hier_e hier = UVM_HIER
)

UVM 1.2 Class Reference 562

includes the fields of the registers in the sub-blocks.

get_memories

Get the memories

Get the memories instantiated in this block. If hier is TRUE, recursively includes the
memories in the sub-blocks.

Note that memories may be located in different and/or multiple address maps. To get
the memories in a specific address map, use the uvm_reg_map::get_memories()
method.

get_virtual_registers

Get the virtual registers

Get the virtual registers instantiated in this block. If hier is TRUE, recursively includes
the virtual registers in the sub-blocks.

get_virtual_fields

Get the virtual fields

Get the virtual fields from the virtual registers instantiated in this block. If hier is TRUE,
recursively includes the virtual fields in the virtual registers in the sub-blocks.

get_block_by_name

Finds a sub-block with the specified simple name.

The name is the simple name of the block, not a hierarchical name. relative to this
block. If no block with that name is found in this block, the sub-blocks are searched for
a block of that name and the first one to be found is returned.

If no blocks are found, returns null.

virtual function void get_memories (
 ref uvm_mem mems[$],
 input uvm_hier_e hier = UVM_HIER
)

virtual function void get_virtual_registers(
 ref uvm_vreg regs[$],
 input uvm_hier_e hier = UVM_HIER
)

virtual function void get_virtual_fields (
 ref uvm_vreg_field fields[$],
 input uvm_hier_e hier = UVM_HIER
)

virtual function uvm_reg_block get_block_by_name (
 string name
)

UVM 1.2 Class Reference 563

get_map_by_name

Finds an address map with the specified simple name.

The name is the simple name of the address map, not a hierarchical name. relative to
this block. If no map with that name is found in this block, the sub-blocks are searched
for a map of that name and the first one to be found is returned.

If no address maps are found, returns null.

get_reg_by_name

Finds a register with the specified simple name.

The name is the simple name of the register, not a hierarchical name. relative to this
block. If no register with that name is found in this block, the sub-blocks are searched
for a register of that name and the first one to be found is returned.

If no registers are found, returns null.

get_field_by_name

Finds a field with the specified simple name.

The name is the simple name of the field, not a hierarchical name. relative to this block.
If no field with that name is found in this block, the sub-blocks are searched for a field
of that name and the first one to be found is returned.

If no fields are found, returns null.

get_mem_by_name

Finds a memory with the specified simple name.

The name is the simple name of the memory, not a hierarchical name. relative to this
block. If no memory with that name is found in this block, the sub-blocks are searched
for a memory of that name and the first one to be found is returned.

If no memories are found, returns null.

get_vreg_by_name

virtual function uvm_reg_map get_map_by_name (
 string name
)

virtual function uvm_reg get_reg_by_name (
 string name
)

virtual function uvm_reg_field get_field_by_name (
 string name
)

virtual function uvm_mem get_mem_by_name (
 string name
)

UVM 1.2 Class Reference 564

Finds a virtual register with the specified simple name.

The name is the simple name of the virtual register, not a hierarchical name. relative to
this block. If no virtual register with that name is found in this block, the sub-blocks are
searched for a virtual register of that name and the first one to be found is returned.

If no virtual registers are found, returns null.

get_vfield_by_name

Finds a virtual field with the specified simple name.

The name is the simple name of the virtual field, not a hierarchical name. relative to this
block. If no virtual field with that name is found in this block, the sub-blocks are
searched for a virtual field of that name and the first one to be found is returned.

If no virtual fields are found, returns null.

COVERAGE

build_coverage

Check if all of the specified coverage model must be built.

Check which of the specified coverage model must be built in this instance of the block
abstraction class, as specified by calls to uvm_reg::include_coverage().

Models are specified by adding the symbolic value of individual coverage model as
defined in uvm_coverage_model_e. Returns the sum of all coverage models to be built
in the block model.

add_coverage

Specify that additional coverage models are available.

Add the specified coverage model to the coverage models available in this class. Models
are specified by adding the symbolic value of individual coverage model as defined in
uvm_coverage_model_e.

virtual function uvm_vreg get_vreg_by_name (
 string name
)

virtual function uvm_vreg_field get_vfield_by_name (
 string name
)

protected function uvm_reg_cvr_t build_coverage(
 uvm_reg_cvr_t models
)

virtual protected function void add_coverage(
 uvm_reg_cvr_t models
)

UVM 1.2 Class Reference 565

This method shall be called only in the constructor of subsequently derived classes.

has_coverage

Check if block has coverage model(s)

Returns TRUE if the block abstraction class contains a coverage model for all of the
models specified. Models are specified by adding the symbolic value of individual
coverage model as defined in uvm_coverage_model_e.

set_coverage

Turns on coverage measurement.

Turns the collection of functional coverage measurements on or off for this block and all
blocks, registers, fields and memories within it. The functional coverage measurement is
turned on for every coverage model specified using uvm_coverage_model_e symbolic
identifiers. Multiple functional coverage models can be specified by adding the functional
coverage model identifiers. All other functional coverage models are turned off. Returns
the sum of all functional coverage models whose measurements were previously on.

This method can only control the measurement of functional coverage models that are
present in the various abstraction classes, then enabled during construction. See the
uvm_reg_block::has_coverage() method to identify the available functional coverage
models.

get_coverage

Check if coverage measurement is on.

Returns TRUE if measurement for all of the specified functional coverage models are
currently on. Multiple functional coverage models can be specified by adding the
functional coverage model identifiers.

See uvm_reg_block::set_coverage() for more details.

sample

Functional coverage measurement method

virtual function bit has_coverage(
 uvm_reg_cvr_t models
)

virtual function uvm_reg_cvr_t set_coverage(
 uvm_reg_cvr_t is_on
)

virtual function bit get_coverage(
 uvm_reg_cvr_t is_on = UVM_CVR_ALL
)

protected virtual function void sample(
 uvm_reg_addr_t offset,
 bit is_read,
 uvm_reg_map map
)

UVM 1.2 Class Reference 566

This method is invoked by the block abstraction class whenever an address within one of
its address map is successfully read or written. The specified offset is the offset within
the block, not an absolute address.

Empty by default, this method may be extended by the abstraction class generator to
perform the required sampling in any provided functional coverage model.

sample_values

Functional coverage measurement method for field values

This method is invoked by the user or by the uvm_reg_block::sample_values() method of
the parent block to trigger the sampling of the current field values in the block-level
functional coverage model. It recursively invokes the uvm_reg_block::sample_values()
and uvm_reg::sample_values() methods in the blocks and registers in this block.

This method may be extended by the abstraction class generator to perform the required
sampling in any provided field-value functional coverage model. If this method is
extended, it MUST call super.sample_values().

AccEss

get_default_path

Default access path

Returns the default access path for this block.

reset

Reset the mirror for this block.

Sets the mirror value of all registers in the block and sub-blocks to the reset value
corresponding to the specified reset event. See uvm_reg_field::reset() for more details.
Does not actually set the value of the registers in the design, only the values mirrored in
their corresponding mirror.

needs_update

Check if DUT registers need to be written

If a mirror value has been modified in the abstraction model without actually updating

virtual function void sample_values()

virtual function uvm_path_e get_default_path()

virtual function void reset(
 string kind = "HARD"
)

virtual function bit needs_update()

UVM 1.2 Class Reference 567

the actual register (either through randomization or via the uvm_reg::set() method, the
mirror and state of the registers are outdated. The corresponding registers in the DUT
need to be updated.

This method returns TRUE if the state of at least one register in the block or sub-blocks
needs to be updated to match the mirrored values. The mirror values, or actual content
of registers, are not modified. For additional information, see uvm_reg_block::update()
method.

update

Batch update of register.

Using the minimum number of write operations, updates the registers in the design to
match the mirrored values in this block and sub-blocks. The update can be performed
using the physical interfaces (front-door access) or back-door accesses. This method
performs the reverse operation of uvm_reg_block::mirror().

mirror

Update the mirrored values

Read all of the registers in this block and sub-blocks and update their mirror values to
match their corresponding values in the design. The mirroring can be performed using
the physical interfaces (front-door access) or back-door accesses. If the check argument
is specified as UVM_CHECK, an error message is issued if the current mirrored value
does not match the actual value in the design. This method performs the reverse
operation of uvm_reg_block::update().

write_reg_by_name

virtual task update(
 output uvm_status_e status,
 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_sequence_base parent = null,
 input int prior = -1,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

virtual task mirror(
 output uvm_status_e status,
 input uvm_check_e check = UVM_NO_CHECK,
 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_sequence_base parent = null,
 input int prior = -1,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

virtual task write_reg_by_name(
 output uvm_status_e status,
 input string name,
 input uvm_reg_data_t data,
 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_reg_map map = null,
 input uvm_sequence_base parent = null,
 input int prior = -1,
 input uvm_object extension = null,
 input string fname = "",

UVM 1.2 Class Reference 568

Write the named register

Equivalent to get_reg_by_name() followed by uvm_reg::write()

read_reg_by_name

Read the named register

Equivalent to get_reg_by_name() followed by uvm_reg::read()

write_mem_by_name

Write the named memory

Equivalent to get_mem_by_name() followed by uvm_mem::write()

read_mem_by_name

Read the named memory

Equivalent to get_mem_by_name() followed by uvm_mem::read()

 input int lineno = 0
)

virtual task read_reg_by_name(
 output uvm_status_e status,
 input string name,
 output uvm_reg_data_t data,
 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_reg_map map = null,
 input uvm_sequence_base parent = null,
 input int prior = -1,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

virtual task write_mem_by_name(
 output uvm_status_e status,
 input string name,
 input uvm_reg_addr_t offset,
 input uvm_reg_data_t data,
 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_reg_map map = null,
 input uvm_sequence_base parent = null,
 input int prior = -1,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

virtual task read_mem_by_name(
 output uvm_status_e status,
 input string name,
 input uvm_reg_addr_t offset,
 output uvm_reg_data_t data,
 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_reg_map map = null,
 input uvm_sequence_base parent = null,
 input int prior = -1,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

UVM 1.2 Class Reference 569

BAcKdOOR

get_backdoor

Get the user-defined backdoor for all registers in this block

Return the user-defined backdoor for all register in this block and all sub-blocks -- unless
overridden by a backdoor set in a lower-level block or in the register itself.

If inherited is TRUE, returns the backdoor of the parent block if none have been specified
for this block.

set_backdoor

Set the user-defined backdoor for all registers in this block

Defines the backdoor mechanism for all registers instantiated in this block and sub-
blocks, unless overridden by a definition in a lower-level block or register.

clear_hdl_path

Delete HDL paths

Remove any previously specified HDL path to the block instance for the specified design
abstraction.

add_hdl_path

Add an HDL path

Add the specified HDL path to the block instance for the specified design abstraction.
This method may be called more than once for the same design abstraction if the block
is physically duplicated in the design abstraction

function uvm_reg_backdoor get_backdoor(
 bit inherited = 1
)

function void set_backdoor (
 uvm_reg_backdoor bkdr,
 string fname = "",
 int lineno = 0
)

function void clear_hdl_path (
 string kind = "RTL"
)

function void add_hdl_path (
 string path,
 string kind = "RTL"
)

UVM 1.2 Class Reference 570

has_hdl_path

Check if a HDL path is specified

Returns TRUE if the block instance has a HDL path defined for the specified design
abstraction. If no design abstraction is specified, uses the default design abstraction
specified for this block or the nearest block ancestor with a specified default design
abstraction.

get_hdl_path

Get the incremental HDL path(s)

Returns the HDL path(s) defined for the specified design abstraction in the block
instance. Returns only the component of the HDL paths that corresponds to the block,
not a full hierarchical path

If no design abstraction is specified, the default design abstraction for this block is used.

get_full_hdl_path

Get the full hierarchical HDL path(s)

Returns the full hierarchical HDL path(s) defined for the specified design abstraction in
the block instance. There may be more than one path returned even if only one path
was defined for the block instance, if any of the parent components have more than one
path defined for the same design abstraction

If no design abstraction is specified, the default design abstraction for each ancestor
block is used to get each incremental path.

set_default_hdl_path

Set the default design abstraction

Set the default design abstraction for this block instance.

get_default_hdl_path

function bit has_hdl_path (
 string kind = ""
)

function void get_hdl_path (
 ref string paths[$],
 input string kind = ""
)

function void get_full_hdl_path (
 ref string paths[$],
 input string kind = "",
 string separator = "."
)

function void set_default_hdl_path (
 string kind
)

UVM 1.2 Class Reference 571

Get the default design abstraction

Returns the default design abstraction for this block instance. If a default design
abstraction has not been explicitly set for this block instance, returns the default design
abstraction for the nearest block ancestor. Returns “” if no default design abstraction
has been specified.

set_hdl_path_root

Specify a root HDL path

Set the specified path as the absolute HDL path to the block instance for the specified
design abstraction. This absolute root path is prepended to all hierarchical paths under
this block. The HDL path of any ancestor block is ignored. This method overrides any
incremental path for the same design abstraction specified using add_hdl_path.

is_hdl_path_root

Check if this block has an absolute path

Returns TRUE if an absolute HDL path to the block instance for the specified design
abstraction has been defined. If no design abstraction is specified, the default design
abstraction for this block is used.

function string get_default_hdl_path ()

function void set_hdl_path_root (
 string path,
 string kind = "RTL"
)

function bit is_hdl_path_root (
 string kind = ""
)

UVM 1.2 Class Reference 572

25.2 uvm_reg_transaction_order_policy

Contents

uvm_reg_transaction_order_policy
uvm_reg_map

METHODS

order

the order() function may reorder the sequence of bus transactions produced by a single
uvm_reg transaction (read/write). This can be used in scenarios when the register width
differs from the bus width and one register access results in a series of bus transactions.
the first item (0) of the queue will be the first bus transaction (the last($) will be the
final transaction

uvm_reg_map

This class represents an address map. An address map is a collection of registers and
memories accessible via a specific physical interface. Address maps can be composed
into higher-level address maps.

Address maps are created using the uvm_reg_block::create_map() method.

Summary

uvm_reg_map

CLASS HIERARcHY

uvm_void

uvm_object

uvm_reg_map

CLASS DEcLARATION

pure virtual function void order(
 ref uvm_reg_bus_op q[$]
)

Address map abstraction class

class uvm_reg_map extends uvm_object

UVM 1.2 Class Reference 573

backdoor Return the backdoor pseudo-map singleton
INITIALIZATION

new Create a new instance
configure Instance-specific configuration
add_reg Add a register
add_mem Add a memory
add_submap Add an address map
set_sequencer Set the sequencer and adapter associated

with this map.
set_submap_offset Set the offset of the given submap to offset.
get_submap_offset Return the offset of the given submap.
set_base_addr Set the base address of this map.
reset Reset the mirror for all registers in this

address map.
INTROSPEcTION

get_name Get the simple name
get_full_name Get the hierarchical name
get_root_map Get the externally-visible address map
get_parent Get the parent block
get_parent_map Get the higher-level address map
get_base_addr Get the base offset address for this map.
get_n_bytes Get the width in bytes of the bus associated

with this map.
get_addr_unit_bytes Get the number of bytes in the smallest

addressable unit in the map.
get_base_addr Gets the endianness of the bus associated

with this map.
get_sequencer Gets the sequencer for the bus associated

with this map.
get_adapter Gets the bus adapter for the bus associated

with this map.
get_submaps Get the address sub-maps
get_registers Get the registers
get_fields Get the fields
get_virtual_registers Get the virtual registers
get_virtual_fields Get the virtual fields
get_physical_addresses Translate a local address into external

addresses
get_reg_by_offset Get register mapped at offset
get_mem_by_offset Get memory mapped at offset

BUS AccESS

set_auto_predict Sets the auto-predict mode for his map.
get_auto_predict Gets the auto-predict mode setting for this

map.
set_check_on_read Sets the check-on-read mode for his map

and all of its submaps.
get_check_on_read Gets the check-on-read mode setting for this

map.
do_bus_write Perform a bus write operation.
do_bus_read Perform a bus read operation.
do_write Perform a write operation.
do_read Perform a read operation.
set_transaction_order_policy set the transaction order policy
get_transaction_order_policy set the transaction order policy

backdoor

Return the backdoor pseudo-map singleton

This pseudo-map is used to specify or configure the backdoor instead of a real address

static function uvm_reg_map backdoor()

UVM 1.2 Class Reference 574

map.

INITIALIZATION

new

Create a new instance

configure

Instance-specific configuration

Configures this map with the following properties.

parent the block in which this map is created and applied
base_addr the base address for this map. All registers, memories, and

sub-blocks will be at offsets to this address
n_bytes the byte-width of the bus on which this map is used
endian the endian format. See uvm_endianness_e for possible

values
byte_addressing specifies whether the address increment is on a per-byte

basis. For example, consecutive memory locations with
~n_bytes~=4 (32-bit bus) are 4 apart: 0, 4, 8, and so on.
Default is TRUE.

add_reg

Add a register

Add the specified register instance rg to this address map.

The register is located at the specified address offset from this maps configured base
address.

The rights specify the register’s accessibility via this map. Valid values are “RW”, “RO”,
and “WO”. Whether a register field can be read or written depends on both the field’s

function new(
 string name = "uvm_reg_map"
)

function void configure(
 uvm_reg_block parent,
 uvm_reg_addr_t base_addr,
 int unsigned n_bytes,
 uvm_endianness_e endian,
 bit byte_addressing = 1
)

virtual function void add_reg (
 uvm_reg rg,
 uvm_reg_addr_t offset,
 string rights = "RW",
 bit unmapped = 0,
 uvm_reg_frontdoor frontdoor = null
)

UVM 1.2 Class Reference 575

configured access policy (see uvm_reg_field::configure and the register’s rights in the
map being used to access the field.

The number of consecutive physical addresses occupied by the register depends on the
width of the register and the number of bytes in the physical interface corresponding to
this address map.

If unmapped is TRUE, the register does not occupy any physical addresses and the base
address is ignored. Unmapped registers require a user-defined frontdoor to be specified.

A register may be added to multiple address maps if it is accessible from multiple
physical interfaces. A register may only be added to an address map whose parent block
is the same as the register’s parent block.

add_mem

Add a memory

Add the specified memory instance to this address map. The memory is located at the
specified base address and has the specified access rights (“RW”, “RO” or “WO”). The
number of consecutive physical addresses occupied by the memory depends on the width
and size of the memory and the number of bytes in the physical interface corresponding
to this address map.

If unmapped is TRUE, the memory does not occupy any physical addresses and the base
address is ignored. Unmapped memories require a user-defined frontdoor to be
specified.

A memory may be added to multiple address maps if it is accessible from multiple
physical interfaces. A memory may only be added to an address map whose parent
block is the same as the memory’s parent block.

add_submap

Add an address map

Add the specified address map instance to this address map. The address map is located
at the specified base address. The number of consecutive physical addresses occupied by
the submap depends on the number of bytes in the physical interface that corresponds
to the submap, the number of addresses used in the submap and the number of bytes in
the physical interface corresponding to this address map.

An address map may be added to multiple address maps if it is accessible from multiple
physical interfaces. An address map may only be added to an address map in the grand-
parent block of the address submap.

virtual function void add_mem (
 uvm_mem mem,
 uvm_reg_addr_t offset,
 string rights = "RW",
 bit unmapped = 0,
 uvm_reg_frontdoor frontdoor = null
)

virtual function void add_submap (
 uvm_reg_map child_map,
 uvm_reg_addr_t offset
)

UVM 1.2 Class Reference 576

set_sequencer

Set the sequencer and adapter associated with this map. This method must be called
before starting any sequences based on uvm_reg_sequence.

set_submap_offset

Set the offset of the given submap to offset.

get_submap_offset

Return the offset of the given submap.

set_base_addr

Set the base address of this map.

reset

Reset the mirror for all registers in this address map.

Sets the mirror value of all registers in this address map and all of its submaps to the
reset value corresponding to the specified reset event. See uvm_reg_field::reset() for
more details. Does not actually set the value of the registers in the design, only the
values mirrored in their corresponding mirror.

Note that, unlike the other reset() method, the default reset event for this method is
“SOFT”.

INTROSPEcTION

virtual function void set_sequencer (
 uvm_sequencer_base sequencer,
 uvm_reg_adapter adapter = null
)

virtual function void set_submap_offset (
 uvm_reg_map submap,
 uvm_reg_addr_t offset
)

virtual function uvm_reg_addr_t get_submap_offset (
 uvm_reg_map submap
)

virtual function void set_base_addr (
 uvm_reg_addr_t offset
)

virtual function void reset(
 string kind = "SOFT"
)

UVM 1.2 Class Reference 577

get_name

Get the simple name

Return the simple object name of this address map.

get_full_name

Get the hierarchical name

Return the hierarchal name of this address map. The base of the hierarchical name is
the root block.

get_root_map

Get the externally-visible address map

Get the top-most address map where this address map is instantiated. It corresponds to
the externally-visible address map that can be accessed by the verification environment.

get_parent

Get the parent block

Return the block that is the parent of this address map.

get_parent_map

Get the higher-level address map

Return the address map in which this address map is mapped. returns null if this is a
top-level address map.

get_base_addr

Get the base offset address for this map. If this map is the root map, the base address
is that set with the base_addr argument to uvm_reg_block::create_map(). If this map is
a submap of a higher-level map, the base address is offset given this submap by the
parent map. See set_submap_offset.

virtual function string get_full_name()

virtual function uvm_reg_map get_root_map()

virtual function uvm_reg_block get_parent()

virtual function uvm_reg_map get_parent_map()

virtual function uvm_reg_addr_t get_base_addr (
 uvm_hier_e hier = UVM_HIER
)

UVM 1.2 Class Reference 578

get_n_bytes

Get the width in bytes of the bus associated with this map. If hier is UVM_HIER, then
gets the effective bus width relative to the system level. The effective bus width is the
narrowest bus width from this map to the top-level root map. Each bus access will be
limited to this bus width.

get_addr_unit_bytes

Get the number of bytes in the smallest addressable unit in the map. Returns 1 if the
address map was configured using byte-level addressing. Returns get_n_bytes()
otherwise.

get_base_addr

Gets the endianness of the bus associated with this map. If hier is set to UVM_HIER,
gets the system-level endianness.

get_sequencer

Gets the sequencer for the bus associated with this map. If hier is set to UVM_HIER,
gets the sequencer for the bus at the system-level. See set_sequencer.

get_adapter

Gets the bus adapter for the bus associated with this map. If hier is set to UVM_HIER,
gets the adapter for the bus used at the system-level. See set_sequencer.

get_submaps

Get the address sub-maps

Get the address maps instantiated in this address map. If hier is UVM_HIER, recursively
includes the address maps, in the sub-maps.

virtual function int unsigned get_n_bytes (
 uvm_hier_e hier = UVM_HIER
)

virtual function int unsigned get_addr_unit_bytes()

virtual function uvm_sequencer_base get_sequencer (
 uvm_hier_e hier = UVM_HIER
)

virtual function uvm_reg_adapter get_adapter (
 uvm_hier_e hier = UVM_HIER
)

virtual function void get_submaps (
 ref uvm_reg_map maps[$],
 input uvm_hier_e hier = UVM_HIER
)

UVM 1.2 Class Reference 579

get_registers

Get the registers

Get the registers instantiated in this address map. If hier is UVM_HIER, recursively
includes the registers in the sub-maps.

get_fields

Get the fields

Get the fields in the registers instantiated in this address map. If hier is UVM_HIER,
recursively includes the fields of the registers in the sub-maps.

get_virtual_registers

Get the virtual registers

Get the virtual registers instantiated in this address map. If hier is UVM_HIER,
recursively includes the virtual registers in the sub-maps.

get_virtual_fields

Get the virtual fields

Get the virtual fields from the virtual registers instantiated in this address map. If hier is
UVM_HIER, recursively includes the virtual fields in the virtual registers in the sub-maps.

get_physical_addresses

virtual function void get_registers (
 ref uvm_reg regs[$],
 input uvm_hier_e hier = UVM_HIER
)

virtual function void get_fields (
 ref uvm_reg_field fields[$],
 input uvm_hier_e hier = UVM_HIER
)

virtual function void get_virtual_registers (
 ref uvm_vreg regs[$],
 input uvm_hier_e hier = UVM_HIER
)

virtual function void get_virtual_fields (
 ref uvm_vreg_field fields[$],
 input uvm_hier_e hier = UVM_HIER
)

virtual function int get_physical_addresses(
 uvm_reg_addr_t base_addr,
 uvm_reg_addr_t mem_offset,
 int unsigned n_bytes,
 ref uvm_reg_addr_t addr[]
)

UVM 1.2 Class Reference 580

Translate a local address into external addresses

Identify the sequence of addresses that must be accessed physically to access the
specified number of bytes at the specified address within this address map. Returns the
number of bytes of valid data in each access.

Returns in addr a list of address in little endian order, with the granularity of the top-
level address map.

A register is specified using a base address with mem_offset as 0. A location within a
memory is specified using the base address of the memory and the index of the location
within that memory.

get_reg_by_offset

Get register mapped at offset

Identify the register located at the specified offset within this address map for the
specified type of access. Returns null if no such register is found.

The model must be locked using uvm_reg_block::lock_model() to enable this
functionality.

get_mem_by_offset

Get memory mapped at offset

Identify the memory located at the specified offset within this address map. The offset
may refer to any memory location in that memory. Returns null if no such memory is
found.

The model must be locked using uvm_reg_block::lock_model() to enable this
functionality.

BUS AccESS

set_auto_predict

Sets the auto-predict mode for his map.

When on is TRUE, the register model will automatically update its mirror (what it thinks
should be in the DUT) immediately after any bus read or write operation via this map.
Before a uvm_reg::write or uvm_reg::read operation returns, the register’s

virtual function uvm_reg get_reg_by_offset(
 uvm_reg_addr_t offset,
 bit read = 1
)

virtual function uvm_mem get_mem_by_offset(
 uvm_reg_addr_t offset
)

function void set_auto_predict(
 bit on = 1
)

UVM 1.2 Class Reference 581

uvm_reg::predict method is called to update the mirrored value in the register.

When on is FALSE, bus reads and writes via this map do not automatically update the
mirror. For real-time updates to the mirror in this mode, you connect a
uvm_reg_predictor instance to the bus monitor. The predictor takes observed bus
transactions from the bus monitor, looks up the associated uvm_reg register given the
address, then calls that register’s uvm_reg::predict method. While more complex, this
mode will capture all register read/write activity, including that not directly descendant
from calls to uvm_reg::write and uvm_reg::read.

By default, auto-prediction is turned off.

get_auto_predict

Gets the auto-predict mode setting for this map.

set_check_on_read

Sets the check-on-read mode for his map and all of its submaps.

When on is TRUE, the register model will automatically check any value read back from a
register or field against the current value in its mirror and report any discrepancy. This
effectively combines the functionality of the uvm_reg::read() and
uvm_reg::mirror(UVM_CHECK) method. This mode is useful when the register model
is used passively.

When on is FALSE, no check is made against the mirrored value.

At the end of the read operation, the mirror value is updated based on the value that
was read regardless of this mode setting.

By default, auto-prediction is turned off.

get_check_on_read

Gets the check-on-read mode setting for this map.

do_bus_write

Perform a bus write operation.

function bit get_auto_predict()

function void set_check_on_read(
 bit on = 1
)

function bit get_check_on_read()

virtual task do_bus_write (
 uvm_reg_item rw,
 uvm_sequencer_base sequencer,
 uvm_reg_adapter adapter
)

UVM 1.2 Class Reference 582

do_bus_read

Perform a bus read operation.

do_write

Perform a write operation.

do_read

Perform a read operation.

set_transaction_order_policy

set the transaction order policy

get_transaction_order_policy

set the transaction order policy

virtual task do_bus_read (
 uvm_reg_item rw,
 uvm_sequencer_base sequencer,
 uvm_reg_adapter adapter
)

virtual task do_write(
 uvm_reg_item rw
)

virtual task do_read(
 uvm_reg_item rw
)

function void set_transaction_order_policy(
 uvm_reg_transaction_order_policy pol
)

function uvm_reg_transaction_order_policy get_transaction_order_policy()

UVM 1.2 Class Reference 583

25.3 uvm_reg_file

Register file abstraction base class

A register file is a collection of register files and registers used to create regular repeated
structures.

Register files are usually instantiated as arrays.

Summary

uvm_reg_file

Register file abstraction base class

CLAss HIERARchY

uvm_void

uvm_object

uvm_reg_file

CLAss DEcLARATION

INITIALIZATION

new Create a new instance
configure Configure a register file instance

INTROsPEcTION

get_name Get the simple name
get_full_name Get the hierarchical name
get_parent Get the parent block
get_regfile Get the parent register file

BAcKdOOR

clear_hdl_path Delete HDL paths
add_hdl_path Add an HDL path
has_hdl_path Check if a HDL path is specified
get_hdl_path Get the incremental HDL path(s)
get_full_hdl_path Get the full hierarchical HDL path(s)
set_default_hdl_path Set the default design abstraction
get_default_hdl_path Get the default design abstraction

INITIALIZATION

new

Create a new instance

Creates an instance of a register file abstraction class with the specified name.

virtual class uvm_reg_file extends uvm_object

function new (
 string name = ""
)

UVM 1.2 Class Reference 584

configure

Configure a register file instance

Specify the parent block and register file of the register file instance. If the register file
is instantiated in a block, regfile_parent is specified as null. If the register file is
instantiated in a register file, blk_parent must be the block parent of that register file
and regfile_parent is specified as that register file.

If the register file corresponds to a hierarchical RTL structure, its contribution to the HDL
path is specified as the hdl_path. Otherwise, the register file does not correspond to a
hierarchical RTL structure (e.g. it is physically flattened) and does not contribute to the
hierarchical HDL path of any contained registers.

INTROsPEcTION

get_name

Get the simple name

Return the simple object name of this register file.

get_full_name

Get the hierarchical name

Return the hierarchal name of this register file. The base of the hierarchical name is the
root block.

get_parent

Get the parent block

get_regfile

Get the parent register file

Returns null if this register file is instantiated in a block.

function void configure (
 uvm_reg_block blk_parent,
 uvm_reg_file regfile_parent,
 string hdl_path = ""
)

virtual function string get_full_name()

virtual function uvm_reg_block get_parent ()

virtual function uvm_reg_file get_regfile ()

UVM 1.2 Class Reference 585

BAcKdOOR

clear_hdl_path

Delete HDL paths

Remove any previously specified HDL path to the register file instance for the specified
design abstraction.

add_hdl_path

Add an HDL path

Add the specified HDL path to the register file instance for the specified design
abstraction. This method may be called more than once for the same design abstraction
if the register file is physically duplicated in the design abstraction

has_hdl_path

Check if a HDL path is specified

Returns TRUE if the register file instance has a HDL path defined for the specified design
abstraction. If no design abstraction is specified, uses the default design abstraction
specified for the nearest enclosing register file or block

If no design abstraction is specified, the default design abstraction for this register file is
used.

get_hdl_path

Get the incremental HDL path(s)

Returns the HDL path(s) defined for the specified design abstraction in the register file
instance. If no design abstraction is specified, uses the default design abstraction
specified for the nearest enclosing register file or block. Returns only the component of
the HDL paths that corresponds to the register file, not a full hierarchical path

If no design abstraction is specified, the default design abstraction for this register file is

function void clear_hdl_path (
 string kind = "RTL"
)

function void add_hdl_path (
 string path,
 string kind = "RTL"
)

function bit has_hdl_path (
 string kind = ""
)

function void get_hdl_path (
 ref string paths[$],
 input string kind = ""
)

UVM 1.2 Class Reference 586

used.

get_full_hdl_path

Get the full hierarchical HDL path(s)

Returns the full hierarchical HDL path(s) defined for the specified design abstraction in
the register file instance. If no design abstraction is specified, uses the default design
abstraction specified for the nearest enclosing register file or block. There may be more
than one path returned even if only one path was defined for the register file instance, if
any of the parent components have more than one path defined for the same design
abstraction

If no design abstraction is specified, the default design abstraction for each ancestor
register file or block is used to get each incremental path.

set_default_hdl_path

Set the default design abstraction

Set the default design abstraction for this register file instance.

get_default_hdl_path

Get the default design abstraction

Returns the default design abstraction for this register file instance. If a default design
abstraction has not been explicitly set for this register file instance, returns the default
design abstraction for the nearest register file or block ancestor. Returns “” if no default
design abstraction has been specified.

function void get_full_hdl_path (
 ref string paths[$],
 input string kind = "",
 input string separator = "."
)

function void set_default_hdl_path (
 string kind
)

function string get_default_hdl_path ()

UVM 1.2 Class Reference 587

25.4 uvm_reg

Register abstraction base class

A register represents a set of fields that are accessible as a single entity.

A register may be mapped to one or more address maps, each with different access
rights and policy.

Summary

uvm_reg

Register abstraction base class

CLAss HIERARchY

uvm_void

uvm_object

uvm_reg

CLAss DEcLARATION

INITIALIZATION

new Create a new instance and type-specific configuration
configure Instance-specific configuration
set_offset Modify the offset of the register

INTROsPEcTION

get_name Get the simple name
get_full_name Get the hierarchical name
get_parent Get the parent block
get_regfile Get the parent register file
get_n_maps Returns the number of address maps this register is

mapped in
is_in_map Returns 1 if this register is in the specified address

map
get_maps Returns all of the address maps where this register is

mapped
get_rights Returns the accessibility (“RW, “RO”, or “WO”) of this

register in the given map.
get_n_bits Returns the width, in bits, of this register.
get_n_bytes Returns the width, in bytes, of this register.
get_max_size Returns the maximum width, in bits, of all registers.
get_fields Return the fields in this register
get_field_by_name Return the named field in this register
get_offset Returns the offset of this register
get_address Returns the base external physical address of this

register
get_addresses Identifies the external physical address(es) of this

register
AccEss

set Set the desired value for this register
get Return the desired value of the fields in the register.
get_mirrored_value Return the mirrored value of the fields in the register.
needs_update Returns 1 if any of the fields need updating
reset Reset the desired/mirrored value for this register.
get_reset Get the specified reset value for this register
has_reset Check if any field in the register has a reset value

specified for the specified reset kind.

virtual class uvm_reg extends uvm_object

UVM 1.2 Class Reference 588

set_reset Specify or modify the reset value for this register
write Write the specified value in this register
read Read the current value from this register
poke Deposit the specified value in this register
peek Read the current value from this register
update Updates the content of the register in the design to

match the desired value
mirror Read the register and update/check its mirror value
predict Update the mirrored and desired value for this

register.
is_busy Returns 1 if register is currently being read or written.

FRONTdOOR

set_frontdoor Set a user-defined frontdoor for this register
get_frontdoor Returns the user-defined frontdoor for this register

BAcKdOOR

set_backdoor Set a user-defined backdoor for this register
get_backdoor Returns the user-defined backdoor for this register
clear_hdl_path Delete HDL paths
add_hdl_path Add an HDL path
add_hdl_path_slice Append the specified HDL slice to the HDL path of the

register instance for the specified design abstraction.
has_hdl_path Check if a HDL path is specified
get_hdl_path Get the incremental HDL path(s)
get_hdl_path_kinds Get design abstractions for which HDL paths have

been defined
get_full_hdl_path Get the full hierarchical HDL path(s)
backdoor_read User-define backdoor read access
backdoor_write User-defined backdoor read access
backdoor_read_func User-defined backdoor read access
backdoor_watch User-defined DUT register change monitor

COVERAGE

include_coverage Specify which coverage model that must be included
in various block, register or memory abstraction class
instances.

build_coverage Check if all of the specified coverage models must be
built.

add_coverage Specify that additional coverage models are available.
has_coverage Check if register has coverage model(s)
set_coverage Turns on coverage measurement.
get_coverage Check if coverage measurement is on.
sample Functional coverage measurement method
sample_values Functional coverage measurement method for field

values
CALLbAcKs

pre_write Called before register write.
post_write Called after register write.
pre_read Called before register read.
post_read Called after register read.

INITIALIZATION

new

Create a new instance and type-specific configuration

function new (
 string name = "",
 int unsigned n_bits,
 int has_coverage
)

UVM 1.2 Class Reference 589

Creates an instance of a register abstraction class with the specified name.

n_bits specifies the total number of bits in the register. Not all bits need to be
implemented. This value is usually a multiple of 8.

has_coverage specifies which functional coverage models are present in the extension of
the register abstraction class. Multiple functional coverage models may be specified by
adding their symbolic names, as defined by the uvm_coverage_model_e type.

configure

Instance-specific configuration

Specify the parent block of this register. May also set a parent register file for this
register,

If the register is implemented in a single HDL variable, its name is specified as the
hdl_path. Otherwise, if the register is implemented as a concatenation of variables
(usually one per field), then the HDL path must be specified using the add_hdl_path() or
add_hdl_path_slice method.

set_offset

Modify the offset of the register

The offset of a register within an address map is set using the uvm_reg_map::add_reg()
method. This method is used to modify that offset dynamically.

Modifying the offset of a register will make the register model diverge from the
specification that was used to create it.

INTROsPEcTION

get_name

Get the simple name

Return the simple object name of this register.

get_full_name

function void configure (
 uvm_reg_block blk_parent,
 uvm_reg_file regfile_parent = null,
 string hdl_path = ""
)

virtual function void set_offset (
 uvm_reg_map map,
 uvm_reg_addr_t offset,
 bit unmapped = 0
)

virtual function string get_full_name()

UVM 1.2 Class Reference 590

Get the hierarchical name

Return the hierarchal name of this register. The base of the hierarchical name is the
root block.

get_parent

Get the parent block

get_regfile

Get the parent register file

Returns null if this register is instantiated in a block.

get_n_maps

Returns the number of address maps this register is mapped in

is_in_map

Returns 1 if this register is in the specified address map

get_maps

Returns all of the address maps where this register is mapped

get_rights

Returns the accessibility (“RW, “RO”, or “WO”) of this register in the given map.

If no address map is specified and the register is mapped in only one address map, that
address map is used. If the register is mapped in more than one address map, the

virtual function uvm_reg_block get_parent ()

virtual function uvm_reg_file get_regfile ()

virtual function int get_n_maps ()

function bit is_in_map (
 uvm_reg_map map
)

virtual function void get_maps (
 ref uvm_reg_map maps[$]
)

virtual function string get_rights (
 uvm_reg_map map = null
)

UVM 1.2 Class Reference 591

default address map of the parent block is used.

Whether a register field can be read or written depends on both the field’s configured
access policy (refer to uvm_reg_field::configure) and the register’s accessibility rights in
the map being used to access the field.

If an address map is specified and the register is not mapped in the specified address
map, an error message is issued and “RW” is returned.

get_n_bits

Returns the width, in bits, of this register.

get_n_bytes

Returns the width, in bytes, of this register. Rounds up to next whole byte if register is
not a multiple of 8.

get_max_size

Returns the maximum width, in bits, of all registers.

get_fields

Return the fields in this register

Fills the specified array with the abstraction class for all of the fields contained in this
register. Fields are ordered from least-significant position to most-significant position
within the register.

get_field_by_name

Return the named field in this register

Finds a field with the specified name in this register and returns its abstraction class. If
no fields are found, returns null.

get_offset

virtual function int unsigned get_n_bits ()

virtual function int unsigned get_n_bytes()

static function int unsigned get_max_size()

virtual function void get_fields (
 ref uvm_reg_field fields[$]
)

virtual function uvm_reg_field get_field_by_name(
 string name
)

UVM 1.2 Class Reference 592

Returns the offset of this register

Returns the offset of this register in an address map.

If no address map is specified and the register is mapped in only one address map, that
address map is used. If the register is mapped in more than one address map, the
default address map of the parent block is used.

If an address map is specified and the register is not mapped in the specified address
map, an error message is issued.

get_address

Returns the base external physical address of this register

Returns the base external physical address of this register if accessed through the
specified address map.

If no address map is specified and the register is mapped in only one address map, that
address map is used. If the register is mapped in more than one address map, the
default address map of the parent block is used.

If an address map is specified and the register is not mapped in the specified address
map, an error message is issued.

get_addresses

Identifies the external physical address(es) of this register

Computes all of the external physical addresses that must be accessed to completely
read or write this register. The addressed are specified in little endian order. Returns
the number of bytes transferred on each access.

If no address map is specified and the register is mapped in only one address map, that
address map is used. If the register is mapped in more than one address map, the
default address map of the parent block is used.

If an address map is specified and the register is not mapped in the specified address
map, an error message is issued.

AccEss

virtual function uvm_reg_addr_t get_offset (
 uvm_reg_map map = null
)

virtual function uvm_reg_addr_t get_address (
 uvm_reg_map map = null
)

virtual function int get_addresses (
 uvm_reg_map map = null,
 ref uvm_reg_addr_t addr[]
)

UVM 1.2 Class Reference 593

set

Set the desired value for this register

Sets the desired value of the fields in the register to the specified value. Does not
actually set the value of the register in the design, only the desired value in its
corresponding abstraction class in the RegModel model. Use the uvm_reg::update()
method to update the actual register with the mirrored value or the uvm_reg::write()
method to set the actual register and its mirrored value.

Unless this method is used, the desired value is equal to the mirrored value.

Refer uvm_reg_field::set() for more details on the effect of setting mirror values on
fields with different access policies.

To modify the mirrored field values to a specific value, and thus use the mirrored as a
scoreboard for the register values in the DUT, use the uvm_reg::predict() method.

get

Return the desired value of the fields in the register.

Does not actually read the value of the register in the design, only the desired value in
the abstraction class. Unless set to a different value using the uvm_reg::set(), the
desired value and the mirrored value are identical.

Use the uvm_reg::read() or uvm_reg::peek() method to get the actual register value.

If the register contains write-only fields, the desired/mirrored value for those fields are
the value last written and assumed to reside in the bits implementing these fields.
Although a physical read operation would something different for these fields, the
returned value is the actual content.

get_mirrored_value

Return the mirrored value of the fields in the register.

Does not actually read the value of the register in the design

If the register contains write-only fields, the desired/mirrored value for those fields are
the value last written and assumed to reside in the bits implementing these fields.
Although a physical read operation would something different for these fields, the
returned value is the actual content.

virtual function void set (
 uvm_reg_data_t value,
 string fname = "",
 int lineno = 0
)

virtual function uvm_reg_data_t get(
 string fname = "",
 int lineno = 0
)

virtual function uvm_reg_data_t get_mirrored_value(
 string fname = "",
 int lineno = 0
)

UVM 1.2 Class Reference 594

needs_update

Returns 1 if any of the fields need updating

See uvm_reg_field::needs_update() for details. Use the uvm_reg::update() to actually
update the DUT register.

reset

Reset the desired/mirrored value for this register.

Sets the desired and mirror value of the fields in this register to the reset value for the
specified reset kind. See uvm_reg_field.reset() for more details.

Also resets the semaphore that prevents concurrent access to the register. This
semaphore must be explicitly reset if a thread accessing this register array was killed in
before the access was completed

get_reset

Get the specified reset value for this register

Return the reset value for this register for the specified reset kind.

has_reset

Check if any field in the register has a reset value specified for the specified reset kind.
If delete is TRUE, removes the reset value, if any.

set_reset

Specify or modify the reset value for this register

Specify or modify the reset value for all the fields in the register corresponding to the
cause specified by kind.

virtual function bit needs_update()

virtual function void reset(
 string kind = "HARD"
)

virtual function uvm_reg_data_t get_reset(
 string kind = "HARD"
)

virtual function bit has_reset(
 string kind = "HARD",
 bit delete = 0
)

virtual function void set_reset(
 uvm_reg_data_t value,
 string kind = "HARD"
)

UVM 1.2 Class Reference 595

write

Write the specified value in this register

Write value in the DUT register that corresponds to this abstraction class instance using
the specified access path. If the register is mapped in more than one address map, an
address map must be specified if a physical access is used (front-door access). If a
back-door access path is used, the effect of writing the register through a physical
access is mimicked. For example, read-only bits in the registers will not be written.

The mirrored value will be updated using the uvm_reg::predict() method.

read

Read the current value from this register

Read and return value from the DUT register that corresponds to this abstraction class
instance using the specified access path. If the register is mapped in more than one
address map, an address map must be specified if a physical access is used (front-door
access). If a back-door access path is used, the effect of reading the register through a
physical access is mimicked. For example, clear-on-read bits in the registers will be set
to zero.

The mirrored value will be updated using the uvm_reg::predict() method.

poke

Deposit the specified value in this register

virtual task write(
 output uvm_status_e status,
 input uvm_reg_data_t value,
 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_reg_map map = null,
 input uvm_sequence_base parent = null,
 input int prior = -1,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

virtual task read(
 output uvm_status_e status,
 output uvm_reg_data_t value,
 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_reg_map map = null,
 input uvm_sequence_base parent = null,
 input int prior = -1,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

virtual task poke(
 output uvm_status_e status,
 input uvm_reg_data_t value,
 input string kind = "",
 input uvm_sequence_base parent = null,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

UVM 1.2 Class Reference 596

Deposit the value in the DUT register corresponding to this abstraction class instance, as-
is, using a back-door access.

Uses the HDL path for the design abstraction specified by kind.

The mirrored value will be updated using the uvm_reg::predict() method.

peek

Read the current value from this register

Sample the value in the DUT register corresponding to this abstraction class instance
using a back-door access. The register value is sampled, not modified.

Uses the HDL path for the design abstraction specified by kind.

The mirrored value will be updated using the uvm_reg::predict() method.

update

Updates the content of the register in the design to match the desired value

This method performs the reverse operation of uvm_reg::mirror(). Write this register if
the DUT register is out-of-date with the desired/mirrored value in the abstraction class,
as determined by the uvm_reg::needs_update() method.

The update can be performed using the using the physical interfaces (frontdoor) or
uvm_reg::poke() (backdoor) access. If the register is mapped in multiple address maps
and physical access is used (front-door), an address map must be specified.

mirror

virtual task peek(
 output uvm_status_e status,
 output uvm_reg_data_t value,
 input string kind = "",
 input uvm_sequence_base parent = null,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

virtual task update(
 output uvm_status_e status,
 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_reg_map map = null,
 input uvm_sequence_base parent = null,
 input int prior = -1,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

virtual task mirror(
 output uvm_status_e status,
 input uvm_check_e check = UVM_NO_CHECK,
 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_reg_map map = null,
 input uvm_sequence_base parent = null,
 input int prior = -1,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0

UVM 1.2 Class Reference 597

Read the register and update/check its mirror value

Read the register and optionally compared the readback value with the current mirrored
value if check is UVM_CHECK. The mirrored value will be updated using the
uvm_reg::predict() method based on the readback value.

The mirroring can be performed using the physical interfaces (frontdoor) or
uvm_reg::peek() (backdoor).

If check is specified as UVM_CHECK, an error message is issued if the current mirrored
value does not match the readback value. Any field whose check has been disabled with
uvm_reg_field::set_compare() will not be considered in the comparison.

If the register is mapped in multiple address maps and physical access is used (front-
door access), an address map must be specified. If the register contains write-only
fields, their content is mirrored and optionally checked only if a UVM_BACKDOOR access
path is used to read the register.

predict

Update the mirrored and desired value for this register.

Predict the mirror (and desired) value of the fields in the register based on the specified
observed value on a specified address map, or based on a calculated value. See
uvm_reg_field::predict() for more details.

Returns TRUE if the prediction was successful for each field in the register.

is_busy

Returns 1 if register is currently being read or written.

FRONTdOOR

set_frontdoor

)

virtual function bit predict (
 uvm_reg_data_t value,
 uvm_reg_byte_en_t be = -1,
 uvm_predict_e kind = UVM_PREDICT_DIRECT,
 uvm_path_e path = UVM_FRONTDOOR,
 uvm_reg_map map = null,
 string fname = "",
 int lineno = 0
)

function bit is_busy()

function void set_frontdoor(
 uvm_reg_frontdoor ftdr,
 uvm_reg_map map = null,
 string fname = "",
 int lineno = 0
)

UVM 1.2 Class Reference 598

Set a user-defined frontdoor for this register

By default, registers are mapped linearly into the address space of the address maps that
instantiate them. If registers are accessed using a different mechanism, a user-defined
access mechanism must be defined and associated with the corresponding register
abstraction class

If the register is mapped in multiple address maps, an address map must be specified.

get_frontdoor

Returns the user-defined frontdoor for this register

If null, no user-defined frontdoor has been defined. A user-defined frontdoor is defined
by using the uvm_reg::set_frontdoor() method.

If the register is mapped in multiple address maps, an address map must be specified.

BAcKdOOR

set_backdoor

Set a user-defined backdoor for this register

By default, registers are accessed via the built-in string-based DPI routines if an HDL
path has been specified using the uvm_reg::configure() or uvm_reg::add_hdl_path()
method.

If this default mechanism is not suitable (e.g. because the register is not implemented in
pure SystemVerilog) a user-defined access mechanism must be defined and associated
with the corresponding register abstraction class

A user-defined backdoor is required if active update of the mirror of this register
abstraction class, based on observed changes of the corresponding DUT register, is used.

get_backdoor

Returns the user-defined backdoor for this register

If null, no user-defined backdoor has been defined. A user-defined backdoor is defined
by using the uvm_reg::set_backdoor() method.

function uvm_reg_frontdoor get_frontdoor(
 uvm_reg_map map = null
)

function void set_backdoor(
 uvm_reg_backdoor bkdr,
 string fname = "",
 int lineno = 0
)

function uvm_reg_backdoor get_backdoor(
 bit inherited = 1
)

UVM 1.2 Class Reference 599

If inherited is TRUE, returns the backdoor of the parent block if none have been specified
for this register.

clear_hdl_path

Delete HDL paths

Remove any previously specified HDL path to the register instance for the specified
design abstraction.

add_hdl_path

Add an HDL path

Add the specified HDL path to the register instance for the specified design abstraction.
This method may be called more than once for the same design abstraction if the
register is physically duplicated in the design abstraction

For example, the following register

would be specified using the following literal value

If the register is implemented using a single HDL variable, The array should specify a
single slice with its offset and size specified as -1. For example:

add_hdl_path_slice

function void clear_hdl_path (
 string kind = "RTL"
)

function void add_hdl_path (
 uvm_hdl_path_slice slices[],
 string kind = "RTL"
)

 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
Bits: 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
 +-+---+-------------+---+-------+
 |A|xxx| B |xxx| C |
 +-+---+-------------+---+-------+

add_hdl_path('{ '{"A_reg", 15, 1},
 '{"B_reg", 6, 7},
 '{'C_reg", 0, 4} });

r1.add_hdl_path('{ '{"r1", -1, -1} });

function void add_hdl_path_slice(
 string name,
 int offset,
 int size,

UVM 1.2 Class Reference 600

Append the specified HDL slice to the HDL path of the register instance for the specified
design abstraction. If first is TRUE, starts the specification of a duplicate HDL
implementation of the register.

has_hdl_path

Check if a HDL path is specified

Returns TRUE if the register instance has a HDL path defined for the specified design
abstraction. If no design abstraction is specified, uses the default design abstraction
specified for the parent block.

get_hdl_path

Get the incremental HDL path(s)

Returns the HDL path(s) defined for the specified design abstraction in the register
instance. Returns only the component of the HDL paths that corresponds to the register,
not a full hierarchical path

If no design abstraction is specified, the default design abstraction for the parent block is
used.

get_hdl_path_kinds

Get design abstractions for which HDL paths have been defined

get_full_hdl_path

Get the full hierarchical HDL path(s)

Returns the full hierarchical HDL path(s) defined for the specified design abstraction in
the register instance. There may be more than one path returned even if only one path
was defined for the register instance, if any of the parent components have more than

 bit first = 0,
 string kind = "RTL"
)

function bit has_hdl_path (
 string kind = ""
)

function void get_hdl_path (
 ref uvm_hdl_path_concat paths[$],
 input string kind = ""
)

function void get_hdl_path_kinds (
 ref string kinds[$]
)

function void get_full_hdl_path (
 ref uvm_hdl_path_concat paths[$],
 input string kind = "",
 input string separator = "."
)

UVM 1.2 Class Reference 601

one path defined for the same design abstraction

If no design abstraction is specified, the default design abstraction for each ancestor
block is used to get each incremental path.

backdoor_read

User-define backdoor read access

Override the default string-based DPI backdoor access read for this register type. By
default calls uvm_reg::backdoor_read_func().

backdoor_write

User-defined backdoor read access

Override the default string-based DPI backdoor access write for this register type.

backdoor_read_func

User-defined backdoor read access

Override the default string-based DPI backdoor access read for this register type.

backdoor_watch

User-defined DUT register change monitor

Watch the DUT register corresponding to this abstraction class instance for any change in
value and return when a value-change occurs. This may be implemented a string-based
DPI access if the simulation tool provide a value-change callback facility. Such a facility
does not exist in the standard SystemVerilog DPI and thus no default implementation
for this method can be provided.

COVERAGE

include_coverage

virtual task backdoor_read(
 uvm_reg_item rw
)

virtual task backdoor_write(
 uvm_reg_item rw
)

virtual function uvm_status_e backdoor_read_func(
 uvm_reg_item rw
)

virtual task backdoor_watch()

UVM 1.2 Class Reference 602

Specify which coverage model that must be included in various block, register or memory
abstraction class instances.

The coverage models are specified by OR’ing or adding the uvm_coverage_model_e
coverage model identifiers corresponding to the coverage model to be included.

The scope specifies a hierarchical name or pattern identifying a block, memory or register
abstraction class instances. Any block, memory or register whose full hierarchical name
matches the specified scope will have the specified functional coverage models included
in them.

The scope can be specified as a POSIX regular expression or simple pattern. See
uvm_resource_base::Scope Interface for more details.

The specification of which coverage model to include in which abstraction class is stored
in a uvm_reg_cvr_t resource in the uvm_resource_db resource database, in the
“uvm_reg::” scope namespace.

build_coverage

Check if all of the specified coverage models must be built.

Check which of the specified coverage model must be built in this instance of the register
abstraction class, as specified by calls to uvm_reg::include_coverage().

Models are specified by adding the symbolic value of individual coverage model as
defined in uvm_coverage_model_e. Returns the sum of all coverage models to be built
in the register model.

add_coverage

Specify that additional coverage models are available.

Add the specified coverage model to the coverage models available in this class. Models
are specified by adding the symbolic value of individual coverage model as defined in
uvm_coverage_model_e.

This method shall be called only in the constructor of subsequently derived classes.

has_coverage

static function void include_coverage(
 string scope,
 uvm_reg_cvr_t models,
 uvm_object accessor = null
)

uvm_reg::include_coverage("*", UVM_CVR_ALL);

protected function uvm_reg_cvr_t build_coverage(
 uvm_reg_cvr_t models
)

virtual protected function void add_coverage(
 uvm_reg_cvr_t models
)

UVM 1.2 Class Reference 603

Check if register has coverage model(s)

Returns TRUE if the register abstraction class contains a coverage model for all of the
models specified. Models are specified by adding the symbolic value of individual
coverage model as defined in uvm_coverage_model_e.

set_coverage

Turns on coverage measurement.

Turns the collection of functional coverage measurements on or off for this register. The
functional coverage measurement is turned on for every coverage model specified using
uvm_coverage_model_e symbolic identifiers. Multiple functional coverage models can be
specified by adding the functional coverage model identifiers. All other functional
coverage models are turned off. Returns the sum of all functional coverage models
whose measurements were previously on.

This method can only control the measurement of functional coverage models that are
present in the register abstraction classes, then enabled during construction. See the
uvm_reg::has_coverage() method to identify the available functional coverage models.

get_coverage

Check if coverage measurement is on.

Returns TRUE if measurement for all of the specified functional coverage models are
currently on. Multiple functional coverage models can be specified by adding the
functional coverage model identifiers.

See uvm_reg::set_coverage() for more details.

sample

Functional coverage measurement method

This method is invoked by the register abstraction class whenever it is read or written
with the specified data via the specified address map. It is invoked after the read or
write operation has completed but before the mirror has been updated.

virtual function bit has_coverage(
 uvm_reg_cvr_t models
)

virtual function uvm_reg_cvr_t set_coverage(
 uvm_reg_cvr_t is_on
)

virtual function bit get_coverage(
 uvm_reg_cvr_t is_on
)

protected virtual function void sample(
 uvm_reg_data_t data,
 uvm_reg_data_t byte_en,
 bit is_read,
 uvm_reg_map map
)

UVM 1.2 Class Reference 604

Empty by default, this method may be extended by the abstraction class generator to
perform the required sampling in any provided functional coverage model.

sample_values

Functional coverage measurement method for field values

This method is invoked by the user or by the uvm_reg_block::sample_values() method of
the parent block to trigger the sampling of the current field values in the register-level
functional coverage model.

This method may be extended by the abstraction class generator to perform the required
sampling in any provided field-value functional coverage model.

CALLbAcKs

pre_write

Called before register write.

If the specified data value, access path or address map are modified, the updated data
value, access path or address map will be used to perform the register operation. If the
status is modified to anything other than UVM_IS_OK, the operation is aborted.

The registered callback methods are invoked after the invocation of this method. All
register callbacks are executed before the corresponding field callbacks

post_write

Called after register write.

If the specified status is modified, the updated status will be returned by the register
operation.

The registered callback methods are invoked before the invocation of this method. All
register callbacks are executed before the corresponding field callbacks

pre_read

Called before register read.

virtual function void sample_values()

virtual task pre_write(
 uvm_reg_item rw
)

virtual task post_write(
 uvm_reg_item rw
)

virtual task pre_read(
 uvm_reg_item rw
)

UVM 1.2 Class Reference 605

If the specified access path or address map are modified, the updated access path or
address map will be used to perform the register operation. If the status is modified to
anything other than UVM_IS_OK, the operation is aborted.

The registered callback methods are invoked after the invocation of this method. All
register callbacks are executed before the corresponding field callbacks

post_read

Called after register read.

If the specified readback data or status is modified, the updated readback data or status
will be returned by the register operation.

The registered callback methods are invoked before the invocation of this method. All
register callbacks are executed before the corresponding field callbacks

virtual task post_read(
 uvm_reg_item rw
)

UVM 1.2 Class Reference 606

25.5 uvm_reg_field

Field abstraction class

A field represents a set of bits that behave consistently as a single entity.

A field is contained within a single register, but may have different access policies
depending on the address map use the access the register (thus the field).

Summary

uvm_reg_field

Field abstraction class

CLAss HIERARchY

uvm_void

uvm_object

uvm_reg_field

CLAss DEcLARATION

value Mirrored field value.
INITIALIZATION

new Create a new field instance
configure Instance-specific configuration

INTROsPEcTION

get_name Get the simple name
get_full_name Get the hierarchical name
get_parent Get the parent register
get_lsb_pos Return the position of the field
get_n_bits Returns the width, in number of bits, of the field.
get_max_size Returns the width, in number of bits, of the largest

field.
set_access Modify the access policy of the field
define_access Define a new access policy value
get_access Get the access policy of the field
is_known_access Check if access policy is a built-in one.
set_volatility Modify the volatility of the field to the specified one.
is_volatile Indicates if the field value is volatile

AccEss

set Set the desired value for this field
get Return the desired value of the field
get_mirrored_value Return the mirrored value of the field
reset Reset the desired/mirrored value for this field.
get_reset Get the specified reset value for this field
has_reset Check if the field has a reset value specified
set_reset Specify or modify the reset value for this field
needs_update Check if the abstract model contains different desired

and mirrored values.
write Write the specified value in this field
read Read the current value from this field
poke Deposit the specified value in this field
peek Read the current value from this field
mirror Read the field and update/check its mirror value
set_compare Sets the compare policy during a mirror update.
get_compare Returns the compare policy for this field.
is_indv_accessible Check if this field can be written individually

class uvm_reg_field extends uvm_object

UVM 1.2 Class Reference 607

predict Update the mirrored and desired value for this field.
CALLBAcKs

pre_write Called before field write.
post_write Called after field write.
pre_read Called before field read.
post_read Called after field read.

value

Mirrored field value. This value can be sampled in a functional coverage model or
constrained when randomized.

INITIALIZATION

new

Create a new field instance

This method should not be used directly. The uvm_reg_field::type_id::create()
factory method should be used instead.

configure

Instance-specific configuration

Specify the parent register of this field, its size in bits, the position of its least-significant
bit within the register relative to the least-significant bit of the register, its access policy,
volatility, “HARD” reset value, whether the field value is actually reset (the reset value is
ignored if FALSE), whether the field value may be randomized and whether the field is
the only one to occupy a byte lane in the register.

See set_access for a specification of the pre-defined field access policies.

If the field access policy is a pre-defined policy and NOT one of “RW”, “WRC”, “WRS”,
“WO”, “W1”, or “WO1”, the value of is_rand is ignored and the rand_mode() for the field
instance is turned off since it cannot be written.

rand uvm_reg_data_t value

function new(
 string name = "uvm_reg_field"
)

function void configure(
 uvm_reg parent,
 int unsigned size,
 int unsigned lsb_pos,
 string access,
 bit volatile,
 uvm_reg_data_t reset,
 bit has_reset,
 bit is_rand,
 bit individually_accessible
)

UVM 1.2 Class Reference 608

INTROsPEcTION

get_name

Get the simple name

Return the simple object name of this field

get_full_name

Get the hierarchical name

Return the hierarchal name of this field The base of the hierarchical name is the root
block.

get_parent

Get the parent register

get_lsb_pos

Return the position of the field

Returns the index of the least significant bit of the field in the register that instantiates
it. An offset of 0 indicates a field that is aligned with the least-significant bit of the
register.

get_n_bits

Returns the width, in number of bits, of the field.

get_max_size

Returns the width, in number of bits, of the largest field.

set_access

virtual function string get_full_name()

virtual function uvm_reg get_parent()

virtual function int unsigned get_lsb_pos()

virtual function int unsigned get_n_bits()

static function int unsigned get_max_size()

virtual function string set_access(

UVM 1.2 Class Reference 609

Modify the access policy of the field

Modify the access policy of the field to the specified one and return the previous access
policy.

The pre-defined access policies are as follows. The effect of a read operation are applied
after the current value of the field is sampled. The read operation will return the current
value, not the value affected by the read operation (if any).

”RO” W: no effect, R: no effect
”RW” W: as-is, R: no effect
”RC” W: no effect, R: clears all bits
”RS” W: no effect, R: sets all bits
”WRC” W: as-is, R: clears all bits
”WRS” W: as-is, R: sets all bits
”WC” W: clears all bits, R: no effect
”WS” W: sets all bits, R: no effect
”WSRC” W: sets all bits, R: clears all bits
”WCRS” W: clears all bits, R: sets all bits
”W1C” W: 1/0 clears/no effect on matching bit, R: no effect
”W1S” W: 1/0 sets/no effect on matching bit, R: no effect
”W1T” W: 1/0 toggles/no effect on matching bit, R: no effect
”W0C” W: 1/0 no effect on/clears matching bit, R: no effect
”W0S” W: 1/0 no effect on/sets matching bit, R: no effect
”W0T” W: 1/0 no effect on/toggles matching bit, R: no effect
”W1SRC” W: 1/0 sets/no effect on matching bit, R: clears all bits
”W1CRS” W: 1/0 clears/no effect on matching bit, R: sets all bits
”W0SRC” W: 1/0 no effect on/sets matching bit, R: clears all bits
”W0CRS” W: 1/0 no effect on/clears matching bit, R: sets all bits
”WO” W: as-is, R: error
”WOC” W: clears all bits, R: error
”WOS” W: sets all bits, R: error
”W1” W: first one after HARD reset is as-is, other W have no effects,

R: no effect
”WO1” W: first one after HARD reset is as-is, other W have no effects,

R: error
”NOACCESS” W: no effect, R: no effect

It is important to remember that modifying the access of a field will make the register
model diverge from the specification that was used to create it.

define_access

 string mode
)

static function bit define_access(
 string name
)

UVM 1.2 Class Reference 610

Define a new access policy value

Because field access policies are specified using string values, there is no way for
SystemVerilog to verify if a specific access value is valid or not. To help catch typing
errors, user-defined access values must be defined using this method to avoid begin
reported as an invalid access policy.

The name of field access policies are always converted to all uppercase.

Returns TRUE if the new access policy was not previously defined. Returns FALSE
otherwise but does not issue an error message.

get_access

Get the access policy of the field

Returns the current access policy of the field when written and read through the specified
address map. If the register containing the field is mapped in multiple address map, an
address map must be specified. The access policy of a field from a specific address map
may be restricted by the register’s access policy in that address map. For example, a
RW field may only be writable through one of the address maps and read-only through
all of the other maps. If the field access contradicts the map’s access value (field access
of WO, and map access value of RO, etc), the method’s return value is NOACCESS.

is_known_access

Check if access policy is a built-in one.

Returns TRUE if the current access policy of the field, when written and read through the
specified address map, is a built-in access policy.

set_volatility

Modify the volatility of the field to the specified one.

It is important to remember that modifying the volatility of a field will make the register
model diverge from the specification that was used to create it.

is_volatile

Indicates if the field value is volatile

virtual function string get_access(
 uvm_reg_map map = null
)

virtual function bit is_known_access(
 uvm_reg_map map = null
)

virtual function void set_volatility(
 bit volatile
)

virtual function bit is_volatile()

UVM 1.2 Class Reference 611

UVM uses the IEEE 1685-2009 IP-XACT definition of “volatility”. If TRUE, the value of
the register is not predictable because it may change between consecutive accesses.
This typically indicates a field whose value is updated by the DUT. The nature or cause
of the change is not specified. If FALSE, the value of the register is not modified
between consecutive accesses.

AccEss

set

Set the desired value for this field

It sets the desired value of the field to the specified value modified by the field access
policy. It does not actually set the value of the field in the design, only the desired
value in the abstraction class. Use the uvm_reg::update() method to update the actual
register with the desired value or the uvm_reg_field::write() method to actually write the
field and update its mirrored value.

The final desired value in the mirror is a function of the field access policy and the set
value, just like a normal physical write operation to the corresponding bits in the
hardware. As such, this method (when eventually followed by a call to
uvm_reg::update()) is a zero-time functional replacement for the uvm_reg_field::write()
method. For example, the desired value of a read-only field is not modified by this
method and the desired value of a write-once field can only be set if the field has not yet
been written to using a physical (for example, front-door) write operation.

Use the uvm_reg_field::predict() to modify the mirrored value of the field.

get

Return the desired value of the field

It does not actually read the value of the field in the design, only the desired value in
the abstraction class. Unless set to a different value using the uvm_reg_field::set(), the
desired value and the mirrored value are identical.

Use the uvm_reg_field::read() or uvm_reg_field::peek() method to get the actual field
value.

If the field is write-only, the desired/mirrored value is the value last written and
assumed to reside in the bits implementing it. Although a physical read operation would
something different, the returned value is the actual content.

get_mirrored_value

virtual function void set(
 uvm_reg_data_t value,
 string fname = "",
 int lineno = 0
)

virtual function uvm_reg_data_t get(
 string fname = "",
 int lineno = 0
)

UVM 1.2 Class Reference 612

Return the mirrored value of the field

It does not actually read the value of the field in the design, only the mirrored value in
the abstraction class.

If the field is write-only, the desired/mirrored value is the value last written and
assumed to reside in the bits implementing it. Although a physical read operation would
something different, the returned value is the actual content.

reset

Reset the desired/mirrored value for this field.

It sets the desired and mirror value of the field to the reset event specified by kind. If
the field does not have a reset value specified for the specified reset kind the field is
unchanged.

It does not actually reset the value of the field in the design, only the value mirrored in
the field abstraction class.

Write-once fields can be modified after a “HARD” reset operation.

get_reset

Get the specified reset value for this field

Return the reset value for this field for the specified reset kind. Returns the current field
value is no reset value has been specified for the specified reset event.

has_reset

Check if the field has a reset value specified

Return TRUE if this field has a reset value specified for the specified reset kind. If delete
is TRUE, removes the reset value, if any.

set_reset

virtual function uvm_reg_data_t get_mirrored_value(
 string fname = "",
 int lineno = 0
)

virtual function void reset(
 string kind = "HARD"
)

virtual function uvm_reg_data_t get_reset(
 string kind = "HARD"
)

virtual function bit has_reset(
 string kind = "HARD",
 bit delete = 0
)

virtual function void set_reset(

UVM 1.2 Class Reference 613

Specify or modify the reset value for this field

Specify or modify the reset value for this field corresponding to the cause specified by
kind.

needs_update

Check if the abstract model contains different desired and mirrored values.

If a desired field value has been modified in the abstraction class without actually
updating the field in the DUT, the state of the DUT (more specifically what the
abstraction class thinks the state of the DUT is) is outdated. This method returns TRUE
if the state of the field in the DUT needs to be updated to match the desired value. The
mirror values or actual content of DUT field are not modified. Use the
uvm_reg::update() to actually update the DUT field.

write

Write the specified value in this field

Write value in the DUT field that corresponds to this abstraction class instance using the
specified access path. If the register containing this field is mapped in more than one
address map, an address map must be specified if a physical access is used (front-door
access). If a back-door access path is used, the effect of writing the field through a
physical access is mimicked. For example, read-only bits in the field will not be written.

The mirrored value will be updated using the uvm_reg_field::predict() method.

If a front-door access is used, and if the field is the only field in a byte lane and if the
physical interface corresponding to the address map used to access the field support
byte-enabling, then only the field is written. Otherwise, the entire register containing
the field is written, and the mirrored values of the other fields in the same register are
used in a best-effort not to modify their value.

If a backdoor access is used, a peek-modify-poke process is used. in a best-effort not to
modify the value of the other fields in the register.

read

 uvm_reg_data_t value,
 string kind = "HARD"
)

virtual function bit needs_update()

virtual task write (
 output uvm_status_e status,
 input uvm_reg_data_t value,
 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_reg_map map = null,
 input uvm_sequence_base parent = null,
 input int prior = -1,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

virtual task read (
 output uvm_status_e status,
 output uvm_reg_data_t value,

UVM 1.2 Class Reference 614

Read the current value from this field

Read and return value from the DUT field that corresponds to this abstraction class
instance using the specified access path. If the register containing this field is mapped in
more than one address map, an address map must be specified if a physical access is
used (front-door access). If a back-door access path is used, the effect of reading the
field through a physical access is mimicked. For example, clear-on-read bits in the field
will be set to zero.

The mirrored value will be updated using the uvm_reg_field::predict() method.

If a front-door access is used, and if the field is the only field in a byte lane and if the
physical interface corresponding to the address map used to access the field support
byte-enabling, then only the field is read. Otherwise, the entire register containing the
field is read, and the mirrored values of the other fields in the same register are
updated.

If a backdoor access is used, the entire containing register is peeked and the mirrored
value of the other fields in the register is updated.

poke

Deposit the specified value in this field

Deposit the value in the DUT field corresponding to this abstraction class instance, as-is,
using a back-door access. A peek-modify-poke process is used in a best-effort not to
modify the value of the other fields in the register.

The mirrored value will be updated using the uvm_reg_field::predict() method.

peek

Read the current value from this field

Sample the value in the DUT field corresponding to this abstraction class instance using a

 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_reg_map map = null,
 input uvm_sequence_base parent = null,
 input int prior = -1,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

virtual task poke (
 output uvm_status_e status,
 input uvm_reg_data_t value,
 input string kind = "",
 input uvm_sequence_base parent = null,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

virtual task peek (
 output uvm_status_e status,
 output uvm_reg_data_t value,
 input string kind = "",
 input uvm_sequence_base parent = null,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

UVM 1.2 Class Reference 615

back-door access. The field value is sampled, not modified.

Uses the HDL path for the design abstraction specified by kind.

The entire containing register is peeked and the mirrored value of the other fields in the
register are updated using the uvm_reg_field::predict() method.

mirror

Read the field and update/check its mirror value

Read the field and optionally compared the readback value with the current mirrored
value if check is UVM_CHECK. The mirrored value will be updated using the predict()
method based on the readback value.

The path argument specifies whether to mirror using the UVM_FRONTDOOR (read) or
UVM_BACKDOOR (peek()).

If check is specified as UVM_CHECK, an error message is issued if the current mirrored
value does not match the readback value, unless set_compare was used disable the
check.

If the containing register is mapped in multiple address maps and physical access is used
(front-door access), an address map must be specified. For write-only fields, their
content is mirrored and optionally checked only if a UVM_BACKDOOR access path is used
to read the field.

set_compare

Sets the compare policy during a mirror update. The field value is checked against its
mirror only when both the check argument in uvm_reg_block::mirror, uvm_reg::mirror,
or uvm_reg_field::mirror and the compare policy for the field is UVM_CHECK.

get_compare

Returns the compare policy for this field.

is_indv_accessible

virtual task mirror(
 output uvm_status_e status,
 input uvm_check_e check = UVM_NO_CHECK,
 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_reg_map map = null,
 input uvm_sequence_base parent = null,
 input int prior = -1,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

function void set_compare(
 uvm_check_e check = UVM_CHECK
)

function uvm_check_e get_compare()

function bit is indv accessible (

UVM 1.2 Class Reference 616

Check if this field can be written individually, i.e. without affecting other fields in the
containing register.

predict

Update the mirrored and desired value for this field.

Predict the mirror and desired value of the field based on the specified observed value
on a bus using the specified address map.

If kind is specified as UVM_PREDICT_READ, the value was observed in a read transaction
on the specified address map or backdoor (if path is UVM_BACKDOOR). If kind is
specified as UVM_PREDICT_WRITE, the value was observed in a write transaction on the
specified address map or backdoor (if path is UVM_BACKDOOR). If kind is specified as
UVM_PREDICT_DIRECT, the value was computed and is updated as-is, without regard to
any access policy. For example, the mirrored value of a read-only field is modified by
this method if kind is specified as UVM_PREDICT_DIRECT.

This method does not allow an update of the mirror (or desired) when the register
containing this field is busy executing a transaction because the results are unpredictable
and indicative of a race condition in the testbench.

Returns TRUE if the prediction was successful.

CALLBAcKs

pre_write

Called before field write.

If the specified data value, access path or address map are modified, the updated data
value, access path or address map will be used to perform the register operation. If the
status is modified to anything other than UVM_IS_OK, the operation is aborted.

The field callback methods are invoked after the callback methods on the containing
register. The registered callback methods are invoked after the invocation of this
method.

post_write

 uvm_path_e path,
 uvm_reg_map local_map
)

function bit predict (
 uvm_reg_data_t value,
 uvm_reg_byte_en_t be = -1,
 uvm_predict_e kind = UVM_PREDICT_DIRECT,
 uvm_path_e path = UVM_FRONTDOOR,
 uvm_reg_map map = null,
 string fname = "",
 int lineno = 0
)

virtual task pre_write (
 uvm_reg_item rw
)

UVM 1.2 Class Reference 617

Called after field write.

If the specified status is modified, the updated status will be returned by the register
operation.

The field callback methods are invoked after the callback methods on the containing
register. The registered callback methods are invoked before the invocation of this
method.

pre_read

Called before field read.

If the access path or address map in the rw argument are modified, the updated access
path or address map will be used to perform the register operation. If the status is
modified to anything other than UVM_IS_OK, the operation is aborted.

The field callback methods are invoked after the callback methods on the containing
register. The registered callback methods are invoked after the invocation of this
method.

post_read

Called after field read.

If the specified readback data or~status~ in the rw argument is modified, the updated
readback data or status will be returned by the register operation.

The field callback methods are invoked after the callback methods on the containing
register. The registered callback methods are invoked before the invocation of this
method.

virtual task post_write (
 uvm_reg_item rw
)

virtual task pre_read (
 uvm_reg_item rw
)

virtual task post_read (
 uvm_reg_item rw
)

UVM 1.2 Class Reference 618

25.6 uvm_mem

Memory abstraction base class

A memory is a collection of contiguous locations. A memory may be accessible via more
than one address map.

Unlike registers, memories are not mirrored because of the potentially large data space:
tests that walk the entire memory space would negate any benefit from sparse memory
modelling techniques. Rather than relying on a mirror, it is recommended that backdoor
access be used instead.

Summary

uvm_mem

Memory abstraction base class

CLAss HIERARchY

uvm_void

uvm_object

uvm_mem

CLAss DEcLARATION

INITIALIZATION

new Create a new instance and type-specific
configuration

configure Instance-specific configuration
set_offset Modify the offset of the memory
Modifying the offset of a
memory will make the abstract
model

diverge from the specification that was
used to create it.

mam Memory allocation manager
INTROsPEcTION

get_name Get the simple name
get_full_name Get the hierarchical name
get_parent Get the parent block
get_n_maps Returns the number of address maps this

memory is mapped in
is_in_map Return TRUE if this memory is in the

specified address map
get_maps Returns all of the address maps where this

memory is mapped
get_rights Returns the access rights of this memory.
get_access Returns the access policy of the memory

when written and read via an address
map.

get_size Returns the number of unique memory
locations in this memory.

get_n_bytes Return the width, in number of bytes, of
each memory location

get_n_bits Returns the width, in number of bits, of
each memory location

get_max_size Returns the maximum width, in number of
bits, of all memories

get_virtual_registers Return the virtual registers in this memory
get_virtual_fields Return the virtual fields in the memory

class uvm_mem extends uvm_object

UVM 1.2 Class Reference 619

get_vreg_by_name Find the named virtual register
get_vfield_by_name Find the named virtual field
get_vreg_by_offset Find the virtual register implemented at

the specified offset
get_offset Returns the base offset of a memory

location
get_address Returns the base external physical address

of a memory location
get_addresses Identifies the external physical

address(es) of a memory location
HDL AccEss

write Write the specified value in a memory
location

read Read the current value from a memory
location

burst_write Write the specified values in memory
locations

burst_read Read values from memory locations
poke Deposit the specified value in a memory

location
peek Read the current value from a memory

location
FRONTdOOR

set_frontdoor Set a user-defined frontdoor for this
memory

get_frontdoor Returns the user-defined frontdoor for this
memory

BAcKdOOR

set_backdoor Set a user-defined backdoor for this
memory

get_backdoor Returns the user-defined backdoor for this
memory

clear_hdl_path Delete HDL paths
add_hdl_path Add an HDL path
add_hdl_path_slice Add the specified HDL slice to the HDL

path for the specified design abstraction.
has_hdl_path Check if a HDL path is specified
get_hdl_path Get the incremental HDL path(s)
get_full_hdl_path Get the full hierarchical HDL path(s)
get_hdl_path_kinds Get design abstractions for which HDL

paths have been defined
backdoor_read User-define backdoor read access
backdoor_write User-defined backdoor read access
backdoor_read_func User-defined backdoor read access

CALLbAcKs

pre_write Called before memory write.
post_write Called after memory write.
pre_read Called before memory read.
post_read Called after memory read.

COVERAGE

build_coverage Check if all of the specified coverage
model must be built.

add_coverage Specify that additional coverage models
are available.

has_coverage Check if memory has coverage model(s)
set_coverage Turns on coverage measurement.
get_coverage Check if coverage measurement is on.
sample Functional coverage measurement method

INITIALIZATION

UVM 1.2 Class Reference 620

new

Create a new instance and type-specific configuration

Creates an instance of a memory abstraction class with the specified name.

size specifies the total number of memory locations. n_bits specifies the total number of
bits in each memory location. access specifies the access policy of this memory and may
be one of “RW for RAMs and “RO” for ROMs.

has_coverage specifies which functional coverage models are present in the extension of
the register abstraction class. Multiple functional coverage models may be specified by
adding their symbolic names, as defined by the uvm_coverage_model_e type.

configure

Instance-specific configuration

Specify the parent block of this memory.

If this memory is implemented in a single HDL variable, its name is specified as the
hdl_path. Otherwise, if the memory is implemented as a concatenation of variables
(usually one per bank), then the HDL path must be specified using the add_hdl_path() or
add_hdl_path_slice() method.

set_offset

Modify the offset of the memory

The offset of a memory within an address map is set using the
uvm_reg_map::add_mem() method. This method is used to modify that offset
dynamically.

Modifying the offset of a memory will make the abstract model

diverge from the specification that was used to create it.

mam

Memory allocation manager

function new (
 string name,
 longint unsigned size,
 int unsigned n_bits,
 string access = "RW",
 int has_coverage = UVM_NO_COVERAGE
)

function void configure (
 uvm_reg_block parent,
 string hdl_path = ""
)

uvm_mem_mam mam

UVM 1.2 Class Reference 621

Memory allocation manager for the memory corresponding to this abstraction class
instance. Can be used to allocate regions of consecutive addresses of specific sizes, such
as DMA buffers, or to locate virtual register array.

INTROsPEcTION

get_name

Get the simple name

Return the simple object name of this memory.

get_full_name

Get the hierarchical name

Return the hierarchal name of this memory. The base of the hierarchical name is the
root block.

get_parent

Get the parent block

get_n_maps

Returns the number of address maps this memory is mapped in

is_in_map

Return TRUE if this memory is in the specified address map

get_maps

Returns all of the address maps where this memory is mapped

virtual function string get_full_name()

virtual function uvm_reg_block get_parent ()

virtual function int get_n_maps ()

function bit is_in_map (
 uvm_reg_map map
)

virtual function void get_maps (
 ref uvm_reg_map maps[$]
)

UVM 1.2 Class Reference 622

get_rights

Returns the access rights of this memory.

Returns “RW”, “RO” or “WO”. The access rights of a memory is always “RW”, unless it is
a shared memory with access restriction in a particular address map.

If no address map is specified and the memory is mapped in only one address map, that
address map is used. If the memory is mapped in more than one address map, the
default address map of the parent block is used.

If an address map is specified and the memory is not mapped in the specified address
map, an error message is issued and “RW” is returned.

get_access

Returns the access policy of the memory when written and read via an address map.

If the memory is mapped in more than one address map, an address map must be
specified. If access restrictions are present when accessing a memory through the
specified address map, the access mode returned takes the access restrictions into
account. For example, a read-write memory accessed through a domain with read-only
restrictions would return “RO”.

get_size

Returns the number of unique memory locations in this memory.

get_n_bytes

Return the width, in number of bytes, of each memory location

get_n_bits

Returns the width, in number of bits, of each memory location

get_max_size

virtual function string get_rights (
 uvm_reg_map map = null
)

virtual function string get_access(
 uvm_reg_map map = null
)

function longint unsigned get_size()

function int unsigned get_n_bytes()

function int unsigned get_n_bits()

static function int unsigned get_max_size()

UVM 1.2 Class Reference 623

Returns the maximum width, in number of bits, of all memories

get_virtual_registers

Return the virtual registers in this memory

Fills the specified array with the abstraction class for all of the virtual registers
implemented in this memory. The order in which the virtual registers are located in the
array is not specified.

get_virtual_fields

Return the virtual fields in the memory

Fills the specified dynamic array with the abstraction class for all of the virtual fields
implemented in this memory. The order in which the virtual fields are located in the
array is not specified.

get_vreg_by_name

Find the named virtual register

Finds a virtual register with the specified name implemented in this memory and returns
its abstraction class instance. If no virtual register with the specified name is found,
returns null.

get_vfield_by_name

Find the named virtual field

Finds a virtual field with the specified name implemented in this memory and returns its
abstraction class instance. If no virtual field with the specified name is found, returns
null.

get_vreg_by_offset

virtual function void get_virtual_registers(
 ref uvm_vreg regs[$]
)

virtual function void get_virtual_fields(
 ref uvm_vreg_field fields[$]
)

virtual function uvm_vreg get_vreg_by_name(
 string name
)

virtual function uvm_vreg_field get_vfield_by_name(
 string name
)

virtual function uvm_vreg get_vreg_by_offset(
 uvm_reg_addr_t offset,

UVM 1.2 Class Reference 624

Find the virtual register implemented at the specified offset

Finds the virtual register implemented in this memory at the specified offset in the
specified address map and returns its abstraction class instance. If no virtual register at
the offset is found, returns null.

get_offset

Returns the base offset of a memory location

Returns the base offset of the specified location in this memory in an address map.

If no address map is specified and the memory is mapped in only one address map, that
address map is used. If the memory is mapped in more than one address map, the
default address map of the parent block is used.

If an address map is specified and the memory is not mapped in the specified address
map, an error message is issued.

get_address

Returns the base external physical address of a memory location

Returns the base external physical address of the specified location in this memory if
accessed through the specified address map.

If no address map is specified and the memory is mapped in only one address map, that
address map is used. If the memory is mapped in more than one address map, the
default address map of the parent block is used.

If an address map is specified and the memory is not mapped in the specified address
map, an error message is issued.

get_addresses

Identifies the external physical address(es) of a memory location

Computes all of the external physical addresses that must be accessed to completely
read or write the specified location in this memory. The addressed are specified in little
endian order. Returns the number of bytes transferred on each access.

 uvm_reg_map map = null
)

virtual function uvm_reg_addr_t get_offset (
 uvm_reg_addr_t offset = 0,
 uvm_reg_map map = null
)

virtual function uvm_reg_addr_t get_address(
 uvm_reg_addr_t offset = 0,
 uvm_reg_map map = null
)

virtual function int get_addresses(
 uvm_reg_addr_t offset = 0,
 uvm_reg_map map = null,
 ref uvm_reg_addr_t addr[]
)

UVM 1.2 Class Reference 625

If no address map is specified and the memory is mapped in only one address map, that
address map is used. If the memory is mapped in more than one address map, the
default address map of the parent block is used.

If an address map is specified and the memory is not mapped in the specified address
map, an error message is issued.

HDL AccEss

write

Write the specified value in a memory location

Write value in the memory location that corresponds to this abstraction class instance at
the specified offset using the specified access path. If the memory is mapped in more
than one address map, an address map must be specified if a physical access is used
(front-door access). If a back-door access path is used, the effect of writing the register
through a physical access is mimicked. For example, a read-only memory will not be
written.

read

Read the current value from a memory location

Read and return value from the memory location that corresponds to this abstraction
class instance at the specified offset using the specified access path. If the register is
mapped in more than one address map, an address map must be specified if a physical
access is used (front-door access).

burst_write

virtual task write(
 output uvm_status_e status,
 input uvm_reg_addr_t offset,
 input uvm_reg_data_t value,
 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_reg_map map = null,
 input uvm_sequence_base parent = null,
 input int prior = -1,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

virtual task read(
 output uvm_status_e status,
 input uvm_reg_addr_t offset,
 output uvm_reg_data_t value,
 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_reg_map map = null,
 input uvm_sequence_base parent = null,
 input int prior = -1,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

virtual task burst_write(
 output uvm_status_e status,

UVM 1.2 Class Reference 626

Write the specified values in memory locations

Burst-write the specified values in the memory locations beginning at the specified
offset. If the memory is mapped in more than one address map, an address map must
be specified if not using the backdoor. If a back-door access path is used, the effect of
writing the register through a physical access is mimicked. For example, a read-only
memory will not be written.

burst_read

Read values from memory locations

Burst-read into values the data the memory locations beginning at the specified offset.
If the memory is mapped in more than one address map, an address map must be
specified if not using the backdoor. If a back-door access path is used, the effect of
writing the register through a physical access is mimicked. For example, a read-only
memory will not be written.

poke

Deposit the specified value in a memory location

Deposit the value in the DUT memory location corresponding to this abstraction class
instance at the specified offset, as-is, using a back-door access.

Uses the HDL path for the design abstraction specified by kind.

peek

 input uvm_reg_addr_t offset,
 input uvm_reg_data_t value[],
 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_reg_map map = null,
 input uvm_sequence_base parent = null,
 input int prior = -1,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

virtual task burst_read(
 output uvm_status_e status,
 input uvm_reg_addr_t offset,
 ref uvm_reg_data_t value[],
 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_reg_map map = null,
 input uvm_sequence_base parent = null,
 input int prior = -1,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

virtual task poke(
 output uvm_status_e status,
 input uvm_reg_addr_t offset,
 input uvm_reg_data_t value,
 input string kind = "",
 input uvm_sequence_base parent = null,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

UVM 1.2 Class Reference 627

Read the current value from a memory location

Sample the value in the DUT memory location corresponding to this abstraction class
instance at the specified offset using a back-door access. The memory location value is
sampled, not modified.

Uses the HDL path for the design abstraction specified by kind.

FRONTdOOR

set_frontdoor

Set a user-defined frontdoor for this memory

By default, memories are mapped linearly into the address space of the address maps
that instantiate them. If memories are accessed using a different mechanism, a user-
defined access mechanism must be defined and associated with the corresponding
memory abstraction class

If the memory is mapped in multiple address maps, an address map must be specified.

get_frontdoor

Returns the user-defined frontdoor for this memory

If null, no user-defined frontdoor has been defined. A user-defined frontdoor is defined
by using the uvm_mem::set_frontdoor() method.

If the memory is mapped in multiple address maps, an address map must be specified.

BAcKdOOR

set_backdoor

virtual task peek(
 output uvm_status_e status,
 input uvm_reg_addr_t offset,
 output uvm_reg_data_t value,
 input string kind = "",
 input uvm_sequence_base parent = null,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

function void set_frontdoor(
 uvm_reg_frontdoor ftdr,
 uvm_reg_map map = null,
 string fname = "",
 int lineno = 0
)

function uvm_reg_frontdoor get_frontdoor(
 uvm_reg_map map = null
)

UVM 1.2 Class Reference 628

Set a user-defined backdoor for this memory

By default, memories are accessed via the built-in string-based DPI routines if an HDL
path has been specified using the uvm_mem::configure() or uvm_mem::add_hdl_path()
method. If this default mechanism is not suitable (e.g. because the memory is not
implemented in pure SystemVerilog) a user-defined access mechanism must be defined
and associated with the corresponding memory abstraction class

get_backdoor

Returns the user-defined backdoor for this memory

If null, no user-defined backdoor has been defined. A user-defined backdoor is defined
by using the uvm_reg::set_backdoor() method.

If inherit is TRUE, returns the backdoor of the parent block if none have been specified
for this memory.

clear_hdl_path

Delete HDL paths

Remove any previously specified HDL path to the memory instance for the specified
design abstraction.

add_hdl_path

Add an HDL path

Add the specified HDL path to the memory instance for the specified design abstraction.
This method may be called more than once for the same design abstraction if the
memory is physically duplicated in the design abstraction

add_hdl_path_slice

function void set_backdoor (
 uvm_reg_backdoor bkdr,
 string fname = "",
 int lineno = 0
)

function uvm_reg_backdoor get_backdoor(
 bit inherited = 1
)

function void clear_hdl_path (
 string kind = "RTL"
)

function void add_hdl_path (
 uvm_hdl_path_slice slices[],
 string kind = "RTL"
)

function void add_hdl_path_slice(
 string name,
 int offset,

UVM 1.2 Class Reference 629

Add the specified HDL slice to the HDL path for the specified design abstraction. If first
is TRUE, starts the specification of a duplicate HDL implementation of the memory.

has_hdl_path

Check if a HDL path is specified

Returns TRUE if the memory instance has a HDL path defined for the specified design
abstraction. If no design abstraction is specified, uses the default design abstraction
specified for the parent block.

get_hdl_path

Get the incremental HDL path(s)

Returns the HDL path(s) defined for the specified design abstraction in the memory
instance. Returns only the component of the HDL paths that corresponds to the
memory, not a full hierarchical path

If no design abstraction is specified, the default design abstraction for the parent block is
used.

get_full_hdl_path

Get the full hierarchical HDL path(s)

Returns the full hierarchical HDL path(s) defined for the specified design abstraction in
the memory instance. There may be more than one path returned even if only one path
was defined for the memory instance, if any of the parent components have more than
one path defined for the same design abstraction

If no design abstraction is specified, the default design abstraction for each ancestor
block is used to get each incremental path.

get_hdl_path_kinds

 int size,
 bit first = 0,
 string kind = "RTL"
)

function bit has_hdl_path (
 string kind = ""
)

function void get_hdl_path (
 ref uvm_hdl_path_concat paths[$],
 input string kind = ""
)

function void get_full_hdl_path (
 ref uvm_hdl_path_concat paths[$],
 input string kind = "",
 input string separator = "."
)

function void get_hdl_path_kinds (
 ref string kinds[$]

UVM 1.2 Class Reference 630

Get design abstractions for which HDL paths have been defined

backdoor_read

User-define backdoor read access

Override the default string-based DPI backdoor access read for this memory type. By
default calls uvm_mem::backdoor_read_func().

backdoor_write

User-defined backdoor read access

Override the default string-based DPI backdoor access write for this memory type.

backdoor_read_func

User-defined backdoor read access

Override the default string-based DPI backdoor access read for this memory type.

CALLbAcKs

pre_write

Called before memory write.

If the offset, value, access path, or address map are modified, the updated offset, data
value, access path or address map will be used to perform the memory operation. If the
status is modified to anything other than UVM_IS_OK, the operation is aborted.

The registered callback methods are invoked after the invocation of this method.

post_write

)

virtual protected task backdoor_read(
 uvm_reg_item rw
)

virtual task backdoor_write(
 uvm_reg_item rw
)

virtual function uvm_status_e backdoor_read_func(
 uvm_reg_item rw
)

virtual task pre_write(
 uvm_reg_item rw
)

UVM 1.2 Class Reference 631

Called after memory write.

If the status is modified, the updated status will be returned by the memory operation.

The registered callback methods are invoked before the invocation of this method.

pre_read

Called before memory read.

If the offset, access path or address map are modified, the updated offset, access path
or address map will be used to perform the memory operation. If the status is modified
to anything other than UVM_IS_OK, the operation is aborted.

The registered callback methods are invoked after the invocation of this method.

post_read

Called after memory read.

If the readback data or status is modified, the updated readback //data or status will be
returned by the memory operation.

The registered callback methods are invoked before the invocation of this method.

COVERAGE

build_coverage

Check if all of the specified coverage model must be built.

Check which of the specified coverage model must be built in this instance of the
memory abstraction class, as specified by calls to uvm_reg::include_coverage().

Models are specified by adding the symbolic value of individual coverage model as
defined in uvm_coverage_model_e. Returns the sum of all coverage models to be built
in the memory model.

virtual task post_write(
 uvm_reg_item rw
)

virtual task pre_read(
 uvm_reg_item rw
)

virtual task post_read(
 uvm_reg_item rw
)

protected function uvm_reg_cvr_t build_coverage(
 uvm_reg_cvr_t models
)

UVM 1.2 Class Reference 632

add_coverage

Specify that additional coverage models are available.

Add the specified coverage model to the coverage models available in this class. Models
are specified by adding the symbolic value of individual coverage model as defined in
uvm_coverage_model_e.

This method shall be called only in the constructor of subsequently derived classes.

has_coverage

Check if memory has coverage model(s)

Returns TRUE if the memory abstraction class contains a coverage model for all of the
models specified. Models are specified by adding the symbolic value of individual
coverage model as defined in uvm_coverage_model_e.

set_coverage

Turns on coverage measurement.

Turns the collection of functional coverage measurements on or off for this memory. The
functional coverage measurement is turned on for every coverage model specified using
uvm_coverage_model_e symbolic identifiers. Multiple functional coverage models can be
specified by adding the functional coverage model identifiers. All other functional
coverage models are turned off. Returns the sum of all functional coverage models
whose measurements were previously on.

This method can only control the measurement of functional coverage models that are
present in the memory abstraction classes, then enabled during construction. See the
uvm_mem::has_coverage() method to identify the available functional coverage models.

get_coverage

Check if coverage measurement is on.

Returns TRUE if measurement for all of the specified functional coverage models are
currently on. Multiple functional coverage models can be specified by adding the
functional coverage model identifiers.

See uvm_mem::set_coverage() for more details.

virtual protected function void add_coverage(
 uvm_reg_cvr_t models
)

virtual function bit has_coverage(
 uvm_reg_cvr_t models
)

virtual function uvm_reg_cvr_t set_coverage(
 uvm_reg_cvr_t is_on
)

virtual function bit get_coverage(
 uvm_reg_cvr_t is_on
)

UVM 1.2 Class Reference 633

sample

Functional coverage measurement method

This method is invoked by the memory abstraction class whenever an address within one
of its address map is successfully read or written. The specified offset is the offset within
the memory, not an absolute address.

Empty by default, this method may be extended by the abstraction class generator to
perform the required sampling in any provided functional coverage model.

protected virtual function void sample(
 uvm_reg_addr_t offset,
 bit is_read,
 uvm_reg_map map
)

UVM 1.2 Class Reference 634

25.7 uvm_reg_indirect_data

Indirect data access abstraction class

Models the behavior of a register used to indirectly access a register array, indexed by a
second address register.

This class should not be instantiated directly. A type-specific class extension should be
used to provide a factory-enabled constructor and specify the n_bits and coverage
models.

Summary

uvm_reg_indirect_data

Indirect data access abstraction class

CLAss HIERARchY

uvm_void

uvm_object

uvm_reg

uvm_reg_indirect_data

CLAss DEcLARATION

METhOds

new Create an instance of this class
configure Configure the indirect data register.

METhOds

new

Create an instance of this class

Should not be called directly, other than via super.new(). The value of n_bits must
match the number of bits in the indirect register array.

configure

class uvm_reg_indirect_data extends uvm_reg

function new(
 string name = "uvm_reg_indirect",
 int unsigned n_bits,
 int has_cover
)

function void configure (
 uvm_reg idx,
 uvm_reg reg_a[],
 uvm_reg_block blk_parent,

UVM 1.2 Class Reference 635

Configure the indirect data register.

The idx register specifies the index, in the reg_a register array, of the register to
access. The idx must be written to first. A read or write operation to this register will
subsequently read or write the indexed register in the register array.

The number of bits in each register in the register array must be equal to n_bits of this
register.

See uvm_reg::configure() for the remaining arguments.

 uvm_reg_file regfile_parent = null
)

UVM 1.2 Class Reference 636

25.8 uvm_reg_fifo

This special register models a DUT FIFO accessed via write/read, where writes push to
the FIFO and reads pop from it.

Backdoor access is not enabled, as it is not yet possible to force complete FIFO state, i.e.
the write and read indexes used to access the FIFO data.

Summary

uvm_reg_fifo

This special register models a DUT FIFO accessed via write/read, where writes
push to the FIFO and reads pop from it.

CLAss HIERARchY

uvm_void

uvm_object

uvm_reg

uvm_reg_fifo

CLAss DEcLARATION

fifo The abstract representation of the FIFO.
INITIALIZATION

new Creates an instance of a FIFO register having size elements
of n_bits each.

set_compare Sets the compare policy during a mirror (read) of the DUT
FIFO.

INTROsPEcTION

size The number of entries currently in the FIFO.
capacity The maximum number of entries, or depth, of the FIFO.

AccEss

write Pushes the given value to the DUT FIFO.
read Reads the next value out of the DUT FIFO.
set Pushes the given value to the abstract FIFO.
update Pushes (writes) all values preloaded using set() to the DUT.
mirror Reads the next value out of the DUT FIFO.
get Returns the next value from the abstract FIFO, but does not

pop it.
do_predict Updates the abstract (mirror) FIFO based on write() and

read() operations.
SPEcIAL

OVERRIdEs

pre_write Special pre-processing for a write() or update().
pre_read Special post-processing for a write() or update().

fifo

The abstract representation of the FIFO. Constrained to be no larger than the size

class uvm_reg_fifo extends uvm_reg

rand uvm_reg_data_t fifo[$]

UVM 1.2 Class Reference 637

parameter. It is public to enable subtypes to add constraints on it and randomize.

INITIALIZATION

new

Creates an instance of a FIFO register having size elements of n_bits each.

set_compare

Sets the compare policy during a mirror (read) of the DUT FIFO. The DUT read value is
checked against its mirror only when both the check argument in the mirror() call and
the compare policy for the field is UVM_CHECK.

INTROsPEcTION

size

The number of entries currently in the FIFO.

capacity

The maximum number of entries, or depth, of the FIFO.

AccEss

write

Pushes the given value to the DUT FIFO. If auto-prediction is enabled, the written value
is also pushed to the abstract FIFO before the call returns. If auto-prediction is not
enabled (via uvm_reg_map::set_auto_predict), the value is pushed to abstract FIFO only
when the write operation is observed on the target bus. This mode requires using the

function new(
 string name = "reg_fifo",
 int unsigned size,
 int unsigned n_bits,
 int has_cover
)

function void set_compare(
 uvm_check_e check = UVM_CHECK
)

function int unsigned size()

function int unsigned capacity()

UVM 1.2 Class Reference 638

uvm_reg_predictor class. If the write is via an update() operation, the abstract FIFO
already contains the written value and is thus not affected by either prediction mode.

read

Reads the next value out of the DUT FIFO. If auto-prediction is enabled, the frontmost
value in abstract FIFO is popped.

set

Pushes the given value to the abstract FIFO. You may call this method several times
before an update() as a means of preloading the DUT FIFO. Calls to set() to a full FIFO
are ignored. You must call update() to update the DUT FIFO with your set values.

update

Pushes (writes) all values preloaded using set() to the DUT. You must update after set
before any blocking statements, else other reads/writes to the DUT FIFO may cause the
mirror to become out of sync with the DUT.

mirror

Reads the next value out of the DUT FIFO. If auto-prediction is enabled, the frontmost
value in abstract FIFO is popped. If the check argument is set and comparison is
enabled with set_compare().

get

Returns the next value from the abstract FIFO, but does not pop it. Used to get the
expected value in a mirror() operation.

do_predict

virtual function void set(
 uvm_reg_data_t value,
 string fname = "",
 int lineno = 0
)

virtual task update(
 output uvm_status_e status,
 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_reg_map map = null,
 input uvm_sequence_base parent = null,
 input int prior = -1,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

virtual function uvm_reg_data_t get(
 string fname = "",
 int lineno = 0
)

UVM 1.2 Class Reference 639

Updates the abstract (mirror) FIFO based on write() and read() operations. When auto-
prediction is on, this method is called before each read, write, peek, or poke operation
returns. When auto-prediction is off, this method is called by a uvm_reg_predictor upon
receipt and conversion of an observed bus operation to this register.

If a write prediction, the observed write value is pushed to the abstract FIFO as long as
it is not full and the operation did not originate from an update(). If a read prediction,
the observed read value is compared with the frontmost value in the abstract FIFO if
set_compare() enabled comparison and the FIFO is not empty.

SPEcIAL OVERRIdEs

pre_write

Special pre-processing for a write() or update(). Called as a result of a write() or
update(). It is an error to attempt a write to a full FIFO or a write while an update is
still pending. An update is pending after one or more calls to set(). If in your
application the DUT allows writes to a full FIFO, you must override pre_write as
appropriate.

pre_read

Special post-processing for a write() or update(). Aborts the operation if the internal
FIFO is empty. If in your application the DUT does not behave this way, you must
override pre_write as appropriate.

virtual function void do_predict(
 uvm_reg_item rw,
 uvm_predict_e kind = UVM_PREDICT_DIRECT,
 uvm_reg_byte_en_t be = -1
)

virtual task pre_write(
 uvm_reg_item rw
)

virtual task pre_read(
 uvm_reg_item rw
)

UVM 1.2 Class Reference 640

25.9 Virtual Registers

A virtual register is a collection of fields, overlaid on top of a memory, usually in an
array. The semantics and layout of virtual registers comes from an agreement between
the software and the hardware, not any physical structures in the DUT.

Contents

Virtual
Registers

A virtual register is a collection of fields, overlaid on top of a
memory, usually in an array.

uvm_vreg Virtual register abstraction base class
uvm_vreg_cbs Pre/post read/write callback facade class

uvm_vreg

Virtual register abstraction base class

A virtual register represents a set of fields that are logically implemented in consecutive
memory locations.

All virtual register accesses eventually turn into memory accesses.

A virtual register array may be implemented on top of any memory abstraction class and
possibly dynamically resized and/or relocated.

Summary

uvm_vreg

Virtual register abstraction base class

CLAss HIErArchY

uvm_void

uvm_object

uvm_vreg

CLAss DEcLArATION

INITIALIZATION

new Create a new instance and type-specific
configuration

configure Instance-specific configuration
implement Dynamically implement, resize or relocate a virtual

register array
allocate Randomly implement, resize or relocate a virtual

register array
get_region Get the region where the virtual register array is

implemented
release_region Dynamically un-implement a virtual register array

INTrOsPEcTION

class uvm_vreg extends uvm_object

UVM 1.2 Class Reference 641

get_name Get the simple name
get_full_name Get the hierarchical name
get_parent Get the parent block
get_memory Get the memory where the virtual register array is

implemented
get_n_maps Returns the number of address maps this virtual

register array is mapped in
is_in_map Return TRUE if this virtual register array is in the

specified address map
get_maps Returns all of the address maps where this virtual

register array is mapped
get_rights Returns the access rights of this virtual register

array
get_access Returns the access policy of the virtual register

array when written and read via an address map.
get_size Returns the size of the virtual register array.
get_n_bytes Returns the width, in bytes, of a virtual register.
get_n_memlocs Returns the number of memory locations used by a

single virtual register.
get_incr Returns the number of memory locations between

two individual virtual registers in the same array.
get_fields Return the virtual fields in this virtual register
get_field_by_name Return the named virtual field in this virtual register
get_offset_in_memory Returns the offset of a virtual register
get_address Returns the base external physical address of a

virtual register
HDL AccEss

write Write the specified value in a virtual register
read Read the current value from a virtual register
poke Deposit the specified value in a virtual register
peek Sample the current value in a virtual register
reset Reset the access semaphore

CALLBAcKs

pre_write Called before virtual register write.
post_write Called after virtual register write.
pre_read Called before virtual register read.
post_read Called after virtual register read.

INITIALIZATION

new

Create a new instance and type-specific configuration

Creates an instance of a virtual register abstraction class with the specified name.

n_bits specifies the total number of bits in a virtual register. Not all bits need to be
mapped to a virtual field. This value is usually a multiple of 8.

configure

function new(
 string name,
 int unsigned n_bits
)

function void configure(
 uvm_reg_block parent,

UVM 1.2 Class Reference 642

Instance-specific configuration

Specify the parent block of this virtual register array. If one of the other parameters are
specified, the virtual register is assumed to be dynamic and can be later (re-
)implemented using the uvm_vreg::implement() method.

If mem is specified, then the virtual register array is assumed to be statically
implemented in the memory corresponding to the specified memory abstraction class and
size, offset and incr must also be specified. Static virtual register arrays cannot be re-
implemented.

implement

Dynamically implement, resize or relocate a virtual register array

Implement an array of virtual registers of the specified size, in the specified memory and
offset. If an offset increment is specified, each virtual register is implemented at the
specified offset increment from the previous one. If an offset increment of 0 is specified,
virtual registers are packed as closely as possible in the memory.

If no memory is specified, the virtual register array is in the same memory, at the same
base offset using the same offset increment as originally implemented. Only the number
of virtual registers in the virtual register array is modified.

The initial value of the newly-implemented or relocated set of virtual registers is
whatever values are currently stored in the memory now implementing them.

Returns TRUE if the memory can implement the number of virtual registers at the
specified base offset and offset increment. Returns FALSE otherwise.

The memory region used to implement a virtual register array is reserved in the memory
allocation manager associated with the memory to prevent it from being allocated for
another purpose.

allocate

Randomly implement, resize or relocate a virtual register array

Implement a virtual register array of the specified size in a randomly allocated region of
the appropriate size in the address space managed by the specified memory allocation
manager. If a memory allocation policy is specified, it is passed to the
uvm_mem_mam::request_region() method.

 uvm_mem mem = null,
 longint unsigned size = 0,
 uvm_reg_addr_t offset = 0,
 int unsigned incr = 0
)

virtual function bit implement(
 longint unsigned n,
 uvm_mem mem = null,
 uvm_reg_addr_t offset = 0,
 int unsigned incr = 0
)

virtual function uvm_mem_region allocate(
 longint unsigned n,
 uvm_mem_mam mam,
 uvm_mem_mam_policy alloc = null
)

UVM 1.2 Class Reference 643

The initial value of the newly-implemented or relocated set of virtual registers is
whatever values are currently stored in the memory region now implementing them.

Returns a reference to a uvm_mem_region memory region descriptor if the memory
allocation manager was able to allocate a region that can implement the virtual register
array with the specified allocation policy. Returns null otherwise.

A region implementing a virtual register array must not be released using the
uvm_mem_mam::release_region() method. It must be released using the
uvm_vreg::release_region() method.

get_region

Get the region where the virtual register array is implemented

Returns a reference to the uvm_mem_region memory region descriptor that implements
the virtual register array.

Returns null if the virtual registers array is not currently implemented. A region
implementing a virtual register array must not be released using the
uvm_mem_mam::release_region() method. It must be released using the
uvm_vreg::release_region() method.

release_region

Dynamically un-implement a virtual register array

Release the memory region used to implement a virtual register array and return it to
the pool of available memory that can be allocated by the memory’s default allocation
manager. The virtual register array is subsequently considered as unimplemented and
can no longer be accessed.

Statically-implemented virtual registers cannot be released.

INTrOsPEcTION

get_name

Get the simple name

Return the simple object name of this register.

get_full_name

Get the hierarchical name

virtual function uvm_mem_region get_region()

virtual function void release_region()

virtual function string get_full_name()

UVM 1.2 Class Reference 644

Return the hierarchal name of this register. The base of the hierarchical name is the
root block.

get_parent

Get the parent block

get_memory

Get the memory where the virtual register array is implemented

get_n_maps

Returns the number of address maps this virtual register array is mapped in

is_in_map

Return TRUE if this virtual register array is in the specified address map

get_maps

Returns all of the address maps where this virtual register array is mapped

get_rights

Returns the access rights of this virtual register array

Returns “RW”, “RO” or “WO”. The access rights of a virtual register array is always
“RW”, unless it is implemented in a shared memory with access restriction in a particular
address map.

If no address map is specified and the memory is mapped in only one address map, that
address map is used. If the memory is mapped in more than one address map, the
default address map of the parent block is used.

virtual function uvm_reg_block get_parent()

virtual function uvm_mem get_memory()

virtual function int get_n_maps ()

function bit is_in_map (
 uvm_reg_map map
)

virtual function void get_maps (
 ref uvm_reg_map maps[$]
)

virtual function string get_rights(
 uvm_reg_map map = null
)

UVM 1.2 Class Reference 645

If an address map is specified and the memory is not mapped in the specified address
map, an error message is issued and “RW” is returned.

get_access

Returns the access policy of the virtual register array when written and read via an
address map.

If the memory implementing the virtual register array is mapped in more than one
address map, an address map must be specified. If access restrictions are present when
accessing a memory through the specified address map, the access mode returned takes
the access restrictions into account. For example, a read-write memory accessed
through an address map with read-only restrictions would return “RO”.

get_size

Returns the size of the virtual register array.

get_n_bytes

Returns the width, in bytes, of a virtual register.

The width of a virtual register is always a multiple of the width of the memory locations
used to implement it. For example, a virtual register containing two 1-byte fields
implemented in a memory with 4-bytes memory locations is 4-byte wide.

get_n_memlocs

Returns the number of memory locations used by a single virtual register.

get_incr

Returns the number of memory locations between two individual virtual registers in the
same array.

get_fields

virtual function string get_access(
 uvm_reg_map map = null
)

virtual function int unsigned get_size()

virtual function int unsigned get_n_bytes()

virtual function int unsigned get_n_memlocs()

virtual function int unsigned get_incr()

virtual function void get_fields(
 ref uvm_vreg_field fields[$]

UVM 1.2 Class Reference 646

Return the virtual fields in this virtual register

Fills the specified array with the abstraction class for all of the virtual fields contained in
this virtual register. Fields are ordered from least-significant position to most-significant
position within the register.

get_field_by_name

Return the named virtual field in this virtual register

Finds a virtual field with the specified name in this virtual register and returns its
abstraction class. If no fields are found, returns null.

get_offset_in_memory

Returns the offset of a virtual register

Returns the base offset of the specified virtual register, in the overall address space of
the memory that implements the virtual register array.

get_address

Returns the base external physical address of a virtual register

Returns the base external physical address of the specified virtual register if accessed
through the specified address map.

If no address map is specified and the memory implementing the virtual register array is
mapped in only one address map, that address map is used. If the memory is mapped
in more than one address map, the default address map of the parent block is used.

If an address map is specified and the memory is not mapped in the specified address
map, an error message is issued.

HDL AccEss

write

)

virtual function uvm_vreg_field get_field_by_name(
 string name
)

virtual function uvm_reg_addr_t get_offset_in_memory(
 longint unsigned idx
)

virtual function uvm_reg_addr_t get_address(
 longint unsigned idx,
 uvm_reg_map map = null
)

virtual task write(

UVM 1.2 Class Reference 647

Write the specified value in a virtual register

Write value in the DUT memory location(s) that implements the virtual register array
that corresponds to this abstraction class instance using the specified access path.

If the memory implementing the virtual register array is mapped in more than one
address map, an address map must be specified if a physical access is used (front-door
access).

The operation is eventually mapped into set of memory-write operations at the location
where the virtual register specified by idx in the virtual register array is implemented.

read

Read the current value from a virtual register

Read from the DUT memory location(s) that implements the virtual register array that
corresponds to this abstraction class instance using the specified access path and return
the readback value.

If the memory implementing the virtual register array is mapped in more than one
address map, an address map must be specified if a physical access is used (front-door
access).

The operation is eventually mapped into set of memory-read operations at the location
where the virtual register specified by idx in the virtual register array is implemented.

poke

Deposit the specified value in a virtual register

Deposit value in the DUT memory location(s) that implements the virtual register array

 input longint unsigned idx,
 output uvm_status_e status,
 input uvm_reg_data_t value,
 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_reg_map map = null,
 input uvm_sequence_base parent = null,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

virtual task read(
 input longint unsigned idx,
 output uvm_status_e status,
 output uvm_reg_data_t value,
 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_reg_map map = null,
 input uvm_sequence_base parent = null,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

virtual task poke(
 input longint unsigned idx,
 output uvm_status_e status,
 input uvm_reg_data_t value,
 input uvm_sequence_base parent = null,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

UVM 1.2 Class Reference 648

that corresponds to this abstraction class instance using the memory backdoor access.

The operation is eventually mapped into set of memory-poke operations at the location
where the virtual register specified by idx in the virtual register array is implemented.

peek

Sample the current value in a virtual register

Sample the DUT memory location(s) that implements the virtual register array that
corresponds to this abstraction class instance using the memory backdoor access, and
return the sampled value.

The operation is eventually mapped into set of memory-peek operations at the location
where the virtual register specified by idx in the virtual register array is implemented.

reset

Reset the access semaphore

Reset the semaphore that prevents concurrent access to the virtual register. This
semaphore must be explicitly reset if a thread accessing this virtual register array was
killed in before the access was completed

CALLBAcKs

pre_write

Called before virtual register write.

If the specified data value, access path or address map are modified, the updated data
value, access path or address map will be used to perform the virtual register operation.

The registered callback methods are invoked after the invocation of this method. All
register callbacks are executed after the corresponding field callbacks The pre-write
virtual register and field callbacks are executed before the corresponding pre-write
memory callbacks

virtual task peek(
 input longint unsigned idx,
 output uvm_status_e status,
 output uvm_reg_data_t value,
 input uvm_sequence_base parent = null,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

function void reset(
 string kind = "HARD"
)

virtual task pre_write(
 longint unsigned idx,
 ref uvm_reg_data_t wdat,
 ref uvm_path_e path,
 ref uvm_reg_map map
)

UVM 1.2 Class Reference 649

post_write

Called after virtual register write.

If the specified status is modified, the updated status will be returned by the virtual
register operation.

The registered callback methods are invoked before the invocation of this method. All
register callbacks are executed before the corresponding field callbacks The post-write
virtual register and field callbacks are executed after the corresponding post-write
memory callbacks

pre_read

Called before virtual register read.

If the specified access path or address map are modified, the updated access path or
address map will be used to perform the register operation.

The registered callback methods are invoked after the invocation of this method. All
register callbacks are executed after the corresponding field callbacks The pre-read
virtual register and field callbacks are executed before the corresponding pre-read
memory callbacks

post_read

Called after virtual register read.

If the specified readback data or status is modified, the updated readback data or status
will be returned by the register operation.

The registered callback methods are invoked before the invocation of this method. All
register callbacks are executed before the corresponding field callbacks The post-read
virtual register and field callbacks are executed after the corresponding post-read
memory callbacks

virtual task post_write(
 longint unsigned idx,
 uvm_reg_data_t wdat,
 uvm_path_e path,
 uvm_reg_map map,
 ref uvm_status_e status
)

virtual task pre_read(
 longint unsigned idx,
 ref uvm_path_e path,
 ref uvm_reg_map map
)

virtual task post_read(
 longint unsigned idx,
 ref uvm_reg_data_t rdat,
 input uvm_path_e path,
 input uvm_reg_map map,
 ref uvm_status_e status
)

UVM 1.2 Class Reference 650

uvm_vreg_cbs

Pre/post read/write callback facade class

Summary

uvm_vreg_cbs

Pre/post read/write callback facade class

CLAss HIErArchY

uvm_void

uvm_object

uvm_callback

uvm_vreg_cbs

CLAss DEcLArATION

METhOds

pre_write Callback called before a write operation.
post_write Called after register write.
pre_read Called before register read.
post_read Called after register read.

TYPEs

uvm_vreg_cb Convenience callback type declaration
uvm_vreg_cb_iter Convenience callback iterator type declaration

METhOds

pre_write

Callback called before a write operation.

The registered callback methods are invoked after the invocation of the
uvm_vreg::pre_write() method. All virtual register callbacks are executed after the
corresponding virtual field callbacks The pre-write virtual register and field callbacks are
executed before the corresponding pre-write memory callbacks

The written value wdat, access path and address map, if modified, modifies the actual
value, access path or address map used in the virtual register operation.

class uvm_vreg_cbs extends uvm_callback

virtual task pre_write(
 uvm_vreg rg,
 longint unsigned idx,
 ref uvm_reg_data_t wdat,
 ref uvm_path_e path,
 ref uvm_reg_map map
)

UVM 1.2 Class Reference 651

post_write

Called after register write.

The registered callback methods are invoked before the invocation of the
uvm_reg::post_write() method. All register callbacks are executed before the
corresponding virtual field callbacks The post-write virtual register and field callbacks are
executed after the corresponding post-write memory callbacks

The status of the operation, if modified, modifies the actual returned status.

pre_read

Called before register read.

The registered callback methods are invoked after the invocation of the
uvm_reg::pre_read() method. All register callbacks are executed after the corresponding
virtual field callbacks The pre-read virtual register and field callbacks are executed before
the corresponding pre-read memory callbacks

The access path and address map, if modified, modifies the actual access path or address
map used in the register operation.

post_read

Called after register read.

The registered callback methods are invoked before the invocation of the
uvm_reg::post_read() method. All register callbacks are executed before the
corresponding virtual field callbacks The post-read virtual register and field callbacks are
executed after the corresponding post-read memory callbacks

The readback value rdat and the status of the operation, if modified, modifies the actual
returned readback value and status.

virtual task post_write(
 uvm_vreg rg,
 longint unsigned idx,
 uvm_reg_data_t wdat,
 uvm_path_e path,
 uvm_reg_map map,
 ref uvm_status_e status
)

virtual task pre_read(
 uvm_vreg rg,
 longint unsigned idx,
 ref uvm_path_e path,
 ref uvm_reg_map map
)

virtual task post_read(
 uvm_vreg rg,
 longint unsigned idx,
 ref uvm_reg_data_t rdat,
 input uvm_path_e path,
 input uvm_reg_map map,
 ref uvm_status_e status
)

UVM 1.2 Class Reference 652

TYPEs

uvm_vreg_cb

Convenience callback type declaration

Use this declaration to register virtual register callbacks rather than the more verbose
parameterized class

uvm_vreg_cb_iter

Convenience callback iterator type declaration

Use this declaration to iterate over registered virtual register callbacks rather than the
more verbose parameterized class

UVM 1.2 Class Reference 653

25.10 Virtual Register Field Classes

This section defines the virtual field and callback classes.

A virtual field is set of contiguous bits in one or more memory locations. The semantics
and layout of virtual fields comes from an agreement between the software and the
hardware, not any physical structures in the DUT.

Contents

Virtual Register Field
Classes

This section defines the virtual field and callback
classes.

uvm_vreg_field Virtual field abstraction class
uvm_vreg_field_cbs Pre/post read/write callback facade class

uvm_vreg_field

Virtual field abstraction class

A virtual field represents a set of adjacent bits that are logically implemented in
consecutive memory locations.

Summary

uvm_vreg_field

Virtual field abstraction class

CLAss HIErArchY

uvm_void

uvm_object

uvm_vreg_field

CLAss DEcLArATION

INITIALIZATION

new Create a new virtual field instance
configure Instance-specific configuration

INTrOsPEcTION

get_name Get the simple name
get_full_name Get the hierarchical name
get_parent Get the parent virtual register
get_lsb_pos_in_register Return the position of the virtual field / Returns

the index of the least significant bit of the virtual
field in the virtual register that instantiates it.

get_n_bits Returns the width, in bits, of the virtual field.
get_access Returns the access policy of the virtual field

register when written and read via an address
map.

HDL AccEss

class uvm_vreg_field extends uvm_object

UVM 1.2 Class Reference 654

write Write the specified value in a virtual field
read Read the current value from a virtual field
poke Deposit the specified value in a virtual field
peek Sample the current value from a virtual field

CALLBAcKs

pre_write Called before virtual field write.
post_write Called after virtual field write
pre_read Called before virtual field read.
post_read Called after virtual field read.

INITIALIZATION

new

Create a new virtual field instance

This method should not be used directly. The uvm_vreg_field::type_id::create() method
should be used instead.

configure

Instance-specific configuration

Specify the parent virtual register of this virtual field, its size in bits, and the position of
its least-significant bit within the virtual register relative to the least-significant bit of the
virtual register.

INTrOsPEcTION

get_name

Get the simple name

Return the simple object name of this virtual field

get_full_name

Get the hierarchical name

function new(
 string name = "uvm_vreg_field"
)

function void configure(
 uvm_vreg parent,
 int unsigned size,
 int unsigned lsb_pos
)

virtual function string get_full_name()

UVM 1.2 Class Reference 655

Return the hierarchal name of this virtual field The base of the hierarchical name is the
root block.

get_parent

Get the parent virtual register

get_lsb_pos_in_register

Return the position of the virtual field / Returns the index of the least significant bit of
the virtual field in the virtual register that instantiates it. An offset of 0 indicates a field
that is aligned with the least-significant bit of the register.

get_n_bits

Returns the width, in bits, of the virtual field.

get_access

Returns the access policy of the virtual field register when written and read via an
address map.

If the memory implementing the virtual field is mapped in more than one address map,
an address map must be specified. If access restrictions are present when accessing a
memory through the specified address map, the access mode returned takes the access
restrictions into account. For example, a read-write memory accessed through an
address map with read-only restrictions would return “RO”.

HDL AccEss

write

virtual function uvm_vreg get_parent()

virtual function int unsigned get_lsb_pos_in_register()

virtual function int unsigned get_n_bits()

virtual function string get_access(
 uvm_reg_map map = null
)

virtual task write(
 input longint unsigned idx,
 output uvm_status_e status,
 input uvm_reg_data_t value,
 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_reg_map map = null,
 input uvm_sequence_base parent = null,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

UVM 1.2 Class Reference 656

Write the specified value in a virtual field

Write value in the DUT memory location(s) that implements the virtual field that
corresponds to this abstraction class instance using the specified access path.

If the memory implementing the virtual register array containing this virtual field is
mapped in more than one address map, an address map must be specified if a physical
access is used (front-door access).

The operation is eventually mapped into memory read-modify-write operations at the
location where the virtual register specified by idx in the virtual register array is
implemented. If a backdoor is available for the memory implementing the virtual field, it
will be used for the memory-read operation.

read

Read the current value from a virtual field

Read from the DUT memory location(s) that implements the virtual field that corresponds
to this abstraction class instance using the specified access path, and return the
readback value.

If the memory implementing the virtual register array containing this virtual field is
mapped in more than one address map, an address map must be specified if a physical
access is used (front-door access).

The operation is eventually mapped into memory read operations at the location(s) where
the virtual register specified by idx in the virtual register array is implemented.

poke

Deposit the specified value in a virtual field

Deposit value in the DUT memory location(s) that implements the virtual field that
corresponds to this abstraction class instance using the specified access path.

The operation is eventually mapped into memory peek-modify-poke operations at the
location where the virtual register specified by idx in the virtual register array is
implemented.

virtual task read(
 input longint unsigned idx,
 output uvm_status_e status,
 output uvm_reg_data_t value,
 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_reg_map map = null,
 input uvm_sequence_base parent = null,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

virtual task poke(
 input longint unsigned idx,
 output uvm_status_e status,
 input uvm_reg_data_t value,
 input uvm_sequence_base parent = null,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

UVM 1.2 Class Reference 657

peek

Sample the current value from a virtual field

Sample from the DUT memory location(s) that implements the virtual field that
corresponds to this abstraction class instance using the specified access path, and return
the readback value.

If the memory implementing the virtual register array containing this virtual field is
mapped in more than one address map, an address map must be specified if a physical
access is used (front-door access).

The operation is eventually mapped into memory peek operations at the location(s)
where the virtual register specified by idx in the virtual register array is implemented.

CALLBAcKs

pre_write

Called before virtual field write.

If the specified data value, access path or address map are modified, the updated data
value, access path or address map will be used to perform the virtual register operation.

The virtual field callback methods are invoked before the callback methods on the
containing virtual register. The registered callback methods are invoked after the
invocation of this method. The pre-write virtual register and field callbacks are executed
before the corresponding pre-write memory callbacks

post_write

Called after virtual field write

If the specified status is modified, the updated status will be returned by the virtual

virtual task peek(
 input longint unsigned idx,
 output uvm_status_e status,
 output uvm_reg_data_t value,
 input uvm_sequence_base parent = null,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

virtual task pre_write(
 longint unsigned idx,
 ref uvm_reg_data_t wdat,
 ref uvm_path_e path,
 ref uvm_reg_map map
)

virtual task post_write(
 longint unsigned idx,
 uvm_reg_data_t wdat,
 uvm_path_e path,
 uvm_reg_map map,
 ref uvm_status_e status
)

UVM 1.2 Class Reference 658

register operation.

The virtual field callback methods are invoked after the callback methods on the
containing virtual register. The registered callback methods are invoked before the
invocation of this method. The post-write virtual register and field callbacks are executed
after the corresponding post-write memory callbacks

pre_read

Called before virtual field read.

If the specified access path or address map are modified, the updated access path or
address map will be used to perform the virtual register operation.

The virtual field callback methods are invoked after the callback methods on the
containing virtual register. The registered callback methods are invoked after the
invocation of this method. The pre-read virtual register and field callbacks are executed
before the corresponding pre-read memory callbacks

post_read

Called after virtual field read.

If the specified readback data rdat or status is modified, the updated readback data or
status will be returned by the virtual register operation.

The virtual field callback methods are invoked after the callback methods on the
containing virtual register. The registered callback methods are invoked before the
invocation of this method. The post-read virtual register and field callbacks are executed
after the corresponding post-read memory callbacks

uvm_vreg_field_cbs

Pre/post read/write callback facade class

Summary

uvm_vreg_field_cbs

Pre/post read/write callback facade class

CLAss HIErArchY

virtual task pre_read(
 longint unsigned idx,
 ref uvm_path_e path,
 ref uvm_reg_map map
)

virtual task post_read(
 longint unsigned idx,
 ref uvm_reg_data_t rdat,
 uvm_path_e path,
 uvm_reg_map map,
 ref uvm_status_e status
)

UVM 1.2 Class Reference 659

uvm_void

uvm_object

uvm_callback

uvm_vreg_field_cbs

CLAss DEcLArATION

METhOds

pre_write Callback called before a write operation.
post_write Called after a write operation
pre_read Called before a virtual field read.
post_read Called after a virtual field read.

TYPEs

uvm_vreg_field_cb Convenience callback type declaration
uvm_vreg_field_cb_iter Convenience callback iterator type declaration

METhOds

pre_write

Callback called before a write operation.

The registered callback methods are invoked before the invocation of the virtual register
pre-write callbacks and after the invocation of the uvm_vreg_field::pre_write() method.

The written value wdat, access path and address map, if modified, modifies the actual
value, access path or address map used in the register operation.

post_write

Called after a write operation

The registered callback methods are invoked after the invocation of the virtual register
post-write callbacks and before the invocation of the uvm_vreg_field::post_write()
method.

The status of the operation, if modified, modifies the actual returned status.

class uvm_vreg_field_cbs extends uvm_callback

virtual task pre_write(
 uvm_vreg_field field,
 longint unsigned idx,
 ref uvm_reg_data_t wdat,
 ref uvm_path_e path,
 ref uvm_reg_map map
)

virtual task post_write(
 uvm_vreg_field field,
 longint unsigned idx,
 uvm_reg_data_t wdat,
 uvm_path_e path,
 uvm_reg_map map,
 ref uvm_status_e status
)

UVM 1.2 Class Reference 660

pre_read

Called before a virtual field read.

The registered callback methods are invoked after the invocation of the virtual register
pre-read callbacks and after the invocation of the uvm_vreg_field::pre_read() method.

The access path and address map, if modified, modifies the actual access path or address
map used in the register operation.

post_read

Called after a virtual field read.

The registered callback methods are invoked after the invocation of the virtual register
post-read callbacks and before the invocation of the uvm_vreg_field::post_read()
method.

The readback value rdat and the status of the operation, if modified, modifies the actual
returned readback value and status.

TYPEs

uvm_vreg_field_cb

Convenience callback type declaration

Use this declaration to register virtual field callbacks rather than the more verbose
parameterized class

uvm_vreg_field_cb_iter

Convenience callback iterator type declaration

Use this declaration to iterate over registered virtual field callbacks rather than the more
verbose parameterized class

virtual task pre_read(
 uvm_vreg_field field,
 longint unsigned idx,
 ref uvm_path_e path,
 ref uvm_reg_map map
)

virtual task post_read(
 uvm_vreg_field field,
 longint unsigned idx,
 ref uvm_reg_data_t rdat,
 uvm_path_e path,
 uvm_reg_map map,
 ref uvm_status_e status
)

UVM 1.2 Class Reference 661

25.11 Register Callbacks

This section defines the base class used for all register callback extensions. It also
includes pre-defined callback extensions for use on read-only and write-only registers.

Contents

Register Callbacks This section defines the base class used for all
register callback extensions.

uvm_reg_cbs Facade class for field, register, memory and backdoor
access callback methods.

Typedefs

uvm_reg_cb Convenience callback type declaration for registers
uvm_reg_cb_iter Convenience callback iterator type declaration for

registers
uvm_reg_bd_cb Convenience callback type declaration for backdoor
uvm_reg_bd_cb_iter Convenience callback iterator type declaration for

backdoor
uvm_mem_cb Convenience callback type declaration for memories
uvm_mem_cb_iter Convenience callback iterator type declaration for

memories
uvm_reg_field_cb Convenience callback type declaration for fields
uvm_reg_field_cb_iter Convenience callback iterator type declaration for

fields
PrEDEFINED EXtENSIONS

uvm_reg_read_only_cbs Pre-defined register callback method for read-only
registers that will issue an error if a write()
operation is attempted.

uvm_reg_write_only_cbs Pre-defined register callback method for write-only
registers that will issue an error if a read() operation
is attempted.

uvm_reg_cbs

Facade class for field, register, memory and backdoor access callback methods.

Summary

uvm_reg_cbs

Facade class for field, register, memory and backdoor access callback methods.

CLASS HIErArchY

uvm_void

uvm_object

uvm_callback

uvm_reg_cbs

CLASS DEcLArAtION

virtual class uvm_reg_cbs extends uvm_callback

UVM 1.2 Class Reference 662

MEthODS

pre_write Called before a write operation.
post_write Called after a write operation.
pre_read Callback called before a read operation.
post_read Callback called after a read operation.
post_predict Called by the uvm_reg_field::predict() method after a

successful UVM_PREDICT_READ or UVM_PREDICT_WRITE
prediction.

encode Data encoder
decode Data decode

MEthODS

pre_write

Called before a write operation.

All registered pre_write callback methods are invoked after the invocation of the
pre_write method of associated object (uvm_reg, uvm_reg_field, uvm_mem, or
uvm_reg_backdoor). If the element being written is a uvm_reg, all pre_write callback
methods are invoked before the contained uvm_reg_fields.

Backdoor uvm_reg_backdoor::pre_write, uvm_reg_cbs::pre_write cbs for
backdoor.

Register uvm_reg::pre_write, uvm_reg_cbs::pre_write cbs for reg, then
foreach field: uvm_reg_field::pre_write, uvm_reg_cbs::pre_write
cbs for field

RegField uvm_reg_field::pre_write, uvm_reg_cbs::pre_write cbs for field
Memory uvm_mem::pre_write, uvm_reg_cbs::pre_write cbs for mem

The rw argument holds information about the operation.
Modifying the value modifies the actual value written.
For memories, modifying the offset modifies the offset used in the operation.
For non-backdoor operations, modifying the access path or address map modifies
the actual path or map used in the operation.

If the rw.status is modified to anything other than UVM_IS_OK, the operation is aborted.

See uvm_reg_item for details on rw information.

post_write

Called after a write operation.

All registered post_write callback methods are invoked before the invocation of the
post_write method of the associated object (uvm_reg, uvm_reg_field, uvm_mem, or

virtual task pre_write(
 uvm_reg_item rw
)

virtual task post_write(
 uvm_reg_item rw
)

UVM 1.2 Class Reference 663

uvm_reg_backdoor). If the element being written is a uvm_reg, all post_write callback
methods are invoked before the contained uvm_reg_fields.

Summary of callback order

Backdoor uvm_reg_cbs::post_write cbs for backdoor,
uvm_reg_backdoor::post_write

Register uvm_reg_cbs::post_write cbs for reg, uvm_reg::post_write, then
foreach field: uvm_reg_cbs::post_write cbs for field,
uvm_reg_field::post_read

RegField uvm_reg_cbs::post_write cbs for field, uvm_reg_field::post_write
Memory uvm_reg_cbs::post_write cbs for mem, uvm_mem::post_write

The rw argument holds information about the operation.

Modifying the status member modifies the returned status.
Modifying the value or offset members has no effect, as the operation has already
completed.

See uvm_reg_item for details on rw information.

pre_read

Callback called before a read operation.

All registered pre_read callback methods are invoked after the invocation of the pre_read
method of associated object (uvm_reg, uvm_reg_field, uvm_mem, or
uvm_reg_backdoor). If the element being read is a uvm_reg, all pre_read callback
methods are invoked before the contained uvm_reg_fields.

Backdoor uvm_reg_backdoor::pre_read, uvm_reg_cbs::pre_read cbs for
backdoor

Register uvm_reg::pre_read, uvm_reg_cbs::pre_read cbs for reg, then
foreach field: uvm_reg_field::pre_read, uvm_reg_cbs::pre_read cbs
for field

RegField uvm_reg_field::pre_read, uvm_reg_cbs::pre_read cbs for field
Memory uvm_mem::pre_read, uvm_reg_cbs::pre_read cbs for mem

The rw argument holds information about the operation.
The value member of rw is not used has no effect if modified.
For memories, modifying the offset modifies the offset used in the operation.
For non-backdoor operations, modifying the access path or address map modifies
the actual path or map used in the operation.

If the rw.status is modified to anything other than UVM_IS_OK, the operation is aborted.

See uvm_reg_item for details on rw information.

post_read

virtual task pre_read(
 uvm_reg_item rw
)

virtual task post_read(

UVM 1.2 Class Reference 664

Callback called after a read operation.

All registered post_read callback methods are invoked before the invocation of the
post_read method of the associated object (uvm_reg, uvm_reg_field, uvm_mem, or
uvm_reg_backdoor). If the element being read is a uvm_reg, all post_read callback
methods are invoked before the contained uvm_reg_fields.

Backdoor uvm_reg_cbs::post_read cbs for backdoor,
uvm_reg_backdoor::post_read

Register uvm_reg_cbs::post_read cbs for reg, uvm_reg::post_read, then
foreach field: uvm_reg_cbs::post_read cbs for field,
uvm_reg_field::post_read

RegField uvm_reg_cbs::post_read cbs for field, uvm_reg_field::post_read
Memory uvm_reg_cbs::post_read cbs for mem, uvm_mem::post_read

The rw argument holds information about the operation.
Modifying the readback value or status modifies the actual returned value and
status.
Modifying the value or offset members has no effect, as the operation has already
completed.

See uvm_reg_item for details on rw information.

post_predict

Called by the uvm_reg_field::predict() method after a successful UVM_PREDICT_READ or
UVM_PREDICT_WRITE prediction.

previous is the previous value in the mirror and value is the latest predicted value. Any
change to value will modify the predicted mirror value.

encode

Data encoder

The registered callback methods are invoked in order of registration after all the
pre_write methods have been called. The encoded data is passed through each
invocation in sequence. This allows the pre_write methods to deal with clear-text data.

By default, the data is not modified.

 uvm_reg_item rw
)

virtual function void post_predict(
 input uvm_reg_field fld,
 input uvm_reg_data_t previous,
 inout uvm_reg_data_t value,
 input uvm_predict_e kind,
 input uvm_path_e path,
 input uvm_reg_map map
)

virtual function void encode(
 ref uvm_reg_data_t data[]
)

UVM 1.2 Class Reference 665

decode

Data decode

The registered callback methods are invoked in reverse order of registration before all the
post_read methods are called. The decoded data is passed through each invocation in
sequence. This allows the post_read methods to deal with clear-text data.

The reversal of the invocation order is to allow the decoding of the data to be performed
in the opposite order of the encoding with both operations specified in the same callback
extension.

By default, the data is not modified.

Typedefs

Summary

Typedefs

uvm_reg_cb Convenience callback type declaration for registers
uvm_reg_cb_iter Convenience callback iterator type declaration for

registers
uvm_reg_bd_cb Convenience callback type declaration for backdoor
uvm_reg_bd_cb_iter Convenience callback iterator type declaration for

backdoor
uvm_mem_cb Convenience callback type declaration for memories
uvm_mem_cb_iter Convenience callback iterator type declaration for

memories
uvm_reg_field_cb Convenience callback type declaration for fields
uvm_reg_field_cb_iter Convenience callback iterator type declaration for

fields
PrEDEFINED EXtENSIONS

uvm_reg_cb

Convenience callback type declaration for registers

Use this declaration to register the register callbacks rather than the more verbose
parameterized class

uvm_reg_cb_iter

Convenience callback iterator type declaration for registers

Use this declaration to iterate over registered register callbacks rather than the more
verbose parameterized class

uvm_reg_bd_cb

virtual function void decode(
 ref uvm_reg_data_t data[]
)

UVM 1.2 Class Reference 666

Convenience callback type declaration for backdoor

Use this declaration to register register backdoor callbacks rather than the more verbose
parameterized class

uvm_reg_bd_cb_iter

Convenience callback iterator type declaration for backdoor

Use this declaration to iterate over registered register backdoor callbacks rather than the
more verbose parameterized class

uvm_mem_cb

Convenience callback type declaration for memories

Use this declaration to register memory callbacks rather than the more verbose
parameterized class

uvm_mem_cb_iter

Convenience callback iterator type declaration for memories

Use this declaration to iterate over registered memory callbacks rather than the more
verbose parameterized class

uvm_reg_field_cb

Convenience callback type declaration for fields

Use this declaration to register field callbacks rather than the more verbose
parameterized class

uvm_reg_field_cb_iter

Convenience callback iterator type declaration for fields

Use this declaration to iterate over registered field callbacks rather than the more
verbose parameterized class

PrEDEFINED EXtENSIONS

uvm_reg_read_only_cbs

Pre-defined register callback method for read-only registers that will issue an error if a
write() operation is attempted.

UVM 1.2 Class Reference 667

Summary

uvm_reg_read_only_cbs

Pre-defined register callback method for read-only registers that will issue an
error if a write() operation is attempted.

CLASS HIErArchY

uvm_void

uvm_object

uvm_callback

uvm_reg_cbs

uvm_reg_read_only_cbs

CLASS DEcLArAtION

MEthODS

pre_write Produces an error message and sets status to UVM_NOT_OK.
add Add this callback to the specified register and its contained

fields.
remove Remove this callback from the specified register and its

contained fields.

MEthODS

pre_write

Produces an error message and sets status to UVM_NOT_OK.

add

Add this callback to the specified register and its contained fields.

remove

Remove this callback from the specified register and its contained fields.

class uvm_reg_read_only_cbs extends uvm_reg_cbs

virtual task pre_write(
 uvm_reg_item rw
)

static function void add(
 uvm_reg rg
)

static function void remove(
 uvm_reg rg
)

UVM 1.2 Class Reference 668

uvm_reg_write_only_cbs

Pre-defined register callback method for write-only registers that will issue an error if a
read() operation is attempted.

Summary

uvm_reg_write_only_cbs

Pre-defined register callback method for write-only registers that will issue an
error if a read() operation is attempted.

CLASS HIErArchY

uvm_void

uvm_object

uvm_callback

uvm_reg_cbs

uvm_reg_write_only_cbs

CLASS DEcLArAtION

MEthODS

pre_read Produces an error message and sets status to UVM_NOT_OK.
add Add this callback to the specified register and its contained

fields.
remove Remove this callback from the specified register and its

contained fields.

MEthODS

pre_read

Produces an error message and sets status to UVM_NOT_OK.

add

Add this callback to the specified register and its contained fields.

class uvm_reg_write_only_cbs extends uvm_reg_cbs

virtual task pre_read(
 uvm_reg_item rw
)

static function void add(
 uvm_reg rg
)

UVM 1.2 Class Reference 669

remove

Remove this callback from the specified register and its contained fields.

static function void remove(
 uvm_reg rg
)

UVM 1.2 Class Reference 670

25.12 Memory Allocation Manager

Manages the exclusive allocation of consecutive memory locations called regions. The
regions can subsequently be accessed like little memories of their own, without knowing
in which memory or offset they are actually located.

The memory allocation manager should be used by any application-level process that
requires reserved space in the memory, such as DMA buffers.

A region will remain reserved until it is explicitly released.

Contents

Memory Allocation
Manager

Manages the exclusive allocation of consecutive memory
locations called regions.

uvm_mem_mam Memory allocation manager
uvm_mem_region Allocated memory region descriptor
uvm_mem_mam_policy An instance of this class is randomized to determine the

starting offset of a randomly allocated memory region.
uvm_mem_mam_cfg Specifies the memory managed by an instance of a

uvm_mem_mam memory allocation manager class.

uvm_mem_mam

Memory allocation manager

Memory allocation management utility class similar to C’s malloc() and free(). A single
instance of this class is used to manage a single, contiguous address space.

Summary

uvm_mem_mam

Memory allocation manager

CLass DEcLaRaTION

INITIaLIZaTION

alloc_mode_e Memory allocation mode
locality_e Location of memory regions
default_alloc Region allocation policy
new Create a new manager instance
reconfigure Reconfigure the manager

MEmORY MaNaGEmENT

reserve_region Reserve a specific memory region
request_region Request and reserve a memory region
release_region Release the specified region
release_all_regions Forcibly release all allocated memory regions.

INTROsPEcTION

convert2string Image of the state of the manager
for_each Iterate over all currently allocated regions
get_memory Get the managed memory implementation

class uvm_mem_mam

UVM 1.2 Class Reference 671

INITIaLIZaTION

alloc_mode_e

Memory allocation mode

Specifies how to allocate a memory region

GREEDY Consume new, previously unallocated memory
THRIFTY Reused previously released memory as much as possible (not yet

implemented)

locality_e

Location of memory regions

Specifies where to locate new memory regions

BROAD Locate new regions randomly throughout the address space
NEARBY Locate new regions adjacent to existing regions

default_alloc

Region allocation policy

This object is repeatedly randomized when allocating new regions.

new

Create a new manager instance

Create an instance of a memory allocation manager with the specified name and
configuration. This instance manages all memory region allocation within the address
range specified in the configuration descriptor.

If a reference to a memory abstraction class is provided, the memory locations within
the regions can be accessed through the region descriptor, using the
uvm_mem_region::read() and uvm_mem_region::write() methods.

reconfigure

uvm_mem_mam_policy default_alloc

function new(
 string name,
 uvm_mem_mam_cfg cfg,
 uvm_mem mem = null
)

function uvm_mem_mam_cfg reconfigure(

UVM 1.2 Class Reference 672

Reconfigure the manager

Modify the maximum and minimum addresses of the address space managed by the
allocation manager, allocation mode, or locality. The number of bytes per memory
location cannot be modified once an allocation manager has been constructed. All
currently allocated regions must fall within the new address space.

Returns the previous configuration.

if no new configuration is specified, simply returns the current configuration.

MEmORY MaNaGEmENT

reserve_region

Reserve a specific memory region

Reserve a memory region of the specified number of bytes starting at the specified
offset. A descriptor of the reserved region is returned. If the specified region cannot be
reserved, null is returned.

It may not be possible to reserve a region because it overlaps with an already-allocated
region or it lies outside the address range managed by the memory manager.

Regions can be reserved to create “holes” in the managed address space.

request_region

Request and reserve a memory region

Request and reserve a memory region of the specified number of bytes starting at a
random location. If an policy is specified, it is randomized to determine the start offset
of the region. If no policy is specified, the policy found in the
uvm_mem_mam::default_alloc class property is randomized.

A descriptor of the allocated region is returned. If no region can be allocated, null is
returned.

It may not be possible to allocate a region because there is no area in the memory with
enough consecutive locations to meet the size requirements or because there is another
contradiction when randomizing the policy.

 uvm_mem_mam_cfg cfg = null
)

function uvm_mem_region reserve_region(
 bit [63:0] start_offset,
 int unsigned n_bytes,
 string fname = "",
 int lineno = 0
)

function uvm_mem_region request_region(
 int unsigned n_bytes,
 uvm_mem_mam_policy alloc = null,
 string fname = "",
 int lineno = 0
)

UVM 1.2 Class Reference 673

If the memory allocation is configured to THRIFTY or NEARBY, a suitable region is first
sought procedurally.

release_region

Release the specified region

Release a previously allocated memory region. An error is issued if the specified region
has not been previously allocated or is no longer allocated.

release_all_regions

Forcibly release all allocated memory regions.

INTROsPEcTION

convert2string

Image of the state of the manager

Create a human-readable description of the state of the memory manager and the
currently allocated regions.

for_each

Iterate over all currently allocated regions

If reset is TRUE, reset the iterator and return the first allocated region. Returns null
when there are no additional allocated regions to iterate on.

get_memory

Get the managed memory implementation

Return the reference to the memory abstraction class for the memory implementing the
locations managed by this instance of the allocation manager. Returns null if no memory
abstraction class was specified at construction time.

function void release_region(
 uvm_mem_region region
)

function void release_all_regions()

function string convert2string()

function uvm_mem_region for_each(
 bit reset = 0
)

function uvm_mem get_memory()

UVM 1.2 Class Reference 674

uvm_mem_region

Allocated memory region descriptor

Each instance of this class describes an allocated memory region. Instances of this class
are created only by the memory manager, and returned by the
uvm_mem_mam::reserve_region() and uvm_mem_mam::request_region() methods.

Summary

uvm_mem_region

Allocated memory region descriptor

CLass DEcLaRaTION

METHOds

get_start_offset Get the start offset of the region
get_end_offset Get the end offset of the region
get_len Size of the memory region
get_n_bytes Number of bytes in the region
release_region Release this region
get_memory Get the memory where the region resides
get_virtual_registers Get the virtual register array in this region
write Write to a memory location in the region.
read Read from a memory location in the region.
burst_write Write to a set of memory location in the region.
burst_read Read from a set of memory location in the region.
poke Deposit in a memory location in the region.
peek Sample a memory location in the region.

METHOds

get_start_offset

Get the start offset of the region

Return the address offset, within the memory, where this memory region starts.

get_end_offset

Get the end offset of the region

Return the address offset, within the memory, where this memory region ends.

class uvm_mem_region

function bit [63:0] get_start_offset()

function bit [63:0] get_end_offset()

UVM 1.2 Class Reference 675

get_len

Size of the memory region

Return the number of consecutive memory locations (not necessarily bytes) in the
allocated region.

get_n_bytes

Number of bytes in the region

Return the number of consecutive bytes in the allocated region. If the managed memory
contains more than one byte per address, the number of bytes in an allocated region
may be greater than the number of requested or reserved bytes.

release_region

Release this region

get_memory

Get the memory where the region resides

Return a reference to the memory abstraction class for the memory implementing this
allocated memory region. Returns null if no memory abstraction class was specified for
the allocation manager that allocated this region.

get_virtual_registers

Get the virtual register array in this region

Return a reference to the virtual register array abstraction class implemented in this
region. Returns null if the memory region is not known to implement virtual registers.

write

function int unsigned get_len()

function int unsigned get_n_bytes()

function void release_region()

function uvm_mem get_memory()

function uvm_vreg get_virtual_registers()

task write(
 output uvm_status_e status,
 input uvm_reg_addr_t offset,
 input uvm_reg_data_t value,
 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_reg_map map = null,
 input uvm_sequence_base parent = null,
 input int prior = -1,
 input uvm object extension = null,

UVM 1.2 Class Reference 676

Write to a memory location in the region.

Write to the memory location that corresponds to the specified offset within this region.
Requires that the memory abstraction class be associated with the memory allocation
manager that allocated this region.

See uvm_mem::write() for more details.

read

Read from a memory location in the region.

Read from the memory location that corresponds to the specified offset within this
region. Requires that the memory abstraction class be associated with the memory
allocation manager that allocated this region.

See uvm_mem::read() for more details.

burst_write

Write to a set of memory location in the region.

Write to the memory locations that corresponds to the specified burst within this region.
Requires that the memory abstraction class be associated with the memory allocation
manager that allocated this region.

See uvm_mem::burst_write() for more details.

burst_read

 input string fname = "",
 input int lineno = 0
)

task read(
 output uvm_status_e status,
 input uvm_reg_addr_t offset,
 output uvm_reg_data_t value,
 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_reg_map map = null,
 input uvm_sequence_base parent = null,
 input int prior = -1,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

task burst_write(
 output uvm_status_e status,
 input uvm_reg_addr_t offset,
 input uvm_reg_data_t value[],
 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_reg_map map = null,
 input uvm_sequence_base parent = null,
 input int prior = -1,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

task burst_read(
 output uvm_status_e status,
 input uvm_reg_addr_t offset,

UVM 1.2 Class Reference 677

Read from a set of memory location in the region.

Read from the memory locations that corresponds to the specified burst within this
region. Requires that the memory abstraction class be associated with the memory
allocation manager that allocated this region.

See uvm_mem::burst_read() for more details.

poke

Deposit in a memory location in the region.

Deposit the specified value in the memory location that corresponds to the specified
offset within this region. Requires that the memory abstraction class be associated with
the memory allocation manager that allocated this region.

See uvm_mem::poke() for more details.

peek

Sample a memory location in the region.

Sample the memory location that corresponds to the specified offset within this region.
Requires that the memory abstraction class be associated with the memory allocation
manager that allocated this region.

See uvm_mem::peek() for more details.

uvm_mem_mam_policy

 output uvm_reg_data_t value[],
 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_reg_map map = null,
 input uvm_sequence_base parent = null,
 input int prior = -1,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

task poke(
 output uvm_status_e status,
 input uvm_reg_addr_t offset,
 input uvm_reg_data_t value,
 input uvm_sequence_base parent = null,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

task peek(
 output uvm_status_e status,
 input uvm_reg_addr_t offset,
 output uvm_reg_data_t value,
 input uvm_sequence_base parent = null,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

UVM 1.2 Class Reference 678

An instance of this class is randomized to determine the starting offset of a randomly
allocated memory region. This class can be extended to provide additional constraints on
the starting offset, such as word alignment or location of the region within a memory
page. If a procedural region allocation policy is required, it can be implemented in the
pre/post_randomize() method.

Summary

uvm_mem_mam_policy

An instance of this class is randomized to determine the starting offset of a
randomly allocated memory region.

CLass DEcLaRaTION

VaRIaBLEs

len Number of addresses required
start_offset The starting offset of the region
min_offset Minimum address offset in the managed address space
max_offset Maximum address offset in the managed address space
in_use Regions already allocated in the managed address space

VaRIaBLEs

len

Number of addresses required

start_offset

The starting offset of the region

min_offset

Minimum address offset in the managed address space

max_offset

Maximum address offset in the managed address space

class uvm_mem_mam_policy

int unsigned len

rand bit [63:0] start_offset

bit [63:0] min_offset

bit [63:0] max_offset

UVM 1.2 Class Reference 679

in_use

Regions already allocated in the managed address space

uvm_mem_mam_cfg

Specifies the memory managed by an instance of a uvm_mem_mam memory allocation
manager class.

Summary

uvm_mem_mam_cfg

Specifies the memory managed by an instance of a uvm_mem_mam memory
allocation manager class.

CLass DEcLaRaTION

VaRIaBLEs

n_bytes Number of bytes in each memory location
end_offset Last address of managed space
mode Region allocation mode
locality Region location mode

VaRIaBLEs

n_bytes

Number of bytes in each memory location

end_offset

Last address of managed space

mode

Region allocation mode

uvm_mem_region in_use[$]

class uvm_mem_mam_cfg

rand int unsigned n_bytes

rand bit [63:0] end_offset

rand uvm_mem_mam::alloc_mode_e mode

UVM 1.2 Class Reference 680

locality

Region location mode

rand uvm_mem_mam::locality_e locality

UVM 1.2 Class Reference 681

26.1 Generic Register Operation Descriptors

This section defines the abstract register transaction item. It also defines a descriptor
for a physical bus operation that is used by uvm_reg_adapter subtypes to convert from a
protocol-specific address/data/rw operation to a bus-independent, canonical r/w
operation.

Contents

Generic
Register
Operation
Descriptors

This section defines the abstract register transaction item.

uvm_reg_item Defines an abstract register transaction item.
uvm_reg_bus_op Struct that defines a generic bus transaction for register and

memory accesses, having kind (read or write), address, data,
and byte enable information.

uvm_reg_item

Defines an abstract register transaction item. No bus-specific information is present,
although a handle to a uvm_reg_map is provided in case a user wishes to implement a
custom address translation algorithm.

Summary

uvm_reg_item

Defines an abstract register transaction item.

CLAss HIErArchY

uvm_void

uvm_object

uvm_transaction

uvm_sequence_item

uvm_reg_item

CLAss DEcLArATIoN

VArIABLEs

element_kind Kind of element being accessed: REG, MEM, or FIELD.
element A handle to the RegModel model element associated with

this transaction.
kind Kind of access: READ or WRITE.
value The value to write to, or after completion, the value read

from the DUT.
offset For memory accesses, the offset address.
status The result of the transaction: IS_OK, HAS_X, or ERROR.
local_map The local map used to obtain addresses.

class uvm_reg_item extends uvm_sequence_item

UVM 1.2 Class Reference 682

map The original map specified for the operation.
path The path being used: UVM_FRONTDOOR or

UVM_BACKDOOR.
parent The sequence from which the operation originated.
prior The priority requested of this transfer, as defined by

uvm_sequence_base::start_item.
extension Handle to optional user data, as conveyed in the call to

write(), read(), mirror(), or update() used to trigger the
operation.

bd_kind If path is UVM_BACKDOOR, this member specifies the
abstraction kind for the backdoor access, e.g.

fname The file name from where this transaction originated, if
provided at the call site.

lineno The file name from where this transaction originated, if
provided at the call site.

METhods

new Create a new instance of this type, giving it the optional
name.

convert2string Returns a string showing the contents of this transaction.
do_copy Copy the rhs object into this object.

VArIABLEs

element_kind

Kind of element being accessed: REG, MEM, or FIELD. See uvm_elem_kind_e.

element

A handle to the RegModel model element associated with this transaction. Use
element_kind to determine the type to cast to: uvm_reg, uvm_mem, or uvm_reg_field.

kind

Kind of access: READ or WRITE.

value

The value to write to, or after completion, the value read from the DUT. Burst
operations use the values property.

offset

uvm_elem_kind_e element_kind

uvm_object element

rand uvm_access_e kind

rand uvm_reg_data_t value[]

UVM 1.2 Class Reference 683

For memory accesses, the offset address. For bursts, the starting offset address.

status

The result of the transaction: IS_OK, HAS_X, or ERROR. See uvm_status_e.

local_map

The local map used to obtain addresses. Users may customize address-translation using
this map. Access to the sequencer and bus adapter can be obtained by getting this
map’s root map, then calling uvm_reg_map::get_sequencer and
uvm_reg_map::get_adapter.

map

The original map specified for the operation. The actual map used may differ when a
test or sequence written at the block level is reused at the system level.

path

The path being used: UVM_FRONTDOOR or UVM_BACKDOOR.

parent

The sequence from which the operation originated.

prior

The priority requested of this transfer, as defined by uvm_sequence_base::start_item.

extension

Handle to optional user data, as conveyed in the call to write(), read(), mirror(), or

rand uvm_reg_addr_t offset

uvm_status_e status

uvm_reg_map local_map

uvm_reg_map map

uvm_path_e path

rand uvm_sequence_base parent

int prior = -1

rand uvm_object extension

UVM 1.2 Class Reference 684

update() used to trigger the operation.

bd_kind

If path is UVM_BACKDOOR, this member specifies the abstraction kind for the backdoor
access, e.g. “RTL” or “GATES”.

fname

The file name from where this transaction originated, if provided at the call site.

lineno

The file name from where this transaction originated, if provided at the call site.

METhods

new

Create a new instance of this type, giving it the optional name.

convert2string

Returns a string showing the contents of this transaction.

do_copy

Copy the rhs object into this object. The rhs object must derive from uvm_reg_item.

uvm_reg_bus_op

string bd_kind

string fname

int lineno

function new(
 string name = ""
)

virtual function string convert2string()

virtual function void do_copy(
 uvm_object rhs
)

UVM 1.2 Class Reference 685

Struct that defines a generic bus transaction for register and memory accesses, having
kind (read or write), address, data, and byte enable information. If the bus is narrower
than the register or memory location being accessed, there will be multiple of these bus
operations for every abstract uvm_reg_item transaction. In this case, data represents
the portion of uvm_reg_item::value being transferred during this bus cycle. If the bus is
wide enough to perform the register or memory operation in a single cycle, data will be
the same as uvm_reg_item::value.

Summary

uvm_reg_bus_op

Struct that defines a generic bus transaction for register and memory accesses,
having kind (read or write), address, data, and byte enable information.

VArIABLEs

kind Kind of access: READ or WRITE.
addr The bus address.
data The data to write.
n_bits The number of bits of uvm_reg_item::value being transferred by

this transaction.
byte_en Enables for the byte lanes on the bus.
status The result of the transaction: UVM_IS_OK, UVM_HAS_X,

UVM_NOT_OK.

VArIABLEs

kind

Kind of access: READ or WRITE.

addr

The bus address.

data

The data to write. If the bus width is smaller than the register or memory width, data
represents only the portion of value that is being transferred this bus cycle.

n_bits

uvm_access_e kind

uvm_reg_addr_t addr

uvm_reg_data_t data

int n_bits

UVM 1.2 Class Reference 686

The number of bits of uvm_reg_item::value being transferred by this transaction.

byte_en

Enables for the byte lanes on the bus. Meaningful only when the bus supports byte
enables and the operation originates from a field write/read.

status

The result of the transaction: UVM_IS_OK, UVM_HAS_X, UVM_NOT_OK. See
uvm_status_e.

uvm_reg_byte_en_t byte_en

uvm_status_e status

UVM 1.2 Class Reference 687

26.2 Classes for Adapting Between Register and Bus
Operations

This section defines classes used to convert transaction streams between generic register
address/data reads and writes and physical bus accesses.

Contents

Classes for Adapting
Between Register and
Bus Operations

This section defines classes used to convert transaction
streams between generic register address/data reads
and writes and physical bus accesses.

uvm_reg_adapter This class defines an interface for converting between
uvm_reg_bus_op and a specific bus transaction.

uvm_reg_tlm_adapter For converting between uvm_reg_bus_op and
uvm_tlm_gp items.

uvm_reg_adapter

This class defines an interface for converting between uvm_reg_bus_op and a specific
bus transaction.

Summary

uvm_reg_adapter

This class defines an interface for converting between uvm_reg_bus_op and a
specific bus transaction.

CLass HIErarchY

uvm_void

uvm_object

uvm_reg_adapter

CLass DEcLaraTIoN

new Create a new instance of this type, giving it the
optional name.

supports_byte_enable Set this bit in extensions of this class if the bus
protocol supports byte enables.

provides_responses Set this bit in extensions of this class if the bus driver
provides separate response items.

parent_sequence Set this member in extensions of this class if the bus
driver requires bus items be executed via a particular
sequence base type.

reg2bus Extensions of this class must implement this method to
convert the specified uvm_reg_bus_op to a
corresponding uvm_sequence_item subtype that
defines the bus transaction.

bus2reg Extensions of this class must implement this method to
copy members of the given bus-specific bus_item to
corresponding members of the provided bus_rw

virtual class uvm_reg_adapter extends uvm_object

UVM 1.2 Class Reference 688

instance.
get_item Returns the bus-independent read/write information

that corresponds to the generic bus transaction
currently translated to a bus-specific transaction.

EXaMPLE The following example illustrates how to implement a
RegModel-BUS adapter class for the APB bus protocol.

new

Create a new instance of this type, giving it the optional name.

supports_byte_enable

Set this bit in extensions of this class if the bus protocol supports byte enables.

provides_responses

Set this bit in extensions of this class if the bus driver provides separate response items.

parent_sequence

Set this member in extensions of this class if the bus driver requires bus items be
executed via a particular sequence base type. The sequence assigned to this member
must implement do_clone().

reg2bus

Extensions of this class must implement this method to convert the specified
uvm_reg_bus_op to a corresponding uvm_sequence_item subtype that defines the bus
transaction.

The method must allocate a new bus-specific uvm_sequence_item, assign its members
from the corresponding members from the given generic rw bus operation, then return
it.

bus2reg

function new(
 string name = ""
)

bit supports_byte_enable

bit provides_responses

uvm_sequence_base parent_sequence

pure virtual function uvm_sequence_item reg2bus(
 const ref uvm_reg_bus_op rw
)

UVM 1.2 Class Reference 689

Extensions of this class must implement this method to copy members of the given bus-
specific bus_item to corresponding members of the provided bus_rw instance. Unlike
reg2bus, the resulting transaction is not allocated from scratch. This is to accommodate
applications where the bus response must be returned in the original request.

get_item

Returns the bus-independent read/write information that corresponds to the generic bus
transaction currently translated to a bus-specific transaction. This function returns a
value reference only when called in the uvm_reg_adapter::reg2bus() method. It returns
null at all other times. The content of the return uvm_reg_item instance must not be
modified and used strictly to obtain additional information about the operation.

EXaMPLE

The following example illustrates how to implement a RegModel-BUS adapter class for
the APB bus protocol.

uvm_reg_tlm_adapter

For converting between uvm_reg_bus_op and uvm_tlm_gp items.

Summary

pure virtual function void bus2reg(
 uvm_sequence_item bus_item,
 ref uvm_reg_bus_op rw
)

virtual function uvm_reg_item get_item()

class rreg2apb_adapter extends uvm_reg_adapter;
 `uvm_object_utils(reg2apb_adapter)

 function new(string name="reg2apb_adapter");
 super.new(name);

 endfunction

 virtual function uvm_sequence_item reg2bus(uvm_reg_bus_op rw);
 apb_item apb = apb_item::type_id::create("apb_item");
 apb.op = (rw.kind == UVM_READ) ? apb::READ : apb::WRITE;
 apb.addr = rw.addr;
 apb.data = rw.data;
 return apb;
 endfunction

 virtual function void bus2reg(uvm_sequencer_item bus_item,
 uvm_reg_bus_op rw);
 apb_item apb;
 if (!$cast(apb,bus_item)) begin
 `uvm_fatal("CONVERT_APB2REG","Bus item is not of type apb_item")
 end
 rw.kind = apb.op==apb::READ ? UVM_READ : UVM_WRITE;
 rw.addr = apb.addr;
 rw.data = apb.data;
 rw.status = UVM_IS_OK;
 endfunction

endclass

UVM 1.2 Class Reference 690

uvm_reg_tlm_adapter

For converting between uvm_reg_bus_op and uvm_tlm_gp items.

CLass HIErarchY

uvm_void

uvm_object

uvm_reg_adapter

uvm_reg_tlm_adapter

CLass DEcLaraTIoN

METhods

reg2bus Converts a uvm_reg_bus_op struct to a uvm_tlm_gp item.
bus2reg Converts a uvm_tlm_gp item to a uvm_reg_bus_op.

METhods

reg2bus

Converts a uvm_reg_bus_op struct to a uvm_tlm_gp item.

bus2reg

Converts a uvm_tlm_gp item to a uvm_reg_bus_op. into the provided rw transaction.

class uvm_reg_tlm_adapter extends uvm_reg_adapter

virtual function uvm_sequence_item reg2bus(
 const ref uvm_reg_bus_op rw
)

virtual function void bus2reg(
 uvm_sequence_item bus_item,
 ref uvm_reg_bus_op rw
)

UVM 1.2 Class Reference 691

26.3 Explicit Register Predictor

The uvm_reg_predictor class defines a predictor component, which is used to update the
register model’s mirror values based on transactions explicitly observed on a physical
bus.

Summary

Explicit Register Predictor

The uvm_reg_predictor class defines a predictor component, which is used to
update the register model’s mirror values based on transactions explicitly
observed on a physical bus.

uvm_reg_predictor

Updates the register model mirror based on observed bus transactions

This class converts observed bus transactions of type BUSTYPE to generic registers
transactions, determines the register being accessed based on the bus address, then
updates the register’s mirror value with the observed bus data, subject to the register’s
access mode. See uvm_reg::predict for details.

Memories can be large, so their accesses are not predicted.

Summary

uvm_reg_predictor

Updates the register model mirror based on observed bus transactions

CLAss HIerArchY

uvm_void

uvm_object

uvm_report_object

uvm_component

uvm_reg_predictor

CLAss DecLArATION

VArIABLes

bus_in Observed bus transactions of type BUSTYPE are received
from this port and processed.

reg_ap Analysis output port that publishes uvm_reg_item
transactions converted from bus transactions received on
bus_in.

map The map used to convert a bus address to the corresponding
register or memory handle.

class uvm_reg_predictor #(
 type BUSTYPE = int
) extends uvm_component

UVM 1.2 Class Reference 692

adapter The adapter used to convey the parameters of a bus
operation in terms of a canonical uvm_reg_bus_op datum.

MeThOds

new Create a new instance of this type, giving it the optional
name and parent.

pre_predict Override this method to change the value or re-direct the
target register

check_phase Checks that no pending register transactions are still queued.

VArIABLes

bus_in

Observed bus transactions of type BUSTYPE are received from this port and processed.

For each incoming transaction, the predictor will attempt to get the register or memory
handle corresponding to the observed bus address.

If there is a match, the predictor calls the register or memory’s predict method, passing
in the observed bus data. The register or memory mirror will be updated with this data,
subject to its configured access behavior--RW, RO, WO, etc. The predictor will also
convert the bus transaction to a generic uvm_reg_item and send it out the reg_ap
analysis port.

If the register is wider than the bus, the predictor will collect the multiple bus
transactions needed to determine the value being read or written.

reg_ap

Analysis output port that publishes uvm_reg_item transactions converted from bus
transactions received on bus_in.

map

The map used to convert a bus address to the corresponding register or memory
handle. Must be configured before the run phase.

adapter

uvm_analysis_imp #(
 BUSTYPE,
 uvm_reg_predictor #(BUSTYPE)
) bus_in

uvm_analysis_port #(
 uvm_reg_item
) reg_ap

uvm_reg_map map

uvm_reg_adapter adapter

UVM 1.2 Class Reference 693

The adapter used to convey the parameters of a bus operation in terms of a canonical
uvm_reg_bus_op datum. The uvm_reg_adapter must be configured before the run
phase.

MeThOds

new

Create a new instance of this type, giving it the optional name and parent.

pre_predict

Override this method to change the value or re-direct the target register

check_phase

Checks that no pending register transactions are still queued.

function new (
 string name,
 uvm_component parent
)

virtual function void pre_predict(
 uvm_reg_item rw
)

virtual function void check_phase(
 uvm_phase phase
)

UVM 1.2 Class Reference 694

26.4 Register Sequence Classes

This section defines the base classes used for register stimulus generation.

Contents

Register
Sequence
Classes

This section defines the base classes used for register
stimulus generation.

uvm_reg_sequence This class provides base functionality for both user-defined
RegModel test sequences and “register translation
sequences”.

uvm_reg_frontdoor Facade class for register and memory frontdoor access.

uvm_reg_sequence

This class provides base functionality for both user-defined RegModel test sequences and
“register translation sequences”.

When used as a base for user-defined RegModel test sequences, this class
provides convenience methods for reading and writing registers and memories.
Users implement the body() method to interact directly with the RegModel model
(held in the model property) or indirectly via the delegation methods in this class.
When used as a translation sequence, objects of this class are executed directly on
a bus sequencer which are used in support of a layered sequencer use model, a
pre-defined convert-and-execute algorithm is provided.

Register operations do not require extending this class if none of the above services are
needed. Register test sequences can be extend from the base uvm_sequence
#(REQ,RSP) base class or even from outside a sequence.

Note- The convenience API not yet implemented.

Summary

uvm_reg_sequence

This class provides base functionality for both user-defined RegModel test
sequences and “register translation sequences”.

CLAss HIErArchY

BASE

uvm_reg_sequence

CLAss DEcLArATION

BASE Specifies the sequence type to extend from.
model Block abstraction this sequence executes on, defined only when

this sequence is a user-defined test sequence.
adapter Adapter to use for translating between abstract register

class uvm_reg_sequence #(
 type BASE = uvm_sequence #(uvm_reg_item)
) extends BASE

UVM 1.2 Class Reference 695

transactions and physical bus transactions, defined only when
this sequence is a translation sequence.

reg_seqr Layered upstream “register” sequencer.
new Create a new instance, giving it the optional name.
body Continually gets a register transaction from the configured

upstream sequencer, reg_seqr, and executes the corresponding
bus transaction via do_reg_item.

do_reg_item Executes the given register transaction, rw, via the sequencer
on which this sequence was started.

CONVENIENcE

WrITE/REAd

API

The following methods delegate to the corresponding method in
the register or memory element.

write_reg Writes the given register rg using uvm_reg::write, supplying
‘this’ as the parent argument.

read_reg Reads the given register rg using uvm_reg::read, supplying
‘this’ as the parent argument.

poke_reg Pokes the given register rg using uvm_reg::poke, supplying
‘this’ as the parent argument.

peek_reg Peeks the given register rg using uvm_reg::peek, supplying
‘this’ as the parent argument.

update_reg Updates the given register rg using uvm_reg::update,
supplying ‘this’ as the parent argument.

mirror_reg Mirrors the given register rg using uvm_reg::mirror, supplying
‘this’ as the parent argument.

write_mem Writes the given memory mem using uvm_mem::write,
supplying ‘this’ as the parent argument.

read_mem Reads the given memory mem using uvm_mem::read,
supplying ‘this’ as the parent argument.

poke_mem Pokes the given memory mem using uvm_mem::poke,
supplying ‘this’ as the parent argument.

peek_mem Peeks the given memory mem using uvm_mem::peek,
supplying ‘this’ as the parent argument.

BASE

Specifies the sequence type to extend from.

When used as a translation sequence running on a bus sequencer, BASE must be
compatible with the sequence type expected by the bus sequencer.

When used as a test sequence running on a particular sequencer, BASE must be
compatible with the sequence type expected by that sequencer.

When used as a virtual test sequence without a sequencer, BASE does not need to be
specified, i.e. the default specialization is adequate.

To maximize opportunities for reuse, user-defined RegModel sequences should “promote”
the BASE parameter.

This way, the RegModel sequence can be extended from user-defined base sequences.

model

class my_reg_sequence #(type BASE=uvm_sequence #(uvm_reg_item))
 extends uvm_reg_sequence #(BASE);

uvm_reg_block model

UVM 1.2 Class Reference 696

Block abstraction this sequence executes on, defined only when this sequence is a user-
defined test sequence.

adapter

Adapter to use for translating between abstract register transactions and physical bus
transactions, defined only when this sequence is a translation sequence.

reg_seqr

Layered upstream “register” sequencer.

Specifies the upstream sequencer between abstract register transactions and physical bus
transactions. Defined only when this sequence is a translation sequence, and we want to
“pull” from an upstream sequencer.

new

Create a new instance, giving it the optional name.

body

Continually gets a register transaction from the configured upstream sequencer, reg_seqr,
and executes the corresponding bus transaction via do_reg_item.

User-defined RegModel test sequences must override body() and not call super.body(),
else a warning will be issued and the calling process not return.

do_reg_item

Executes the given register transaction, rw, via the sequencer on which this sequence
was started (i.e. m_sequencer). Uses the configured adapter to convert the register
transaction into the type expected by this sequencer.

CONVENIENcE WrITE/REAd API

uvm_reg_adapter adapter

uvm_sequencer #(
 uvm_reg_item
) reg_seqr

function new (
 string name = "uvm_reg_sequence_inst"
)

virtual task body()

virtual task do_reg_item(
 uvm_reg_item rw
)

UVM 1.2 Class Reference 697

The following methods delegate to the corresponding method in the register or memory
element. They allow a sequence body() to do reads and writes without having to
explicitly supply itself to parent sequence argument. Thus, a register write

can be written instead as

write_reg

Writes the given register rg using uvm_reg::write, supplying ‘this’ as the parent
argument. Thus,

is equivalent to

read_reg

Reads the given register rg using uvm_reg::read, supplying ‘this’ as the parent
argument. Thus,

model.regA.write(status, value, .parent(this));

write_reg(model.regA, status, value);

virtual task write_reg(
 input uvm_reg rg,
 output uvm_status_e status,
 input uvm_reg_data_t value,
 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_reg_map map = null,
 input int prior = -1,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

write_reg(model.regA, status, value);

model.regA.write(status, value, .parent(this));

virtual task read_reg(
 input uvm_reg rg,
 output uvm_status_e status,
 output uvm_reg_data_t value,
 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_reg_map map = null,
 input int prior = -1,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

read_reg(model.regA, status, value);

UVM 1.2 Class Reference 698

is equivalent to

poke_reg

Pokes the given register rg using uvm_reg::poke, supplying ‘this’ as the parent
argument. Thus,

is equivalent to

peek_reg

Peeks the given register rg using uvm_reg::peek, supplying ‘this’ as the parent
argument. Thus,

is equivalent to

model.regA.read(status, value, .parent(this));

virtual task poke_reg(
 input uvm_reg rg,
 output uvm_status_e status,
 input uvm_reg_data_t value,
 input string kind = "",
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

poke_reg(model.regA, status, value);

model.regA.poke(status, value, .parent(this));

virtual task peek_reg(
 input uvm_reg rg,
 output uvm_status_e status,
 output uvm_reg_data_t value,
 input string kind = "",
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

peek_reg(model.regA, status, value);

model.regA.peek(status, value, .parent(this));

UVM 1.2 Class Reference 699

update_reg

Updates the given register rg using uvm_reg::update, supplying ‘this’ as the parent
argument. Thus,

is equivalent to

mirror_reg

Mirrors the given register rg using uvm_reg::mirror, supplying ‘this’ as the parent
argument. Thus,

is equivalent to

write_mem

virtual task update_reg(
 input uvm_reg rg,
 output uvm_status_e status,
 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_reg_map map = null,
 input int prior = -1,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

update_reg(model.regA, status, value);

model.regA.update(status, value, .parent(this));

virtual task mirror_reg(
 input uvm_reg rg,
 output uvm_status_e status,
 input uvm_check_e check = UVM_NO_CHECK,
 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_reg_map map = null,
 input int prior = -1,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

mirror_reg(model.regA, status, UVM_CHECK);

model.regA.mirror(status, UVM_CHECK, .parent(this));

virtual task write_mem(
 input uvm_mem mem,
 output uvm status e status,

UVM 1.2 Class Reference 700

Writes the given memory mem using uvm_mem::write, supplying ‘this’ as the parent
argument. Thus,

is equivalent to

read_mem

Reads the given memory mem using uvm_mem::read, supplying ‘this’ as the parent
argument. Thus,

is equivalent to

poke_mem

 input uvm_reg_addr_t offset,
 input uvm_reg_data_t value,
 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_reg_map map = null,
 input int prior = -1,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

write_mem(model.regA, status, offset, value);

model.regA.write(status, offset, value, .parent(this));

virtual task read_mem(
 input uvm_mem mem,
 output uvm_status_e status,
 input uvm_reg_addr_t offset,
 output uvm_reg_data_t value,
 input uvm_path_e path = UVM_DEFAULT_PATH,
 input uvm_reg_map map = null,
 input int prior = -1,
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

read_mem(model.regA, status, offset, value);

model.regA.read(status, offset, value, .parent(this));

virtual task poke_mem(
 input uvm_mem mem,
 output uvm_status_e status,
 input uvm_reg_addr_t offset,
 input uvm_reg_data_t value,
 input string kind = "",
 input uvm_object extension = null,
 input string fname = "",

UVM 1.2 Class Reference 701

Pokes the given memory mem using uvm_mem::poke, supplying ‘this’ as the parent
argument. Thus,

is equivalent to

peek_mem

Peeks the given memory mem using uvm_mem::peek, supplying ‘this’ as the parent
argument. Thus,

is equivalent to

uvm_reg_frontdoor

Facade class for register and memory frontdoor access.

User-defined frontdoor access sequence

Base class for user-defined access to register and memory reads and writes through a
physical interface.

By default, different registers and memories are mapped to different addresses in the
address space and are accessed via those exclusively through physical addresses.

The frontdoor allows access using a non-linear and/or non-mapped mechanism. Users
can extend this class to provide the physical access to these registers.

 input int lineno = 0
)

poke_mem(model.regA, status, offset, value);

model.regA.poke(status, offset, value, .parent(this));

virtual task peek_mem(
 input uvm_mem mem,
 output uvm_status_e status,
 input uvm_reg_addr_t offset,
 output uvm_reg_data_t value,
 input string kind = "",
 input uvm_object extension = null,
 input string fname = "",
 input int lineno = 0
)

peek_mem(model.regA, status, offset, value);

model.regA.peek(status, offset, value, .parent(this));

UVM 1.2 Class Reference 702

Summary

uvm_reg_frontdoor

Facade class for register and memory frontdoor access.

CLAss HIErArchY

uvm_reg_sequence#(uvm_sequence#(uvm_sequence_item))

uvm_reg_frontdoor

CLAss DEcLArATION

VArIAbLEs

rw_info Holds information about the register being read or written
sequencer Sequencer executing the operation

METhOds

new Constructor, new object given optional name.

VArIAbLEs

rw_info

Holds information about the register being read or written

sequencer

Sequencer executing the operation

METhOds

new

Constructor, new object given optional name.

virtual class uvm_reg_frontdoor extends uvm_reg_sequence
#(
 uvm_sequence #(uvm_sequence_item)
)

uvm_reg_item rw_info

uvm_sequencer_base sequencer

function new(
 string name = ""
)

UVM 1.2 Class Reference 703

26.5 uvm_reg_backdoor

Base class for user-defined back-door register and memory access.

This class can be extended by users to provide user-specific back-door access to
registers and memories that are not implemented in pure SystemVerilog or that are not
accessible using the default DPI backdoor mechanism.

Summary

uvm_reg_backdoor

Base class for user-defined back-door register and memory access.

CLAss HIERARchY

uvm_void

uvm_object

uvm_reg_backdoor

CLAss DEcLARATION

METhOds

new Create an instance of this class
do_pre_read Execute the pre-read callbacks
do_post_read Execute the post-read callbacks
do_pre_write Execute the pre-write callbacks
do_post_write Execute the post-write callbacks
write User-defined backdoor write operation.
read User-defined backdoor read operation.
read_func User-defined backdoor read operation.
is_auto_updated Indicates if wait_for_change() method is implemented
wait_for_change Wait for a change in the value of the register or memory

element in the DUT.
pre_read Called before user-defined backdoor register read.
post_read Called after user-defined backdoor register read.
pre_write Called before user-defined backdoor register write.
post_write Called after user-defined backdoor register write.

METhOds

new

Create an instance of this class

Create an instance of the user-defined backdoor class for the specified register or
memory

class uvm_reg_backdoor extends uvm_object

function new(
 string name = ""
)

UVM 1.2 Class Reference 704

do_pre_read

Execute the pre-read callbacks

This method must be called as the first statement in a user extension of the read()
method.

do_post_read

Execute the post-read callbacks

This method must be called as the last statement in a user extension of the read()
method.

do_pre_write

Execute the pre-write callbacks

This method must be called as the first statement in a user extension of the write()
method.

do_post_write

Execute the post-write callbacks

This method must be called as the last statement in a user extension of the write()
method.

write

User-defined backdoor write operation.

Call do_pre_write(). Deposit the specified value in the specified register HDL
implementation. Call do_post_write(). Returns an indication of the success of the
operation.

protected task do_pre_read(
 uvm_reg_item rw
)

protected task do_post_read(
 uvm_reg_item rw
)

protected task do_pre_write(
 uvm_reg_item rw
)

protected task do_post_write(
 uvm_reg_item rw
)

virtual task write(
 uvm_reg_item rw
)

UVM 1.2 Class Reference 705

read

User-defined backdoor read operation.

Overload this method only if the backdoor requires the use of task.

Call do_pre_read(). Peek the current value of the specified HDL implementation. Call
do_post_read(). Returns the current value and an indication of the success of the
operation.

By default, calls read_func().

read_func

User-defined backdoor read operation.

Peek the current value in the HDL implementation. Returns the current value and an
indication of the success of the operation.

is_auto_updated

Indicates if wait_for_change() method is implemented

Implement to return TRUE if and only if wait_for_change() is implemented to watch for
changes in the HDL implementation of the specified field

wait_for_change

Wait for a change in the value of the register or memory element in the DUT.

When this method returns, the mirror value for the register corresponding to this
instance of the backdoor class will be updated via a backdoor read operation.

pre_read

Called before user-defined backdoor register read.

virtual task read(
 uvm_reg_item rw
)

virtual function void read_func(
 uvm_reg_item rw
)

virtual function bit is_auto_updated(
 uvm_reg_field field
)

virtual local task wait_for_change(
 uvm_object element
)

virtual task pre_read(
 uvm_reg_item rw
)

UVM 1.2 Class Reference 706

The registered callback methods are invoked after the invocation of this method.

post_read

Called after user-defined backdoor register read.

The registered callback methods are invoked before the invocation of this method.

pre_write

Called before user-defined backdoor register write.

The registered callback methods are invoked after the invocation of this method.

The written value, if modified, modifies the actual value that will be written.

post_write

Called after user-defined backdoor register write.

The registered callback methods are invoked before the invocation of this method.

virtual task post_read(
 uvm_reg_item rw
)

virtual task pre_write(
 uvm_reg_item rw
)

virtual task post_write(
 uvm_reg_item rw
)

UVM 1.2 Class Reference 707

26.6 UVM HDL Backdoor Access support routines

These routines provide an interface to the DPI/PLI implementation of backdoor access
used by registers.

If you DON’T want to use the DPI HDL API, then compile your SystemVerilog code with
the vlog switch

Summary

UVM HDL Backdoor Access support routines.

These routines provide an interface to the DPI/PLI implementation of backdoor
access used by registers.

VaRIablEs

UVM_HDL_MAX_WIDTH Sets the maximum size bit vector for backdoor
access.

METhOds

uvm_hdl_check_path Checks that the given HDL path exists.
uvm_hdl_deposit Sets the given HDL path to the specified

value.
uvm_hdl_force Forces the value on the given path.
uvm_hdl_force_time Forces the value on the given path for the

specified amount of force_time.
uvm_hdl_release_and_read Releases a value previously set with

uvm_hdl_force.
uvm_hdl_release Releases a value previously set with

uvm_hdl_force.
uvm_hdl_read() Gets the value at the given path.

VaRIablEs

UVM_HDL_MAX_WIDTH

Sets the maximum size bit vector for backdoor access. This parameter will be looked up
by the DPI-C code using: vpi_handle_by_name(“uvm_pkg::UVM_HDL_MAX_WIDTH”, 0);

METhOds

uvm_hdl_check_path

vlog ... +define+UVM_HDL_NO_DPI ...

parameter int UVM_HDL_MAX_WIDTH = `UVM_HDL_MAX_WIDTH

import "DPI-C" context function int uvm_hdl_check_path(
 string path

UVM 1.2 Class Reference 708

Checks that the given HDL path exists. Returns 0 if NOT found, 1 otherwise.

uvm_hdl_deposit

Sets the given HDL path to the specified value. Returns 1 if the call succeeded, 0
otherwise.

uvm_hdl_force

Forces the value on the given path. Returns 1 if the call succeeded, 0 otherwise.

uvm_hdl_force_time

Forces the value on the given path for the specified amount of force_time. If force_time
is 0, uvm_hdl_deposit is called. Returns 1 if the call succeeded, 0 otherwise.

uvm_hdl_release_and_read

Releases a value previously set with uvm_hdl_force. Returns 1 if the call succeeded, 0
otherwise. value is set to the HDL value after the release. For ‘reg’, the value will still
be the forced value until it has been procedurally reassigned. For ‘wire’, the value will
change immediately to the resolved value of its continuous drivers, if any. If none, its
value remains as forced until the next direct assignment.

uvm_hdl_release

Releases a value previously set with uvm_hdl_force. Returns 1 if the call succeeded, 0
otherwise.

)

import "DPI-C" context function int uvm_hdl_deposit(
 string path,
 uvm_hdl_data_t value
)

import "DPI-C" context function int uvm_hdl_force(
 string path,
 uvm_hdl_data_t value
)

task uvm_hdl_force_time(
 string path,
 uvm_hdl_data_t value,
 time force_time = 0
)

import "DPI-C" context function int uvm_hdl_release_and_read(
 string path,
 inout uvm_hdl_data_t value
)

import "DPI-C" context function int uvm_hdl_release(
 string path
)

UVM 1.2 Class Reference 709

uvm_hdl_read()

Gets the value at the given path. Returns 1 if the call succeeded, 0 otherwise.

import "DPI-C" context function int uvm_hdl_read(
 string path,
 output uvm_hdl_data_t value
)

UVM 1.2 Class Reference 710

27.1 uvm_reg_mem_built_in_seq

Sequence that executes a user-defined selection of pre-defined register and memory test
sequences.

Summary

uvm_reg_mem_built_in_seq

Sequence that executes a user-defined selection of pre-defined register and
memory test sequences.

CLAss HIERARchY

uvm_reg_sequence#(uvm_sequence#(uvm_reg_item))

uvm_reg_mem_built_in_seq

CLAss DEcLARATION

VARIABLEs

model The block to be tested.
tests The pre-defined test sequences to be executed.

METhOds

body Executes any or all the built-in register and memory sequences.

VARIABLEs

model

The block to be tested. Declared in the base class.

tests

The pre-defined test sequences to be executed.

METhOds

class uvm_reg_mem_built_in_seq extends uvm_reg_sequence
#(
 uvm_sequence #(uvm_reg_item)
)

uvm_reg_block model;

bit [63:0] tests = UVM_DO_ALL_REG_MEM_TESTS

UVM 1.2 Class Reference 711

body

Executes any or all the built-in register and memory sequences. Do not call directly.
Use seq.start() instead.

virtual task body()

UVM 1.2 Class Reference 712

27.2 uvm_reg_hw_reset_seq

Test the hard reset values of registers

The test sequence performs the following steps

1. resets the DUT and the block abstraction class associated with this sequence.

2. reads all of the registers in the block, via all of the available address maps, comparing
the value read with the expected reset value.

If bit-type resource named “NO_REG_TESTS” or “NO_REG_HW_RESET_TEST” in the
“REG::” namespace matches the full name of the block or register, the block or register
is not tested.

This is usually the first test executed on any DUT.

Summary

uvm_reg_hw_reset_seq

Test the hard reset values of registers

CLAss HIERARchY

uvm_reg_sequence#(uvm_sequence#(uvm_reg_item))

uvm_reg_hw_reset_seq

CLAss DEcLARATION

VARIABLEs

model The block to be tested.
body Executes the Hardware Reset sequence.

METhOds

do_block Test all of the registers in a given block
reset_blk Reset the DUT that corresponds to the specified block

abstraction class.

VARIABLEs

model

The block to be tested. Declared in the base class.

uvm_resource_db#(bit)::set({"REG::",regmodel.blk.get_full_name(),".*"},
 "NO_REG_TESTS", 1, this);

class uvm_reg_hw_reset_seq extends uvm_reg_sequence #(
 uvm_sequence #(uvm_reg_item)
)

uvm_reg_block model;

UVM 1.2 Class Reference 713

body

Executes the Hardware Reset sequence. Do not call directly. Use seq.start() instead.

METhOds

do_block

Test all of the registers in a given block

reset_blk

Reset the DUT that corresponds to the specified block abstraction class.

Currently empty. Will rollback the environment’s phase to the reset phase once the new
phasing is available.

In the meantime, the DUT should be reset before executing this test sequence or this
method should be implemented in an extension to reset the DUT.

virtual task body()

protected virtual task do_block(
 uvm_reg_block blk
)

virtual task reset_blk(
 uvm_reg_block blk
)

UVM 1.2 Class Reference 714

27.3 Bit Bashing Test Sequences

This section defines classes that test individual bits of the registers defined in a register
model.

Contents

Bit Bashing Test
Sequences

This section defines classes that test individual
bits of the registers defined in a register model.

uvm_reg_single_bit_bash_seq Verify the implementation of a single register by
attempting to write 1’s and 0’s to every bit in it,
via every address map in which the register is
mapped, making sure that the resulting value
matches the mirrored value.

uvm_reg_bit_bash_seq Verify the implementation of all registers in a
block by executing the
uvm_reg_single_bit_bash_seq sequence on it.

uvm_reg_single_bit_bash_seq

Verify the implementation of a single register by attempting to write 1’s and 0’s to every
bit in it, via every address map in which the register is mapped, making sure that the
resulting value matches the mirrored value.

If bit-type resource named “NO_REG_TESTS” or “NO_REG_BIT_BASH_TEST” in the
“REG::” namespace matches the full name of the register, the register is not tested.

Registers that contain fields with unknown access policies cannot be tested.

The DUT should be idle and not modify any register during this test.

Summary

uvm_reg_single_bit_bash_seq

Verify the implementation of a single register by attempting to write 1’s and 0’s
to every bit in it, via every address map in which the register is mapped, making
sure that the resulting value matches the mirrored value.

CLAss HIERARchY

uvm_reg_sequence#(uvm_sequence#(uvm_reg_item))

uvm_reg_single_bit_bash_seq

CLAss DEcLARAtION

uvm_resource_db#(bit)::set({"REG::",regmodel.blk.r0.get_full_name()},
 "NO_REG_TESTS", 1, this);

class uvm_reg_single_bit_bash_seq extends
uvm_reg_sequence #(
 uvm_sequence #(uvm_reg_item)

UVM 1.2 Class Reference 715

VARIAbLEs

rg The register to be tested

VARIAbLEs

rg

The register to be tested

uvm_reg_bit_bash_seq

Verify the implementation of all registers in a block by executing the
uvm_reg_single_bit_bash_seq sequence on it.

If bit-type resource named “NO_REG_TESTS” or “NO_REG_BIT_BASH_TEST” in the
“REG::” namespace matches the full name of the block, the block is not tested.

Summary

uvm_reg_bit_bash_seq

Verify the implementation of all registers in a block by executing the
uvm_reg_single_bit_bash_seq sequence on it.

CLAss HIERARchY

uvm_reg_sequence#(uvm_sequence#(uvm_reg_item))

uvm_reg_bit_bash_seq

CLAss DEcLARAtION

VARIAbLEs

model The block to be tested.
reg_seq The sequence used to test one register

MEthOds

body Executes the Register Bit Bash sequence.
do_block Test all of the registers in a given block
reset_blk Reset the DUT that corresponds to the specified block

abstraction class.

)

uvm_reg rg

uvm_resource_db#(bit)::set({"REG::",regmodel.blk.get_full_name(),".*"},
 "NO_REG_TESTS", 1, this);

class uvm_reg_bit_bash_seq extends uvm_reg_sequence #(
 uvm_sequence #(uvm_reg_item)
)

UVM 1.2 Class Reference 716

VARIAbLEs

model

The block to be tested. Declared in the base class.

reg_seq

The sequence used to test one register

MEthOds

body

Executes the Register Bit Bash sequence. Do not call directly. Use seq.start() instead.

do_block

Test all of the registers in a given block

reset_blk

Reset the DUT that corresponds to the specified block abstraction class.

Currently empty. Will rollback the environment’s phase to the reset phase once the new
phasing is available.

In the meantime, the DUT should be reset before executing this test sequence or this
method should be implemented in an extension to reset the DUT.

uvm_reg_block model;

protected uvm_reg_single_bit_bash_seq reg_seq

virtual task body()

protected virtual task do_block(
 uvm_reg_block blk
)

virtual task reset_blk(
 uvm_reg_block blk
)

UVM 1.2 Class Reference 717

27.4 Register Access Test Sequences

This section defines sequences that test DUT register access via the available frontdoor
and backdoor paths defined in the provided register model.

Contents

Register Access Test
Sequences

This section defines sequences that test DUT
register access via the available frontdoor and
backdoor paths defined in the provided register
model.

uvm_reg_single_access_seq Verify the accessibility of a register by writing
through its default address map then reading it via
the backdoor, then reversing the process, making
sure that the resulting value matches the mirrored
value.

uvm_reg_access_seq Verify the accessibility of all registers in a block by
executing the uvm_reg_single_access_seq sequence
on every register within it.

uvm_reg_mem_access_seq Verify the accessibility of all registers and memories
in a block by executing the uvm_reg_access_seq
and uvm_mem_access_seq sequence respectively
on every register and memory within it.

uvm_reg_single_access_seq

Verify the accessibility of a register by writing through its default address map then
reading it via the backdoor, then reversing the process, making sure that the resulting
value matches the mirrored value.

If bit-type resource named “NO_REG_TESTS” or “NO_REG_ACCESS_TEST” in the “REG::”
namespace matches the full name of the register, the register is not tested.

Registers without an available backdoor or that contain read-only fields only, or fields
with unknown access policies cannot be tested.

The DUT should be idle and not modify any register during this test.

Summary

uvm_reg_single_access_seq

Verify the accessibility of a register by writing through its default address map
then reading it via the backdoor, then reversing the process, making sure that
the resulting value matches the mirrored value.

CLass HIErarchY

uvm_reg_sequence#(uvm_sequence#(uvm_reg_item))

uvm_resource_db#(bit)::set({"REG::",regmodel.blk.r0.get_full_name()},
 "NO_REG_TESTS", 1, this);

UVM 1.2 Class Reference 718

uvm_reg_single_access_seq

CLass DEcLaratION

VarIaBLEs

rg The register to be tested

VarIaBLEs

rg

The register to be tested

uvm_reg_access_seq

Verify the accessibility of all registers in a block by executing the
uvm_reg_single_access_seq sequence on every register within it.

If bit-type resource named “NO_REG_TESTS” or “NO_REG_ACCESS_TEST” in the “REG::”
namespace matches the full name of the block, the block is not tested.

Summary

uvm_reg_access_seq

Verify the accessibility of all registers in a block by executing the
uvm_reg_single_access_seq sequence on every register within it.

CLass HIErarchY

uvm_reg_sequence#(uvm_sequence#(uvm_reg_item))

uvm_reg_access_seq

CLass DEcLaratION

VarIaBLEs

model The block to be tested.
reg_seq The sequence used to test one register

class uvm_reg_single_access_seq extends uvm_reg_sequence
#(
 uvm_sequence #(uvm_reg_item)
)

uvm_reg rg

uvm_resource_db#(bit)::set({"REG::",regmodel.blk.get_full_name(),".*"},
 "NO_REG_TESTS", 1, this);

class uvm_reg_access_seq extends uvm_reg_sequence #(
 uvm_sequence #(uvm_reg_item)
)

UVM 1.2 Class Reference 719

MEthOds

body Executes the Register Access sequence.
do_block Test all of the registers in a block
reset_blk Reset the DUT that corresponds to the specified block

abstraction class.

VarIaBLEs

model

The block to be tested. Declared in the base class.

reg_seq

The sequence used to test one register

MEthOds

body

Executes the Register Access sequence. Do not call directly. Use seq.start() instead.

do_block

Test all of the registers in a block

reset_blk

Reset the DUT that corresponds to the specified block abstraction class.

Currently empty. Will rollback the environment’s phase to the reset phase once the new

uvm_reg_block model;

protected uvm_reg_single_access_seq reg_seq

virtual task body()

protected virtual task do_block(
 uvm_reg_block blk
)

virtual task reset_blk(
 uvm_reg_block blk
)

UVM 1.2 Class Reference 720

phasing is available.

In the meantime, the DUT should be reset before executing this test sequence or this
method should be implemented in an extension to reset the DUT.

uvm_reg_mem_access_seq

Verify the accessibility of all registers and memories in a block by executing the
uvm_reg_access_seq and uvm_mem_access_seq sequence respectively on every register
and memory within it.

Blocks and registers with the NO_REG_TESTS or the NO_REG_ACCESS_TEST attribute
are not verified.

Summary

uvm_reg_mem_access_seq

Verify the accessibility of all registers and memories in a block by executing the
uvm_reg_access_seq and uvm_mem_access_seq sequence respectively on every
register and memory within it.

CLass HIErarchY

uvm_reg_sequence#(uvm_sequence#(uvm_reg_item))

uvm_reg_mem_access_seq

CLass DEcLaratION

class uvm_reg_mem_access_seq extends uvm_reg_sequence #(
 uvm_sequence #(uvm_reg_item)
)

UVM 1.2 Class Reference 721

27.5 Shared Register and Memory Access Test
Sequences

This section defines sequences for testing registers and memories that are shared
between two or more physical interfaces, i.e. are associated with more than one
uvm_reg_map instance.

Contents

Shared Register and Memory
Access Test Sequences

This section defines sequences for testing
registers and memories that are shared
between two or more physical interfaces.

uvm_reg_shared_access_seq Verify the accessibility of a shared register
by writing through each address map then
reading it via every other address maps in
which the register is readable and the
backdoor, making sure that the resulting
value matches the mirrored value.

uvm_mem_shared_access_seq Verify the accessibility of a shared memory
by writing through each address map then
reading it via every other address maps in
which the memory is readable and the
backdoor, making sure that the resulting
value matches the written value.

uvm_reg_mem_shared_access_seq Verify the accessibility of all shared registers
and memories in a block by executing the
uvm_reg_shared_access_seq and
uvm_mem_shared_access_seq sequence
respectively on every register and memory
within it.

uvm_reg_shared_access_seq

Verify the accessibility of a shared register by writing through each address map then
reading it via every other address maps in which the register is readable and the
backdoor, making sure that the resulting value matches the mirrored value.

If bit-type resource named “NO_REG_TESTS” or “NO_REG_SHARED_ACCESS_TEST” in
the “REG::” namespace matches the full name of the register, the register is not tested.

Registers that contain fields with unknown access policies cannot be tested.

The DUT should be idle and not modify any register during this test.

Summary

uvm_reg_shared_access_seq

uvm_resource_db#(bit)::set({"REG::",regmodel.blk.r0.get_full_name()},
 "NO_REG_TESTS", 1, this);

UVM 1.2 Class Reference 722

Verify the accessibility of a shared register by writing through each address map
then reading it via every other address maps in which the register is readable and
the backdoor, making sure that the resulting value matches the mirrored value.

CLass HIErarchY

uvm_reg_sequence#(uvm_sequence#(uvm_reg_item))

uvm_reg_shared_access_seq

CLass DEcLaratION

VarIaBLEs

rg The register to be tested

VarIaBLEs

rg

The register to be tested

uvm_mem_shared_access_seq

Verify the accessibility of a shared memory by writing through each address map then
reading it via every other address maps in which the memory is readable and the
backdoor, making sure that the resulting value matches the written value.

If bit-type resource named “NO_REG_TESTS”, “NO_MEM_TESTS”,
“NO_REG_SHARED_ACCESS_TEST” or “NO_MEM_SHARED_ACCESS_TEST” in the “REG::”
namespace matches the full name of the memory, the memory is not tested.

The DUT should be idle and not modify the memory during this test.

Summary

uvm_mem_shared_access_seq

Verify the accessibility of a shared memory by writing through each address map
then reading it via every other address maps in which the memory is readable
and the backdoor, making sure that the resulting value matches the written
value.

CLass HIErarchY

class uvm_reg_shared_access_seq extends uvm_reg_sequence
#(
 uvm_sequence #(uvm_reg_item)
)

uvm_reg rg

uvm_resource_db#(bit)::set({"REG::",regmodel.blk.mem0.get_full_name()},
 "NO_MEM_TESTS", 1, this);

UVM 1.2 Class Reference 723

uvm_reg_sequence#(uvm_sequence#(uvm_reg_item))

uvm_mem_shared_access_seq

CLass DEcLaratION

VarIaBLEs

mem The memory to be tested

VarIaBLEs

mem

The memory to be tested

uvm_reg_mem_shared_access_seq

Verify the accessibility of all shared registers and memories in a block by executing the
uvm_reg_shared_access_seq and uvm_mem_shared_access_seq sequence respectively
on every register and memory within it.

If bit-type resource named “NO_REG_TESTS”, “NO_MEM_TESTS”,
“NO_REG_SHARED_ACCESS_TEST” or “NO_MEM_SHARED_ACCESS_TEST” in the “REG::”
namespace matches the full name of the block, the block is not tested.

Summary

uvm_reg_mem_shared_access_seq

Verify the accessibility of all shared registers and memories in a block by
executing the uvm_reg_shared_access_seq and uvm_mem_shared_access_seq
sequence respectively on every register and memory within it.

CLass HIErarchY

uvm_reg_sequence#(uvm_sequence#(uvm_reg_item))

uvm_reg_mem_shared_access_seq

CLass DEcLaratION

class uvm_mem_shared_access_seq extends uvm_reg_sequence
#(
 uvm_sequence #(uvm_reg_item)
)

uvm_mem mem

uvm_resource_db#(bit)::set({"REG::",regmodel.blk.get_full_name(),".*"},
 "NO_REG_TESTS", 1, this);

class uvm_reg_mem_shared_access_seq extends
uvm_reg_sequence #(

UVM 1.2 Class Reference 724

VarIaBLEs

model The block to be tested
reg_seq The sequence used to test one register
mem_seq The sequence used to test one memory

MEthOds

body Executes the Shared Register and Memory sequence
do_block Test all of the registers and memories in a block
reset_blk Reset the DUT that corresponds to the specified block

abstraction class.

VarIaBLEs

model

The block to be tested

reg_seq

The sequence used to test one register

mem_seq

The sequence used to test one memory

MEthOds

body

Executes the Shared Register and Memory sequence

do_block

 uvm_sequence #(uvm_reg_item)
)

uvm_reg_block model;

protected uvm_reg_shared_access_seq reg_seq

protected uvm_mem_shared_access_seq mem_seq

virtual task body()

protected virtual task do_block(
 uvm_reg_block blk

UVM 1.2 Class Reference 725

Test all of the registers and memories in a block

reset_blk

Reset the DUT that corresponds to the specified block abstraction class.

Currently empty. Will rollback the environment’s phase to the reset phase once the new
phasing is available.

In the meantime, the DUT should be reset before executing this test sequence or this
method should be implemented in an extension to reset the DUT.

)

virtual task reset_blk(
 uvm_reg_block blk
)

UVM 1.2 Class Reference 726

27.6 Memory Access Test Sequence

Contents

Memory Access Test
Sequence

uvm_mem_single_access_seq Verify the accessibility of a memory by writing
through its default address map then reading it
via the backdoor, then reversing the process,
making sure that the resulting value matches the
written value.

uvm_mem_access_seq Verify the accessibility of all memories in a block
by executing the uvm_mem_single_access_seq
sequence on every memory within it.

uvm_mem_single_access_seq

Verify the accessibility of a memory by writing through its default address map then
reading it via the backdoor, then reversing the process, making sure that the resulting
value matches the written value.

If bit-type resource named “NO_REG_TESTS”, “NO_MEM_TESTS”, or
“NO_MEM_ACCESS_TEST” in the “REG::” namespace matches the full name of the
memory, the memory is not tested.

Memories without an available backdoor cannot be tested.

The DUT should be idle and not modify the memory during this test.

Summary

uvm_mem_single_access_seq

Verify the accessibility of a memory by writing through its default address map
then reading it via the backdoor, then reversing the process, making sure that
the resulting value matches the written value.

CLass HIERaRchY

uvm_reg_sequence#(uvm_sequence#(uvm_reg_item))

uvm_mem_single_access_seq

CLass DEcLaRatION

uvm_resource_db#(bit)::set({"REG::",regmodel.blk.mem0.get_full_name()},
 "NO_MEM_TESTS", 1, this);

class uvm_mem_single_access_seq extends uvm_reg_sequence
#(
 uvm_sequence #(uvm_reg_item)
)

UVM 1.2 Class Reference 727

VaRIaBLEs

mem The memory to be tested

VaRIaBLEs

mem

The memory to be tested

uvm_mem_access_seq

Verify the accessibility of all memories in a block by executing the
uvm_mem_single_access_seq sequence on every memory within it.

If bit-type resource named “NO_REG_TESTS”, “NO_MEM_TESTS”, or
“NO_MEM_ACCESS_TEST” in the “REG::” namespace matches the full name of the block,
the block is not tested.

Summary

uvm_mem_access_seq

Verify the accessibility of all memories in a block by executing the
uvm_mem_single_access_seq sequence on every memory within it.

CLass HIERaRchY

uvm_reg_sequence#(uvm_sequence#(uvm_reg_item))

uvm_mem_access_seq

CLass DEcLaRatION

VaRIaBLEs

model The block to be tested.
mem_seq The sequence used to test one memory

MEthOds

body Execute the Memory Access sequence.
do_block Test all of the memories in a given block
reset_blk Reset the DUT that corresponds to the specified block

abstraction class.

uvm_mem mem

uvm_resource_db#(bit)::set({"REG::",regmodel.blk.get_full_name(),".*"},
 "NO_MEM_TESTS", 1, this);

class uvm_mem_access_seq extends uvm_reg_sequence #(
 uvm_sequence #(uvm_reg_item)
)

UVM 1.2 Class Reference 728

VaRIaBLEs

model

The block to be tested. Declared in the base class.

mem_seq

The sequence used to test one memory

MEthOds

body

Execute the Memory Access sequence. Do not call directly. Use seq.start() instead.

do_block

Test all of the memories in a given block

reset_blk

Reset the DUT that corresponds to the specified block abstraction class.

Currently empty. Will rollback the environment’s phase to the reset phase once the new
phasing is available.

In the meantime, the DUT should be reset before executing this test sequence or this
method should be implemented in an extension to reset the DUT.

uvm_reg_block model;

protected uvm_mem_single_access_seq mem_seq

virtual task body()

protected virtual task do_block(
 uvm_reg_block blk
)

virtual task reset_blk(
 uvm_reg_block blk
)

UVM 1.2 Class Reference 729

27.7 Memory Walking-Ones Test Sequences

This section defines sequences for applying a “walking-ones” algorithm on one or more
memories.

Contents

Memory Walking-Ones
Test Sequences

This section defines sequences for applying a
“walking-ones” algorithm on one or more memories.

uvm_mem_single_walk_seq Runs the walking-ones algorithm on the memory
given by the mem property, which must be assigned
prior to starting this sequence.

uvm_mem_walk_seq Verifies the all memories in a block by executing the
uvm_mem_single_walk_seq sequence on every
memory within it.

uvm_mem_single_walk_seq

Runs the walking-ones algorithm on the memory given by the mem property, which
must be assigned prior to starting this sequence.

If bit-type resource named “NO_REG_TESTS”, “NO_MEM_TESTS”, or
“NO_MEM_WALK_TEST” in the “REG::” namespace matches the full name of the memory,
the memory is not tested.

The walking ones algorithm is performed for each map in which the memory is defined.

Summary

uvm_mem_single_walk_seq

Runs the walking-ones algorithm on the memory given by the mem property,
which must be assigned prior to starting this sequence.

CLAss HIERARchY

uvm_reg_sequence#(uvm_sequence#(uvm_reg_item))

uvm_mem_single_walk_seq

uvm_resource_db#(bit)::set({"REG::",regmodel.blk.mem0.get_full_name()},
 "NO_MEM_TESTS", 1, this);

for (k = 0 thru memsize-1)
 write addr=k data=~k
 if (k > 0) {
 read addr=k-1, expect data=~(k-1)
 write addr=k-1 data=k-1
 if (k == last addr)
 read addr=k, expect data=~k

UVM 1.2 Class Reference 730

CLAss DEcLARAtIoN

VARIABLEs

mem The memory to test; must be assigned prior to starting sequence.
MEthods

new Creates a new instance of the class with the given name.
body Performs the walking-ones algorithm on each map of the memory

specified in mem.

VARIABLEs

mem

The memory to test; must be assigned prior to starting sequence.

MEthods

new

Creates a new instance of the class with the given name.

body

Performs the walking-ones algorithm on each map of the memory specified in mem.

uvm_mem_walk_seq

Verifies the all memories in a block by executing the uvm_mem_single_walk_seq
sequence on every memory within it.

If bit-type resource named “NO_REG_TESTS”, “NO_MEM_TESTS”, or
“NO_MEM_WALK_TEST” in the “REG::” namespace matches the full name of the block,
the block is not tested.

class uvm_mem_single_walk_seq extends uvm_reg_sequence #(
 uvm_sequence #(uvm_reg_item)
)

uvm_mem mem

function new(
 string name = "uvm_mem_walk_seq"
)

virtual task body()

uvm_resource_db#(bit)::set({"REG::",regmodel.blk.get_full_name(),".*"},
 "NO_MEM_TESTS", 1, this);

UVM 1.2 Class Reference 731

Summary

uvm_mem_walk_seq

Verifies the all memories in a block by executing the uvm_mem_single_walk_seq
sequence on every memory within it.

CLAss HIERARchY

uvm_reg_sequence#(uvm_sequence#(uvm_reg_item))

uvm_mem_walk_seq

CLAss DEcLARAtIoN

VARIABLEs

model The block to be tested.
mem_seq The sequence used to test one memory

MEthods

body Executes the mem walk sequence, one block at a time.
do_block Test all of the memories in a given block
reset_blk Reset the DUT that corresponds to the specified block

abstraction class.

VARIABLEs

model

The block to be tested. Declared in the base class.

mem_seq

The sequence used to test one memory

MEthods

body

class uvm_mem_walk_seq extends uvm_reg_sequence #(
 uvm_sequence #(uvm_reg_item)
)

uvm_reg_block model;

protected uvm_mem_single_walk_seq mem_seq

virtual task body()

UVM 1.2 Class Reference 732

Executes the mem walk sequence, one block at a time. Do not call directly. Use
seq.start() instead.

do_block

Test all of the memories in a given block

reset_blk

Reset the DUT that corresponds to the specified block abstraction class.

Currently empty. Will rollback the environment’s phase to the reset phase once the new
phasing is available.

In the meantime, the DUT should be reset before executing this test sequence or this
method should be implemented in an extension to reset the DUT.

protected virtual task do_block(
 uvm_reg_block blk
)

virtual task reset_blk(
 uvm_reg_block blk
)

UVM 1.2 Class Reference 733

27.8 HDL Paths Checking Test Sequence

Summary

HDL Paths Checking Test Sequence

uvm_reg_mem_hdl_paths_seq

Verify the correctness of HDL paths specified for registers and memories.

This sequence is be used to check that the specified backdoor paths are indeed
accessible by the simulator. By default, the check is performed for the default design
abstraction. If the simulation contains multiple models of the DUT, HDL paths for
multiple design abstractions can be checked.

If a path is not accessible by the simulator, it cannot be used for read/write backdoor
accesses. In that case a warning is produced. A simulator may have finer-grained
access permissions such as separate read or write permissions. These extra access
permissions are NOT checked.

The test is performed in zero time and does not require any reads/writes to/from the
DUT.

Summary

uvm_reg_mem_hdl_paths_seq

Verify the correctness of HDL paths specified for registers and memories.

ClAss HIERARchY

uvm_reg_sequence#(uvm_sequence#(uvm_reg_item))

uvm_reg_mem_hdl_paths_seq

ClAss DEclARAtION

VARIABlEs

abstractions If set, check the HDL paths for the specified design
abstractions.

VARIABlEs

abstractions

class uvm_reg_mem_hdl_paths_seq extends uvm_reg_sequence
#(
 uvm_sequence #(uvm_reg_item)
)

UVM 1.2 Class Reference 734

If set, check the HDL paths for the specified design abstractions. If empty, check the
HDL path for the default design abstraction, as specified with
uvm_reg_block::set_default_hdl_path()

string abstractions[$]

UVM 1.2 Class Reference 735

28.1 Command Line Processor Class

This class provides a general interface to the command line arguments that were
provided for the given simulation. Users can retrieve the complete arguments using
methods such as get_args() and get_arg_matches() but also retrieve the suffixes of
arguments using get_arg_values().

The uvm_cmdline_processor class also provides support for setting various UVM variables
from the command line such as components’ verbosities and configuration settings for
integral types and strings. Command line arguments that are in uppercase should only
have one setting to invocation. Command line arguments that in lowercase can have
multiple settings per invocation.

All of these capabilities are described in the uvm_cmdline_processor section.

Summary

Command Line Processor Class

This class provides a general interface to the command line arguments that were
provided for the given simulation.

UVM 1.2 Class Reference 736

28.2 uvm_cmdline_processor

This class provides an interface to the command line arguments that were provided for
the given simulation. The class is intended to be used as a singleton, but that isn’t
required. The generation of the data structures which hold the command line argument
information happens during construction of the class object. A global variable called
uvm_cmdline_proc is created at initialization time and may be used to access command
line information.

The uvm_cmdline_processor class also provides support for setting various UVM variables
from the command line such as components’ verbosities and configuration settings for
integral types and strings. Each of these capabilities is described in the Built-in UVM
Aware Command Line Arguments section.

Summary

uvm_cmdline_processor

This class provides an interface to the command line arguments that were provided for the given simulation.

CLAss HIERARchY

uvm_void

uvm_object

uvm_report_object

uvm_cmdline_processor

CLAss DEcLARATION

SINGLETON

get_inst Returns the singleton instance of the UVM command line processor.
BAsIc ARGUMENTs

get_args This function returns a queue with all of the command line arguments
that were used to start the simulation.

get_plusargs This function returns a queue with all of the plus arguments that were
used to start the simulation.

get_uvmargs This function returns a queue with all of the uvm arguments that were
used to start the simulation.

get_arg_matches This function loads a queue with all of the arguments that match the
input expression and returns the number of items that matched.

ARGUMENT VALUEs

get_arg_value This function finds the first argument which matches the match arg and
returns the suffix of the argument.

get_arg_values This function finds all the arguments which matches the match arg and
returns the suffix of the arguments in a list of values.

TOOL INFORMATION

get_tool_name Returns the simulation tool that is executing the simulation.
get_tool_version Returns the version of the simulation tool that is executing the

simulation.
COMMANd LINE DEbUG

+UVM_DUMP_CMDLINE_ARGS +UVM_DUMP_CMDLINE_ARGS allows the user to dump all command line
arguments to the reporting mechanism.

BUILT-IN UVM AWARE COMMANd

LINE ARGUMENTs

+UVM_TESTNAME +UVM_TESTNAME=<class name> allows the user to specify which
uvm_test (or uvm_component) should be created via the factory and
cycled through the UVM phases.

+UVM_VERBOSITY +UVM_VERBOSITY=<verbosity> allows the user to specify the initial

class uvm_cmdline_processor extends uvm_report_object

UVM 1.2 Class Reference 737

verbosity for all components.
+uvm_set_verbosity +uvm_set_verbosity=<comp>,<id>,<verbosity>,<phase> and

+uvm_set_verbosity=<comp>,<id>,<verbosity>,time,<time> allow the
users to manipulate the verbosity of specific components at specific
phases (and times during the “run” phases) of the simulation.

+uvm_set_action +uvm_set_action=<comp>,<id>,<severity>,<action> provides the
equivalent of various uvm_report_object’s set_report_*_action APIs.

+uvm_set_severity +uvm_set_severity=<comp>,<id>,<current severity>,<new severity>
provides the equivalent of the various uvm_report_object’s
set_report_*_severity_override APIs.

+UVM_TIMEOUT +UVM_TIMEOUT=<timeout>,<overridable> allows users to change the
global timeout of the UVM framework.

+UVM_MAX_QUIT_COUNT +UVM_MAX_QUIT_COUNT=<count>,<overridable> allows users to
change max quit count for the report server.

+UVM_PHASE_TRACE +UVM_PHASE_TRACE turns on tracing of phase executions.
+UVM_OBJECTION_TRACE +UVM_OBJECTION_TRACE turns on tracing of objection activity.
+UVM_RESOURCE_DB_TRACE +UVM_RESOURCE_DB_TRACE turns on tracing of resource DB access.
+UVM_CONFIG_DB_TRACE +UVM_CONFIG_DB_TRACE turns on tracing of configuration DB access.
+uvm_set_inst_override
+uvm_set_type_override +uvm_set_inst_override=<req_type>,<override_type>,<full_inst_path>

and
+uvm_set_type_override=<req_type>,<override_type>[,<replace>]
work like the name based overrides in the factory--
factory.set_inst_override_by_name() and
factory.set_type_override_by_name().

+uvm_set_config_int
+uvm_set_config_string +uvm_set_config_int=<comp>,<field>,<value> and

+uvm_set_config_string=<comp>,<field>,<value> work like their
procedural counterparts: set_config_int() and set_config_string().

+uvm_set_default_sequence The +uvm_set_default_sequence=<seqr>,<phase>,<type> plusarg
allows the user to define a default sequence from the command line,
using the typename of that sequence.

SINGLETON

get_inst

Returns the singleton instance of the UVM command line processor.

BAsIc ARGUMENTs

get_args

This function returns a queue with all of the command line arguments that were used to
start the simulation. Note that element 0 of the array will always be the name of the
executable which started the simulation.

get_plusargs

static function uvm_cmdline_processor get_inst()

function void get_args (
 output string args[$]
)

function void get_plusargs (

UVM 1.2 Class Reference 738

This function returns a queue with all of the plus arguments that were used to start the
simulation. Plusarguments may be used by the simulator vendor, or may be specific to a
company or individual user. Plusargs never have extra arguments (i.e. if there is a
plusarg as the second argument on the command line, the third argument is unrelated);
this is not necessarily the case with vendor specific dash arguments.

get_uvmargs

This function returns a queue with all of the uvm arguments that were used to start the
simulation. A UVM argument is taken to be any argument that starts with a - or + and
uses the keyword UVM (case insensitive) as the first three letters of the argument.

get_arg_matches

This function loads a queue with all of the arguments that match the input expression
and returns the number of items that matched. If the input expression is bracketed with
//, then it is taken as an extended regular expression otherwise, it is taken as the
beginning of an argument to match. For example:

ARGUMENT VALUEs

get_arg_value

This function finds the first argument which matches the match arg and returns the
suffix of the argument. This is similar to the $value$plusargs system task, but does not
take a formatting string. The return value is the number of command line arguments
that match the match string, and value is the value of the first match.

 output string args[$]
)

function int get_arg_matches (
 string match,
 ref string args[$]
)

string myargs[$]
initial begin
 void'(uvm_cmdline_proc.get_arg_matches("+foo",myargs)); //matches +foo,
+foobar
 //doesn't
match +barfoo
 void'(uvm_cmdline_proc.get_arg_matches("/foo/",myargs)); //matches +foo,
+foobar,
 //foo.sv,
barfoo, etc.
 void'(uvm_cmdline_proc.get_arg_matches("/^foo.*\.sv",myargs)); //matches
foo.sv
 //and
foo123.sv,
 //not
barfoo.sv.

function int get_arg_value (
 string match,
 ref string value
)

UVM 1.2 Class Reference 739

get_arg_values

This function finds all the arguments which matches the match arg and returns the suffix
of the arguments in a list of values. The return value is the number of matches that
were found (it is the same as values.size()). For example if ‘+foo=1,yes,on
+foo=5,no,off’ was provided on the command line and the following code was executed:

The foo_values queue would contain two entries. These entries are shown here:

0 ”1,yes,on”
1 ”5,no,off”

Splitting the resultant string is left to user but using the uvm_split_string() function is
recommended.

TOOL INFORMATION

get_tool_name

Returns the simulation tool that is executing the simulation. This is a vendor specific
string.

get_tool_version

Returns the version of the simulation tool that is executing the simulation. This is a
vendor specific string.

COMMANd LINE DEbUG

+UVM_DUMP_CMDLINE_ARGS

+UVM_DUMP_CMDLINE_ARGS allows the user to dump all command line arguments to
the reporting mechanism. The output in is tree format.

BUILT-IN UVM AWARE COMMANd LINE ARGUMENTs

function int get_arg_values (
 string match,
 ref string values[$]
)

string foo_values[$]
initial begin
 void'(uvm_cmdline_proc.get_arg_values("+foo=",foo_values));

function string get_tool_name ()

function string get_tool_version ()

UVM 1.2 Class Reference 740

+UVM_TESTNAME

+UVM_TESTNAME=<class name> allows the user to specify which uvm_test (or
uvm_component) should be created via the factory and cycled through the UVM phases.
If multiple of these settings are provided, the first occurrence is used and a warning is
issued for subsequent settings. For example:

+UVM_VERBOSITY

+UVM_VERBOSITY=<verbosity> allows the user to specify the initial verbosity for all
components. If multiple of these settings are provided, the first occurrence is used and
a warning is issued for subsequent settings. For example:

+uvm_set_verbosity

+uvm_set_verbosity=<comp>,<id>,<verbosity>,<phase> and
+uvm_set_verbosity=<comp>,<id>,<verbosity>,time,<time> allow the users to
manipulate the verbosity of specific components at specific phases (and times during the
“run” phases) of the simulation. The id argument can be either ALL for all IDs or a
specific message id. Wildcarding is not supported for id due to performance concerns.
Settings for non-”run” phases are executed in order of occurrence on the command line.
Settings for “run” phases (times) are sorted by time and then executed in order of
occurrence for settings of the same time. For example:

+uvm_set_action

+uvm_set_action=<comp>,<id>,<severity>,<action> provides the equivalent of various
uvm_report_object’s set_report_*_action APIs. The special keyword, ALL, can be
provided for both/either the id and/or severity arguments. The action can be
UVM_NO_ACTION or a | separated list of the other UVM message actions. For example:

+uvm_set_severity

+uvm_set_severity=<comp>,<id>,<current severity>,<new severity> provides the
equivalent of the various uvm_report_object’s set_report_*_severity_override APIs. The

<sim command> +UVM_TESTNAME=read_modify_write_test

<sim command> +UVM_VERBOSITY=UVM_HIGH

<sim command>
+uvm_set_verbosity=uvm_test_top.env0.agent1.*,_ALL_,UVM_FULL,time,800

<sim command>
+uvm_set_action=uvm_test_top.env0.*,_ALL_,UVM_ERROR,UVM_NO_ACTION

UVM 1.2 Class Reference 741

special keyword, ALL, can be provided for both/either the id and/or current severity
arguments. For example:

+UVM_TIMEOUT

+UVM_TIMEOUT=<timeout>,<overridable> allows users to change the global timeout of
the UVM framework. The <overridable> argument (‘YES’ or ‘NO’) specifies whether user
code can subsequently change this value. If set to ‘NO’ and the user code tries to
change the global timeout value, a warning message will be generated.

+UVM_MAX_QUIT_COUNT

+UVM_MAX_QUIT_COUNT=<count>,<overridable> allows users to change max quit
count for the report server. The <overridable> argument (‘YES’ or ‘NO’) specifies
whether user code can subsequently change this value. If set to ‘NO’ and the user code
tries to change the max quit count value, a warning message will be generated.

+UVM_PHASE_TRACE

+UVM_PHASE_TRACE turns on tracing of phase executions. Users simply need to put
the argument on the command line.

+UVM_OBJECTION_TRACE

+UVM_OBJECTION_TRACE turns on tracing of objection activity. Users simply need to
put the argument on the command line.

+UVM_RESOURCE_DB_TRACE

+UVM_RESOURCE_DB_TRACE turns on tracing of resource DB access. Users simply need
to put the argument on the command line.

+UVM_CONFIG_DB_TRACE

+UVM_CONFIG_DB_TRACE turns on tracing of configuration DB access. Users simply
need to put the argument on the command line.

<sim command>
+uvm_set_severity=uvm_test_top.env0.*,BAD_CRC,UVM_ERROR,UVM_WARNING

<sim command> +UVM_TIMEOUT=200000,NO

<sim command> +UVM_MAX_QUIT_COUNT=5,NO

UVM 1.2 Class Reference 742

+uvm_set_inst_override

+uvm_set_type_override

+uvm_set_inst_override=<req_type>,<override_type>,<full_inst_path> and
+uvm_set_type_override=<req_type>,<override_type>[,<replace>] work like the name
based overrides in the factory--factory.set_inst_override_by_name() and
factory.set_type_override_by_name(). For uvm_set_type_override, the third argument is
0 or 1 (the default is 1 if this argument is left off); this argument specifies whether
previous type overrides for the type should be replaced. For example:

+uvm_set_config_int

+uvm_set_config_string

+uvm_set_config_int=<comp>,<field>,<value> and
+uvm_set_config_string=<comp>,<field>,<value> work like their procedural
counterparts: set_config_int() and set_config_string(). For the value of int config
settings, ‘b (0b), ‘o, ‘d, ‘h (‘x or 0x) as the first two characters of the value are treated
as base specifiers for interpreting the base of the number. Size specifiers are not used
since SystemVerilog does not allow size specifiers in string to value conversions. For
example:

No equivalent of set_config_object() exists since no way exists to pass a uvm_object into
the simulation via the command line.

+uvm_set_default_sequence

The +uvm_set_default_sequence=<seqr>,<phase>,<type> plusarg allows the user to
define a default sequence from the command line, using the typename of that sequence.
For example:

This is functionally equivalent to calling the following in your test:

<sim command> +uvm_set_type_override=eth_packet,short_eth_packet

<sim command> +uvm_set_config_int=uvm_test_top.soc_env,mode,5

<sim command> +uvm_set_default_sequence=path.to.sequencer,main_phase,seq_type

uvm_coreservice_t cs = uvm_coreservice_t::get();
uvm_factory f = cs.get_factory();
uvm_config_db#(uvm_object_wrapper)::set(this,
 "path.to.sequencer.main_phase",
 "default_sequence",

f.find_wrapper_by_name("seq_type"));

UVM 1.2 Class Reference 743

29. Global Functionality

UVM provides other functionality at the package scope including methods, enums,
defines, and classes. Some of these are targeted towards specific aspects of the
functionality described in the UVM standard, and others are useful across multiple
aspects.

Summary

Global Functionality

UVM provides other functionality at the package scope including methods, enums,
defines, and classes.

UVM 1.2 Class Reference 744

29.1 Types and Enumerations

Summary

Types and Enumerations

FIeLD AUtOMAtION

`UVM_MAX_STREAMBITS Defines the maximum bit vector size for
integral types.

`UVM_PACKER_MAX_BYTES Defines the maximum bytes to allocate for
packing an object using the uvm_packer.

`UVM_DEFAULT_TIMEOUT The default timeout for simulation, if not
overridden by uvm_root::set_timeout or
uvm_cmdline_processor::+UVM_TIMEOUT

uvm_bitstream_t The bitstream type is used as an argument
type for passing integral values in such
methods as uvm_object::set_int_local,
uvm_config_int, uvm_printer::print_field,
uvm_recorder::record_field,
uvm_packer::pack_field and
uvm_packer::unpack_field.

uvm_integral_t The integral type is used as an argument type
for passing integral values of 64 bits or less in
such methods as uvm_printer::print_field_int,
uvm_recorder::record_field_int,
uvm_packer::pack_field_int and
uvm_packer::unpack_field_int.

uvm_radix_enum Specifies the radix to print or record in.
uvm_recursion_policy_enum Specifies the policy for copying objects.
uvm_active_passive_enum Convenience value to define whether a

component, usually an agent, is in “active”
mode or “passive” mode.

`uvm_field_* macro flags Defines what operations a given field should
be involved in.

RePOrtING

uvm_severity Defines all possible values for report severity.
uvm_action Defines all possible values for report actions.
uvm_verbosity Defines standard verbosity levels for reports.

POrt TYPe

uvm_port_type_e Specifies the type of port
SeQUeNCes

uvm_sequencer_arb_mode Specifies a sequencer’s arbitration mode
uvm_sequence_state_enum Defines current sequence state
uvm_sequence_lib_mode Specifies the random selection mode of a

sequence library
PHAsING

uvm_phase_type This is an attribute of a uvm_phase object
which defines the phase type.

uvm_phase_state The set of possible states of a phase.
uvm_wait_op Specifies the operand when using methods

like uvm_phase::wait_for_state.
OBJeCtIONs

uvm_objection_event Enumerated the possible objection events one
could wait on.

DefAULt POLICY CLAsses Policy classes copying, comparing, packing,
unpacking, and recording uvm_object-based
objects.

uvm_default_table_printer The table printer is a global object that can
be used with uvm_object::do_print to get

UVM 1.2 Class Reference 745

tabular style printing.
uvm_default_tree_printer The tree printer is a global object that can be

used with uvm_object::do_print to get multi-
line tree style printing.

uvm_default_line_printer The line printer is a global object that can be
used with uvm_object::do_print to get
single-line style printing.

uvm_default_printer The default printer policy.
uvm_default_packer The default packer policy.
uvm_default_comparer The default compare policy.

FIeLD AUtOMAtION

`UVM_MAX_STREAMBITS

Defines the maximum bit vector size for integral types.

`UVM_PACKER_MAX_BYTES

Defines the maximum bytes to allocate for packing an object using the uvm_packer.
Default is `UVM_MAX_STREAMBITS, in bytes.

`UVM_DEFAULT_TIMEOUT

The default timeout for simulation, if not overridden by uvm_root::set_timeout or
uvm_cmdline_processor::+UVM_TIMEOUT

uvm_bitstream_t

The bitstream type is used as an argument type for passing integral values in such
methods as uvm_object::set_int_local, uvm_config_int, uvm_printer::print_field,
uvm_recorder::record_field, uvm_packer::pack_field and uvm_packer::unpack_field.

uvm_integral_t

The integral type is used as an argument type for passing integral values of 64 bits or less
in such methods as uvm_printer::print_field_int, uvm_recorder::record_field_int,
uvm_packer::pack_field_int and uvm_packer::unpack_field_int.

uvm_radix_enum

Specifies the radix to print or record in.

UVM_BIN Selects binary (%b) format
UVM_DEC Selects decimal (%d) format
UVM_UNSIGNED Selects unsigned decimal (%u) format
UVM_UNFORMAT2 Selects unformatted 2 value data (%u) format

UVM 1.2 Class Reference 746

UVM_UNFORMAT4 Selects unformatted 4 value data (%z) format
UVM_OCT Selects octal (%o) format
UVM_HEX Selects hexadecimal (%h) format
UVM_STRING Selects string (%s) format
UVM_TIME Selects time (%t) format
UVM_ENUM Selects enumeration value (name) format
UVM_REAL Selects real (%g) in exponential or decimal format,

whichever format results in the shorter printed output
UVM_REAL_DEC Selects real (%f) in decimal format
UVM_REAL_EXP Selects real (%e) in exponential format

uvm_recursion_policy_enum

Specifies the policy for copying objects.

UVM_DEEP Objects are deep copied (object must implement
uvm_object::copy method)

UVM_SHALLOW Objects are shallow copied using default SV copy.
UVM_REFERENCE Only object handles are copied.

uvm_active_passive_enum

Convenience value to define whether a component, usually an agent, is in “active” mode
or “passive” mode.

UVM_PASSIVE ”Passive” mode
UVM_ACTIVE ”Active” mode

`uvm_field_* macro flags

Defines what operations a given field should be involved in. Bitwise OR all that apply.

UVM_DEFAULT All field operations turned on
UVM_COPY Field will participate in uvm_object::copy
UVM_COMPARE Field will participate in uvm_object::compare
UVM_PRINT Field will participate in uvm_object::print
UVM_RECORD Field will participate in uvm_object::record
UVM_PACK Field will participate in uvm_object::pack
UVM_NOCOPY Field will not participate in uvm_object::copy
UVM_NOCOMPARE Field will not participate in uvm_object::compare
UVM_NOPRINT Field will not participate in uvm_object::print
UVM_NORECORD Field will not participate in uvm_object::record
UVM_NOPACK Field will not participate in uvm_object::pack
UVM_DEEP Object field will be deep copied
UVM_SHALLOW Object field will be shallow copied
UVM_REFERENCE Object field will copied by reference

UVM 1.2 Class Reference 747

UVM_READONLY Object field will NOT be automatically configured.

RePOrtING

uvm_severity

Defines all possible values for report severity.

UVM_INFO Informative message.
UVM_WARNING Indicates a potential problem.
UVM_ERROR Indicates a real problem. Simulation continues subject to

the configured message action.
UVM_FATAL Indicates a problem from which simulation cannot recover.

Simulation exits via $finish after a #0 delay.

uvm_action

Defines all possible values for report actions. Each report is configured to execute one or
more actions, determined by the bitwise OR of any or all of the following enumeration
constants.

UVM_NO_ACTION No action is taken
UVM_DISPLAY Sends the report to the standard output
UVM_LOG Sends the report to the file(s) for this (severity,id) pair
UVM_COUNT Counts the number of reports with the COUNT attribute.

When this value reaches max_quit_count, the simulation
terminates

UVM_EXIT Terminates the simulation immediately.
UVM_CALL_HOOK Callback the report hook methods
UVM_STOP Causes $stop to be executed, putting the simulation into

interactive mode.
UVM_RM_RECORD Sends the report to the recorder

uvm_verbosity

Defines standard verbosity levels for reports.

UVM_NONE Report is always printed. Verbosity level setting cannot
disable it.

UVM_LOW Report is issued if configured verbosity is set to UVM_LOW or
above.

UVM_MEDIUM Report is issued if configured verbosity is set to UVM_MEDIUM
or above.

UVM_HIGH Report is issued if configured verbosity is set to UVM_HIGH or
above.

UVM_FULL Report is issued if configured verbosity is set to UVM_FULL or
above.

UVM 1.2 Class Reference 748

POrt TYPe

uvm_port_type_e

Specifies the type of port

UVM_PORT The port requires the interface that is its type
parameter.

UVM_EXPORT The port provides the interface that is its type
parameter via a connection to some other export or
implementation.

UVM_IMPLEMENTATION The port provides the interface that is its type
parameter, and it is bound to the component that
implements the interface.

SeQUeNCes

uvm_sequencer_arb_mode

Specifies a sequencer’s arbitration mode

UVM_SEQ_ARB_FIFO Requests are granted in FIFO order
(default)

UVM_SEQ_ARB_WEIGHTED Requests are granted randomly by weight
UVM_SEQ_ARB_RANDOM Requests are granted randomly
UVM_SEQ_ARB_STRICT_FIFO Requests at highest priority granted in fifo

order
UVM_SEQ_ARB_STRICT_RANDOM Requests at highest priority granted in

randomly
UVM_SEQ_ARB_USER Arbitration is delegated to the user-defined

function, user_priority_arbitration. That
function will specify the next sequence to
grant.

uvm_sequence_state_enum

Defines current sequence state

UVM_CREATED The sequence has been allocated.
UVM_PRE_START The sequence is started and the

uvm_sequence_base::pre_start() task is being executed.
UVM_PRE_BODY The sequence is started and the

uvm_sequence_base::pre_body() task is being executed.
UVM_BODY The sequence is started and the

uvm_sequence_base::body() task is being executed.
UVM_ENDED The sequence has completed the execution of the

uvm_sequence_base::body() task.

UVM 1.2 Class Reference 749

UVM_POST_BODY The sequence is started and the
uvm_sequence_base::post_body() task is being executed.

UVM_POST_START The sequence is started and the
uvm_sequence_base::post_start() task is being executed.

UVM_STOPPED The sequence has been forcibly ended by issuing a
uvm_sequence_base::kill() on the sequence.

UVM_FINISHED The sequence is completely finished executing.

uvm_sequence_lib_mode

Specifies the random selection mode of a sequence library

UVM_SEQ_LIB_RAND Random sequence selection
UVM_SEQ_LIB_RANDC Random cyclic sequence selection
UVM_SEQ_LIB_ITEM Emit only items, no sequence execution
UVM_SEQ_LIB_USER Apply a user-defined random-selection algorithm

PHAsING

uvm_phase_type

This is an attribute of a uvm_phase object which defines the phase type.

UVM_PHASE_IMP The phase object is used to traverse the component
hierarchy and call the component phase method as
well as the phase_started and phase_ended
callbacks. These nodes are created by the phase
macros, `uvm_builtin_task_phase,
`uvm_builtin_topdown_phase, and
`uvm_builtin_bottomup_phase. These nodes
represent the phase type, i.e. uvm_run_phase,
uvm_main_phase.

UVM_PHASE_NODE The object represents a simple node instance in the
graph. These nodes will contain a reference to their
corresponding IMP object.

UVM_PHASE_SCHEDULE The object represents a portion of the phasing
graph, typically consisting of several NODE types, in
series, parallel, or both.

UVM_PHASE_TERMINAL This internal object serves as the termination NODE
for a SCHEDULE phase object.

UVM_PHASE_DOMAIN This object represents an entire graph segment that
executes in parallel with the ‘run’ phase. Domains
may define any network of NODEs and SCHEDULEs.
The built-in domain, uvm, consists of a single
schedule of all the run-time phases, starting with
pre_reset and ending with post_shutdown.

uvm_phase_state

UVM 1.2 Class Reference 750

The set of possible states of a phase. This is an attribute of a schedule node in the
graph, not of a phase, to maintain independent per-domain state

UVM_PHASE_UNINITIALIZED The state is uninitialized. This is the default
state for phases, and for nodes which have not
yet been added to a schedule.

UVM_PHASE_DORMANT The schedule is not currently operating on the
phase node, however it will be scheduled at
some point in the future.

UVM_PHASE_SCHEDULED At least one immediate predecessor has
completed. Scheduled phases block until all
predecessors complete or until a jump is
executed.

UVM_PHASE_SYNCING All predecessors complete, checking that all
synced phases (e.g. across domains) are at or
beyond this point

UVM_PHASE_STARTED phase ready to execute, running
phase_started() callback

UVM_PHASE_EXECUTING An executing phase is one where the phase
callbacks are being executed. Its process is
tracked by the phaser.

UVM_PHASE_READY_TO_END no objections remain in this phase or in any
predecessors of its successors or in any sync’d
phases. This state indicates an opportunity for
any phase that needs extra time for a clean
exit to raise an objection, thereby causing a
return to UVM_PHASE_EXECUTING. If no
objection is raised, state will transition to
UVM_PHASE_ENDED after a delta cycle. (An
example of predecessors of successors: The
successor to phase ‘run’ is ‘extract’, whose
predecessors are ‘run’ and ‘post_shutdown’.
Therefore, ‘run’ will go to this state when both
its objections and those of ‘post_shutdown’ are
all dropped.

UVM_PHASE_ENDED phase completed execution, now running
phase_ended() callback

UVM_PHASE_JUMPING all processes related to phase are being killed
and all predecessors are forced into the DONE
state.

UVM_PHASE_CLEANUP all processes related to phase are being killed
UVM_PHASE_DONE A phase is done after it terminated execution.

Becoming done may enable a waiting
successor phase to execute.

The state transitions occur as follows

UNINITIALIZED -> DORMANT -> SCHED -> SYNC -> START -> EXEC -> READY -> END
-+-> CLEAN -> DONE
 ^
|
 | <-- jump_to
|
 +--
JUMPING< -+

UVM 1.2 Class Reference 751

uvm_wait_op

Specifies the operand when using methods like uvm_phase::wait_for_state.

UVM_EQ equal
UVM_NE not equal
UVM_LT less than
UVM_LTE less than or equal to
UVM_GT greater than
UVM_GTE greater than or equal to

OBJeCtIONs

uvm_objection_event

Enumerated the possible objection events one could wait on. See
uvm_objection::wait_for.

UVM_RAISED an objection was raised
UVM_DROPPED an objection was raised
UVM_ALL_DROPPED all objections have been dropped

DefAULt POLICY CLAsses

Policy classes copying, comparing, packing, unpacking, and recording uvm_object-based
objects.

uvm_default_table_printer

The table printer is a global object that can be used with uvm_object::do_print to get
tabular style printing.

uvm_default_tree_printer

The tree printer is a global object that can be used with uvm_object::do_print to get
multi-line tree style printing.

uvm_default_line_printer

uvm_table_printer uvm_default_table_printer = new()

uvm_tree_printer uvm_default_tree_printer = new()

uvm_line_printer uvm_default_line_printer = new()

UVM 1.2 Class Reference 752

The line printer is a global object that can be used with uvm_object::do_print to get
single-line style printing.

uvm_default_printer

The default printer policy. Used when calls to uvm_object::print or uvm_object::sprint
do not specify a printer policy.

The default printer may be set to any legal uvm_printer derived type, including the
global line, tree, and table printers described above.

uvm_default_packer

The default packer policy. Used when calls to uvm_object::pack and
uvm_object::unpack do not specify a packer policy.

uvm_default_comparer

The default compare policy. Used when calls to uvm_object::compare do not specify a
comparer policy.

uvm_printer uvm_default_printer = uvm_default_table_printer

uvm_packer uvm_default_packer = new()

uvm_comparer uvm_default_comparer = new()

UVM 1.2 Class Reference 753

29.2 Globals

Summary

Globals

SIMULATION CONTROL

run_test Convenience function for
uvm_top.run_test().

REPORTINg

uvm_get_report_object Returns the nearest uvm_report_object
when called.

uvm_report_enabled Returns 1 if the configured verbosity in
uvm_top for this severity/id is greater than
or equal to verbosity else returns 0.

uvm_report
uvm_report_info
uvm_report_warning
uvm_report_error
uvm_report_fatal These methods, defined in package scope,

are convenience functions that delegate to
the corresponding component methods in
uvm_top.

uvm_process_report_message This method, defined in package scope, is a
convenience function that delegate to the
corresponding component method in
uvm_top.

MIscELLANEOUs

uvm_is_match Returns 1 if the two strings match, 0
otherwise.

uvm_string_to_bits Converts an input string to its bit-vector
equivalent.

uvm_bits_to_string Converts an input bit-vector to its string
equivalent.

uvm_wait_for_nba_region Callers of this task will not return until the
NBA region, thus allowing other processes
any number of delta cycles (#0) to settle
out before continuing.

uvm_split_string Returns a queue of strings, values, that is
the result of the str split based on the sep.

SIMULATION CONTROL

run_test

Convenience function for uvm_top.run_test(). See uvm_root for more information.

REPORTINg

task run_test (
 string test_name = ""
)

UVM 1.2 Class Reference 754

uvm_get_report_object

Returns the nearest uvm_report_object when called. For the global version, it returns
uvm_root.

uvm_report_enabled

Returns 1 if the configured verbosity in uvm_top for this severity/id is greater than or
equal to verbosity else returns 0.

See also uvm_report_object::uvm_report_enabled.

Static methods of an extension of uvm_report_object, e.g. uvm_component-based
objects, cannot call uvm_report_enabled because the call will resolve to the
uvm_report_object::uvm_report_enabled, which is non-static. Static methods cannot call
non-static methods of the same class.

uvm_report

uvm_report_info

uvm_report_warning

function uvm_report_object uvm_get_report_object()

function int uvm_report_enabled (
 int verbosity,
 uvm_severity severity = UVM_INFO,
 string id = ""
)

function void uvm_report(
 uvm_severity severity,
 string id,
 string message,
 int verbosity = (severity ==

uvm_severity'(UVM_ERROR)) ?
UVM_LOW : (severity ==
uvm_severity'(UVM_FATAL)) ?
UVM_NONE : UVM_MEDIUM,

 string filename = "",
 int line = 0,
 string context_name = "",
 bit report_enabled_checked = 0
)

function void uvm_report_info(
 string id,
 string message,
 int verbosity = UVM_MEDIUM,
 string filename = "",
 int line = 0,
 string context_name = "",
 bit report_enabled_checked = 0
)

function void uvm_report_warning(
 string id,

UVM 1.2 Class Reference 755

uvm_report_error

uvm_report_fatal

These methods, defined in package scope, are convenience functions that delegate to the
corresponding component methods in uvm_top. They can be used in module-based code
to use the same reporting mechanism as class-based components. See
uvm_report_object for details on the reporting mechanism.

Note: Verbosity is ignored for warnings, errors, and fatals to ensure users do not
inadvertently filter them out. It remains in the methods for backward compatibility.

uvm_process_report_message

This method, defined in package scope, is a convenience function that delegate to the
corresponding component method in uvm_top. It can be used in module-based code to
use the same reporting mechanism as class-based components. See uvm_report_object
for details on the reporting mechanism.

MIscELLANEOUs

uvm_is_match

 string message,
 int verbosity = UVM_MEDIUM,
 string filename = "",
 int line = 0,
 string context_name = "",
 bit report_enabled_checked = 0
)

function void uvm_report_error(
 string id,
 string message,
 int verbosity = UVM_LOW,
 string filename = "",
 int line = 0,
 string context_name = "",
 bit report_enabled_checked = 0
)

function void uvm_report_fatal(
 string id,
 string message,
 int verbosity = UVM_NONE,
 string filename = "",
 int line = 0,
 string context_name = "",
 bit report_enabled_checked = 0
)

function void uvm_process_report_message(
 uvm_report_message report_message
)

function bit uvm_is_match (
 string expr,
 string str

UVM 1.2 Class Reference 756

Returns 1 if the two strings match, 0 otherwise.

The first string, expr, is a string that may contain ‘*’ and ‘?’ characters. A * matches
zero or more characters, and ? matches any single character. The 2nd argument, str, is
the string begin matched against. It must not contain any wildcards.

uvm_string_to_bits

Converts an input string to its bit-vector equivalent. Max bit-vector length is
approximately 14000 characters.

uvm_bits_to_string

Converts an input bit-vector to its string equivalent. Max bit-vector length is
approximately 14000 characters.

uvm_wait_for_nba_region

Callers of this task will not return until the NBA region, thus allowing other processes any
number of delta cycles (#0) to settle out before continuing. See
uvm_sequencer_base::wait_for_sequences for example usage.

uvm_split_string

Returns a queue of strings, values, that is the result of the str split based on the sep.
For example:

Results in the ‘splits’ queue containing the three elements: 1, on and false.

uvm_enum_wrapper#(T)

)

function logic[UVM_LARGE_STRING:0] uvm_string_to_bits(
 string str
)

function string uvm_bits_to_string(
 logic [UVM_LARGE_STRING:0] str
)

task uvm_wait_for_nba_region

function automatic void uvm_split_string (
 string str,
 byte sep,
 ref string values[$]
)

uvm_split_string("1,on,false", ",", splits);

UVM 1.2 Class Reference 757

The uvm_enum_wrapper#(T) class is a utility mechanism provided as a convenience to
the end user. It provides a from_name method which is the logical inverse of the
SystemVerilog name method which is built into all enumerations.

Summary

uvm_enum_wrapper#(T)

The uvm_enum_wrapper#(T) class is a utility mechanism provided as a
convenience to the end user.

CLAss DEcLARATION

METHOds

from_name Attempts to convert a string name to an enumerated value.

METHOds

from_name

Attempts to convert a string name to an enumerated value.

If the conversion is successful, the method will return 1, otherwise 0.

Note that the name passed in to the method must exactly match the value which would
be produced by enum::name, and is case sensitive.

For example

class uvm_enum_wrapper#(
 type T = uvm_active_passive_enum
)

static function bit from_name(
 string name,
 ref T value
)

typedef uvm_enum_wrapper#(uvm_radix_enum) radix_wrapper;
uvm_radix_enum r_v;

// The following would return '0', as "foo" isn't a value
// in uvm_radix_enum:
radix_wrapper::from_name("foo", r_v);

// The following would return '0', as "uvm_bin" isn't a value
// in uvm_radix_enum (although the upper case "UVM_BIN" is):
radix_wrapper::from_name("uvm_bin", r_v);

// The following would return '1', and r_v would be set to
// the value of UVM_BIN
radix_wrapper::from_name("UVM_BIN", r_v);

UVM 1.2 Class Reference 758

29.3 uvm_coreservice_t

The singleton instance of uvm_coreservice_t provides a common point for all central uvm
services such as uvm_factory, uvm_report_server, ... The service class provides a static
::get which returns an instance adhering to uvm_coreservice_t the rest of the
set_facility get_facility pairs provide access to the internal uvm services

Custom implementations of uvm_coreservice_t can be included in uvm_pkg::* and can
selected via the define UVM_CORESERVICE_TYPE. They cannot reside in another
package.

Contents

uvm_coreservice_t The singleton instance of uvm_coreservice_t provides
a common point for all central uvm services such as
uvm_factory, uvm_report_server, ...

uvm_default_coreservice_t uvm_default_coreservice_t provides a default
implementation of the uvm_coreservice_t API.

METHODS

get_factory

intended to return the currently enabled uvm factory,

set_factory

intended to set the current uvm factory

get_report_server

intended to return the current global report_server

set_report_server

intended to set the central report server to server

pure virtual function uvm_factory get_factory()

pure virtual function void set_factory(
 uvm_factory f
)

pure virtual function uvm_report_server get_report_server()

pure virtual function void set_report_server(
 uvm_report_server server
)

UVM 1.2 Class Reference 759

get_default_tr_database

intended to return the current default record database

set_default_tr_database

intended to set the current default record database to db

set_component_visitor

intended to set the component visitor to v (this visitor is being used for the traversal at
end_of_elaboration_phase for instance for name checking)

get_component_visitor

intended to retrieve the current component visitor see set_component_visitor

get_root

returns the uvm_root instance

get

Returns an instance providing the uvm_coreservice_t interface. The actual type of the
instance is determined by the define `UVM_CORESERVICE_TYPE.

pure virtual function uvm_tr_database get_default_tr_database()

pure virtual function void set_default_tr_database(
 uvm_tr_database db
)

pure virtual function void set_component_visitor(
 uvm_visitor#(uvm_component) v
)

pure virtual function uvm_visitor#(
 uvm_component
) get_component_visitor()

pure virtual function uvm_root get_root()

static function uvm_coreservice_t get()

`define UVM_CORESERVICE_TYPE uvm_blocking_coreservice
class uvm_blocking_coreservice extends uvm_default_coreservice_t;
 virtual function void set_factory(uvm_factory f);
 `uvm_error("FACTORY","you are not allowed to override the factory")
 endfunction
endclass

UVM 1.2 Class Reference 760

uvm_default_coreservice_t

uvm_default_coreservice_t provides a default implementation of the uvm_coreservice_t
API. It instantiates uvm_default_factory, uvm_default_report_server, uvm_root.

Summary

uvm_default_coreservice_t

uvm_default_coreservice_t provides a default implementation of the
uvm_coreservice_t API.

CLASS HIERARcHY

uvm_coreservice_t

uvm_default_coreservice_t

CLASS DEcLARATION

METHODS

get_factory Returns the currently enabled uvm factory.
set_factory Sets the current uvm factory.
get_default_tr_database returns the current default record database
set_default_tr_database Sets the current default record database to db
get_report_server returns the current global report_server if no

report server has been set before, returns an
instance of uvm_default_report_server

set_report_server sets the central report server to server
set_component_visitor sets the component visitor to v (this visitor is

being used for the traversal at
end_of_elaboration_phase for instance for name
checking)

get_component_visitor retrieves the current component visitor if
unset(or null) returns a
uvm_component_name_check_visitor instance

METHODS

get_factory

Returns the currently enabled uvm factory. When no factory has been set before,
instantiates a uvm_default_factory

set_factory

Sets the current uvm factory. Please note: it is up to the user to preserve the contents

class uvm_default_coreservice_t extends uvm_coreservice_t

virtual function uvm_factory get_factory()

virtual function void set_factory(
 uvm_factory f
)

UVM 1.2 Class Reference 761

of the original factory or delegate calls to the original factory

get_default_tr_database

returns the current default record database

If no default record database has been set before this method is called, returns an
instance of uvm_text_tr_database

set_default_tr_database

Sets the current default record database to db

get_report_server

returns the current global report_server if no report server has been set before, returns
an instance of uvm_default_report_server

set_report_server

sets the central report server to server

set_component_visitor

sets the component visitor to v (this visitor is being used for the traversal at
end_of_elaboration_phase for instance for name checking)

get_component_visitor

retrieves the current component visitor if unset(or null) returns a
uvm_component_name_check_visitor instance

virtual function uvm_tr_database get_default_tr_database()

virtual function void set_default_tr_database(
 uvm_tr_database db
)

virtual function uvm_report_server get_report_server()

virtual function void set_report_server(
 uvm_report_server server
)

virtual function void set_component_visitor(
 uvm_visitor#(uvm_component) v
)

virtual function uvm_visitor#(
 uvm_component
) get_component_visitor()

UVM 1.2 Class Reference 762

29.4 uvm_visitor #(NODE)

The uvm_visitor class provides an abstract base class for a visitor. The visitor visits
instances of type NODE. For general information regarding the visitor pattern see
http://en.wikipedia.org/wiki/Visitor_pattern

Contents

uvm_visitor #(NODE) The uvm_visitor class provides an
abstract base class for a visitor.

uvm_structure_proxy #(STRUCTURE) The uvm_structure_proxy is a
wrapper and provides a set of
elements of the STRUCTURE to the
caller on demand.

uvm_visitor_adapter
#(STRUCTURE,uvm_visitor#(STRUCTURE))

The visitor adaptor traverses all
nodes of the STRUCTURE and will
invoke visitor.visit() on every node.

uvm_top_down_visitor_adapter This uvm_top_down_visitor_adapter
traverses the STRUCTURE s (and will
invoke the visitor) in a hierarchical
fashion.

uvm_bottom_up_visitor_adapter This uvm_bottom_up_visitor_adapter
traverses the STRUCTURE s (and will
invoke the visitor) in a hierarchical
fashion.

uvm_by_level_visitor_adapter This uvm_by_level_visitor_adapter
traverses the STRUCTURE s (and will
invoke the visitor) in a hierarchical
fashion.

uvm_component_proxy The class is providing the proxy to
extract the direct subcomponents of
s

uvm_component_name_check_visitor This specialized visitor analyze the
naming of the current component.

MeTHodS

begin_v

This method will be invoked by the visitor before the first NODE is visited

end_v

This method will be invoked by the visitor after the last NODE is visited

visit

virtual function void begin_v()

virtual function void end_v()

pure virtual function void visit(
 NODE node

UVM 1.2 Class Reference 763

http://en.wikipedia.org/wiki/Visitor_pattern

This method will be invoked by the visitor for every visited node of the provided
structure. The user is expected to provide the own functionality in this function.

uvm_structure_proxy #(STRUCTURE)

The uvm_structure_proxy is a wrapper and provides a set of elements of the STRUCTURE
to the caller on demand. This is to decouple the retrieval of the STRUCTUREs
subelements from the actual function being invoked on STRUCTURE

Summary

uvm_structure_proxy #(STRUCTURE)

The uvm_structure_proxy is a wrapper and provides a set of elements of the
STRUCTURE to the caller on demand.

MeTHodS

get_immediate_children This method will be return in children a set of the
direct subelements of s

MeTHodS

get_immediate_children

This method will be return in children a set of the direct subelements of s

uvm_visitor_adapter
#(STRUCTURE,uvm_visitor#(STRUCTURE))

The visitor adaptor traverses all nodes of the STRUCTURE and will invoke visitor.visit() on

)

class count_nodes_visitor#(type T=uvm_component) extends uvm_visitor#(T);
 function new (string name = "");
 super.new(name);
 endfunction
 local int cnt;
 virtual function void begin_v(); cnt = 0; endfunction
 virtual function void end_v(); `uvm_info("TEXT",$sformatf("%d
elements",cnt),UVM_NONE) endfunction
 virtual function void visit(T node); cnt++; endfunction
endclass

pure virtual function void get_immediate_children(
 STRUCTURE s,
 ref STRUCTURE children[$]
)

UVM 1.2 Class Reference 764

every node.

Summary

uvm_visitor_adapter
#(STRUCTURE,uvm_visitor#(STRUCTURE))

The visitor adaptor traverses all nodes of the STRUCTURE and will invoke
visitor.visit() on every node.

MeTHodS

accept() Calling this function will traverse through s (and every subnode of
s).

MeTHodS

accept()

Calling this function will traverse through s (and every subnode of s). For each node
found v.visit(node) will be invoked. The children of s are recursively determined by
invoking p.get_immediate_children().~invoke_begin_end~ determines whether the
visitors begin/end functions should be invoked prior to traversal.

uvm_top_down_visitor_adapter

This uvm_top_down_visitor_adapter traverses the STRUCTURE s (and will invoke the
visitor) in a hierarchical fashion. During traversal s will be visited before all subnodes of
s will be visited.

Summary

uvm_top_down_visitor_adapter

This uvm_top_down_visitor_adapter traverses the STRUCTURE s (and will invoke
the visitor) in a hierarchical fashion.

CLASS HIerArcHY

uvm_visitor_adapter#(STRUCTURE,VISITOR)

uvm_top_down_visitor_adapter

CLASS DecLArATIon

pure virtual function void accept(
 STRUCTURE s,
 VISITOR v,
 uvm_structure_proxy#(STRUCTURE) p,
 bit invoke_begin_end = 1
)

class uvm_top_down_visitor_adapter#(
 type STRUCTURE = uvm_component,

UVM 1.2 Class Reference 765

uvm_bottom_up_visitor_adapter

This uvm_bottom_up_visitor_adapter traverses the STRUCTURE s (and will invoke the
visitor) in a hierarchical fashion. During traversal all children of node s will be visited s
will be visited.

Summary

uvm_bottom_up_visitor_adapter

This uvm_bottom_up_visitor_adapter traverses the STRUCTURE s (and will invoke
the visitor) in a hierarchical fashion.

CLASS HIerArcHY

uvm_visitor_adapter#(STRUCTURE,VISITOR)

uvm_bottom_up_visitor_adapter

CLASS DecLArATIon

uvm_by_level_visitor_adapter

This uvm_by_level_visitor_adapter traverses the STRUCTURE s (and will invoke the
visitor) in a hierarchical fashion. During traversal will visit all direct children of s before
all grand-children are visited.

Summary

uvm_by_level_visitor_adapter

This uvm_by_level_visitor_adapter traverses the STRUCTURE s (and will invoke
the visitor) in a hierarchical fashion.

CLASS HIerArcHY

uvm_visitor_adapter#(STRUCTURE,VISITOR)

uvm_by_level_visitor_adapter

CLASS DecLArATIon

 VISITOR = uvm_visitor#(STRUCTURE)
) extends uvm_visitor_adapter#(STRUCTURE,VISITOR)

class uvm_bottom_up_visitor_adapter#(
 type STRUCTURE = uvm_component,
 VISITOR = uvm_visitor#(STRUCTURE)
) extends uvm_visitor_adapter#(STRUCTURE,VISITOR)

class uvm_by_level_visitor_adapter#(
 type STRUCTURE = uvm_component,
 VISITOR = uvm_visitor#(STRUCTURE)
) extends uvm_visitor_adapter#(STRUCTURE,VISITOR)

UVM 1.2 Class Reference 766

uvm_component_proxy

The class is providing the proxy to extract the direct subcomponents of s

Summary

uvm_component_proxy

The class is providing the proxy to extract the direct subcomponents of s

CLASS HIerArcHY

uvm_structure_proxy#(uvm_component)

uvm_component_proxy

CLASS DecLArATIon

uvm_component_name_check_visitor

This specialized visitor analyze the naming of the current component. The established
rule set ensures that a component.get_full_name() is parsable, unique, printable to order
to avoid any ambiguities when messages are being emitted.

ruleset a legal name is composed of
allowed charset “A-z:_0-9[](){}-: “
whitespace-as-is, no-balancing delimiter semantic, no escape sequences
path delimiter not allowed anywhere in the name

the check is coded here as a function to complete it in a single function call otherwise
save/restore issues with the used dpi could occur

Summary

uvm_component_name_check_visitor

This specialized visitor analyze the naming of the current component.

CLASS HIerArcHY

uvm_visitor#(uvm_component)

uvm_component_name_check_visitor

CLASS DecLArATIon

class uvm_component_proxy extends uvm_structure_proxy#(
 uvm_component
)

class uvm_component_name_check_visitor extends
uvm_visitor#(

UVM 1.2 Class Reference 767

MeTHodS

get_name_constraint This method should return a regex for what is being
considered a valid/good component name.

MeTHodS

get_name_constraint

This method should return a regex for what is being considered a valid/good component
name. The visitor will check all component names using this regex and report failing
names

 uvm_component
)

virtual function string get_name_constraint()

UVM 1.2 Class Reference 768

Bibliography

[B1] IEEE Std 1666™, IEEE Standard for SystemC Language Reference Manual.

[B2] IEEE Std 1685™, IEEE Standard for IP-XACT, Standard Structure for Packaging, Integrating, and Reusing IP
within Tool Flows.

UVM 1.2 Class Reference 769

Index
$#! · 0-9 · A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y

· Z

$#!
 +UVM_CONFIG_DB_TRACE

uvm_cmdline_processor
 +UVM_DUMP_CMDLINE_ARGS

uvm_cmdline_processor
 +UVM_MAX_QUIT_COUNT

uvm_cmdline_processor
 +UVM_OBJECTION_TRACE

uvm_cmdline_processor
 +UVM_PHASE_TRACE

uvm_cmdline_processor
 +UVM_RESOURCE_DB_TRACE

uvm_cmdline_processor
 +uvm_set_action

uvm_cmdline_processor
 +uvm_set_config_int

uvm_cmdline_processor
 +uvm_set_config_string

uvm_cmdline_processor
 +uvm_set_default_sequence

uvm_cmdline_processor
 +uvm_set_inst_override

uvm_cmdline_processor
 +uvm_set_severity

uvm_cmdline_processor
 +uvm_set_type_override

uvm_cmdline_processor
 +uvm_set_verbosity

uvm_cmdline_processor
 +UVM_TESTNAME

uvm_cmdline_processor
 +UVM_TIMEOUT

uvm_cmdline_processor
 +UVM_VERBOSITY

uvm_cmdline_processor
 `uvm_add_to_sequence_library
 `uvm_analysis_imp_decl
 `uvm_blocking_get_imp_decl
 `uvm_blocking_get_peek_imp_decl
 `uvm_blocking_master_imp_decl
 `uvm_blocking_peek_imp_decl
 `uvm_blocking_put_imp_decl
 `uvm_blocking_slave_imp_decl
 `uvm_blocking_transport_imp_decl
 `uvm_component_end

UVM 1.2 Class Reference 770

 `uvm_component_param_utils
 `uvm_component_param_utils_begin
 `uvm_component_registry
 `uvm_component_utils
 `uvm_component_utils_begin
 `uvm_create
 `uvm_create_on
 `uvm_declare_p_sequencer
 `UVM_DEFAULT_TIMEOUT
 `uvm_do
 `uvm_do_callbacks
 `uvm_do_callbacks_exit_on
 `uvm_do_obj_callbacks
 `uvm_do_obj_callbacks_exit_on
 `uvm_do_on
 `uvm_do_on_pri
 `uvm_do_on_pri_with
 `uvm_do_on_with
 `uvm_do_pri
 `uvm_do_pri_with
 `uvm_do_with
 `uvm_error
 `uvm_error_begin
 `uvm_error_context
 `uvm_error_context_begin
 `uvm_error_context_end
 `uvm_error_end
 `uvm_fatal
 `uvm_fatal_begin
 `uvm_fatal_context
 `uvm_fatal_context_begin
 `uvm_fatal_context_end
 `uvm_fatal_end
 `uvm_field_*macro flags
 `uvm_field_*macros
 `uvm_field_aa_*_int macros
 `uvm_field_aa_*_string macros
 `uvm_field_aa_int_byte
 `uvm_field_aa_int_byte_unsigned
 `uvm_field_aa_int_enumkey
 `uvm_field_aa_int_int
 `uvm_field_aa_int_int_unsigned
 `uvm_field_aa_int_integer
 `uvm_field_aa_int_integer_unsigned
 `uvm_field_aa_int_key
 `uvm_field_aa_int_longint
 `uvm_field_aa_int_longint_unsigned
 `uvm_field_aa_int_shortint
 `uvm_field_aa_int_shortint_unsigned
 `uvm_field_aa_int_string
 `uvm_field_aa_object_int
 `uvm_field_aa_object_string
 `uvm_field_aa_string_string
 `uvm_field_array_*macros
 `uvm_field_array_enum
 `uvm_field_array_int
 `uvm_field_array_object
 `uvm_field_array_string
 `uvm_field_enum
 `uvm_field_event

UVM 1.2 Class Reference 771

 `uvm_field_int
 `uvm_field_object
 `uvm_field_queue_*macros
 `uvm_field_queue_enum
 `uvm_field_queue_int
 `uvm_field_queue_object
 `uvm_field_queue_string
 `uvm_field_real
 `uvm_field_sarray_*macros
 `uvm_field_sarray_enum
 `uvm_field_sarray_int
 `uvm_field_sarray_object
 `uvm_field_sarray_string
 `uvm_field_string
 `uvm_field_utils_begin
 `uvm_field_utils_end
 `uvm_get_imp_decl
 `uvm_get_peek_imp_decl
 `uvm_info
 `uvm_info_begin
 `uvm_info_context
 `uvm_info_context_begin
 `uvm_info_context_end
 `uvm_info_end
 `uvm_master_imp_decl
 `UVM_MAX_STREAMBITS
 `uvm_message_add_int
 `uvm_message_add_object
 `uvm_message_add_string
 `uvm_message_add_tag
 `uvm_nonblocking_get_imp_decl
 `uvm_nonblocking_get_peek_imp_decl
 `uvm_nonblocking_master_imp_decl
 `uvm_nonblocking_peek_imp_decl
 `uvm_nonblocking_put_imp_decl
 `uvm_nonblocking_slave_imp_decl
 `uvm_nonblocking_transport_imp_decl
 `uvm_object_param_utils
 `uvm_object_param_utils_begin
 `uvm_object_registry
 `uvm_object_utils
 `uvm_object_utils_begin
 `uvm_object_utils_end
 `uvm_pack_array
 `uvm_pack_arrayN
 `uvm_pack_enum
 `uvm_pack_enumN
 `uvm_pack_int
 `uvm_pack_intN
 `uvm_pack_queue
 `uvm_pack_queueN
 `uvm_pack_real
 `uvm_pack_sarray
 `uvm_pack_sarrayN
 `uvm_pack_string
 `UVM_PACKER_MAX_BYTES
 `uvm_peek_imp_decl
 `uvm_put_imp_decl
 `uvm_rand_send
 `uvm_rand_send_pri

UVM 1.2 Class Reference 772

 `uvm_rand_send_pri_with
 `uvm_rand_send_with
 `uvm_record_attribute
 `uvm_record_field
 `uvm_record_int
 `uvm_record_real
 `uvm_record_string
 `uvm_record_time
 `UVM_REG_ADDR_WIDTH
 `UVM_REG_BYTENABLE_WIDTH
 `UVM_REG_CVR_WIDTH
 `UVM_REG_DATA_WIDTH
 `uvm_register_cb
 `uvm_send
 `uvm_send_pri
 `uvm_sequence_library_utils
 `uvm_set_super_type
 `uvm_slave_imp_decl
 `UVM_TLM_B_MASK
 `UVM_TLM_B_TRANSPORT_IMP
 `UVM_TLM_FUNCTION_ERROR
 `UVM_TLM_NB_BW_MASK
 `UVM_TLM_NB_FW_MASK
 `UVM_TLM_NB_TRANSPORT_BW_IMP
 `UVM_TLM_NB_TRANSPORT_FW_IMP
 `UVM_TLM_TASK_ERROR
 `uvm_transport_imp_decl
 `uvm_unpack_array
 `uvm_unpack_arrayN
 `uvm_unpack_enum
 `uvm_unpack_enumN
 `uvm_unpack_int
 `uvm_unpack_intN
 `uvm_unpack_queue
 `uvm_unpack_queueN
 `uvm_unpack_real
 `uvm_unpack_sarray
 `uvm_unpack_sarrayN
 `uvm_unpack_string
 `uvm_warning
 `uvm_warning_begin
 `uvm_warning_context
 `uvm_warning_context_begin
 `uvm_warning_context_end
 `uvm_warning_end

0-9
 2

Migrating code using UVM 1
 2 Class Reference

UVM 1
 2 Migration Script

1::1 to 1
 2 Release Notes

UVM 1

UVM 1.2 Class Reference 773

file:///C|/Users/Joe/Documents/accellera/uvm_1.2/ND%20material/html_RC7/files/overviews/relnotes-txt.html#Migrating_code_using_UVM_1.2
file:///C|/Users/Joe/Documents/accellera/uvm_1.2/ND%20material/html_RC7/files/overviews/relnotes-txt.html#1.1_to_1.2_Migration_Script
file:///C|/Users/Joe/Documents/accellera/uvm_1.2/ND%20material/html_RC7/files/overviews/relnotes-txt.html#1.1_to_1.2_Migration_Script
file:///C|/Users/Joe/Documents/accellera/uvm_1.2/ND%20material/html_RC7/files/overviews/relnotes-txt.html#UVM_1.2_Release_Notes

 3?
What will happen in UVM 1

A
 abstract

uvm_comparer
uvm_packer
uvm_recorder

 abstractions
uvm_reg_mem_hdl_paths_seq

 accept
uvm_visitor_adapter#(STRUCTURE,uvm_visitor#(STRUCTURE))

 accept_tr
uvm_component
uvm_transaction

 Access
uvm_reg
uvm_reg_block
uvm_reg_field
uvm_reg_fifo

 Accessors
uvm_link_base
uvm_tlm_generic_payload

 Action Configuration
uvm_report_object

 adapter
uvm_reg_predictor
uvm_reg_sequence

 add
uvm_callbacks#(T,CB)
uvm_heartbeat
uvm_phase
uvm_pool#(KEY,T)
uvm_reg_read_only_cbs
uvm_reg_write_only_cbs

 Add/delete interface
uvm_callbacks#(T,CB)

 add_by_name
uvm_callbacks#(T,CB)

 add_callback
uvm_event#(T)

 add_coverage
uvm_mem
uvm_reg
uvm_reg_block

 add_hdl_path
uvm_mem
uvm_reg
uvm_reg_block
uvm_reg_file

UVM 1.2 Class Reference 774

file:///C|/Users/Joe/Documents/accellera/uvm_1.2/ND%20material/html_RC7/files/overviews/relnotes-txt.html#What_will_happen_in_UVM_1.3

 add_hdl_path_slice
uvm_mem
uvm_reg

 add_int
uvm_report_catcher
uvm_report_message
uvm_report_message_element_container

 add_mem
uvm_reg_map

 add_object
uvm_report_catcher
uvm_report_message
uvm_report_message_element_container

 add_path
uvm_hdl_path_concat

 add_reg
uvm_reg_map

 add_sequence
uvm_sequence_library

 add_sequences
uvm_sequence_library

 add_slice
uvm_hdl_path_concat

 add_string
uvm_report_catcher
uvm_report_message
uvm_report_message_element_container

 add_submap
uvm_reg_map

 add_typewide_sequence
uvm_sequence_library

 add_typewide_sequences
uvm_sequence_library

 add_uvm_phases
uvm_domain

 addr
uvm_reg_bus_op

 adjust_name
uvm_printer

 after_export
uvm_algorithmic_comparator#(BEFORE,AFTER,TRANSFORMER)
uvm_in_order_comparator#(T,comp_type,convert,pair_type)

 Algorithmic Comparator
 all_dropped

uvm_component
uvm_objection
uvm_objection_callback

 alloc_mode_e
uvm_mem_mam

 allocate
uvm_vreg

 Analysis

UVM 1.2 Class Reference 775

Global
uvm_tlm_if_base#(T1,T2)

 Analysis Ports
 analysis_export

uvm_subscriber
 analysis_export#(T)

uvm_tlm_analysis_fifo#(T)
 apply_config_settings

uvm_component
 Argument Values

uvm_cmdline_processor
 Attribute Recording

uvm_recorder
 Audit Trail

uvm_resource_base

B
 b_transport

uvm_tlm_if
 Backawards Compatibility
 backdoor

uvm_reg_map
 Backdoor

uvm_mem
uvm_reg
uvm_reg_block
uvm_reg_file

 backdoor_read
uvm_mem
uvm_reg

 backdoor_read_func
uvm_mem
uvm_reg

 backdoor_watch
uvm_reg

 backdoor_write
uvm_mem
uvm_reg

 Backwards Compatibility
 Backwards Compatibility:
 BASE

uvm_reg_sequence
 Basic Arguments

uvm_cmdline_processor
 Basic Messaging Macros
 bd_kind

uvm_reg_item
 before_export

uvm_algorithmic_comparator#(BEFORE,AFTER,TRANSFORMER)
uvm_in_order_comparator#(T,comp_type,convert,pair_type)

UVM 1.2 Class Reference 776

file:///C|/Users/Joe/Documents/accellera/uvm_1.2/ND%20material/html_RC7/files/overviews/relnotes-txt.html#Backawards_Compatibility
file:///C|/Users/Joe/Documents/accellera/uvm_1.2/ND%20material/html_RC7/files/overviews/relnotes-txt.html#Backwards_Compatibility
file:///C|/Users/Joe/Documents/accellera/uvm_1.2/ND%20material/html_RC7/files/overviews/relnotes-txt.html#Backwards_Compatibility:

 begin_child_tr
uvm_component
uvm_transaction

 begin_elements
uvm_printer_knobs

 begin_event
uvm_transaction

 BEGIN_REQ
 BEGIN_RESP
 begin_tr

uvm_component
uvm_transaction

 begin_v
uvm_visitor#(NODE)

 Bidirectional Interfaces&Ports
 big_endian

uvm_packer
 bin_radix

uvm_printer_knobs
 Bit Bashing Test Sequences
 Blocking get

uvm_tlm_if_base#(T1,T2)
 Blocking peek

uvm_tlm_if_base#(T1,T2)
 Blocking put

uvm_tlm_if_base#(T1,T2)
 Blocking transport

uvm_tlm_if_base#(T1,T2)
 blocking_put_port

uvm_random_stimulus#(T)
 body

uvm_mem_access_seq
uvm_mem_single_walk_seq
uvm_mem_walk_seq
uvm_reg_access_seq
uvm_reg_bit_bash_seq
uvm_reg_hw_reset_seq
uvm_reg_mem_built_in_seq
uvm_reg_mem_shared_access_seq
uvm_reg_sequence
uvm_sequence_base

 build_coverage
uvm_mem
uvm_reg
uvm_reg_block

 build_phase
uvm_component

 Built-in UVM Aware Command Line Arguments
uvm_cmdline_processor

 burst_read
uvm_mem
uvm_mem_region

 burst_write

UVM 1.2 Class Reference 777

uvm_mem
uvm_mem_region

 Bus Access
uvm_reg_map

 bus_in
uvm_reg_predictor

 bus2reg
uvm_reg_adapter
uvm_reg_tlm_adapter

 byte_en
uvm_reg_bus_op

UVM 1.2 Class Reference 778

Index
$#! · 0-9 · A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y

· Z

C
 Callback Hooks

uvm_objection
 Callback Interface

uvm_report_catcher
 Callback Macros
 callback_mode

uvm_callback
 Callbacks

uvm_mem
uvm_phase
uvm_reg
uvm_reg_field
uvm_vreg
uvm_vreg_field

 Callbacks Classes
 can_get

uvm_tlm_if_base#(T1,T2)
 can_peek

uvm_tlm_if_base#(T1,T2)
 can_put

uvm_tlm_if_base#(T1,T2)
 cancel

uvm_barrier
uvm_event_base

 capacity
uvm_reg_fifo

 catch
uvm_report_catcher

 CB
uvm_callbacks#(T,CB)

 Change Message State
uvm_report_catcher

 check_config_usage
uvm_component

 check_data_width
uvm_reg_block

 check_phase
uvm_component
uvm_reg_predictor

 check_type
uvm_comparer

 Classes for Adapting Between Register and Bus Operations
 clear

uvm_objection

UVM 1.2 Class Reference 779

 clear_extension
uvm_tlm_generic_payload

 clear_extensions
uvm_tlm_generic_payload

 clear_hdl_path
uvm_mem
uvm_reg
uvm_reg_block
uvm_reg_file

 clear_response_queue
uvm_sequence_base

 clone
uvm_object

 close
uvm_recorder
uvm_tr_stream

 close_db
uvm_tr_database

 Code migration script
 Command Line Debug

uvm_cmdline_processor
 Command Line Processor Class
 Comparators

comps/uvm_in_order_comparator.svh
overviews/comparators.txt

 compare
uvm_object

 compare_field
uvm_comparer

 compare_field_int
uvm_comparer

 compare_field_real
uvm_comparer

 compare_object
uvm_comparer

 compare_string
uvm_comparer

 Comparing
uvm_object

 compose_report_message
uvm_default_report_server
uvm_report_server

 Conditional Compilation
 Configuration

uvm_object
 Configuration and Resource Classes
 Configuration API

uvm_recorder
uvm_tr_stream

 Configuration Interface
uvm_component

 configure

UVM 1.2 Class Reference 780

file:///C|/Users/Joe/Documents/accellera/uvm_1.2/ND%20material/html_RC7/files/overviews/relnotes-txt.html#Code_migration_script

uvm_mem
uvm_reg
uvm_reg_block
uvm_reg_field
uvm_reg_file
uvm_reg_indirect_data
uvm_reg_map
uvm_vreg
uvm_vreg_field

 configure_phase
uvm_component

 connect
uvm_port_base#(IF)
uvm_tlm_nb_passthrough_target_socket
uvm_tlm_nb_target_socket

 Connect
uvm_tlm_b_initiator_socket
uvm_tlm_b_target_socket
uvm_tlm_nb_initiator_socket

 connect_phase
uvm_component

 Construction
uvm_phase

 Container Classes
 Convenience Methods

uvm_report_handler
 Convenience Write/Read API

uvm_reg_sequence
 convert2string

uvm_mem_mam
uvm_object
uvm_reg_item

 copy
uvm_object

 Copying
uvm_object

 Core Base Classes
 Coverage

uvm_mem
uvm_reg
uvm_reg_block

 create
uvm_component_registry#(T,Tname)
uvm_object
uvm_object_registry#(T,Tname)
uvm_tlm_extension_base

 create_component
uvm_component
uvm_component_registry#(T,Tname)
uvm_object_wrapper

 create_component_by_name
uvm_default_factory
uvm_factory

 create_component_by_type

UVM 1.2 Class Reference 781

uvm_default_factory
uvm_factory

 create_item
uvm_sequence_base

 create_map
uvm_reg_block

 create_object
uvm_component
uvm_object_registry#(T,Tname)
uvm_object_wrapper

 create_object_by_name
uvm_default_factory
uvm_factory

 create_object_by_type
uvm_default_factory
uvm_factory

 Creation
uvm_default_factory
uvm_factory
uvm_object

 Current Message State
uvm_report_catcher

 current_grabber
uvm_sequencer_base

D
 data

uvm_reg_bus_op
 Data Access Policies
 Database API

uvm_tr_database
 Debug

uvm_callbacks#(T,CB)
uvm_default_factory
uvm_factory
uvm_report_catcher
uvm_resource_pool

 debug_connected_to
uvm_port_base#(IF)

 debug_create_by_name
uvm_default_factory
uvm_factory

 debug_create_by_type
uvm_default_factory
uvm_factory

 debug_provided_to
uvm_port_base#(IF)

 dec_radix
uvm_printer_knobs

 decode

UVM 1.2 Class Reference 782

uvm_reg_cbs
 decr

uvm_tlm_time
 Default Policy Classes
 default_alloc

uvm_mem_mam
 default_map

uvm_reg_block
 default_path

uvm_reg_block
 default_precedence

uvm_resource_base
 default_radix

uvm_printer_knobs
uvm_recorder

 define_access
uvm_reg_field

 define_domain
uvm_component

 delete
uvm_callbacks#(T,CB)
uvm_object_string_pool#(T)
uvm_pool#(KEY,T)
uvm_queue#(T)
uvm_report_message_element_container

 delete_by_name
uvm_callbacks#(T,CB)

 delete_callback
uvm_event#(T)

 delete_elements
uvm_report_message_element_container

 depth
uvm_printer_knobs

 die
uvm_root

 disable_auto_item_recording
uvm_sqr_if_base#(REQ,RSP)

 disable_recording
uvm_transaction

 display
uvm_callbacks#(T,CB)

 display_objections
uvm_objection

 do_accept_tr
uvm_component
uvm_transaction

 do_begin_tr
uvm_component
uvm_transaction

 do_block
uvm_mem_access_seq
uvm_mem_walk_seq

UVM 1.2 Class Reference 783

uvm_reg_access_seq
uvm_reg_bit_bash_seq
uvm_reg_hw_reset_seq
uvm_reg_mem_shared_access_seq

 do_bus_read
uvm_reg_map

 do_bus_write
uvm_reg_map

 do_close
uvm_recorder
uvm_text_recorder
uvm_text_tr_stream
uvm_tr_stream

 do_close_db
uvm_text_tr_database
uvm_tr_database

 do_compare
uvm_object

 do_copy
uvm_object
uvm_reg_item
uvm_report_server

 do_end_tr
uvm_component
uvm_transaction

 do_establish_link
uvm_text_tr_database
uvm_tr_database

 do_free
uvm_recorder
uvm_text_recorder
uvm_text_tr_stream
uvm_tr_stream

 do_get_lhs
uvm_cause_effect_link
uvm_link_base
uvm_parent_child_link
uvm_related_link

 do_get_rhs
uvm_cause_effect_link
uvm_link_base
uvm_parent_child_link
uvm_related_link

 do_kill
uvm_sequence_base

 do_not_randomize
uvm_sequence_base

 do_open
uvm_recorder
uvm_text_recorder
uvm_text_tr_stream
uvm_tr_stream

 do_open_db
uvm_text_tr_database

UVM 1.2 Class Reference 784

uvm_tr_database
 do_open_recorder

uvm_text_tr_stream
uvm_tr_stream

 do_open_stream
uvm_text_tr_database
uvm_tr_database

 do_pack
uvm_object

 do_post_read
uvm_reg_backdoor

 do_post_write
uvm_reg_backdoor

 do_pre_read
uvm_reg_backdoor

 do_pre_write
uvm_reg_backdoor

 do_predict
uvm_reg_fifo

 do_print
uvm_object
uvm_resource_base

 do_read
uvm_reg_map

 do_record
uvm_object

 do_record_field
uvm_recorder
uvm_text_recorder

 do_record_field_int
uvm_recorder
uvm_text_recorder

 do_record_field_real
uvm_recorder
uvm_text_recorder

 do_record_generic
uvm_recorder
uvm_text_recorder

 do_record_object
uvm_recorder
uvm_text_recorder

 do_record_string
uvm_recorder
uvm_text_recorder

 do_record_time
uvm_recorder
uvm_text_recorder

 do_reg_item
uvm_reg_sequence

 do_set_lhs
uvm_cause_effect_link
uvm_link_base

UVM 1.2 Class Reference 785

uvm_parent_child_link
uvm_related_link

 do_set_rhs
uvm_cause_effect_link
uvm_link_base
uvm_parent_child_link
uvm_related_link

 do_unpack
uvm_object

 do_write
uvm_reg_map

 drop_objection
uvm_objection
uvm_phase

 dropped
uvm_component
uvm_objection
uvm_objection_callback

 dump
uvm_resource_db
uvm_resource_pool

E
 element

uvm_reg_item
 element_kind

uvm_reg_item
 emit

uvm_printer
uvm_table_printer
uvm_tree_printer

 enable_print_topology
uvm_root

 enable_recording
uvm_transaction

 enable_report_id_count_summary
uvm_default_report_server

 encode
uvm_reg_cbs

 end_elements
uvm_printer_knobs

 end_event
uvm_transaction

 end_of_elaboration_phase
uvm_component

 end_offset
uvm_mem_mam_cfg

 end_prematurely
uvm_phase

UVM 1.2 Class Reference 786

 END_REQ
 END_RESP
 end_tr

uvm_component
uvm_transaction

 end_v
uvm_visitor#(NODE)

 Enumerations
reg/uvm_reg_model.svh
tlm2/uvm_tlm2_ifs.svh

 establish_link
uvm_tr_database

 events
uvm_transaction

 Example
uvm_reg_adapter

 exec_func
uvm_phase

 exec_task
uvm_phase

 execute
uvm_bottomup_phase
uvm_task_phase
uvm_topdown_phase

 execute_item
uvm_sequencer_base

 execute_report_message
uvm_default_report_server
uvm_report_server

 exists
uvm_config_db
uvm_pool#(KEY,T)

 Explicit Register Predictor
 extension

uvm_reg_item
 Extensions Mechanism

uvm_tlm_generic_payload
 extract_phase

uvm_component

UVM 1.2 Class Reference 787

Index
$#! · 0-9 · A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y

· Z

F
 Factory Classes
 Factory Component and Object Wrappers
 Factory Interface

uvm_component
 Field automation
 Field Macros
 fifo

uvm_reg_fifo
 File Configuration

uvm_report_object
 final_phase

uvm_component
 find

uvm_phase
uvm_root

 find_all
uvm_root
uvm_utils#(TYPE,FIELD)

 find_block
uvm_reg_block

 find_blocks
uvm_reg_block

 find_by_name
uvm_phase

 find_override_by_name
uvm_default_factory
uvm_factory

 find_override_by_type
uvm_default_factory
uvm_factory

 find_unused_resources
uvm_resource_pool

 find_wrapper_by_name
uvm_factory

 finish_item
uvm_sequence_base

 finish_on_completion
uvm_root

 first
uvm_callback_iter
uvm_pool#(KEY,T)

 flush
uvm_in_order_comparator#(T,comp_type,convert,pair_type)
uvm_tlm_fifo#(T)

UVM 1.2 Class Reference 788

 fname
uvm_reg_item

 footer
uvm_printer_knobs

 for_each
uvm_mem_mam

 format_action
uvm_report_handler

 format_header
uvm_printer

 format_row
uvm_printer

 free
uvm_recorder
uvm_tr_stream

 free_tr_stream
uvm_component

 from_name
uvm_enum_wrapper#(T)

 Frontdoor
uvm_mem
uvm_reg

 full_name
uvm_printer_knobs

UVM 1.2 Class Reference 789

Index
$#! · 0-9 · A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y

· Z

G
 General Overview
 generate_stimulus

uvm_random_stimulus#(T)
 Generic Payload
 Generic Register Operation Descriptors
 get

uvm_build_phase
uvm_check_phase
uvm_component_registry#(T,Tname)
uvm_config_db
uvm_configure_phase
uvm_connect_phase
uvm_coreservice_t
uvm_end_of_elaboration_phase
uvm_extract_phase
uvm_factory
uvm_final_phase
uvm_get_to_lock_dap
uvm_main_phase
uvm_object_registry#(T,Tname)
uvm_object_string_pool#(T)
uvm_pool#(KEY,T)
uvm_post_configure_phase
uvm_post_main_phase
uvm_post_reset_phase
uvm_post_shutdown_phase
uvm_pre_configure_phase
uvm_pre_main_phase
uvm_pre_reset_phase
uvm_pre_shutdown_phase
uvm_queue#(T)
uvm_reg
uvm_reg_field
uvm_reg_fifo
uvm_report_phase
uvm_reset_phase
uvm_resource_pool
uvm_root
uvm_run_phase
uvm_sequencer#(REQ,RSP)
uvm_set_before_get_dap
uvm_set_get_dap_base
uvm_shutdown_phase
uvm_simple_lock_dap
uvm_sqr_if_base#(REQ,RSP)
uvm_start_of_simulation_phase
uvm_tlm_if_base#(T1,T2)

 Get and Peek
 get_abstime

UVM 1.2 Class Reference 790

file:///C|/Users/Joe/Documents/accellera/uvm_1.2/ND%20material/html_RC7/files/overviews/relnotes-txt.html#General_Overview

uvm_tlm_time
 get_accept_time

uvm_transaction
 get_access

uvm_mem
uvm_reg_field
uvm_vreg
uvm_vreg_field

 get_action
uvm_report_catcher
uvm_report_message
uvm_report_message_element_base

 get_adapter
uvm_reg_map

 get_addr_unit_bytes
uvm_reg_map

 get_address
uvm_mem
uvm_reg
uvm_tlm_generic_payload
uvm_vreg

 get_addresses
uvm_mem
uvm_reg

 get_adjacent_predecessor_nodes
uvm_phase

 get_adjacent_successor_nodes
uvm_phase

 get_ap
uvm_tlm_fifo_base#(T)

 get_arbitration
uvm_sequencer_base

 get_arg_matches
uvm_cmdline_processor

 get_arg_value
uvm_cmdline_processor

 get_arg_values
uvm_cmdline_processor

 get_args
uvm_cmdline_processor

 get_auto_predict
uvm_reg_map

 get_automatic_phase_objection
uvm_sequence_base

 get_backdoor
uvm_mem
uvm_reg
uvm_reg_block

 get_base_addr
uvm_reg_map

 get_begin_time
uvm_transaction

UVM 1.2 Class Reference 791

 get_block_by_name
uvm_reg_block

 get_blocks
uvm_reg_block

 get_by_name
uvm_resource#(T)
uvm_resource_db
uvm_resource_pool

 get_by_type
uvm_resource#(T)
uvm_resource_db
uvm_resource_pool

 get_byte_enable
uvm_tlm_generic_payload

 get_byte_enable_length
uvm_tlm_generic_payload

 get_cb
uvm_callback_iter

 get_check_on_read
uvm_reg_map

 get_child
uvm_component

 get_children
uvm_component

 get_client
uvm_report_catcher

 get_close_time
uvm_recorder

 get_command
uvm_tlm_generic_payload

 get_common_domain
uvm_domain

 get_comp
uvm_port_base#(IF)

 get_compare
uvm_reg_field

 get_component_visitor
uvm_coreservice_t
uvm_default_coreservice_t

 get_config
uvm_utils#(TYPE,FIELD)

 get_connected_to
uvm_port_component_base

 get_context
uvm_report_catcher
uvm_report_message

 get_coverage
uvm_mem
uvm_reg
uvm_reg_block

 get_current_item
uvm_sequence#(REQ,RSP)

UVM 1.2 Class Reference 792

uvm_sequencer_param_base#(REQ,RSP)
 get_data

uvm_tlm_generic_payload
 get_data_length

uvm_tlm_generic_payload
 get_db

uvm_tr_stream
 get_default_hdl_path

uvm_reg_block
uvm_reg_file

 get_default_path
uvm_reg_block

 get_default_tr_database
uvm_coreservice_t
uvm_default_coreservice_t

 get_depth
uvm_component
uvm_sequence_item

 get_domain
uvm_component
uvm_phase

 get_domain_name
uvm_phase

 get_domains
uvm_domain

 get_drain_time
uvm_objection

 get_element_container
uvm_report_catcher
uvm_report_message

 get_elements
uvm_report_message_element_container

 get_end_offset
uvm_mem_region

 get_end_time
uvm_transaction

 get_event_pool
uvm_transaction

 get_extension
uvm_tlm_generic_payload

 get_factory
uvm_coreservice_t
uvm_default_coreservice_t

 get_field_by_name
uvm_reg
uvm_reg_block
uvm_vreg

 get_fields
uvm_reg
uvm_reg_block
uvm_reg_map
uvm_vreg

UVM 1.2 Class Reference 793

 get_file
uvm_report_message

 get_filename
uvm_report_message

 get_first
uvm_callbacks#(T,CB)

 get_first_child
uvm_component

 get_fname
uvm_report_catcher

 get_frontdoor
uvm_mem
uvm_reg

 get_full_hdl_path
uvm_mem
uvm_reg
uvm_reg_block
uvm_reg_file

 get_full_name
uvm_component
uvm_mem
uvm_object
uvm_phase
uvm_port_base#(IF)
uvm_reg
uvm_reg_block
uvm_reg_field
uvm_reg_file
uvm_reg_map
uvm_vreg
uvm_vreg_field

 get_global
uvm_object_string_pool#(T)
uvm_pool#(KEY,T)
uvm_queue#(T)

 get_global_pool
uvm_object_string_pool#(T)
uvm_pool#(KEY,T)

 get_global_queue
uvm_queue#(T)

 get_handle
uvm_recorder
uvm_tr_stream

 get_hdl_path
uvm_mem
uvm_reg
uvm_reg_block
uvm_reg_file

 get_hdl_path_kinds
uvm_mem
uvm_reg

 get_highest_precedence
uvm_resource#(T)
uvm_resource_pool

UVM 1.2 Class Reference 794

 get_id
uvm_report_catcher
uvm_report_message

 get_id_count
uvm_default_report_server
uvm_report_server

 get_id_set
uvm_report_server

 get_if
uvm_port_base#(IF)

 get_immediate_children
uvm_structure_proxy#(STRUCTURE)

 get_imp
uvm_phase

 get_incr
uvm_vreg

 get_initiator
uvm_transaction

 get_inst
uvm_cmdline_processor

 get_inst_count
uvm_object

 get_inst_id
uvm_object

 get_is_active
uvm_agent

 get_item
uvm_reg_adapter

 get_jump_target
uvm_phase

 get_last
uvm_callbacks#(T,CB)

 get_len
uvm_mem_region

 get_lhs
uvm_link_base

 get_line
uvm_report_catcher
uvm_report_message

 get_link
uvm_cause_effect_link
uvm_parent_child_link
uvm_related_link

 get_lsb_pos
uvm_reg_field

 get_lsb_pos_in_register
uvm_vreg_field

 get_map_by_name
uvm_reg_block

 get_maps
uvm_mem

UVM 1.2 Class Reference 795

uvm_reg
uvm_reg_block
uvm_vreg

 get_max_quit_count
uvm_default_report_server
uvm_report_server

 get_max_size
uvm_mem
uvm_reg
uvm_reg_field

 get_mem_by_name
uvm_reg_block

 get_mem_by_offset
uvm_reg_map

 get_memories
uvm_reg_block

 get_memory
uvm_mem_mam
uvm_mem_region
uvm_vreg

 get_message
uvm_report_catcher
uvm_report_message

 get_message_database
uvm_default_report_server
uvm_report_server

 get_mirrored_value
uvm_reg
uvm_reg_field

 get_n_bits
uvm_mem
uvm_reg
uvm_reg_field
uvm_vreg_field

 get_n_bytes
uvm_mem
uvm_mem_region
uvm_reg
uvm_reg_map
uvm_vreg

 get_n_maps
uvm_mem
uvm_reg
uvm_vreg

 get_n_memlocs
uvm_vreg

 get_name
uvm_mem
uvm_object
uvm_port_base#(IF)
uvm_reg
uvm_reg_block
uvm_reg_field
uvm_reg_file

UVM 1.2 Class Reference 796

uvm_reg_map
uvm_report_message_element_base
uvm_tlm_time
uvm_vreg
uvm_vreg_field

 get_name_constraint
uvm_component_name_check_visitor

 get_next
uvm_callbacks#(T,CB)

 get_next_child
uvm_component

 get_next_item
uvm_sequencer#(REQ,RSP)
uvm_sqr_if_base#(REQ,RSP)

 get_num_children
uvm_component

 get_num_extensions
uvm_tlm_generic_payload

 get_num_last_reqs
uvm_sequencer_param_base#(REQ,RSP)

 get_num_last_rsps
uvm_sequencer_param_base#(REQ,RSP)

 get_num_reqs_sent
uvm_sequencer_param_base#(REQ,RSP)

 get_num_rsps_received
uvm_sequencer_param_base#(REQ,RSP)

 get_num_waiters
uvm_barrier
uvm_event_base

 get_object_type
uvm_object

 get_objection
uvm_phase

 get_objection_count
uvm_objection
uvm_phase

 get_objection_total
uvm_objection

 get_objectors
uvm_objection

 get_offset
uvm_mem
uvm_reg

 get_offset_in_memory
uvm_vreg

 get_open_time
uvm_recorder

 get_packed_size
uvm_packer

 get_parent
uvm_component
uvm_mem

UVM 1.2 Class Reference 797

uvm_phase
uvm_port_base#(IF)
uvm_reg
uvm_reg_block
uvm_reg_field
uvm_reg_file
uvm_reg_map
uvm_vreg
uvm_vreg_field

 get_parent_map
uvm_reg_map

 get_parent_sequence
uvm_sequence_item

 get_peek_export
uvm_tlm_fifo_base#(T)

 get_peek_request_export
uvm_tlm_req_rsp_channel#(REQ,RSP)

 get_peek_response_export
uvm_tlm_req_rsp_channel#(REQ,RSP)

 get_phase_type
uvm_phase

 get_physical_addresses
uvm_reg_map

 get_plusargs
uvm_cmdline_processor

 get_port
uvm_port_component#(PORT)

 get_prev
uvm_callbacks#(T,CB)

 get_prev_state
uvm_phase_state_change

 get_priority
uvm_sequence_base

 get_propagate_mode
uvm_objection

 get_provided_to
uvm_port_component_base

 get_quit_count
uvm_default_report_server
uvm_report_server

 get_radix_str
uvm_printer_knobs

 get_realtime
uvm_tlm_time

 get_record_attribute_handle
uvm_recorder

 get_recorder_from_handle
uvm_recorder

 get_recorders
uvm_tr_stream

 get_reg_by_name
uvm_reg_block

UVM 1.2 Class Reference 798

 get_reg_by_offset
uvm_reg_map

 get_regfile
uvm_reg
uvm_reg_file

 get_region
uvm_vreg

 get_registers
uvm_reg_block
uvm_reg_map

 get_report_action
uvm_report_object

 get_report_catcher
uvm_report_catcher

 get_report_file_handle
uvm_report_object

 get_report_handler
uvm_report_message
uvm_report_object

 get_report_max_verbosity_level
uvm_report_object

 get_report_object
uvm_report_message

 get_report_server
uvm_coreservice_t
uvm_default_coreservice_t
uvm_report_message

 get_report_verbosity_level
uvm_report_object

 get_reset
uvm_reg
uvm_reg_field

 get_response
uvm_sequence#(REQ,RSP)

 get_response_queue_depth
uvm_sequence_base

 get_response_queue_error_report_disabled
uvm_sequence_base

 get_response_status
uvm_tlm_generic_payload

 get_response_string
uvm_tlm_generic_payload

 get_rhs
uvm_link_base

 get_rights
uvm_mem
uvm_reg
uvm_vreg

 get_root
uvm_coreservice_t

 get_root_blocks

UVM 1.2 Class Reference 799

uvm_reg_block
 get_root_map

uvm_reg_map
 get_root_sequence

uvm_sequence_item
 get_root_sequence_name

uvm_sequence_item
 get_run_count

uvm_phase
 get_schedule

uvm_phase
 get_schedule_name

uvm_phase
 get_scope

uvm_resource_base
uvm_tr_stream

 get_sequence_id
uvm_sequence_item

 get_sequence_path
uvm_sequence_item

 get_sequence_state
uvm_sequence_base

 get_sequencer
uvm_reg_map
uvm_sequence_item

 get_sequences
uvm_sequence_library

 get_server
uvm_report_server

 get_severity
uvm_report_catcher
uvm_report_message

 get_severity_count
uvm_default_report_server
uvm_report_server

 get_severity_set
uvm_report_server

 get_size
uvm_mem
uvm_vreg

 get_start_offset
uvm_mem_region

 get_starting_phase
uvm_sequence_base

 get_state
uvm_phase
uvm_phase_state_change

 get_stream
uvm_recorder

 get_stream_from_handle
uvm_tr_stream

UVM 1.2 Class Reference 800

 get_stream_type_name
uvm_tr_stream

 get_streaming_width
uvm_tlm_generic_payload

 get_streams
uvm_tr_database

 get_submap_offset
uvm_reg_map

 get_submaps
uvm_reg_map

 get_threshold
uvm_barrier

 get_tool_name
uvm_cmdline_processor

 get_tool_version
uvm_cmdline_processor

 get_tr_handle
uvm_sequence_base
uvm_transaction

 get_tr_stream
uvm_component

 get_transaction_id
uvm_transaction

 get_transaction_order_policy
uvm_reg_map

 get_trigger_data
uvm_event#(T)

 get_trigger_time
uvm_event_base

 get_type
uvm_object
uvm_resource#(T)

 get_type_handle
uvm_resource#(T)
uvm_resource_base
uvm_tlm_extension_base

 get_type_handle_name
uvm_tlm_extension_base

 get_type_name
uvm_callback
uvm_component_registry#(T,Tname)
uvm_object
uvm_object_registry#(T,Tname)
uvm_object_string_pool#(T)
uvm_object_wrapper
uvm_port_base#(IF)
uvm_sequence_library

 get_use_response_handler
uvm_sequence_base

 get_use_sequence_info
uvm_sequence_item

 get_uvm_domain

UVM 1.2 Class Reference 801

uvm_domain
 get_uvm_schedule

uvm_domain
 get_uvmargs

uvm_cmdline_processor
 get_value

uvm_report_message_int_element
uvm_report_message_object_element
uvm_report_message_string_element

 get_verbosity
uvm_report_catcher
uvm_report_message

 get_vfield_by_name
uvm_mem
uvm_reg_block

 get_virtual_fields
uvm_mem
uvm_reg_block
uvm_reg_map

 get_virtual_registers
uvm_mem
uvm_mem_region
uvm_reg_block
uvm_reg_map

 get_vreg_by_name
uvm_mem
uvm_reg_block

 get_vreg_by_offset
uvm_mem

 Global Declarations for the Register Layer
 Global Functionality
 Global Variables

uvm_root
 Globals

base/uvm_globals.svh
tlm2/uvm_tlm2_generic_payload.svh

 grab
uvm_sequence_base
uvm_sequencer_base

UVM 1.2 Class Reference 802

Index
$#! · 0-9 · A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y

· Z

H
 Handles

uvm_recorder
uvm_tr_stream

 has_child
uvm_component

 has_coverage
uvm_mem
uvm_reg
uvm_reg_block

 has_do_available
uvm_sequencer#(REQ,RSP)
uvm_sequencer_base
uvm_sqr_if_base#(REQ,RSP)

 has_hdl_path
uvm_mem
uvm_reg
uvm_reg_block
uvm_reg_file

 has_lock
uvm_sequence_base
uvm_sequencer_base

 has_reset
uvm_reg
uvm_reg_field

 HDL Access
uvm_mem
uvm_vreg
uvm_vreg_field

 HDL Paths Checking Test Sequence
 header

uvm_printer_knobs
 hex_radix

uvm_printer_knobs
 Hierarchical Reporting Interface

uvm_component
 Hierarchy Interface

uvm_component

I
 ID

uvm_tlm_extension
 id Count

UVM 1.2 Class Reference 803

uvm_default_report_server
 Identification

uvm_object
 identifier

uvm_printer_knobs
uvm_recorder

 IMP binding classes
 IMP binding macros
 implement

uvm_vreg
 Implementation Agnostic API

uvm_recorder
uvm_text_recorder
uvm_text_tr_database
uvm_text_tr_stream
uvm_tr_database
uvm_tr_stream

 Implementation Callbacks
uvm_cause_effect_link
uvm_link_base
uvm_parent_child_link
uvm_related_link

 Implementation Specific API
uvm_text_recorder
uvm_text_tr_database

 in_use
uvm_mem_mam_policy

 include_coverage
uvm_reg

 incr
uvm_tlm_time

 incr_id_count
uvm_default_report_server

 incr_quit_count
uvm_default_report_server

 incr_severity_count
uvm_default_report_server

 indent
uvm_printer_knobs

 Infrastructure References
uvm_report_message

 init_access_record
uvm_resource_base

 init_sequence_library
uvm_sequence_library

 initialization
uvm_vreg_field

 Initialization
uvm_mem
uvm_mem_mam
uvm_reg
uvm_reg_block
uvm_reg_field

UVM 1.2 Class Reference 804

uvm_reg_fifo
uvm_reg_file
uvm_reg_map
uvm_vreg

 insert
uvm_queue#(T)

 Interface Masks
 Intro

base/uvm_config_db.svh
base/uvm_registry.svh
base/uvm_resource.svh
base/uvm_resource_db.svh

 Introspection
uvm_get_to_lock_dap
uvm_mem
uvm_mem_mam
uvm_reg
uvm_reg_block
uvm_reg_field
uvm_reg_fifo
uvm_reg_file
uvm_reg_map
uvm_set_before_get_dap
uvm_simple_lock_dap
uvm_vreg
uvm_vreg_field

 is
uvm_phase

 is_active
uvm_transaction

 is_after
uvm_phase

 is_auditing
uvm_resource_options

 is_auto_item_recording_enabled
uvm_sqr_if_base#(REQ,RSP)

 is_auto_updated
uvm_reg_backdoor

 is_before
uvm_phase

 is_blocked
uvm_sequence_base
uvm_sequencer_base

 is_busy
uvm_reg

 is_child
uvm_sequencer_base

 is_closed
uvm_recorder
uvm_tr_stream

 is_dmi_allowed
uvm_tlm_generic_payload

 is_empty
uvm_tlm_fifo#(T)

UVM 1.2 Class Reference 805

 is_enabled
uvm_callback

 is_export
uvm_port_base#(IF)
uvm_port_component_base

 is_full
uvm_tlm_fifo#(T)

 is_grabbed
uvm_sequencer_base

 is_hdl_path_root
uvm_reg_block

 is_imp
uvm_port_base#(IF)
uvm_port_component_base

 is_in_map
uvm_mem
uvm_reg
uvm_vreg

 is_indv_accessible
uvm_reg_field

 is_item
uvm_sequence_base
uvm_sequence_item

 is_known_access
uvm_reg_field

 is_locked
uvm_reg_block
uvm_simple_lock_dap

 is_null
uvm_packer

 is_off
uvm_event_base

 is_on
uvm_event_base

 is_open
uvm_recorder
uvm_tr_database
uvm_tr_stream

 is_port
uvm_port_base#(IF)
uvm_port_component_base

 is_quit_count_reached
uvm_default_report_server

 is_read
uvm_tlm_generic_payload

 is_read_only
uvm_resource_base

 is_recording_enabled
uvm_transaction

 is_relevant
uvm_sequence_base

UVM 1.2 Class Reference 806

 is_response_error
uvm_tlm_generic_payload

 is_response_ok
uvm_tlm_generic_payload

 is_tracing
uvm_config_db_options
uvm_resource_db_options

 is_unbounded
uvm_port_base#(IF)

 is_volatile
uvm_reg_field

 is_write
uvm_tlm_generic_payload

 issue
uvm_report_catcher

 item_done
uvm_sequencer#(REQ,RSP)
uvm_sqr_if_base#(REQ,RSP)

 Iterator Interface
uvm_callbacks#(T,CB)

J
 jump

uvm_domain
uvm_phase

 jump_to
uvm_phase_state_change

 Jumping
uvm_phase

K
 kill

uvm_sequence_base
 kind

uvm_reg_bus_op
uvm_reg_item

 knobs
uvm_printer

L
 last

uvm_callback_iter
uvm_pool#(KEY,T)

UVM 1.2 Class Reference 807

 last_req
uvm_sequencer_param_base#(REQ,RSP)

 last_rsp
uvm_sequencer_param_base#(REQ,RSP)

 len
uvm_mem_mam_policy

 lineno
uvm_reg_item

 Link API
uvm_tr_database

 local_map
uvm_reg_item

 locality
uvm_mem_mam_cfg

 locality_e
uvm_mem_mam

 lock
uvm_sequence_base
uvm_sequencer_base
uvm_simple_lock_dap

 lock_model
uvm_reg_block

 Locking
uvm_simple_lock_dap

 lookup
uvm_component

 Lookup
uvm_resource_pool

 lookup_name
uvm_resource_pool

 lookup_regex
uvm_resource_pool

 lookup_regex_names
uvm_resource_pool

 lookup_scope
uvm_resource_pool

 lookup_type
uvm_resource_pool

M
 m_address

uvm_tlm_generic_payload
 m_byte_enable

uvm_tlm_generic_payload
 m_byte_enable_length

uvm_tlm_generic_payload
 m_command

uvm_tlm_generic_payload

UVM 1.2 Class Reference 808

 m_data
uvm_tlm_generic_payload

 m_dmi
uvm_tlm_generic_payload

 m_length
uvm_tlm_generic_payload

 m_response_status
uvm_tlm_generic_payload

 m_streaming_width
uvm_tlm_generic_payload

 Macros
macros/uvm_callback_defines.svh
macros/uvm_reg_defines.svh
macros/uvm_tlm_defines.svh
tlm2/uvm_tlm2_defines.svh
tlm2/uvm_tlm2_ifs.svh

 Macros and Defines
 main_phase

uvm_component
 mam

uvm_mem

UVM 1.2 Class Reference 809

 map

uvm_reg_item
uvm_reg_predictor

 Master and Slave
 master_export

uvm_tlm_req_rsp_channel#(REQ,RSP)
 match_scope

uvm_resource_base
 max_offset

uvm_mem_mam_policy
 max_random_count

uvm_sequence_library
 max_size

uvm_port_base#(IF)
 mcd

UVM 1.2 Class Reference 810

uvm_printer_knobs
 mem

uvm_mem_shared_access_seq
uvm_mem_single_access_seq
uvm_mem_single_walk_seq

 mem_seq
uvm_mem_access_seq
uvm_mem_walk_seq
uvm_reg_mem_shared_access_seq

 Memory Access Test Sequence
 Memory Allocation Manager
 Memory Management

uvm_mem_mam
 Memory Walking-Ones Test Sequences
 Message Element APIs

uvm_report_message
 Message Element Macros
 Message Fields

uvm_report_message
 Message Processing

uvm_default_report_server
uvm_report_handler

 message recording
uvm_default_report_server

 Message Trace Macros
 Methods

Global
uvm_*_export#(REQ,RSP)
uvm_*_export#(T)
uvm_*_imp#(REQ,RSP,IMP,REQ_IMP,RSP_IMP)
uvm_*_imp#(T,IMP)
uvm_*_port#(REQ,RSP)
uvm_*_port#(T)
uvm_agent
uvm_algorithmic_comparator#(BEFORE,AFTER,TRANSFORMER)
uvm_analysis_export
uvm_analysis_port
uvm_barrier
uvm_bottomup_phase
uvm_build_phase
uvm_built_in_pair#(T1,T2)
uvm_callback
uvm_callback_iter
uvm_check_phase
uvm_class_pair#(T1,T2)
uvm_comparer
uvm_component_name_check_visitor
uvm_component_registry#(T,Tname)
uvm_config_db
uvm_config_db_options
uvm_configure_phase
uvm_connect_phase
uvm_coreservice_t
uvm_default_coreservice_t
uvm_domain
uvm_driver#(REQ,RSP)
uvm_end_of_elaboration_phase

UVM 1.2 Class Reference 811

uvm_enum_wrapper#(T)
uvm_env
uvm_event#(T)
uvm_event_base
uvm_event_callback
uvm_extract_phase
uvm_final_phase
uvm_hdl_path_concat
uvm_heartbeat
uvm_in_order_comparator#(T,comp_type,convert,pair_type)
uvm_main_phase
uvm_mem_access_seq
uvm_mem_region
uvm_mem_single_walk_seq
uvm_mem_walk_seq
uvm_monitor
uvm_object_string_pool#(T)
uvm_object_wrapper
uvm_objection_callback
uvm_phase_cb
uvm_phase_state_change
uvm_pool#(KEY,T)
uvm_port_base#(IF)
uvm_port_component#(PORT)
uvm_port_component_base
uvm_post_configure_phase
uvm_post_main_phase
uvm_post_reset_phase
uvm_post_shutdown_phase
uvm_pre_configure_phase
uvm_pre_main_phase
uvm_pre_reset_phase
uvm_pre_shutdown_phase
uvm_printer_knobs
uvm_push_driver#(REQ,RSP)
uvm_push_sequencer#(REQ,RSP)
uvm_queue#(T)
uvm_random_stimulus#(T)
uvm_reg_access_seq
uvm_reg_backdoor
uvm_reg_bit_bash_seq
uvm_reg_cbs
uvm_reg_frontdoor
uvm_reg_hw_reset_seq
uvm_reg_indirect_data
uvm_reg_item
uvm_reg_mem_built_in_seq
uvm_reg_mem_shared_access_seq
uvm_reg_predictor
uvm_reg_read_only_cbs
uvm_reg_tlm_adapter
uvm_reg_transaction_order_policy
uvm_reg_write_only_cbs
uvm_report_message_element_base
uvm_report_message_element_container
uvm_report_message_int_element
uvm_report_message_object_element
uvm_report_message_string_element
uvm_report_phase
uvm_report_server

UVM 1.2 Class Reference 812

uvm_reset_phase
uvm_resource_db
uvm_resource_db_options
uvm_resource_options
uvm_run_phase
uvm_scoreboard
uvm_seq_item_pull_imp#(REQ,RSP,IMP)
uvm_sequence#(REQ,RSP)
uvm_sequencer_base
uvm_shutdown_phase
uvm_sqr_if_base#(REQ,RSP)
uvm_start_of_simulation_phase
uvm_structure_proxy#(STRUCTURE)
uvm_subscriber
uvm_table_printer
uvm_task_phase
uvm_test
uvm_tlm_analysis_fifo#(T)
uvm_tlm_b_initiator_socket
uvm_tlm_b_target_socket
uvm_tlm_extension
uvm_tlm_extension_base
uvm_tlm_fifo#(T)
uvm_tlm_fifo_base#(T)
uvm_tlm_nb_initiator_socket
uvm_tlm_nb_passthrough_target_socket
uvm_tlm_nb_target_socket
uvm_tlm_nb_transport_bw_export
uvm_tlm_nb_transport_bw_port
uvm_tlm_req_rsp_channel#(REQ,RSP)
uvm_tlm_transport_channel#(REQ,RSP)
uvm_topdown_phase
uvm_transaction
uvm_tree_printer
uvm_utils#(TYPE,FIELD)
uvm_visitor#(NODE)
uvm_visitor_adapter#(STRUCTURE,uvm_visitor#(STRUCTURE))
uvm_vreg_cbs
uvm_vreg_field_cbs

 Methods for printer subtyping
uvm_printer

 Methods for printer usage
uvm_printer

 mid_do
uvm_sequence_base

 min_offset
uvm_mem_mam_policy

 min_random_count
uvm_sequence_library

 min_size
uvm_port_base#(IF)

 mirror
uvm_reg
uvm_reg_block
uvm_reg_field
uvm_reg_fifo

 mirror_reg
UVM 1.2 Class Reference 813

uvm_reg_sequence
 Miscellaneous
 Miscellaneous Structures
 miscompares

uvm_comparer
 mode

uvm_mem_mam_cfg
 model

uvm_mem_access_seq
uvm_mem_walk_seq
uvm_reg_access_seq
uvm_reg_bit_bash_seq
uvm_reg_hw_reset_seq
uvm_reg_mem_built_in_seq
uvm_reg_mem_shared_access_seq
uvm_reg_sequence

 Modifying the offset of a memory will make the abstract model
uvm_mem

UVM 1.2 Class Reference 814

Index
$#! · 0-9 · A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y

· Z

N
 n_bits

uvm_reg_bus_op
 n_bytes

uvm_mem_mam_cfg
 nb_transport

uvm_tlm_if_base#(T1,T2)
 nb_transport_bw

uvm_tlm_if
 nb_transport_fw

uvm_tlm_if
 needs_update

uvm_reg
uvm_reg_block
uvm_reg_field

 new
uvm_*_export#(REQ,RSP)
uvm_*_export#(T)
uvm_*_imp#(REQ,RSP,IMP,REQ_IMP,RSP_IMP)
uvm_*_imp#(T,IMP)
uvm_*_port#(REQ,RSP)
uvm_*_port#(T)
uvm_agent
uvm_algorithmic_comparator#(BEFORE,AFTER,TRANSFORMER)
uvm_analysis_export
uvm_barrier
uvm_bottomup_phase
uvm_built_in_pair#(T1,T2)
uvm_callback
uvm_callback_iter
uvm_cause_effect_link
uvm_class_pair#(T1,T2)
uvm_component
uvm_default_report_server
uvm_domain
uvm_driver#(REQ,RSP)
uvm_env
uvm_event#(T)
uvm_event_base
uvm_event_callback
uvm_get_to_lock_dap
uvm_heartbeat
uvm_line_printer
uvm_link_base
uvm_mem
uvm_mem_mam
uvm_mem_single_walk_seq
uvm_monitor
uvm_object

UVM 1.2 Class Reference 815

uvm_object_string_pool#(T)
uvm_objection
uvm_parent_child_link
uvm_phase
uvm_phase_cb
uvm_pool#(KEY,T)
uvm_port_base#(IF)
uvm_push_driver#(REQ,RSP)
uvm_push_sequencer#(REQ,RSP)
uvm_queue#(T)
uvm_random_stimulus#(T)
uvm_reg
uvm_reg_adapter
uvm_reg_backdoor
uvm_reg_block
uvm_reg_field
uvm_reg_fifo
uvm_reg_file
uvm_reg_frontdoor
uvm_reg_indirect_data
uvm_reg_item
uvm_reg_map
uvm_reg_predictor
uvm_reg_sequence
uvm_related_link
uvm_report_catcher
uvm_report_handler
uvm_report_message
uvm_report_message_element_container
uvm_report_object
uvm_resource_base
uvm_scoreboard
uvm_seq_item_pull_imp#(REQ,RSP,IMP)
uvm_sequence#(REQ,RSP)
uvm_sequence_base
uvm_sequence_item
uvm_sequence_library
uvm_sequencer#(REQ,RSP)
uvm_sequencer_base
uvm_sequencer_param_base#(REQ,RSP)
uvm_set_before_get_dap
uvm_set_get_dap_base
uvm_simple_lock_dap
uvm_subscriber
uvm_table_printer
uvm_task_phase
uvm_test
uvm_text_recorder
uvm_text_tr_database
uvm_text_tr_stream
uvm_tlm_analysis_fifo#(T)
uvm_tlm_b_initiator_socket
uvm_tlm_b_target_socket
uvm_tlm_extension
uvm_tlm_extension_base
uvm_tlm_fifo#(T)
uvm_tlm_fifo_base#(T)
uvm_tlm_generic_payload
uvm_tlm_nb_initiator_socket
uvm_tlm_nb_target_socket

UVM 1.2 Class Reference 816

uvm_tlm_nb_transport_bw_export
uvm_tlm_nb_transport_bw_port
uvm_tlm_req_rsp_channel#(REQ,RSP)
uvm_tlm_time
uvm_tlm_transport_channel#(REQ,RSP)
uvm_topdown_phase
uvm_tr_database
uvm_tr_stream
uvm_transaction
uvm_tree_printer
uvm_vreg
uvm_vreg_field

 new_report_message
uvm_report_message

 next
uvm_callback_iter
uvm_pool#(KEY,T)

 Non-blocking get
uvm_tlm_if_base#(T1,T2)

 Non-blocking peek
uvm_tlm_if_base#(T1,T2)

 Non-blocking put
uvm_tlm_if_base#(T1,T2)

 Non-blocking transport
uvm_tlm_if_base#(T1,T2)

 Notification
uvm_resource_base

 num
uvm_pool#(KEY,T)

O
 Objection Control

uvm_objection
 Objection Interface

uvm_component
 Objection Mechanism
 Objection Status

uvm_objection
 Objections
 oct_radix

uvm_printer_knobs
 offset

uvm_reg_item
 open_db

uvm_tr_database
 open_recorder

uvm_tr_stream
 open_stream

uvm_tr_database
 order

UVM 1.2 Class Reference 817

uvm_reg_transaction_order_policy
 Override Configuration

uvm_report_object

UVM 1.2 Class Reference 818

Index
$#! · 0-9 · A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y

· Z

P
 pack

uvm_object
 pack_bits

uvm_packer
 pack_bytes

uvm_object
uvm_packer

 pack_field
uvm_packer

 pack_field_int
uvm_packer

 pack_ints
uvm_object
uvm_packer

 pack_object
uvm_packer

 pack_real
uvm_packer

 pack_string
uvm_packer

 pack_time
uvm_packer

 Packing
uvm_object
uvm_packer

 Packing Macros
 Packing-No Size Info
 Packing-With Size Info
 pair_ap

uvm_in_order_comparator#(T,comp_type,convert,pair_type)
 parent

uvm_reg_item
 parent_sequence

uvm_reg_adapter
 path

uvm_reg_item
 peek

uvm_mem
uvm_mem_region
uvm_reg
uvm_reg_field
uvm_sequencer#(REQ,RSP)
uvm_sqr_if_base#(REQ,RSP)
uvm_tlm_if_base#(T1,T2)
uvm_vreg

UVM 1.2 Class Reference 819

uvm_vreg_field
 peek_mem

uvm_reg_sequence
 peek_reg

uvm_reg_sequence
 Phase Done Objection

uvm_phase
 phase_ended

uvm_component
 phase_ready_to_end

uvm_component
 phase_started

uvm_component
 phase_state_change

uvm_phase_cb
 Phasing
 Phasing Definition classes
 Phasing Implementation
 Phasing Interface

uvm_component
 Phasing Overview
 physical

uvm_comparer
uvm_packer
uvm_recorder

 poke
uvm_mem
uvm_mem_region
uvm_reg
uvm_reg_field
uvm_vreg
uvm_vreg_field

 poke_mem
uvm_reg_sequence

 poke_reg
uvm_reg_sequence

 policy
uvm_comparer

 Policy Classes
comps/uvm_policies.svh
overviews/policies.txt

 Pool Classes
 pop_back

uvm_queue#(T)
 pop_front

uvm_queue#(T)
 Port Base Classes
 Port Type
 Ports

uvm_algorithmic_comparator#(BEFORE,AFTER,TRANSFORMER)
uvm_driver#(REQ,RSP)
uvm_in_order_comparator#(T,comp_type,convert,pair_type)
uvm_push_driver#(REQ,RSP)

UVM 1.2 Class Reference 820

uvm_push_sequencer#(REQ,RSP)
uvm_random_stimulus#(T)
uvm_subscriber
uvm_tlm_analysis_fifo#(T)
uvm_tlm_fifo_base#(T)
uvm_tlm_req_rsp_channel#(REQ,RSP)
uvm_tlm_transport_channel#(REQ,RSP)

 Ports,Exports,and Imps
 post_body

uvm_sequence_base
 post_configure_phase

uvm_component
 post_do

uvm_sequence_base
 post_main_phase

uvm_component
 post_predict

uvm_reg_cbs
 post_randomize

uvm_tlm_generic_payload
 post_read

uvm_mem
uvm_reg
uvm_reg_backdoor
uvm_reg_cbs
uvm_reg_field
uvm_vreg
uvm_vreg_cbs
uvm_vreg_field
uvm_vreg_field_cbs

 post_reset_phase
uvm_component

 post_shutdown_phase
uvm_component

 post_start
uvm_sequence_base

 post_trigger
uvm_event_callback

 post_write
uvm_mem
uvm_reg
uvm_reg_backdoor
uvm_reg_cbs
uvm_reg_field
uvm_vreg
uvm_vreg_cbs
uvm_vreg_field
uvm_vreg_field_cbs

 pre_abort
uvm_component

 pre_body
uvm_sequence_base

 pre_configure_phase
uvm_component

UVM 1.2 Class Reference 821

 pre_do
uvm_sequence_base

 pre_main_phase
uvm_component

 pre_predict
uvm_reg_predictor

 pre_randomize
uvm_tlm_generic_payload

 pre_read
uvm_mem
uvm_reg
uvm_reg_backdoor
uvm_reg_cbs
uvm_reg_field
uvm_reg_fifo
uvm_reg_write_only_cbs
uvm_vreg
uvm_vreg_cbs
uvm_vreg_field
uvm_vreg_field_cbs

 pre_reset_phase
uvm_component

 pre_shutdown_phase
uvm_component

 pre_start
uvm_sequence_base

 pre_trigger
uvm_event_callback

 pre_write
uvm_mem
uvm_reg
uvm_reg_backdoor
uvm_reg_cbs
uvm_reg_field
uvm_reg_fifo
uvm_reg_read_only_cbs
uvm_vreg
uvm_vreg_cbs
uvm_vreg_field
uvm_vreg_field_cbs

 precedence
uvm_resource_base

 Predefined Component Classes
 Predefined Extensions
 predict

uvm_reg
uvm_reg_field

 prefix
uvm_printer_knobs

 prev
uvm_callback_iter
uvm_pool#(KEY,T)

 print
uvm_default_factory

UVM 1.2 Class Reference 822

uvm_default_report_server
uvm_factory
uvm_object
uvm_report_handler
uvm_report_message

 print_accessors
uvm_resource_base

 print_array_footer
uvm_printer

 print_array_header
uvm_printer

 print_array_range
uvm_printer

 print_catcher
uvm_report_catcher

 print_config
uvm_component

 print_config_matches
uvm_component

 print_config_settings
uvm_component

 print_config_with_audit
uvm_component

 print_enabled
uvm_component

 print_field
uvm_printer

 print_field_int
uvm_printer

 print_generic
uvm_printer

 print_msg
uvm_comparer

 print_object
uvm_printer

 print_override_info
uvm_component

 print_real
uvm_printer

 print_resources
uvm_resource_pool

 print_string
uvm_printer

 print_time
uvm_printer

 print_topology
uvm_root

 Printing
uvm_object

 prior
uvm_reg_item

UVM 1.2 Class Reference 823

 Priority
uvm_resource#(T)
uvm_resource_base

 process_report_message
uvm_report_handler

 provides_responses
uvm_reg_adapter

 push_back
uvm_queue#(T)

 push_front
uvm_queue#(T)

 put
uvm_sequencer#(REQ,RSP)
uvm_sqr_if_base#(REQ,RSP)
uvm_tlm_if_base#(T1,T2)

 Put
 put_ap

uvm_tlm_fifo_base#(T)
 put_export

uvm_tlm_fifo_base#(T)
 put_request_export

uvm_tlm_req_rsp_channel#(REQ,RSP)
 put_response

uvm_sqr_if_base#(REQ,RSP)
 put_response_export

uvm_tlm_req_rsp_channel#(REQ,RSP)

Q
 Quit Count

uvm_default_report_server

UVM 1.2 Class Reference 824

Index
$#! · 0-9 · A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y

· Z

R
 raise_objection

uvm_objection
uvm_phase

 raised
uvm_component
uvm_objection
uvm_objection_callback

 read
uvm_mem
uvm_mem_region
uvm_reg
uvm_reg_backdoor
uvm_reg_field
uvm_reg_fifo
uvm_resource#(T)
uvm_vreg
uvm_vreg_field

 Read-only Interface
uvm_resource_base

 Read/Write Interface
uvm_resource#(T)

 read_by_name
uvm_resource_db

 read_by_type
uvm_resource_db

 read_func
uvm_reg_backdoor

 read_mem
uvm_reg_sequence

 read_mem_by_name
uvm_reg_block

 read_reg
uvm_reg_sequence

 read_reg_by_name
uvm_reg_block

 reconfigure
uvm_mem_mam

 record
uvm_object

 record_all_messages
uvm_default_report_server

 record_error_tr
uvm_component

 record_event_tr

UVM 1.2 Class Reference 825

uvm_component
 record_field

uvm_recorder
 record_field_int

uvm_recorder
 record_field_real

uvm_recorder
 record_generic

uvm_recorder
 record_object

uvm_recorder
 record_read_access

uvm_resource_base
 record_string

uvm_recorder
 record_time

uvm_recorder
 record_write_access

uvm_resource_base
 Recording

uvm_object
 Recording Interface

uvm_component
 Recording Macros
 recursion_policy

uvm_recorder
 reference

uvm_printer_knobs
 reg_ap

uvm_reg_predictor
 reg_seq

uvm_reg_access_seq
uvm_reg_bit_bash_seq
uvm_reg_mem_shared_access_seq

 reg_seqr
uvm_reg_sequence

 reg2bus
uvm_reg_adapter
uvm_reg_tlm_adapter

 register
uvm_default_factory
uvm_factory

 Register Access Test Sequences
 Register Callbacks
 Register Defines
 Register Layer
 Register Sequence Classes
 Registering Types

uvm_default_factory
uvm_factory

 release_all_regions
uvm_mem_mam

UVM 1.2 Class Reference 826

 release_region
uvm_mem_mam
uvm_mem_region
uvm_vreg

 remove
uvm_heartbeat
uvm_reg_read_only_cbs
uvm_reg_write_only_cbs

 remove_sequence
uvm_sequence_library

 Report Handler Configuration
uvm_report_object

 Report Macros
 report_phase

uvm_component
 report_summarize

uvm_default_report_server
uvm_report_server

 Reporting
Global

base/uvm_globals.svh
base/uvm_object_globals.svh

uvm_report_catcher
uvm_report_object

 Reporting Classes
 Reporting Interface

uvm_sequence_item
 req

uvm_sequence#(REQ,RSP)
 req_export

uvm_push_driver#(REQ,RSP)
 req_port

uvm_push_sequencer#(REQ,RSP)
 request_ap

uvm_tlm_req_rsp_channel#(REQ,RSP)
 request_region

uvm_mem_mam
 Requests

uvm_sequencer_param_base#(REQ,RSP)
 reseed

uvm_object
 reserve_region

uvm_mem_mam
 reset

uvm_barrier
uvm_event_base
uvm_reg
uvm_reg_block
uvm_reg_field
uvm_reg_map
uvm_tlm_time
uvm_vreg

 reset_blk

UVM 1.2 Class Reference 827

uvm_mem_access_seq
uvm_mem_walk_seq
uvm_reg_access_seq
uvm_reg_bit_bash_seq
uvm_reg_hw_reset_seq
uvm_reg_mem_shared_access_seq

 reset_phase
uvm_component

 reset_quit_count
uvm_default_report_server

 reset_report_handler
uvm_report_object

 reset_severity_counts
uvm_default_report_server

 resolve_bindings
uvm_component
uvm_port_base#(IF)

 Resources
 Response API

uvm_sequence_base
 response_ap

uvm_tlm_req_rsp_channel#(REQ,RSP)
 response_handler

uvm_sequence_base
 Responses

uvm_sequencer_param_base#(REQ,RSP)
 result

uvm_comparer
 resume

uvm_component
 Retrieving the factory

uvm_factory
 rg

uvm_reg_shared_access_seq
uvm_reg_single_access_seq
uvm_reg_single_bit_bash_seq

 rsp
uvm_sequence#(REQ,RSP)

 rsp_export
uvm_sequencer_param_base#(REQ,RSP)

 rsp_port
uvm_driver#(REQ,RSP)
uvm_push_driver#(REQ,RSP)

 Run-Time Phasing
uvm_sequence_base

 run_phase
uvm_component
uvm_push_sequencer#(REQ,RSP)

 run_test
Global
uvm_root

 rw_info

UVM 1.2 Class Reference 828

uvm_reg_frontdoor

UVM 1.2 Class Reference 829

Index
$#! · 0-9 · A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y

· Z

S
 sample

uvm_mem
uvm_reg
uvm_reg_block

 sample_values
uvm_reg
uvm_reg_block

 Schedule
uvm_phase

 Scope Interface
uvm_resource_base

 Seeding
uvm_object

 select_rand
uvm_sequence_library

 select_randc
uvm_sequence_library

 select_sequence
uvm_sequence_library

 selection_mode
uvm_sequence_library

 send_request
uvm_sequence#(REQ,RSP)
uvm_sequence_base
uvm_sequencer_base
uvm_sequencer_param_base#(REQ,RSP)

 separator
uvm_printer_knobs

 seq_item_export
uvm_sequencer#(REQ,RSP)

 seq_item_port
uvm_driver#(REQ,RSP)

 Sequence Action Macros
 Sequence Action Macros for Pre-Existing Sequences
 Sequence Classes
 Sequence Control

uvm_sequence_base
 Sequence Execution

uvm_sequence_base
 Sequence Item Execution

uvm_sequence_base
 Sequence Item Pull Ports
 Sequence on Sequencer Action Macros
 Sequence registration

UVM 1.2 Class Reference 830

uvm_sequence_library
 Sequence selection

uvm_sequence_library
 Sequence-Related Macros
 sequence_count

uvm_sequence_library
 sequencer

uvm_reg_frontdoor
 Sequencer Classes
 Sequencer Interface

uvm_sequencer#(REQ,RSP)
 Sequencer Port
 Sequencer Subtypes
 Sequences
 sequences_executed

uvm_sequence_library
 set

uvm_config_db
uvm_get_to_lock_dap
uvm_hdl_path_concat
uvm_link_base
uvm_reg
uvm_reg_field
uvm_reg_fifo
uvm_resource#(T)
uvm_resource_db
uvm_resource_pool
uvm_set_before_get_dap
uvm_set_get_dap_base
uvm_simple_lock_dap

 Set
uvm_resource_pool

 set priority
uvm_resource#(T)
uvm_resource_base

 Set Priority
uvm_resource_pool

 Set/Get Interface
uvm_get_to_lock_dap
uvm_resource#(T)
uvm_set_before_get_dap
uvm_set_get_dap_base
uvm_simple_lock_dap

 set_abstime
uvm_tlm_time

 set_access
uvm_reg_field

 set_action
uvm_report_catcher
uvm_report_message
uvm_report_message_element_base

 set_address
uvm_tlm_generic_payload

 set_anonymous

UVM 1.2 Class Reference 831

uvm_resource_db
 set_arbitration

uvm_sequencer_base
 set_auto_predict

uvm_reg_map
 set_auto_reset

uvm_barrier
 set_automatic_phase_objection

uvm_sequence_base
 set_backdoor

uvm_mem
uvm_reg
uvm_reg_block

 set_base_addr
uvm_reg_map

 set_byte_enable
uvm_tlm_generic_payload

 set_byte_enable_length
uvm_tlm_generic_payload

 set_check_on_read
uvm_reg_map

 set_command
uvm_tlm_generic_payload

 set_compare
uvm_reg_field
uvm_reg_fifo

 set_component_visitor
uvm_coreservice_t
uvm_default_coreservice_t

 set_context
uvm_report_catcher
uvm_report_message

 set_coverage
uvm_mem
uvm_reg
uvm_reg_block

 set_data
uvm_tlm_generic_payload

 set_data_length
uvm_tlm_generic_payload

 set_default
uvm_resource_db

 set_default_hdl_path
uvm_reg_block
uvm_reg_file

 set_default_index
uvm_port_base#(IF)

 set_default_map
uvm_reg_block

 set_default_tr_database
uvm_coreservice_t
uvm_default_coreservice_t

UVM 1.2 Class Reference 832

 set_depth
uvm_sequence_item

 set_dmi_allowed
uvm_tlm_generic_payload

 set_domain
uvm_component

 set_drain_time
uvm_objection

 set_extension
uvm_tlm_generic_payload

 set_factory
uvm_coreservice_t
uvm_default_coreservice_t

 set_file
uvm_report_message

 set_file_name
uvm_text_tr_database

 set_filename
uvm_report_message

 set_frontdoor
uvm_mem
uvm_reg

 set_hdl_path_root
uvm_reg_block

 set_heartbeat
uvm_heartbeat

 set_id
uvm_report_catcher
uvm_report_message

 set_id_count
uvm_default_report_server
uvm_report_server

 set_id_info
uvm_sequence_item

 set_initiator
uvm_transaction

 set_inst_override
uvm_component
uvm_component_registry#(T,Tname)
uvm_object_registry#(T,Tname)

 set_inst_override_by_name
uvm_default_factory
uvm_factory

 set_inst_override_by_type
uvm_component
uvm_default_factory
uvm_factory

 set_int_local
uvm_object

 set_item_context
uvm_sequence_item

UVM 1.2 Class Reference 833

 set_jump_phase
uvm_phase

 set_lhs
uvm_link_base

 set_line
uvm_report_message

 set_max_quit_count
uvm_default_report_server
uvm_report_server

 set_max_zero_time_wait_relevant_count
uvm_sequencer_base

 set_message
uvm_report_catcher
uvm_report_message

 set_message_database
uvm_default_report_server
uvm_report_server

 set_mode
uvm_heartbeat

 set_name
uvm_object
uvm_report_message_element_base

 set_name_override
uvm_resource_pool

 set_num_last_reqs
uvm_sequencer_param_base#(REQ,RSP)

 set_num_last_rsps
uvm_sequencer_param_base#(REQ,RSP)

 set_object_local
uvm_object

 set_offset
uvm_mem
uvm_reg

 set_override
uvm_resource#(T)
uvm_resource_pool

 set_parent_sequence
uvm_sequence_item

 set_phase_imp
uvm_component

 set_priority
uvm_resource_pool
uvm_sequence_base

 set_priority_name
uvm_resource_pool

 set_priority_type
uvm_resource_pool

 set_propagate_mode
uvm_objection

 set_quit_count
uvm_default_report_server
uvm_report_server

UVM 1.2 Class Reference 834

 set_read
uvm_tlm_generic_payload

 set_read_only
uvm_resource_base

 set_report_default_file
uvm_report_object

 set_report_default_file_hier
uvm_component

 set_report_handler
uvm_report_message
uvm_report_object

 set_report_id_action
uvm_report_object

 set_report_id_action_hier
uvm_component

 set_report_id_file
uvm_report_object

 set_report_id_file_hier
uvm_component

 set_report_id_verbosity
uvm_report_object

 set_report_id_verbosity_hier
uvm_component

 set_report_message
uvm_report_message

 set_report_object
uvm_report_message

 set_report_server
uvm_coreservice_t
uvm_default_coreservice_t
uvm_report_message

 set_report_severity_action
uvm_report_object

 set_report_severity_action_hier
uvm_component

 set_report_severity_file
uvm_report_object

 set_report_severity_file_hier
uvm_component

 set_report_severity_id_action
uvm_report_object

 set_report_severity_id_action_hier
uvm_component

 set_report_severity_id_file
uvm_report_object

 set_report_severity_id_file_hier
uvm_component

 set_report_severity_id_override
uvm_report_object

 set_report_severity_id_verbosity
uvm_report_object

UVM 1.2 Class Reference 835

 set_report_severity_id_verbosity_hier
uvm_component

 set_report_severity_override
uvm_report_object

 set_report_verbosity_level
uvm_report_object

 set_report_verbosity_level_hier
uvm_component

 set_reset
uvm_reg
uvm_reg_field

 set_response_queue_depth
uvm_sequence_base

 set_response_queue_error_report_disabled
uvm_sequence_base

 set_response_status
uvm_tlm_generic_payload

 set_rhs
uvm_link_base

 set_scope
uvm_resource_base

 set_sequencer
uvm_reg_map
uvm_sequence_item

 set_server
uvm_report_server

 set_severity
uvm_report_catcher
uvm_report_message

 set_severity_count
uvm_default_report_server
uvm_report_server

 set_starting_phase
uvm_sequence_base

 set_streaming_width
uvm_tlm_generic_payload

 set_string_local
uvm_object

 set_submap_offset
uvm_reg_map

 set_threshold
uvm_barrier

 set_time_resolution
uvm_tlm_time

 set_timeout
uvm_root

 set_transaction_id
uvm_transaction

 set_transaction_order_policy
uvm_reg_map

 set_type_override

UVM 1.2 Class Reference 836

uvm_component
uvm_component_registry#(T,Tname)
uvm_object_registry#(T,Tname)
uvm_resource_pool

 set_type_override_by_name
uvm_default_factory
uvm_factory

 set_type_override_by_type
uvm_component
uvm_default_factory
uvm_factory

 set_use_sequence_info
uvm_sequence_item

 set_value
uvm_report_message_int_element
uvm_report_message_object_element
uvm_report_message_string_element

 set_verbosity
uvm_report_catcher
uvm_report_message

 set_volatility
uvm_reg_field

 set_write
uvm_tlm_generic_payload

 sev
uvm_comparer

 Severity Count
uvm_default_report_server

 Shared Register and Memory Access Test Sequences
 show_max

uvm_comparer
 show_radix

uvm_printer_knobs
 show_root

uvm_printer_knobs
 show_terminator

uvm_default_report_server
 show_verbosity

uvm_default_report_server
 shutdown_phase

uvm_component
 Simulation Control

Global
uvm_root

 Singleton
uvm_cmdline_processor

 size
uvm_port_base#(IF)
uvm_printer_knobs
uvm_queue#(T)
uvm_reg_fifo
uvm_report_message_element_container
uvm_tlm_fifo#(T)

UVM 1.2 Class Reference 837

 slave_export
uvm_tlm_req_rsp_channel#(REQ,RSP)

 slices
uvm_hdl_path_concat

 sort_by_precedence
uvm_resource_pool

 Special Overrides
uvm_reg_fifo

 spell_check
uvm_resource_pool

 sprint
uvm_object

 start
uvm_heartbeat
uvm_sequence_base

 start_item
uvm_sequence_base

 start_of_simulation_phase
uvm_component

 start_offset
uvm_mem_mam_policy

 start_phase_sequence
uvm_sequencer_base

 State
uvm_phase

 status
uvm_reg_bus_op
uvm_reg_item

 stop
uvm_heartbeat

 stop_phase_sequence
uvm_sequencer_base

 stop_sequences
uvm_sequencer#(REQ,RSP)
uvm_sequencer_base

 stop_stimulus_generation
uvm_random_stimulus#(T)

 Stream API
uvm_tr_database
uvm_tr_stream

 summarize
uvm_report_catcher

 supports_byte_enable
uvm_reg_adapter

 suspend
uvm_component

 sync
uvm_phase

 Synchronization
uvm_phase

 Synchronization Classes

UVM 1.2 Class Reference 838

Index
$#! · 0-9 · A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y

· Z

T
 T

uvm_callbacks#(T,CB)
 T1 first

uvm_built_in_pair#(T1,T2)
uvm_class_pair#(T1,T2)

 T2 second
uvm_built_in_pair#(T1,T2)
uvm_class_pair#(T1,T2)

 tests
uvm_reg_mem_built_in_seq

 TLM Channel Classes
 TLM Export Classes
 TLM FIFO Classes
 TLM Generic Payload&Extensions
 TLM Implementation Port Declaration Macros
 TLM Interfaces
 TLM Port Classes
 TLM Socket Base Classes
 TLM Sockets
 tlm transport methods

uvm_tlm_if
 TLM1
 TLM1 Interfaces,Ports,Exports and Transport Interfaces
 TLM2
 TLM2 Export Classes
 TLM2 imps(interface implementations)
 TLM2 Interfaces,Ports,Exports and Transport Interfaces Subset
 TLM2 ports
 TLM2 Types
 Tool information

uvm_cmdline_processor
 top_levels

uvm_root
 Topology

uvm_root
 tr_database

uvm_component
 trace_mode

uvm_objection
 Transaction Recorder API

uvm_recorder
uvm_tr_stream

 Transaction Recording Classes
 Transaction Recording Databases
 Transaction Recording Streams
 transport

UVM 1.2 Class Reference 839

uvm_tlm_if_base#(T1,T2)
 Transport
 transport_export

uvm_tlm_transport_channel#(REQ,RSP)
 traverse

uvm_bottomup_phase
uvm_task_phase
uvm_topdown_phase

 trigger
uvm_event#(T)

 try_get
uvm_get_to_lock_dap
uvm_set_before_get_dap
uvm_set_get_dap_base
uvm_simple_lock_dap
uvm_tlm_if_base#(T1,T2)

 try_next_item
uvm_sequencer#(REQ,RSP)
uvm_sqr_if_base#(REQ,RSP)

 try_peek
uvm_tlm_if_base#(T1,T2)

 try_put
uvm_tlm_if_base#(T1,T2)

 try_set
uvm_get_to_lock_dap
uvm_set_before_get_dap
uvm_set_get_dap_base
uvm_simple_lock_dap

 turn_off_auditing
uvm_resource_options

 turn_off_tracing
uvm_config_db_options
uvm_resource_db_options

 turn_on_auditing
uvm_resource_options

 turn_on_tracing
uvm_config_db_options
uvm_resource_db_options

 Type Interface
uvm_resource#(T)

 Type&Instance Overrides
uvm_default_factory
uvm_factory

 type_name
uvm_printer_knobs

 Typedefs
 Types

Global
base/uvm_config_db.svh
reg/uvm_reg_model.svh

uvm_vreg_cbs
uvm_vreg_field_cbs

 Types and Enumerations

UVM 1.2 Class Reference 840

Index
$#! · 0-9 · A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y

· Z

U
 ungrab

uvm_sequence_base
uvm_sequencer_base

 Unidirectional Interfaces&Ports
 UNINITIALIZED_PHASE
 unlock

uvm_sequence_base
uvm_sequencer_base
uvm_simple_lock_dap

 unpack
uvm_object

 unpack_bits
uvm_packer

 unpack_bytes
uvm_object
uvm_packer

 unpack_field
uvm_packer

 unpack_field_int
uvm_packer

 unpack_ints
uvm_object
uvm_packer

 unpack_object
uvm_packer

 unpack_real
uvm_packer

 unpack_string
uvm_packer

 unpack_time
uvm_packer

 Unpacking
uvm_object
uvm_packer

 Unpacking Macros
 Unpacking-No Size Info
 Unpacking-With Size Info
 unsigned_radix

uvm_printer_knobs
 unsync

uvm_phase
 update

uvm_reg
uvm_reg_block
uvm_reg_fifo

UVM 1.2 Class Reference 841

 update_reg
uvm_reg_sequence

 Usage
Global
uvm_default_factory
uvm_object_registry#(T,Tname)

 use_metadata
uvm_packer

 use_record_attribute
uvm_recorder

 use_response_handler
uvm_sequence_base

 use_uvm_seeding
uvm_object

 used
uvm_tlm_fifo#(T)

 User-Defined Phases
 user_priority_arbitration

uvm_sequencer_base
 Utility and Field Macros for Components and Objects
 Utility Classes
 Utility Functions

uvm_resource_base
 Utility Macros
 UVM Common Phases
 UVM Configuration Database
 UVM Factory
 UVM HDL Backdoor Access support routines
 UVM Links
 UVM Recorders
 UVM Report Server
 UVM Resource Database
 UVM Revision Values
 UVM Run-Time Phases
 UVM Version Defines
 UVM Version Ladder
 uvm_*_export#(REQ,RSP)
 uvm_*_export#(T)
 uvm_*_imp ports
 uvm_*_imp#(REQ,RSP,IMP,REQ_IMP,RSP_IMP)
 uvm_*_imp#(T,IMP)
 uvm_*_port#(REQ,RSP)
 uvm_*_port#(T)
 uvm_access_e
 uvm_action
 UVM_ACTIVE
 uvm_active_passive_enum
 uvm_agent
 uvm_algorithmic_comparator#(BEFORE,AFTER,TRANSFORMER)
 UVM_ALL_DROPPED
 uvm_analysis_export
 uvm_analysis_imp
 uvm_analysis_port
 UVM_BACKDOOR
 uvm_barrier
 UVM_BIG_ENDIAN

UVM 1.2 Class Reference 842

 UVM_BIG_FIFO
 UVM_BIN
 uvm_bits_to_string
 uvm_bitstream_t
 UVM_BODY
 uvm_bottom_up_visitor_adapter
 uvm_bottomup_phase
 uvm_build_phase
 uvm_built_in_clone#(T)
 uvm_built_in_comp#(T)
 uvm_built_in_converter#(T)
 uvm_built_in_pair#(T1,T2)
 uvm_by_level_visitor_adapter
 UVM_CALL_HOOK
 uvm_callback
 uvm_callback_iter
 uvm_callbacks#(T,CB)
 uvm_cause_effect_link
 UVM_CHECK
 uvm_check_e
 uvm_check_phase
 uvm_class_clone#(T)
 uvm_class_comp#(T)
 uvm_class_converter#(T)
 uvm_class_pair#(T1,T2)
 uvm_cmdline_processor
 uvm_comparer
 uvm_component
 uvm_component_name_check_visitor
 uvm_component_proxy
 uvm_component_registry#(T,Tname)
 uvm_config_db
 uvm_config_db_options
 uvm_config_int
 uvm_config_object
 uvm_config_string
 uvm_config_wrapper
 uvm_configure_phase
 uvm_connect_phase
 uvm_coreservice_t
 UVM_COUNT
 uvm_coverage_model_e
 UVM_CREATED
 UVM_CVR_ADDR_MAP
 UVM_CVR_ALL
 UVM_CVR_FIELD_VALS
 UVM_CVR_REG_BITS
 UVM_DEC
 UVM_DEEP
 uvm_default_comparer
 uvm_default_coreservice_t
 uvm_default_factory
 uvm_default_line_printer
 uvm_default_packer
 UVM_DEFAULT_PATH
 uvm_default_printer
 uvm_default_report_server
 uvm_default_table_printer
 uvm_default_tree_printer
 UVM_DISPLAY

UVM 1.2 Class Reference 843

 UVM_DO_ALL_REG_MEM_TESTS
 UVM_DO_MEM_ACCESS
 UVM_DO_MEM_WALK
 UVM_DO_REG_ACCESS
 UVM_DO_REG_BIT_BASH
 UVM_DO_REG_HW_RESET
 UVM_DO_SHARED_ACCESS
 uvm_domain
 uvm_driver#(REQ,RSP)
 UVM_DROPPED
 uvm_elem_kind_e
 uvm_end_of_elaboration_phase
 UVM_ENDED
 uvm_endianness_e
 UVM_ENUM
 uvm_enum_wrapper#(T)
 uvm_env
 UVM_EQ
 UVM_ERROR
 uvm_event#(T)
 uvm_event_base
 uvm_event_callback
 UVM_EXIT
 UVM_EXPORT
 uvm_extract_phase
 uvm_factory
 UVM_FATAL
 UVM_FIELD
 uvm_final_phase
 UVM_FINISHED
 UVM_FIX_REV
 UVM_FRONTDOOR
 UVM_FULL
 uvm_get_report_object

Global
uvm_report_object

 uvm_get_to_lock_dap
 UVM_GT
 UVM_GTE
 UVM_HAS_X
 uvm_hdl_check_path
 uvm_hdl_deposit
 uvm_hdl_force
 uvm_hdl_force_time
 UVM_HDL_MAX_WIDTH
 uvm_hdl_path_concat
 uvm_hdl_path_slice
 uvm_hdl_read
 uvm_hdl_release
 uvm_hdl_release_and_read
 uvm_heartbeat
 UVM_HEX
 UVM_HIER
 uvm_hier_e
 UVM_HIGH
 UVM_IMPLEMENTATION
 uvm_in_order_built_in_comparator#(T)
 uvm_in_order_class_comparator#(T)
 uvm_in_order_comparator#(T,comp_type,convert,pair_type)

UVM 1.2 Class Reference 844

 UVM_INFO
 uvm_integral_t
 uvm_is_match
 UVM_IS_OK
 uvm_line_printer
 uvm_link_base
 UVM_LITTLE_ENDIAN
 UVM_LITTLE_FIFO
 UVM_LOG
 UVM_LOW
 UVM_LT
 UVM_LTE
 uvm_main_phase
 UVM_MAJOR_REV
 UVM_MAJOR_REV_1
 UVM_MEDIUM
 uvm_mem
 UVM_MEM
 uvm_mem_access_seq
 uvm_mem_cb
 uvm_mem_cb_iter
 uvm_mem_mam
 uvm_mem_mam_cfg
 uvm_mem_mam_policy
 uvm_mem_region
 uvm_mem_shared_access_seq
 uvm_mem_single_access_seq
 uvm_mem_single_walk_seq
 uvm_mem_walk_seq
 UVM_MINOR_REV
 UVM_MINOR_REV_2
 uvm_monitor
 UVM_NAME
 UVM_NE
 UVM_NO_ACTION
 UVM_NO_CHECK
 UVM_NO_COVERAGE
 UVM_NO_ENDIAN
 UVM_NO_HIER
 UVM_NONE
 UVM_NOT_OK
 uvm_object
 uvm_object_registry#(T,Tname)
 uvm_object_string_pool#(T)
 uvm_object_wrapper
 uvm_objection
 uvm_objection_callback
 uvm_objection_event
 UVM_OCT
 uvm_packer
 uvm_pair classes
 uvm_parent_child_link
 UVM_PASSIVE
 uvm_path_e
 uvm_phase
 uvm_phase_cb
 uvm_phase_cb_pool
 UVM_PHASE_CLEANUP
 UVM_PHASE_DOMAIN
 UVM_PHASE_DONE

UVM 1.2 Class Reference 845

 UVM_PHASE_DORMANT
 UVM_PHASE_ENDED
 UVM_PHASE_EXECUTING
 UVM_PHASE_IMP
 UVM_PHASE_JUMPING
 UVM_PHASE_NODE
 UVM_PHASE_READY_TO_END
 UVM_PHASE_SCHEDULE
 UVM_PHASE_SCHEDULED
 UVM_PHASE_STARTED
 uvm_phase_state
 uvm_phase_state_change
 UVM_PHASE_SYNCING
 UVM_PHASE_TERMINAL
 uvm_phase_type
 UVM_PHASE_UNINITIALIZED
 uvm_pool#(KEY,T)
 UVM_PORT
 uvm_port_base#(IF)
 uvm_port_component#(PORT)
 uvm_port_component_base
 uvm_port_type_e
 UVM_POST_BODY
 uvm_post_configure_phase
 uvm_post_main_phase
 uvm_post_reset_phase
 uvm_post_shutdown_phase
 UVM_POST_START
 UVM_POST_VERSION_1_1
 UVM_PRE_BODY
 uvm_pre_configure_phase
 uvm_pre_main_phase
 uvm_pre_reset_phase
 uvm_pre_shutdown_phase
 UVM_PRE_START
 UVM_PREDICT
 UVM_PREDICT_DIRECT
 uvm_predict_e
 UVM_PREDICT_READ
 UVM_PREDICT_WRITE
 uvm_printer
 uvm_printer_knobs
 uvm_process_report_message

Global
uvm_report_object

 uvm_push_driver#(REQ,RSP)
 uvm_push_sequencer#(REQ,RSP)
 uvm_queue#(T)
 uvm_radix_enum
 UVM_RAISED
 uvm_random_stimulus#(T)
 UVM_READ
 UVM_REAL
 UVM_REAL_DEC
 UVM_REAL_EXP
 uvm_recorder
 uvm_recursion_policy_enum
 UVM_REFERENCE
 uvm_reg

UVM 1.2 Class Reference 846

 UVM_REG
 uvm_reg_access_seq
 uvm_reg_adapter
 uvm_reg_addr_logic_t
 uvm_reg_addr_t
 uvm_reg_backdoor
 uvm_reg_bd_cb
 uvm_reg_bd_cb_iter
 uvm_reg_bit_bash_seq
 uvm_reg_block
 uvm_reg_bus_op
 uvm_reg_byte_en_t
 uvm_reg_cb
 uvm_reg_cb_iter
 uvm_reg_cbs
 uvm_reg_cvr_t
 uvm_reg_data_logic_t
 uvm_reg_data_t
 uvm_reg_field
 uvm_reg_field_cb
 uvm_reg_field_cb_iter
 uvm_reg_fifo
 uvm_reg_file
 uvm_reg_frontdoor
 uvm_reg_hw_reset_seq
 uvm_reg_indirect_data
 uvm_reg_item
 uvm_reg_map
 uvm_reg_mem_access_seq
 uvm_reg_mem_built_in_seq
 uvm_reg_mem_hdl_paths_seq
 uvm_reg_mem_shared_access_seq
 uvm_reg_mem_tests_e
 uvm_reg_predictor
 uvm_reg_read_only_cbs
 uvm_reg_sequence
 uvm_reg_shared_access_seq
 uvm_reg_single_access_seq
 uvm_reg_single_bit_bash_seq
 uvm_reg_tlm_adapter
 uvm_reg_transaction_order_policy
 uvm_reg_write_only_cbs
 uvm_related_link
 uvm_report

Global
uvm_report_catcher
uvm_report_object
uvm_sequence_item

 uvm_report_catcher
 uvm_report_enabled

Global
uvm_report_object

 uvm_report_error
Global
uvm_report_catcher
uvm_report_object
uvm_sequence_item

 uvm_report_fatal

UVM 1.2 Class Reference 847

Global
uvm_report_catcher
uvm_report_object
uvm_sequence_item

 uvm_report_handler
 uvm_report_info

Global
uvm_report_catcher
uvm_report_object
uvm_sequence_item

 uvm_report_message
 uvm_report_message_element_base
 uvm_report_message_element_container
 uvm_report_message_int_element
 uvm_report_message_object_element
 uvm_report_message_string_element
 uvm_report_object
 uvm_report_phase
 uvm_report_server
 uvm_report_warning

Global
uvm_report_catcher
uvm_report_object
uvm_sequence_item

 uvm_reset_phase
 uvm_resource#(T)
 uvm_resource_base
 uvm_resource_db
 uvm_resource_db_options
 uvm_resource_options
 uvm_resource_pool
 uvm_resource_types
 UVM_RM_RECORD
 uvm_root
 uvm_run_phase
 uvm_scoreboard
 UVM_SEQ_ARB_FIFO
 UVM_SEQ_ARB_RANDOM
 UVM_SEQ_ARB_STRICT_FIFO
 UVM_SEQ_ARB_STRICT_RANDOM
 UVM_SEQ_ARB_USER
 UVM_SEQ_ARB_WEIGHTED
 uvm_seq_item_pull_export#(REQ,RSP)
 uvm_seq_item_pull_imp#(REQ,RSP,IMP)
 uvm_seq_item_pull_port#(REQ,RSP)
 UVM_SEQ_LIB_ITEM
 UVM_SEQ_LIB_RAND
 UVM_SEQ_LIB_RANDC
 UVM_SEQ_LIB_USER
 uvm_sequence#(REQ,RSP)
 uvm_sequence_base
 uvm_sequence_item
 uvm_sequence_lib_mode
 uvm_sequence_library
 uvm_sequence_library_cfg
 uvm_sequence_library_utils

uvm_sequence_library
 uvm_sequence_state_enum

UVM 1.2 Class Reference 848

 uvm_sequencer#(REQ,RSP)
 uvm_sequencer_arb_mode
 uvm_sequencer_base
 uvm_sequencer_param_base#(REQ,RSP)
 uvm_set_before_get_dap
 uvm_set_get_dap_base
 uvm_severity
 UVM_SHALLOW
 uvm_shutdown_phase
 uvm_simple_lock_dap
 uvm_split_string
 uvm_sqr_if_base#(REQ,RSP)
 uvm_start_of_simulation_phase
 uvm_status_e
 UVM_STOP
 UVM_STOPPED
 UVM_STRING
 uvm_string_to_bits
 uvm_structure_proxy#(STRUCTURE)
 uvm_subscriber
 uvm_table_printer
 uvm_task_phase
 uvm_test
 uvm_text_recorder
 uvm_text_tr_database
 uvm_text_tr_stream
 UVM_TIME
 UVM_TLM_ACCEPTED
 UVM_TLM_ADDRESS_ERROR_RESPONSE
 uvm_tlm_analysis_fifo#(T)
 uvm_tlm_b_initiator_socket
 uvm_tlm_b_initiator_socket_base
 uvm_tlm_b_passthrough_initiator_socket
 uvm_tlm_b_passthrough_initiator_socket_base
 uvm_tlm_b_passthrough_target_socket
 uvm_tlm_b_passthrough_target_socket_base
 uvm_tlm_b_target_socket
 uvm_tlm_b_target_socket_base
 uvm_tlm_b_transport_export
 uvm_tlm_b_transport_imp
 uvm_tlm_b_transport_port
 UVM_TLM_BURST_ERROR_RESPONSE
 UVM_TLM_BYTE_ENABLE_ERROR_RESPONSE
 uvm_tlm_command_e
 UVM_TLM_COMMAND_ERROR_RESPONSE
 UVM_TLM_COMPLETED
 uvm_tlm_extension
 uvm_tlm_extension_base
 uvm_tlm_fifo#(T)
 uvm_tlm_fifo_base#(T)
 UVM_TLM_GENERIC_ERROR_RESPONSE
 uvm_tlm_generic_payload
 uvm_tlm_gp
 uvm_tlm_if
 uvm_tlm_if_base#(T1,T2)
 UVM_TLM_IGNORE_COMMAND
 UVM_TLM_INCOMPLETE_RESPONSE
 uvm_tlm_nb_initiator_socket
 uvm_tlm_nb_initiator_socket_base
 uvm_tlm_nb_passthrough_initiator_socket

UVM 1.2 Class Reference 849

 uvm_tlm_nb_passthrough_initiator_socket_base
 uvm_tlm_nb_passthrough_target_socket
 uvm_tlm_nb_passthrough_target_socket_base
 uvm_tlm_nb_target_socket
 uvm_tlm_nb_target_socket_base
 uvm_tlm_nb_transport_bw_export
 uvm_tlm_nb_transport_bw_imp
 uvm_tlm_nb_transport_bw_port
 uvm_tlm_nb_transport_fw_export
 uvm_tlm_nb_transport_fw_imp
 uvm_tlm_nb_transport_fw_port
 UVM_TLM_OK_RESPONSE
 uvm_tlm_phase_e
 UVM_TLM_READ_COMMAND
 uvm_tlm_req_rsp_channel#(REQ,RSP)
 uvm_tlm_response_status_e
 uvm_tlm_sync_e
 uvm_tlm_time
 uvm_tlm_transport_channel#(REQ,RSP)
 UVM_TLM_UPDATED
 UVM_TLM_WRITE_COMMAND
 uvm_top

uvm_root
 uvm_top_down_visitor_adapter
 uvm_topdown_phase
 uvm_tr_database
 uvm_tr_stream
 uvm_transaction
 uvm_tree_printer
 UVM_UNFORMAT2
 UVM_UNFORMAT4
 UVM_UNSIGNED
 uvm_utils#(TYPE,FIELD)
 uvm_verbosity
 UVM_VERSION_1_2
 UVM_VERSION_STRING
 uvm_visitor#(NODE)
 uvm_visitor_adapter#(STRUCTURE,uvm_visitor#(STRUCTURE))
 uvm_void
 uvm_vreg
 uvm_vreg_cb

uvm_vreg_cbs
 uvm_vreg_cb_iter

uvm_vreg_cbs
 uvm_vreg_cbs
 uvm_vreg_field
 uvm_vreg_field_cb

uvm_vreg_field_cbs
 uvm_vreg_field_cb_iter

uvm_vreg_field_cbs
 uvm_vreg_field_cbs
 uvm_wait_for_nba_region
 uvm_wait_op
 UVM_WARNING
 UVM_WRITE

UVM 1.2 Class Reference 850

Index
$#! · 0-9 · A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y

· Z

V
 value

uvm_reg_field
uvm_reg_item

 Variables
Global
uvm_built_in_pair#(T1,T2)
uvm_class_pair#(T1,T2)
uvm_comparer
uvm_hdl_path_concat
uvm_line_printer
uvm_mem_access_seq
uvm_mem_mam_cfg
uvm_mem_mam_policy
uvm_mem_shared_access_seq
uvm_mem_single_access_seq
uvm_mem_single_walk_seq
uvm_mem_walk_seq
uvm_packer
uvm_printer_knobs
uvm_reg_access_seq
uvm_reg_bit_bash_seq
uvm_reg_bus_op
uvm_reg_frontdoor
uvm_reg_hw_reset_seq
uvm_reg_item
uvm_reg_mem_built_in_seq
uvm_reg_mem_hdl_paths_seq
uvm_reg_mem_shared_access_seq
uvm_reg_predictor
uvm_reg_shared_access_seq
uvm_reg_single_access_seq
uvm_reg_single_bit_bash_seq
uvm_sequence#(REQ,RSP)
uvm_table_printer
uvm_transaction
uvm_tree_printer

 verbosity
uvm_comparer

 Verbosity Configuration
uvm_report_object

 Virtual Register Field Classes
 Virtual Registers
 visit

uvm_visitor#(NODE)

UVM 1.2 Class Reference 851

W
 wait_for

uvm_barrier
uvm_objection

 wait_for_change
uvm_reg_backdoor

 wait_for_grant
uvm_sequence_base
uvm_sequencer_base

 wait_for_item_done
uvm_sequence_base
uvm_sequencer_base

 wait_for_relevant
uvm_sequence_base

 wait_for_sequence_state
uvm_sequence_base

 wait_for_sequences
uvm_sequencer#(REQ,RSP)
uvm_sequencer_base
uvm_sqr_if_base#(REQ,RSP)

 wait_for_state
uvm_phase

 wait_modified
uvm_config_db
uvm_resource_base

 wait_off
uvm_event_base

 wait_on
uvm_event_base

 wait_ptrigger
uvm_event_base

 wait_ptrigger_data
uvm_event#(T)

 wait_trigger
uvm_event_base

 wait_trigger_data
uvm_event#(T)

 What’s Changed
 Why is this necessary

uvm_tlm_time
 Why uvm_object constructors are now mandatory
 write

uvm_analysis_port
uvm_mem
uvm_mem_region
uvm_reg
uvm_reg_backdoor
uvm_reg_field
uvm_reg_fifo
uvm_resource#(T)
uvm_subscriber
uvm_tlm_if_base#(T1,T2)

UVM 1.2 Class Reference 852

file:///C|/Users/Joe/Documents/accellera/uvm_1.2/ND%20material/html_RC7/files/overviews/relnotes-txt.html#What's_Changed
file:///C|/Users/Joe/Documents/accellera/uvm_1.2/ND%20material/html_RC7/files/overviews/relnotes-txt.html#Why_uvm_object_constructors_are_now_mandatory

uvm_vreg
uvm_vreg_field

 write_attribute
uvm_text_recorder

 write_attribute_int
uvm_text_recorder

 write_by_name
uvm_resource_db

 write_by_type
uvm_resource_db

 write_mem
uvm_reg_sequence

 write_mem_by_name
uvm_reg_block

 write_reg
uvm_reg_sequence

 write_reg_by_name
uvm_reg_block

UVM 1.2 Class Reference 853

Class Index
$#! · 0-9 · A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z

P
 Phasing Implementation

U
 uvm_*_export#(REQ,RSP)
 uvm_*_export#(T)
 uvm_*_imp#(REQ,RSP,IMP,REQ_IMP,RSP_IMP)
 uvm_*_imp#(T,IMP)
 uvm_*_port#(REQ,RSP)
 uvm_*_port#(T)
 uvm_agent
 uvm_algorithmic_comparator#(BEFORE,AFTER,TRANSFORMER)
 uvm_analysis_export
 uvm_analysis_imp
 uvm_analysis_port
 uvm_barrier
 uvm_bottom_up_visitor_adapter
 uvm_bottomup_phase
 uvm_build_phase
 uvm_built_in_clone#(T)
 uvm_built_in_comp#(T)
 uvm_built_in_converter#(T)
 uvm_built_in_pair#(T1,T2)
 uvm_by_level_visitor_adapter
 uvm_callback
 uvm_callback_iter
 uvm_callbacks#(T,CB)
 uvm_cause_effect_link
 uvm_check_phase
 uvm_class_clone#(T)
 uvm_class_comp#(T)
 uvm_class_converter#(T)
 uvm_class_pair#(T1,T2)
 uvm_cmdline_processor
 uvm_comparer
 uvm_component
 uvm_component_name_check_visitor
 uvm_component_proxy
 uvm_component_registry#(T,Tname)
 uvm_config_db
 uvm_config_db_options
 uvm_configure_phase
 uvm_connect_phase
 uvm_coreservice_t
 uvm_default_coreservice_t
 uvm_default_factory
 uvm_default_report_server
 uvm_domain
 uvm_driver#(REQ,RSP)

UVM 1.2 Class Reference 854

 uvm_end_of_elaboration_phase
 uvm_enum_wrapper#(T)
 uvm_env
 uvm_event#(T)
 uvm_event_base
 uvm_event_callback
 uvm_extract_phase
 uvm_factory
 uvm_final_phase
 uvm_get_to_lock_dap
 uvm_hdl_path_concat
 uvm_heartbeat
 uvm_in_order_built_in_comparator#(T)
 uvm_in_order_class_comparator#(T)
 uvm_in_order_comparator#(T,comp_type,convert,pair_type)
 uvm_line_printer
 uvm_link_base
 uvm_main_phase
 uvm_mem
 uvm_mem_access_seq
 uvm_mem_mam
 uvm_mem_mam_cfg
 uvm_mem_mam_policy
 uvm_mem_region
 uvm_mem_shared_access_seq
 uvm_mem_single_access_seq
 uvm_mem_single_walk_seq
 uvm_mem_walk_seq
 uvm_monitor
 uvm_object
 uvm_object_registry#(T,Tname)
 uvm_object_string_pool#(T)
 uvm_object_wrapper
 uvm_objection
 uvm_objection_callback
 uvm_packer
 uvm_parent_child_link
 uvm_phase
 uvm_phase_cb
 uvm_phase_cb_pool
 uvm_phase_state_change
 uvm_pool#(KEY,T)
 uvm_port_base#(IF)
 uvm_port_component#(PORT)
 uvm_port_component_base
 uvm_post_configure_phase
 uvm_post_main_phase
 uvm_post_reset_phase
 uvm_post_shutdown_phase
 uvm_pre_configure_phase
 uvm_pre_main_phase
 uvm_pre_reset_phase
 uvm_pre_shutdown_phase
 uvm_printer
 uvm_printer_knobs
 uvm_push_driver#(REQ,RSP)
 uvm_push_sequencer#(REQ,RSP)
 uvm_queue#(T)
 uvm_random_stimulus#(T)
 uvm_recorder

UVM 1.2 Class Reference 855

 uvm_reg
 uvm_reg_access_seq
 uvm_reg_adapter
 uvm_reg_backdoor
 uvm_reg_bit_bash_seq
 uvm_reg_block
 uvm_reg_bus_op
 uvm_reg_cbs
 uvm_reg_field
 uvm_reg_fifo
 uvm_reg_file
 uvm_reg_frontdoor
 uvm_reg_hw_reset_seq
 uvm_reg_indirect_data
 uvm_reg_item
 uvm_reg_map
 uvm_reg_mem_access_seq
 uvm_reg_mem_built_in_seq
 uvm_reg_mem_hdl_paths_seq
 uvm_reg_mem_shared_access_seq
 uvm_reg_predictor
 uvm_reg_read_only_cbs
 uvm_reg_sequence
 uvm_reg_shared_access_seq
 uvm_reg_single_access_seq
 uvm_reg_single_bit_bash_seq
 uvm_reg_tlm_adapter
 uvm_reg_transaction_order_policy
 uvm_reg_write_only_cbs
 uvm_related_link
 uvm_report_catcher
 uvm_report_handler
 uvm_report_message
 uvm_report_message_element_base
 uvm_report_message_element_container
 uvm_report_message_int_element
 uvm_report_message_object_element
 uvm_report_message_string_element
 uvm_report_object
 uvm_report_phase
 uvm_report_server
 uvm_reset_phase
 uvm_resource#(T)
 uvm_resource_base
 uvm_resource_db
 uvm_resource_db_options
 uvm_resource_options
 uvm_resource_pool
 uvm_resource_types
 uvm_root
 uvm_run_phase
 uvm_scoreboard
 uvm_seq_item_pull_export#(REQ,RSP)
 uvm_seq_item_pull_imp#(REQ,RSP,IMP)
 uvm_seq_item_pull_port#(REQ,RSP)
 uvm_sequence#(REQ,RSP)
 uvm_sequence_base
 uvm_sequence_item
 uvm_sequence_library
 uvm_sequence_library_cfg

UVM 1.2 Class Reference 856

 uvm_sequencer#(REQ,RSP)
 uvm_sequencer_base
 uvm_sequencer_param_base#(REQ,RSP)
 uvm_set_before_get_dap
 uvm_set_get_dap_base
 uvm_shutdown_phase
 uvm_simple_lock_dap
 uvm_sqr_if_base#(REQ,RSP)
 uvm_start_of_simulation_phase
 uvm_structure_proxy#(STRUCTURE)
 uvm_subscriber
 uvm_table_printer
 uvm_task_phase
 uvm_test
 uvm_text_recorder
 uvm_text_tr_database
 uvm_text_tr_stream
 uvm_tlm_analysis_fifo#(T)
 uvm_tlm_b_initiator_socket
 uvm_tlm_b_initiator_socket_base
 uvm_tlm_b_passthrough_initiator_socket
 uvm_tlm_b_passthrough_initiator_socket_base
 uvm_tlm_b_passthrough_target_socket
 uvm_tlm_b_passthrough_target_socket_base
 uvm_tlm_b_target_socket
 uvm_tlm_b_target_socket_base
 uvm_tlm_b_transport_export
 uvm_tlm_b_transport_imp
 uvm_tlm_b_transport_port
 uvm_tlm_extension
 uvm_tlm_extension_base
 uvm_tlm_fifo#(T)
 uvm_tlm_fifo_base#(T)
 uvm_tlm_generic_payload
 uvm_tlm_gp
 uvm_tlm_if
 uvm_tlm_if_base#(T1,T2)
 uvm_tlm_nb_initiator_socket
 uvm_tlm_nb_initiator_socket_base
 uvm_tlm_nb_passthrough_initiator_socket
 uvm_tlm_nb_passthrough_initiator_socket_base
 uvm_tlm_nb_passthrough_target_socket
 uvm_tlm_nb_passthrough_target_socket_base
 uvm_tlm_nb_target_socket
 uvm_tlm_nb_target_socket_base
 uvm_tlm_nb_transport_bw_export
 uvm_tlm_nb_transport_bw_imp
 uvm_tlm_nb_transport_bw_port
 uvm_tlm_nb_transport_fw_export
 uvm_tlm_nb_transport_fw_imp
 uvm_tlm_nb_transport_fw_port
 uvm_tlm_req_rsp_channel#(REQ,RSP)
 uvm_tlm_time
 uvm_tlm_transport_channel#(REQ,RSP)
 uvm_top_down_visitor_adapter
 uvm_topdown_phase
 uvm_tr_database
 uvm_tr_stream
 uvm_transaction
 uvm_tree_printer

UVM 1.2 Class Reference 857

 uvm_utils#(TYPE,FIELD)
 uvm_visitor#(NODE)
 uvm_visitor_adapter#(STRUCTURE,uvm_visitor#(STRUCTURE))
 uvm_void
 uvm_vreg
 uvm_vreg_cbs
 uvm_vreg_field
 uvm_vreg_field_cbs

UVM 1.2 Class Reference 858

File Index
$#! · 0-9 · A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z

A
 Algorithmic Comparator

M
 Miscellaneous Structures

R
 Register Defines

T
 TLM2 Types
 Transaction Recording Databases
 Transaction Recording Streams

U
 UVM Links
 UVM Recorders

UVM 1.2 Class Reference 859

Macro Index
$#! · 0-9 · A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z

$#!
 `uvm_add_to_sequence_library
 `uvm_analysis_imp_decl
 `uvm_blocking_get_imp_decl
 `uvm_blocking_get_peek_imp_decl
 `uvm_blocking_master_imp_decl
 `uvm_blocking_peek_imp_decl
 `uvm_blocking_put_imp_decl
 `uvm_blocking_slave_imp_decl
 `uvm_blocking_transport_imp_decl
 `uvm_component_end
 `uvm_component_param_utils
 `uvm_component_param_utils_begin
 `uvm_component_registry
 `uvm_component_utils
 `uvm_component_utils_begin
 `uvm_create
 `uvm_create_on
 `uvm_declare_p_sequencer
 `UVM_DEFAULT_TIMEOUT
 `uvm_do
 `uvm_do_callbacks
 `uvm_do_callbacks_exit_on
 `uvm_do_obj_callbacks
 `uvm_do_obj_callbacks_exit_on
 `uvm_do_on
 `uvm_do_on_pri
 `uvm_do_on_pri_with
 `uvm_do_on_with
 `uvm_do_pri
 `uvm_do_pri_with
 `uvm_do_with
 `uvm_error
 `uvm_error_begin
 `uvm_error_context
 `uvm_error_context_begin
 `uvm_error_context_end
 `uvm_error_end
 `uvm_fatal
 `uvm_fatal_begin
 `uvm_fatal_context
 `uvm_fatal_context_begin
 `uvm_fatal_context_end
 `uvm_fatal_end
 `uvm_field_aa_int_byte
 `uvm_field_aa_int_byte_unsigned
 `uvm_field_aa_int_enumkey
 `uvm_field_aa_int_int
 `uvm_field_aa_int_int_unsigned
 `uvm_field_aa_int_integer
 `uvm_field_aa_int_integer_unsigned
 `uvm_field_aa_int_key

UVM 1.2 Class Reference 860

 `uvm_field_aa_int_longint
 `uvm_field_aa_int_longint_unsigned
 `uvm_field_aa_int_shortint
 `uvm_field_aa_int_shortint_unsigned
 `uvm_field_aa_int_string
 `uvm_field_aa_object_int
 `uvm_field_aa_object_string
 `uvm_field_aa_string_string
 `uvm_field_array_enum
 `uvm_field_array_int
 `uvm_field_array_object
 `uvm_field_array_string
 `uvm_field_enum
 `uvm_field_event
 `uvm_field_int
 `uvm_field_object
 `uvm_field_queue_enum
 `uvm_field_queue_int
 `uvm_field_queue_object
 `uvm_field_queue_string
 `uvm_field_real
 `uvm_field_sarray_enum
 `uvm_field_sarray_int
 `uvm_field_sarray_object
 `uvm_field_sarray_string
 `uvm_field_string
 `uvm_field_utils_begin
 `uvm_field_utils_end
 `uvm_get_imp_decl
 `uvm_get_peek_imp_decl
 `uvm_info
 `uvm_info_begin
 `uvm_info_context
 `uvm_info_context_begin
 `uvm_info_context_end
 `uvm_info_end
 `uvm_master_imp_decl
 `UVM_MAX_STREAMBITS
 `uvm_message_add_int
 `uvm_message_add_object
 `uvm_message_add_string
 `uvm_message_add_tag
 `uvm_nonblocking_get_imp_decl
 `uvm_nonblocking_get_peek_imp_decl
 `uvm_nonblocking_master_imp_decl
 `uvm_nonblocking_peek_imp_decl
 `uvm_nonblocking_put_imp_decl
 `uvm_nonblocking_slave_imp_decl
 `uvm_nonblocking_transport_imp_decl
 `uvm_object_param_utils
 `uvm_object_param_utils_begin
 `uvm_object_registry
 `uvm_object_utils
 `uvm_object_utils_begin
 `uvm_object_utils_end
 `uvm_pack_array
 `uvm_pack_arrayN
 `uvm_pack_enum
 `uvm_pack_enumN
 `uvm_pack_int

UVM 1.2 Class Reference 861

 `uvm_pack_intN
 `uvm_pack_queue
 `uvm_pack_queueN
 `uvm_pack_real
 `uvm_pack_sarray
 `uvm_pack_sarrayN
 `uvm_pack_string
 `UVM_PACKER_MAX_BYTES
 `uvm_peek_imp_decl
 `uvm_put_imp_decl
 `uvm_rand_send
 `uvm_rand_send_pri
 `uvm_rand_send_pri_with
 `uvm_rand_send_with
 `uvm_record_attribute
 `uvm_record_field
 `uvm_record_int
 `uvm_record_real
 `uvm_record_string
 `uvm_record_time
 `UVM_REG_ADDR_WIDTH
 `UVM_REG_BYTENABLE_WIDTH
 `UVM_REG_CVR_WIDTH
 `UVM_REG_DATA_WIDTH
 `uvm_register_cb
 `uvm_send
 `uvm_send_pri
 `uvm_sequence_library_utils
 `uvm_set_super_type
 `uvm_slave_imp_decl
 `UVM_TLM_B_MASK
 `UVM_TLM_B_TRANSPORT_IMP
 `UVM_TLM_FUNCTION_ERROR
 `UVM_TLM_NB_BW_MASK
 `UVM_TLM_NB_FW_MASK
 `UVM_TLM_NB_TRANSPORT_BW_IMP
 `UVM_TLM_NB_TRANSPORT_FW_IMP
 `UVM_TLM_TASK_ERROR
 `uvm_transport_imp_decl
 `uvm_unpack_array
 `uvm_unpack_arrayN
 `uvm_unpack_enum
 `uvm_unpack_enumN
 `uvm_unpack_int
 `uvm_unpack_intN
 `uvm_unpack_queue
 `uvm_unpack_queueN
 `uvm_unpack_real
 `uvm_unpack_sarray
 `uvm_unpack_sarrayN
 `uvm_unpack_string
 `uvm_warning
 `uvm_warning_begin
 `uvm_warning_context
 `uvm_warning_context_begin
 `uvm_warning_context_end
 `uvm_warning_end

UVM 1.2 Class Reference 862

U
 UVM_FIX_REV
 UVM_MAJOR_REV
 UVM_MAJOR_REV_1
 UVM_MINOR_REV
 UVM_MINOR_REV_2
 UVM_NAME
 UVM_POST_VERSION_1_1
 uvm_sequence_library_utils

uvm_sequence_library
 UVM_VERSION_1_2
 UVM_VERSION_STRING

UVM 1.2 Class Reference 863

Method Index
$#! · 0-9 · A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y ·

Z

A
 accept

uvm_visitor_adapter#(STRUCTURE,uvm_visitor#(STRUCTURE))
 accept_tr

uvm_component
uvm_transaction

 add
uvm_callbacks#(T,CB)
uvm_heartbeat
uvm_phase
uvm_pool#(KEY,T)
uvm_reg_read_only_cbs
uvm_reg_write_only_cbs

 add_by_name
uvm_callbacks#(T,CB)

 add_callback
uvm_event#(T)

 add_coverage
uvm_mem
uvm_reg
uvm_reg_block

 add_hdl_path
uvm_mem
uvm_reg
uvm_reg_block
uvm_reg_file

 add_hdl_path_slice
uvm_mem
uvm_reg

 add_int
uvm_report_catcher
uvm_report_message
uvm_report_message_element_container

 add_mem
uvm_reg_map

 add_object
uvm_report_catcher
uvm_report_message
uvm_report_message_element_container

 add_path
uvm_hdl_path_concat

 add_reg
uvm_reg_map

 add_sequence
uvm_sequence_library

 add_sequences

UVM 1.2 Class Reference 864

uvm_sequence_library
 add_slice

uvm_hdl_path_concat
 add_string

uvm_report_catcher
uvm_report_message
uvm_report_message_element_container

 add_submap
uvm_reg_map

 add_typewide_sequence
uvm_sequence_library

 add_typewide_sequences
uvm_sequence_library

 add_uvm_phases
uvm_domain

 adjust_name
uvm_printer

 all_dropped
uvm_component
uvm_objection
uvm_objection_callback

 allocate
uvm_vreg

 apply_config_settings
uvm_component

B
 b_transport

uvm_tlm_if
 backdoor

uvm_reg_map
 backdoor_read

uvm_mem
uvm_reg

 backdoor_read_func
uvm_mem
uvm_reg

 backdoor_watch
uvm_reg

 backdoor_write
uvm_mem
uvm_reg

 begin_child_tr
uvm_component
uvm_transaction

 begin_tr
uvm_component
uvm_transaction

 begin_v

UVM 1.2 Class Reference 865

uvm_visitor#(NODE)
 body

uvm_mem_access_seq
uvm_mem_single_walk_seq
uvm_mem_walk_seq
uvm_reg_access_seq
uvm_reg_bit_bash_seq
uvm_reg_mem_built_in_seq
uvm_reg_mem_shared_access_seq
uvm_reg_sequence
uvm_sequence_base

 build_coverage
uvm_mem
uvm_reg
uvm_reg_block

 build_phase
uvm_component

 burst_read
uvm_mem
uvm_mem_region

 burst_write
uvm_mem
uvm_mem_region

 bus2reg
uvm_reg_adapter
uvm_reg_tlm_adapter

C
 callback_mode

uvm_callback
 can_get

uvm_tlm_if_base#(T1,T2)
 can_peek

uvm_tlm_if_base#(T1,T2)
 can_put

uvm_tlm_if_base#(T1,T2)
 cancel

uvm_barrier
uvm_event_base

 capacity
uvm_reg_fifo

 catch
uvm_report_catcher

 check_config_usage
uvm_component

 check_data_width
uvm_reg_block

 check_phase
uvm_component
uvm_reg_predictor

UVM 1.2 Class Reference 866

 clear
uvm_objection

 clear_extension
uvm_tlm_generic_payload

 clear_extensions
uvm_tlm_generic_payload

 clear_hdl_path
uvm_mem
uvm_reg
uvm_reg_block
uvm_reg_file

 clear_response_queue
uvm_sequence_base

 clone
uvm_object

 close
uvm_recorder
uvm_tr_stream

 close_db
uvm_tr_database

 compare
uvm_object

 compare_field
uvm_comparer

 compare_field_int
uvm_comparer

 compare_field_real
uvm_comparer

 compare_object
uvm_comparer

 compare_string
uvm_comparer

 compose_report_message
uvm_default_report_server
uvm_report_server

 configure
uvm_mem
uvm_reg
uvm_reg_block
uvm_reg_field
uvm_reg_file
uvm_reg_indirect_data
uvm_reg_map
uvm_vreg
uvm_vreg_field

 configure_phase
uvm_component

 connect
uvm_port_base#(IF)
uvm_tlm_nb_passthrough_target_socket
uvm_tlm_nb_target_socket

 Connect
uvm_tlm_b_initiator_socket

UVM 1.2 Class Reference 867

uvm_tlm_b_target_socket
uvm_tlm_nb_initiator_socket

 connect_phase
uvm_component

 convert2string
uvm_mem_mam
uvm_object
uvm_reg_item

 copy
uvm_object

 create
uvm_component_registry#(T,Tname)
uvm_object
uvm_object_registry#(T,Tname)
uvm_tlm_extension_base

 create_component
uvm_component
uvm_component_registry#(T,Tname)
uvm_object_wrapper

 create_component_by_name
uvm_default_factory
uvm_factory

 create_component_by_type
uvm_default_factory
uvm_factory

 create_item
uvm_sequence_base

 create_map
uvm_reg_block

 create_object
uvm_component
uvm_object_registry#(T,Tname)
uvm_object_wrapper

 create_object_by_name
uvm_default_factory
uvm_factory

 create_object_by_type
uvm_default_factory
uvm_factory

 current_grabber
uvm_sequencer_base

UVM 1.2 Class Reference 868

Method Index
$#! · 0-9 · A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y ·

Z

D
 debug_connected_to

uvm_port_base#(IF)
 debug_create_by_name

uvm_default_factory
uvm_factory

 debug_create_by_type
uvm_default_factory
uvm_factory

 debug_provided_to
uvm_port_base#(IF)

 decode
uvm_reg_cbs

 decr
uvm_tlm_time

 define_access
uvm_reg_field

 define_domain
uvm_component

 delete
uvm_callbacks#(T,CB)
uvm_object_string_pool#(T)
uvm_pool#(KEY,T)
uvm_queue#(T)
uvm_report_message_element_container

 delete_by_name
uvm_callbacks#(T,CB)

 delete_callback
uvm_event#(T)

 delete_elements
uvm_report_message_element_container

 die
uvm_root

 disable_auto_item_recording
uvm_sqr_if_base#(REQ,RSP)

 disable_recording
uvm_transaction

 display
uvm_callbacks#(T,CB)

 display_objections
uvm_objection

 do_accept_tr
uvm_component
uvm_transaction

UVM 1.2 Class Reference 869

 do_begin_tr
uvm_component
uvm_transaction

 do_block
uvm_mem_access_seq
uvm_mem_walk_seq
uvm_reg_access_seq
uvm_reg_bit_bash_seq
uvm_reg_hw_reset_seq
uvm_reg_mem_shared_access_seq

 do_bus_read
uvm_reg_map

 do_bus_write
uvm_reg_map

 do_close
uvm_recorder
uvm_text_recorder
uvm_text_tr_stream
uvm_tr_stream

 do_close_db
uvm_text_tr_database
uvm_tr_database

 do_compare
uvm_object

 do_copy
uvm_object
uvm_reg_item
uvm_report_server

 do_end_tr
uvm_component
uvm_transaction

 do_establish_link
uvm_text_tr_database
uvm_tr_database

 do_free
uvm_recorder
uvm_text_recorder
uvm_text_tr_stream
uvm_tr_stream

 do_get_lhs
uvm_cause_effect_link
uvm_link_base
uvm_parent_child_link
uvm_related_link

 do_get_rhs
uvm_cause_effect_link
uvm_link_base
uvm_parent_child_link
uvm_related_link

 do_kill
uvm_sequence_base

 do_open
uvm_recorder
uvm_text_recorder

UVM 1.2 Class Reference 870

uvm_text_tr_stream
uvm_tr_stream

 do_open_db
uvm_text_tr_database
uvm_tr_database

 do_open_recorder
uvm_text_tr_stream
uvm_tr_stream

 do_open_stream
uvm_text_tr_database
uvm_tr_database

 do_pack
uvm_object

 do_post_read
uvm_reg_backdoor

 do_post_write
uvm_reg_backdoor

 do_pre_read
uvm_reg_backdoor

 do_pre_write
uvm_reg_backdoor

 do_predict
uvm_reg_fifo

 do_print
uvm_object
uvm_resource_base

 do_read
uvm_reg_map

 do_record
uvm_object

 do_record_field
uvm_recorder
uvm_text_recorder

 do_record_field_int
uvm_recorder
uvm_text_recorder

 do_record_field_real
uvm_recorder
uvm_text_recorder

 do_record_generic
uvm_recorder
uvm_text_recorder

 do_record_object
uvm_recorder
uvm_text_recorder

 do_record_string
uvm_recorder
uvm_text_recorder

 do_record_time
uvm_recorder
uvm_text_recorder

 do_reg_item

UVM 1.2 Class Reference 871

uvm_reg_sequence
 do_set_lhs

uvm_cause_effect_link
uvm_link_base
uvm_parent_child_link
uvm_related_link

 do_set_rhs
uvm_cause_effect_link
uvm_link_base
uvm_parent_child_link
uvm_related_link

 do_unpack
uvm_object

 do_write
uvm_reg_map

 drop_objection
uvm_objection
uvm_phase

 dropped
uvm_component
uvm_objection
uvm_objection_callback

 dump
uvm_resource_db
uvm_resource_pool

E
 emit

uvm_printer
uvm_table_printer
uvm_tree_printer

 enable_recording
uvm_transaction

 encode
uvm_reg_cbs

 end_of_elaboration_phase
uvm_component

 end_prematurely
uvm_phase

 end_tr
uvm_component
uvm_transaction

 end_v
uvm_visitor#(NODE)

 establish_link
uvm_tr_database

 exec_func
uvm_phase

 exec_task
uvm_phase

UVM 1.2 Class Reference 872

 execute
uvm_bottomup_phase
uvm_task_phase
uvm_topdown_phase

 execute_item
uvm_sequencer_base

 execute_report_message
uvm_default_report_server
uvm_report_server

 exists
uvm_config_db
uvm_pool#(KEY,T)

 extract_phase
uvm_component

F
 final_phase

uvm_component
 find

uvm_phase
uvm_root

 find_all
uvm_root
uvm_utils#(TYPE,FIELD)

 find_block
uvm_reg_block

 find_blocks
uvm_reg_block

 find_by_name
uvm_phase

 find_override_by_name
uvm_default_factory
uvm_factory

 find_override_by_type
uvm_default_factory
uvm_factory

 find_unused_resources
uvm_resource_pool

 find_wrapper_by_name
uvm_factory

 finish_item
uvm_sequence_base

 first
uvm_callback_iter
uvm_pool#(KEY,T)

 flush
uvm_in_order_comparator#(T,comp_type,convert,pair_type)
uvm_tlm_fifo#(T)

 for_each

UVM 1.2 Class Reference 873

uvm_mem_mam
 format_action

uvm_report_handler
 format_header

uvm_printer
 format_row

uvm_printer
 free

uvm_recorder
uvm_tr_stream

 free_tr_stream
uvm_component

 from_name
uvm_enum_wrapper#(T)

UVM 1.2 Class Reference 874

Method Index
$#! · 0-9 · A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y ·

Z

G
 generate_stimulus

uvm_random_stimulus#(T)
 get

uvm_build_phase
uvm_check_phase
uvm_component_registry#(T,Tname)
uvm_config_db
uvm_configure_phase
uvm_connect_phase
uvm_coreservice_t
uvm_end_of_elaboration_phase
uvm_extract_phase
uvm_factory
uvm_final_phase
uvm_get_to_lock_dap
uvm_main_phase
uvm_object_registry#(T,Tname)
uvm_object_string_pool#(T)
uvm_pool#(KEY,T)
uvm_post_configure_phase
uvm_post_main_phase
uvm_post_reset_phase
uvm_post_shutdown_phase
uvm_pre_configure_phase
uvm_pre_main_phase
uvm_pre_reset_phase
uvm_pre_shutdown_phase
uvm_queue#(T)
uvm_reg
uvm_reg_field
uvm_reg_fifo
uvm_report_phase
uvm_reset_phase
uvm_resource_pool
uvm_root
uvm_run_phase
uvm_sequencer#(REQ,RSP)
uvm_set_before_get_dap
uvm_set_get_dap_base
uvm_shutdown_phase
uvm_simple_lock_dap
uvm_sqr_if_base#(REQ,RSP)
uvm_start_of_simulation_phase
uvm_tlm_if_base#(T1,T2)

 get_abstime
uvm_tlm_time

 get_accept_time
uvm_transaction

 get_access

UVM 1.2 Class Reference 875

uvm_mem
uvm_reg_field
uvm_vreg
uvm_vreg_field

 get_action
uvm_report_catcher
uvm_report_message
uvm_report_message_element_base

 get_adapter
uvm_reg_map

 get_addr_unit_bytes
uvm_reg_map

 get_address
uvm_mem
uvm_reg
uvm_tlm_generic_payload
uvm_vreg

 get_addresses
uvm_mem
uvm_reg

 get_adjacent_predecessor_nodes
uvm_phase

 get_adjacent_successor_nodes
uvm_phase

 get_arbitration
uvm_sequencer_base

 get_arg_matches
uvm_cmdline_processor

 get_arg_value
uvm_cmdline_processor

 get_arg_values
uvm_cmdline_processor

 get_args
uvm_cmdline_processor

 get_auto_predict
uvm_reg_map

 get_automatic_phase_objection
uvm_sequence_base

 get_backdoor
uvm_mem
uvm_reg
uvm_reg_block

 get_base_addr
uvm_reg_map

 get_begin_time
uvm_transaction

 get_block_by_name
uvm_reg_block

 get_blocks
uvm_reg_block

 get_by_name
uvm_resource#(T)

UVM 1.2 Class Reference 876

uvm_resource_db
uvm_resource_pool

 get_by_type
uvm_resource#(T)
uvm_resource_db
uvm_resource_pool

 get_byte_enable
uvm_tlm_generic_payload

 get_byte_enable_length
uvm_tlm_generic_payload

 get_cb
uvm_callback_iter

 get_check_on_read
uvm_reg_map

 get_child
uvm_component

 get_children
uvm_component

 get_client
uvm_report_catcher

 get_close_time
uvm_recorder

 get_command
uvm_tlm_generic_payload

 get_common_domain
uvm_domain

 get_comp
uvm_port_base#(IF)

 get_compare
uvm_reg_field

 get_component_visitor
uvm_coreservice_t
uvm_default_coreservice_t

 get_config
uvm_utils#(TYPE,FIELD)

 get_connected_to
uvm_port_component_base

 get_context
uvm_report_catcher
uvm_report_message

 get_coverage
uvm_mem
uvm_reg
uvm_reg_block

 get_current_item
uvm_sequence#(REQ,RSP)
uvm_sequencer_param_base#(REQ,RSP)

 get_data
uvm_tlm_generic_payload

 get_data_length
uvm_tlm_generic_payload

UVM 1.2 Class Reference 877

 get_db
uvm_tr_stream

 get_default_hdl_path
uvm_reg_block
uvm_reg_file

 get_default_path
uvm_reg_block

 get_default_tr_database
uvm_coreservice_t
uvm_default_coreservice_t

 get_depth
uvm_component
uvm_sequence_item

 get_domain
uvm_component
uvm_phase

 get_domain_name
uvm_phase

 get_domains
uvm_domain

 get_drain_time
uvm_objection

 get_element_container
uvm_report_catcher
uvm_report_message

 get_elements
uvm_report_message_element_container

 get_end_offset
uvm_mem_region

 get_end_time
uvm_transaction

 get_event_pool
uvm_transaction

 get_extension
uvm_tlm_generic_payload

 get_factory
uvm_coreservice_t
uvm_default_coreservice_t

 get_field_by_name
uvm_reg
uvm_reg_block
uvm_vreg

 get_fields
uvm_reg
uvm_reg_block
uvm_reg_map
uvm_vreg

 get_file
uvm_report_message

 get_filename
uvm_report_message

 get_first

UVM 1.2 Class Reference 878

uvm_callbacks#(T,CB)
 get_first_child

uvm_component
 get_fname

uvm_report_catcher
 get_frontdoor

uvm_mem
uvm_reg

 get_full_hdl_path
uvm_mem
uvm_reg
uvm_reg_block
uvm_reg_file

 get_full_name
uvm_component
uvm_mem
uvm_object
uvm_phase
uvm_port_base#(IF)
uvm_reg
uvm_reg_block
uvm_reg_field
uvm_reg_file
uvm_reg_map
uvm_vreg
uvm_vreg_field

 get_global
uvm_object_string_pool#(T)
uvm_pool#(KEY,T)
uvm_queue#(T)

 get_global_pool
uvm_object_string_pool#(T)
uvm_pool#(KEY,T)

 get_global_queue
uvm_queue#(T)

 get_handle
uvm_recorder
uvm_tr_stream

 get_hdl_path
uvm_mem
uvm_reg
uvm_reg_block
uvm_reg_file

 get_hdl_path_kinds
uvm_mem
uvm_reg

 get_highest_precedence
uvm_resource#(T)
uvm_resource_pool

 get_id
uvm_report_catcher
uvm_report_message

 get_id_count
uvm_default_report_server

UVM 1.2 Class Reference 879

uvm_report_server
 get_id_set

uvm_report_server
 get_if

uvm_port_base#(IF)
 get_immediate_children

uvm_structure_proxy#(STRUCTURE)
 get_imp

uvm_phase
 get_incr

uvm_vreg
 get_initiator

uvm_transaction
 get_inst

uvm_cmdline_processor
 get_inst_count

uvm_object
 get_inst_id

uvm_object
 get_is_active

uvm_agent
 get_item

uvm_reg_adapter
 get_jump_target

uvm_phase
 get_last

uvm_callbacks#(T,CB)
 get_len

uvm_mem_region
 get_lhs

uvm_link_base
 get_line

uvm_report_catcher
uvm_report_message

 get_link
uvm_cause_effect_link
uvm_parent_child_link
uvm_related_link

 get_lsb_pos
uvm_reg_field

 get_lsb_pos_in_register
uvm_vreg_field

 get_map_by_name
uvm_reg_block

 get_maps
uvm_mem
uvm_reg
uvm_reg_block
uvm_vreg

 get_max_quit_count
uvm_default_report_server

UVM 1.2 Class Reference 880

uvm_report_server
 get_max_size

uvm_mem
uvm_reg
uvm_reg_field

 get_mem_by_name
uvm_reg_block

 get_mem_by_offset
uvm_reg_map

 get_memories
uvm_reg_block

 get_memory
uvm_mem_mam
uvm_mem_region
uvm_vreg

 get_message
uvm_report_catcher
uvm_report_message

 get_message_database
uvm_default_report_server
uvm_report_server

 get_mirrored_value
uvm_reg
uvm_reg_field

 get_n_bits
uvm_mem
uvm_reg
uvm_reg_field
uvm_vreg_field

 get_n_bytes
uvm_mem
uvm_mem_region
uvm_reg
uvm_reg_map
uvm_vreg

 get_n_maps
uvm_mem
uvm_reg
uvm_vreg

 get_n_memlocs
uvm_vreg

 get_name
uvm_mem
uvm_object
uvm_port_base#(IF)
uvm_reg
uvm_reg_block
uvm_reg_field
uvm_reg_file
uvm_reg_map
uvm_report_message_element_base
uvm_tlm_time
uvm_vreg
uvm_vreg_field

UVM 1.2 Class Reference 881

 get_name_constraint
uvm_component_name_check_visitor

 get_next
uvm_callbacks#(T,CB)

 get_next_child
uvm_component

 get_next_item
uvm_sequencer#(REQ,RSP)
uvm_sqr_if_base#(REQ,RSP)

 get_num_children
uvm_component

 get_num_extensions
uvm_tlm_generic_payload

 get_num_last_reqs
uvm_sequencer_param_base#(REQ,RSP)

 get_num_last_rsps
uvm_sequencer_param_base#(REQ,RSP)

 get_num_reqs_sent
uvm_sequencer_param_base#(REQ,RSP)

 get_num_rsps_received
uvm_sequencer_param_base#(REQ,RSP)

 get_num_waiters
uvm_barrier
uvm_event_base

 get_object_type
uvm_object

 get_objection
uvm_phase

 get_objection_count
uvm_objection
uvm_phase

 get_objection_total
uvm_objection

 get_objectors
uvm_objection

 get_offset
uvm_mem
uvm_reg

 get_offset_in_memory
uvm_vreg

 get_open_time
uvm_recorder

 get_packed_size
uvm_packer

 get_parent
uvm_component
uvm_mem
uvm_phase
uvm_port_base#(IF)
uvm_reg
uvm_reg_block
uvm_reg_field

UVM 1.2 Class Reference 882

uvm_reg_file
uvm_reg_map
uvm_vreg
uvm_vreg_field

 get_parent_map
uvm_reg_map

 get_parent_sequence
uvm_sequence_item

 get_phase_type
uvm_phase

 get_physical_addresses
uvm_reg_map

 get_plusargs
uvm_cmdline_processor

 get_port
uvm_port_component#(PORT)

 get_prev
uvm_callbacks#(T,CB)

 get_prev_state
uvm_phase_state_change

 get_priority
uvm_sequence_base

 get_propagate_mode
uvm_objection

 get_provided_to
uvm_port_component_base

 get_quit_count
uvm_default_report_server
uvm_report_server

 get_radix_str
uvm_printer_knobs

 get_realtime
uvm_tlm_time

 get_record_attribute_handle
uvm_recorder

 get_recorder_from_handle
uvm_recorder

 get_recorders
uvm_tr_stream

 get_reg_by_name
uvm_reg_block

 get_reg_by_offset
uvm_reg_map

 get_regfile
uvm_reg
uvm_reg_file

 get_region
uvm_vreg

 get_registers
uvm_reg_block
uvm_reg_map

UVM 1.2 Class Reference 883

 get_report_action
uvm_report_object

 get_report_catcher
uvm_report_catcher

 get_report_file_handle
uvm_report_object

 get_report_handler
uvm_report_message
uvm_report_object

 get_report_max_verbosity_level
uvm_report_object

 get_report_object
uvm_report_message

 get_report_server
uvm_coreservice_t
uvm_default_coreservice_t
uvm_report_message

 get_report_verbosity_level
uvm_report_object

 get_reset
uvm_reg
uvm_reg_field

 get_response
uvm_sequence#(REQ,RSP)

 get_response_queue_depth
uvm_sequence_base

 get_response_queue_error_report_disabled
uvm_sequence_base

 get_response_status
uvm_tlm_generic_payload

 get_response_string
uvm_tlm_generic_payload

 get_rhs
uvm_link_base

 get_rights
uvm_mem
uvm_reg
uvm_vreg

 get_root
uvm_coreservice_t

 get_root_blocks
uvm_reg_block

 get_root_map
uvm_reg_map

 get_root_sequence
uvm_sequence_item

 get_root_sequence_name
uvm_sequence_item

 get_run_count
uvm_phase

 get_schedule

UVM 1.2 Class Reference 884

uvm_phase
 get_schedule_name

uvm_phase
 get_scope

uvm_resource_base
uvm_tr_stream

 get_sequence_id
uvm_sequence_item

 get_sequence_path
uvm_sequence_item

 get_sequence_state
uvm_sequence_base

 get_sequencer
uvm_reg_map
uvm_sequence_item

 get_sequences
uvm_sequence_library

 get_server
uvm_report_server

 get_severity
uvm_report_catcher
uvm_report_message

 get_severity_count
uvm_default_report_server
uvm_report_server

 get_severity_set
uvm_report_server

 get_size
uvm_mem
uvm_vreg

 get_start_offset
uvm_mem_region

 get_starting_phase
uvm_sequence_base

 get_state
uvm_phase
uvm_phase_state_change

 get_stream
uvm_recorder

 get_stream_from_handle
uvm_tr_stream

 get_stream_type_name
uvm_tr_stream

 get_streaming_width
uvm_tlm_generic_payload

 get_streams
uvm_tr_database

 get_submap_offset
uvm_reg_map

 get_submaps
uvm_reg_map

UVM 1.2 Class Reference 885

 get_threshold
uvm_barrier

 get_tool_name
uvm_cmdline_processor

 get_tool_version
uvm_cmdline_processor

 get_tr_handle
uvm_sequence_base
uvm_transaction

 get_tr_stream
uvm_component

 get_transaction_id
uvm_transaction

 get_transaction_order_policy
uvm_reg_map

 get_trigger_data
uvm_event#(T)

 get_trigger_time
uvm_event_base

 get_type
uvm_object
uvm_resource#(T)

 get_type_handle
uvm_resource#(T)
uvm_resource_base
uvm_tlm_extension_base

 get_type_handle_name
uvm_tlm_extension_base

 get_type_name
uvm_callback
uvm_component_registry#(T,Tname)
uvm_object
uvm_object_registry#(T,Tname)
uvm_object_string_pool#(T)
uvm_object_wrapper
uvm_port_base#(IF)
uvm_sequence_library

 get_use_response_handler
uvm_sequence_base

 get_use_sequence_info
uvm_sequence_item

 get_uvm_domain
uvm_domain

 get_uvm_schedule
uvm_domain

 get_uvmargs
uvm_cmdline_processor

 get_value
uvm_report_message_int_element
uvm_report_message_object_element
uvm_report_message_string_element

 get_verbosity

UVM 1.2 Class Reference 886

uvm_report_catcher
uvm_report_message

 get_vfield_by_name
uvm_mem
uvm_reg_block

 get_virtual_fields
uvm_mem
uvm_reg_block
uvm_reg_map

 get_virtual_registers
uvm_mem
uvm_mem_region
uvm_reg_block
uvm_reg_map

 get_vreg_by_name
uvm_mem
uvm_reg_block

 get_vreg_by_offset
uvm_mem

 grab
uvm_sequence_base
uvm_sequencer_base

UVM 1.2 Class Reference 887

Method Index
$#! · 0-9 · A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y ·

Z

H
 has_child

uvm_component
 has_coverage

uvm_mem
uvm_reg
uvm_reg_block

 has_do_available
uvm_sequencer#(REQ,RSP)
uvm_sequencer_base
uvm_sqr_if_base#(REQ,RSP)

 has_hdl_path
uvm_mem
uvm_reg
uvm_reg_block
uvm_reg_file

 has_lock
uvm_sequence_base
uvm_sequencer_base

 has_reset
uvm_reg
uvm_reg_field

I
 ID

uvm_tlm_extension
 implement

uvm_vreg
 include_coverage

uvm_reg
 incr

uvm_tlm_time
 incr_id_count

uvm_default_report_server
 incr_quit_count

uvm_default_report_server
 incr_severity_count

uvm_default_report_server
 init_access_record

uvm_resource_base
 init_sequence_library

uvm_sequence_library

UVM 1.2 Class Reference 888

 insert
uvm_queue#(T)

 is
uvm_phase

 is_active
uvm_transaction

 is_after
uvm_phase

 is_auditing
uvm_resource_options

 is_auto_item_recording_enabled
uvm_sqr_if_base#(REQ,RSP)

 is_auto_updated
uvm_reg_backdoor

 is_before
uvm_phase

 is_blocked
uvm_sequence_base
uvm_sequencer_base

 is_busy
uvm_reg

 is_child
uvm_sequencer_base

 is_closed
uvm_recorder
uvm_tr_stream

 is_dmi_allowed
uvm_tlm_generic_payload

 is_empty
uvm_tlm_fifo#(T)

 is_enabled
uvm_callback

 is_export
uvm_port_base#(IF)
uvm_port_component_base

 is_full
uvm_tlm_fifo#(T)

 is_grabbed
uvm_sequencer_base

 is_hdl_path_root
uvm_reg_block

 is_imp
uvm_port_base#(IF)
uvm_port_component_base

 is_in_map
uvm_mem
uvm_reg
uvm_vreg

 is_indv_accessible
uvm_reg_field

 is_item

UVM 1.2 Class Reference 889

uvm_sequence_base
uvm_sequence_item

 is_known_access
uvm_reg_field

 is_locked
uvm_reg_block
uvm_simple_lock_dap

 is_null
uvm_packer

 is_off
uvm_event_base

 is_on
uvm_event_base

 is_open
uvm_recorder
uvm_tr_database
uvm_tr_stream

 is_port
uvm_port_base#(IF)
uvm_port_component_base

 is_quit_count_reached
uvm_default_report_server

 is_read
uvm_tlm_generic_payload

 is_read_only
uvm_resource_base

 is_recording_enabled
uvm_transaction

 is_relevant
uvm_sequence_base

 is_response_error
uvm_tlm_generic_payload

 is_response_ok
uvm_tlm_generic_payload

 is_tracing
uvm_config_db_options
uvm_resource_db_options

 is_unbounded
uvm_port_base#(IF)

 is_volatile
uvm_reg_field

 is_write
uvm_tlm_generic_payload

 issue
uvm_report_catcher

 item_done
uvm_sequencer#(REQ,RSP)
uvm_sqr_if_base#(REQ,RSP)

UVM 1.2 Class Reference 890

J
 jump

uvm_domain
uvm_phase

 jump_to
uvm_phase_state_change

K
 kill

uvm_sequence_base

L
 last

uvm_callback_iter
uvm_pool#(KEY,T)

 last_req
uvm_sequencer_param_base#(REQ,RSP)

 last_rsp
uvm_sequencer_param_base#(REQ,RSP)

 lock
uvm_sequence_base
uvm_sequencer_base
uvm_simple_lock_dap

 lock_model
uvm_reg_block

 lookup
uvm_component

 lookup_name
uvm_resource_pool

 lookup_regex
uvm_resource_pool

 lookup_regex_names
uvm_resource_pool

 lookup_scope
uvm_resource_pool

 lookup_type
uvm_resource_pool

M
 main_phase

uvm_component
 match_scope

UVM 1.2 Class Reference 891

uvm_resource_base
 max_size

uvm_port_base#(IF)
 mid_do

uvm_sequence_base
 min_size

uvm_port_base#(IF)
 mirror

uvm_reg
uvm_reg_block
uvm_reg_field
uvm_reg_fifo

 mirror_reg
uvm_reg_sequence

N
 nb_transport

uvm_tlm_if_base#(T1,T2)
 nb_transport_bw

uvm_tlm_if
 nb_transport_fw

uvm_tlm_if
 needs_update

uvm_reg
uvm_reg_block
uvm_reg_field

 new
uvm_*_export#(REQ,RSP)
uvm_*_export#(T)
uvm_*_imp#(REQ,RSP,IMP,REQ_IMP,RSP_IMP)
uvm_*_imp#(T,IMP)
uvm_*_port#(REQ,RSP)
uvm_*_port#(T)
uvm_agent
uvm_algorithmic_comparator#(BEFORE,AFTER,TRANSFORMER)
uvm_analysis_export
uvm_barrier
uvm_bottomup_phase
uvm_built_in_pair#(T1,T2)
uvm_callback
uvm_callback_iter
uvm_cause_effect_link
uvm_class_pair#(T1,T2)
uvm_component
uvm_default_report_server
uvm_domain
uvm_driver#(REQ,RSP)
uvm_env
uvm_event#(T)
uvm_event_base
uvm_event_callback
uvm_get_to_lock_dap

UVM 1.2 Class Reference 892

uvm_heartbeat
uvm_link_base
uvm_mem
uvm_mem_mam
uvm_mem_single_walk_seq
uvm_monitor
uvm_object
uvm_object_string_pool#(T)
uvm_objection
uvm_parent_child_link
uvm_phase
uvm_phase_cb
uvm_pool#(KEY,T)
uvm_port_base#(IF)
uvm_push_driver#(REQ,RSP)
uvm_push_sequencer#(REQ,RSP)
uvm_queue#(T)
uvm_random_stimulus#(T)
uvm_reg
uvm_reg_adapter
uvm_reg_backdoor
uvm_reg_block
uvm_reg_field
uvm_reg_fifo
uvm_reg_file
uvm_reg_frontdoor
uvm_reg_indirect_data
uvm_reg_item
uvm_reg_map
uvm_reg_predictor
uvm_reg_sequence
uvm_related_link
uvm_report_catcher
uvm_report_handler
uvm_report_message
uvm_report_message_element_container
uvm_report_object
uvm_resource_base
uvm_scoreboard
uvm_seq_item_pull_imp#(REQ,RSP,IMP)
uvm_sequence#(REQ,RSP)
uvm_sequence_base
uvm_sequence_item
uvm_sequence_library
uvm_sequencer#(REQ,RSP)
uvm_sequencer_base
uvm_sequencer_param_base#(REQ,RSP)
uvm_set_before_get_dap
uvm_set_get_dap_base
uvm_simple_lock_dap
uvm_subscriber
uvm_task_phase
uvm_test
uvm_text_recorder
uvm_text_tr_database
uvm_text_tr_stream
uvm_tlm_analysis_fifo#(T)
uvm_tlm_b_initiator_socket
uvm_tlm_b_target_socket
uvm_tlm_extension

UVM 1.2 Class Reference 893

uvm_tlm_extension_base
uvm_tlm_fifo#(T)
uvm_tlm_fifo_base#(T)
uvm_tlm_generic_payload
uvm_tlm_nb_initiator_socket
uvm_tlm_nb_target_socket
uvm_tlm_nb_transport_bw_export
uvm_tlm_nb_transport_bw_port
uvm_tlm_req_rsp_channel#(REQ,RSP)
uvm_tlm_time
uvm_tlm_transport_channel#(REQ,RSP)
uvm_topdown_phase
uvm_tr_database
uvm_tr_stream
uvm_transaction
uvm_vreg
uvm_vreg_field

 new_report_message
uvm_report_message

 next
uvm_callback_iter
uvm_pool#(KEY,T)

 num
uvm_pool#(KEY,T)

O
 open_db

uvm_tr_database
 open_recorder

uvm_tr_stream
 open_stream

uvm_tr_database
 order

uvm_reg_transaction_order_policy

UVM 1.2 Class Reference 894

Method Index
$#! · 0-9 · A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y ·

Z

P
 pack

uvm_object
 pack_bits

uvm_packer
 pack_bytes

uvm_object
uvm_packer

 pack_field
uvm_packer

 pack_field_int
uvm_packer

 pack_ints
uvm_object
uvm_packer

 pack_object
uvm_packer

 pack_real
uvm_packer

 pack_string
uvm_packer

 pack_time
uvm_packer

 peek
uvm_mem
uvm_mem_region
uvm_reg
uvm_reg_field
uvm_sequencer#(REQ,RSP)
uvm_sqr_if_base#(REQ,RSP)
uvm_tlm_if_base#(T1,T2)
uvm_vreg
uvm_vreg_field

 peek_mem
uvm_reg_sequence

 peek_reg
uvm_reg_sequence

 phase_ended
uvm_component

 phase_ready_to_end
uvm_component

 phase_started
uvm_component

 phase_state_change
uvm_phase_cb

UVM 1.2 Class Reference 895

 poke
uvm_mem
uvm_mem_region
uvm_reg
uvm_reg_field
uvm_vreg
uvm_vreg_field

 poke_mem
uvm_reg_sequence

 poke_reg
uvm_reg_sequence

 pop_back
uvm_queue#(T)

 pop_front
uvm_queue#(T)

 post_body
uvm_sequence_base

 post_configure_phase
uvm_component

 post_do
uvm_sequence_base

 post_main_phase
uvm_component

 post_predict
uvm_reg_cbs

 post_randomize
uvm_tlm_generic_payload

 post_read
uvm_mem
uvm_reg
uvm_reg_backdoor
uvm_reg_cbs
uvm_reg_field
uvm_vreg
uvm_vreg_cbs
uvm_vreg_field
uvm_vreg_field_cbs

 post_reset_phase
uvm_component

 post_shutdown_phase
uvm_component

 post_start
uvm_sequence_base

 post_trigger
uvm_event_callback

 post_write
uvm_mem
uvm_reg
uvm_reg_backdoor
uvm_reg_cbs
uvm_reg_field
uvm_vreg
uvm_vreg_cbs
uvm_vreg_field

UVM 1.2 Class Reference 896

uvm_vreg_field_cbs
 pre_abort

uvm_component
 pre_body

uvm_sequence_base
 pre_configure_phase

uvm_component
 pre_do

uvm_sequence_base
 pre_main_phase

uvm_component
 pre_predict

uvm_reg_predictor
 pre_randomize

uvm_tlm_generic_payload
 pre_read

uvm_mem
uvm_reg
uvm_reg_backdoor
uvm_reg_cbs
uvm_reg_field
uvm_reg_fifo
uvm_reg_write_only_cbs
uvm_vreg
uvm_vreg_cbs
uvm_vreg_field
uvm_vreg_field_cbs

 pre_reset_phase
uvm_component

 pre_shutdown_phase
uvm_component

 pre_start
uvm_sequence_base

 pre_trigger
uvm_event_callback

 pre_write
uvm_mem
uvm_reg
uvm_reg_backdoor
uvm_reg_cbs
uvm_reg_field
uvm_reg_fifo
uvm_reg_read_only_cbs
uvm_vreg
uvm_vreg_cbs
uvm_vreg_field
uvm_vreg_field_cbs

 predict
uvm_reg
uvm_reg_field

 prev
uvm_callback_iter
uvm_pool#(KEY,T)

 print
UVM 1.2 Class Reference 897

uvm_default_factory
uvm_default_report_server
uvm_factory
uvm_object
uvm_report_handler
uvm_report_message

 print_accessors
uvm_resource_base

 print_array_footer
uvm_printer

 print_array_header
uvm_printer

 print_array_range
uvm_printer

 print_catcher
uvm_report_catcher

 print_config
uvm_component

 print_config_settings
uvm_component

 print_config_with_audit
uvm_component

 print_field
uvm_printer

 print_field_int
uvm_printer

 print_generic
uvm_printer

 print_msg
uvm_comparer

 print_object
uvm_printer

 print_override_info
uvm_component

 print_real
uvm_printer

 print_resources
uvm_resource_pool

 print_string
uvm_printer

 print_time
uvm_printer

 print_topology
uvm_root

 process_report_message
uvm_report_handler

 push_back
uvm_queue#(T)

 push_front
uvm_queue#(T)

 put

UVM 1.2 Class Reference 898

uvm_sequencer#(REQ,RSP)
uvm_sqr_if_base#(REQ,RSP)
uvm_tlm_if_base#(T1,T2)

 put_response
uvm_sqr_if_base#(REQ,RSP)

R
 raise_objection

uvm_objection
uvm_phase

 raised
uvm_component
uvm_objection
uvm_objection_callback

 read
uvm_mem
uvm_mem_region
uvm_reg
uvm_reg_backdoor
uvm_reg_field
uvm_reg_fifo
uvm_resource#(T)
uvm_vreg
uvm_vreg_field

 read_by_name
uvm_resource_db

 read_by_type
uvm_resource_db

 read_func
uvm_reg_backdoor

 read_mem
uvm_reg_sequence

 read_mem_by_name
uvm_reg_block

 read_reg
uvm_reg_sequence

 read_reg_by_name
uvm_reg_block

 reconfigure
uvm_mem_mam

 record
uvm_object

 record_error_tr
uvm_component

 record_event_tr
uvm_component

 record_field
uvm_recorder

 record_field_int
uvm_recorder

UVM 1.2 Class Reference 899

 record_field_real
uvm_recorder

 record_generic
uvm_recorder

 record_object
uvm_recorder

 record_read_access
uvm_resource_base

 record_string
uvm_recorder

 record_time
uvm_recorder

 record_write_access
uvm_resource_base

 reg2bus
uvm_reg_adapter
uvm_reg_tlm_adapter

 register
uvm_default_factory
uvm_factory

 release_all_regions
uvm_mem_mam

 release_region
uvm_mem_mam
uvm_mem_region
uvm_vreg

 remove
uvm_heartbeat
uvm_reg_read_only_cbs
uvm_reg_write_only_cbs

 remove_sequence
uvm_sequence_library

 report_phase
uvm_component

 report_summarize
uvm_default_report_server
uvm_report_server

 request_region
uvm_mem_mam

 reseed
uvm_object

 reserve_region
uvm_mem_mam

 reset
uvm_barrier
uvm_event_base
uvm_reg
uvm_reg_block
uvm_reg_field
uvm_reg_map
uvm_tlm_time
uvm_vreg

UVM 1.2 Class Reference 900

 reset_blk
uvm_mem_access_seq
uvm_mem_walk_seq
uvm_reg_access_seq
uvm_reg_bit_bash_seq
uvm_reg_hw_reset_seq
uvm_reg_mem_shared_access_seq

 reset_phase
uvm_component

 reset_quit_count
uvm_default_report_server

 reset_report_handler
uvm_report_object

 reset_severity_counts
uvm_default_report_server

 resolve_bindings
uvm_component
uvm_port_base#(IF)

 response_handler
uvm_sequence_base

 resume
uvm_component

 run_phase
uvm_component
uvm_push_sequencer#(REQ,RSP)

 run_test
Global
uvm_root

UVM 1.2 Class Reference 901

Method Index
$#! · 0-9 · A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y ·

Z

S
 sample

uvm_mem
uvm_reg
uvm_reg_block

 sample_values
uvm_reg
uvm_reg_block

 select_sequence
uvm_sequence_library

 send_request
uvm_sequence#(REQ,RSP)
uvm_sequence_base
uvm_sequencer_base
uvm_sequencer_param_base#(REQ,RSP)

 set
uvm_config_db
uvm_get_to_lock_dap
uvm_hdl_path_concat
uvm_link_base
uvm_reg
uvm_reg_field
uvm_reg_fifo
uvm_resource#(T)
uvm_resource_db
uvm_resource_pool
uvm_set_before_get_dap
uvm_set_get_dap_base
uvm_simple_lock_dap

 set priority
uvm_resource#(T)
uvm_resource_base

 set_abstime
uvm_tlm_time

 set_access
uvm_reg_field

 set_action
uvm_report_catcher
uvm_report_message
uvm_report_message_element_base

 set_address
uvm_tlm_generic_payload

 set_anonymous
uvm_resource_db

 set_arbitration
uvm_sequencer_base

 set_auto_predict

UVM 1.2 Class Reference 902

uvm_reg_map
 set_auto_reset

uvm_barrier
 set_automatic_phase_objection

uvm_sequence_base
 set_backdoor

uvm_mem
uvm_reg
uvm_reg_block

 set_base_addr
uvm_reg_map

 set_byte_enable
uvm_tlm_generic_payload

 set_byte_enable_length
uvm_tlm_generic_payload

 set_check_on_read
uvm_reg_map

 set_command
uvm_tlm_generic_payload

 set_compare
uvm_reg_field
uvm_reg_fifo

 set_component_visitor
uvm_coreservice_t
uvm_default_coreservice_t

 set_context
uvm_report_catcher
uvm_report_message

 set_coverage
uvm_mem
uvm_reg
uvm_reg_block

 set_data
uvm_tlm_generic_payload

 set_data_length
uvm_tlm_generic_payload

 set_default
uvm_resource_db

 set_default_hdl_path
uvm_reg_block
uvm_reg_file

 set_default_index
uvm_port_base#(IF)

 set_default_map
uvm_reg_block

 set_default_tr_database
uvm_coreservice_t
uvm_default_coreservice_t

 set_depth
uvm_sequence_item

 set_dmi_allowed
uvm_tlm_generic_payload

UVM 1.2 Class Reference 903

 set_domain
uvm_component

 set_drain_time
uvm_objection

 set_extension
uvm_tlm_generic_payload

 set_factory
uvm_coreservice_t
uvm_default_coreservice_t

 set_file
uvm_report_message

 set_file_name
uvm_text_tr_database

 set_filename
uvm_report_message

 set_frontdoor
uvm_mem
uvm_reg

 set_hdl_path_root
uvm_reg_block

 set_heartbeat
uvm_heartbeat

 set_id
uvm_report_catcher
uvm_report_message

 set_id_count
uvm_default_report_server
uvm_report_server

 set_id_info
uvm_sequence_item

 set_initiator
uvm_transaction

 set_inst_override
uvm_component
uvm_component_registry#(T,Tname)
uvm_object_registry#(T,Tname)

 set_inst_override_by_name
uvm_default_factory
uvm_factory

 set_inst_override_by_type
uvm_component
uvm_default_factory
uvm_factory

 set_int_local
uvm_object

 set_item_context
uvm_sequence_item

 set_jump_phase
uvm_phase

 set_lhs
uvm_link_base

UVM 1.2 Class Reference 904

 set_line
uvm_report_message

 set_max_quit_count
uvm_default_report_server
uvm_report_server

 set_max_zero_time_wait_relevant_count
uvm_sequencer_base

 set_message
uvm_report_catcher
uvm_report_message

 set_message_database
uvm_default_report_server
uvm_report_server

 set_mode
uvm_heartbeat

 set_name
uvm_object
uvm_report_message_element_base

 set_name_override
uvm_resource_pool

 set_num_last_reqs
uvm_sequencer_param_base#(REQ,RSP)

 set_num_last_rsps
uvm_sequencer_param_base#(REQ,RSP)

 set_object_local
uvm_object

 set_offset
uvm_mem
uvm_reg

 set_override
uvm_resource#(T)
uvm_resource_pool

 set_parent_sequence
uvm_sequence_item

 set_phase_imp
uvm_component

 set_priority
uvm_resource_pool
uvm_sequence_base

 set_priority_name
uvm_resource_pool

 set_priority_type
uvm_resource_pool

 set_propagate_mode
uvm_objection

 set_quit_count
uvm_default_report_server
uvm_report_server

 set_read
uvm_tlm_generic_payload

 set_read_only
uvm_resource_base

UVM 1.2 Class Reference 905

 set_report_default_file
uvm_report_object

 set_report_default_file_hier
uvm_component

 set_report_handler
uvm_report_message
uvm_report_object

 set_report_id_action
uvm_report_object

 set_report_id_action_hier
uvm_component

 set_report_id_file
uvm_report_object

 set_report_id_file_hier
uvm_component

 set_report_id_verbosity
uvm_report_object

 set_report_id_verbosity_hier
uvm_component

 set_report_message
uvm_report_message

 set_report_object
uvm_report_message

 set_report_server
uvm_coreservice_t
uvm_default_coreservice_t
uvm_report_message

 set_report_severity_action
uvm_report_object

 set_report_severity_action_hier
uvm_component

 set_report_severity_file
uvm_report_object

 set_report_severity_file_hier
uvm_component

 set_report_severity_id_action
uvm_report_object

 set_report_severity_id_action_hier
uvm_component

 set_report_severity_id_file
uvm_report_object

 set_report_severity_id_file_hier
uvm_component

 set_report_severity_id_override
uvm_report_object

 set_report_severity_id_verbosity
uvm_report_object

 set_report_severity_id_verbosity_hier
uvm_component

 set_report_severity_override
uvm_report_object

UVM 1.2 Class Reference 906

 set_report_verbosity_level
uvm_report_object

 set_report_verbosity_level_hier
uvm_component

 set_reset
uvm_reg
uvm_reg_field

 set_response_queue_depth
uvm_sequence_base

 set_response_queue_error_report_disabled
uvm_sequence_base

 set_response_status
uvm_tlm_generic_payload

 set_rhs
uvm_link_base

 set_scope
uvm_resource_base

 set_sequencer
uvm_reg_map
uvm_sequence_item

 set_server
uvm_report_server

 set_severity
uvm_report_catcher
uvm_report_message

 set_severity_count
uvm_default_report_server
uvm_report_server

 set_starting_phase
uvm_sequence_base

 set_streaming_width
uvm_tlm_generic_payload

 set_string_local
uvm_object

 set_submap_offset
uvm_reg_map

 set_threshold
uvm_barrier

 set_time_resolution
uvm_tlm_time

 set_timeout
uvm_root

 set_transaction_id
uvm_transaction

 set_transaction_order_policy
uvm_reg_map

 set_type_override
uvm_component
uvm_component_registry#(T,Tname)
uvm_object_registry#(T,Tname)
uvm_resource_pool

UVM 1.2 Class Reference 907

 set_type_override_by_name
uvm_default_factory
uvm_factory

 set_type_override_by_type
uvm_component
uvm_default_factory
uvm_factory

 set_use_sequence_info
uvm_sequence_item

 set_value
uvm_report_message_int_element
uvm_report_message_object_element
uvm_report_message_string_element

 set_verbosity
uvm_report_catcher
uvm_report_message

 set_volatility
uvm_reg_field

 set_write
uvm_tlm_generic_payload

 shutdown_phase
uvm_component

 size
uvm_port_base#(IF)
uvm_queue#(T)
uvm_reg_fifo
uvm_report_message_element_container
uvm_tlm_fifo#(T)

 sort_by_precedence
uvm_resource_pool

 spell_check
uvm_resource_pool

 sprint
uvm_object

 start
uvm_heartbeat
uvm_sequence_base

 start_item
uvm_sequence_base

 start_of_simulation_phase
uvm_component

 start_phase_sequence
uvm_sequencer_base

 stop
uvm_heartbeat

 stop_phase_sequence
uvm_sequencer_base

 stop_sequences
uvm_sequencer#(REQ,RSP)
uvm_sequencer_base

 stop_stimulus_generation
uvm_random_stimulus#(T)

UVM 1.2 Class Reference 908

 summarize
uvm_report_catcher

 suspend
uvm_component

 sync
uvm_phase

T
 trace_mode

uvm_objection
 transport

uvm_tlm_if_base#(T1,T2)
 traverse

uvm_bottomup_phase
uvm_task_phase
uvm_topdown_phase

 trigger
uvm_event#(T)

 try_get
uvm_get_to_lock_dap
uvm_set_before_get_dap
uvm_set_get_dap_base
uvm_simple_lock_dap
uvm_tlm_if_base#(T1,T2)

 try_next_item
uvm_sequencer#(REQ,RSP)
uvm_sqr_if_base#(REQ,RSP)

 try_peek
uvm_tlm_if_base#(T1,T2)

 try_put
uvm_tlm_if_base#(T1,T2)

 try_set
uvm_get_to_lock_dap
uvm_set_before_get_dap
uvm_set_get_dap_base
uvm_simple_lock_dap

 turn_off_auditing
uvm_resource_options

 turn_off_tracing
uvm_config_db_options
uvm_resource_db_options

 turn_on_auditing
uvm_resource_options

 turn_on_tracing
uvm_config_db_options
uvm_resource_db_options

UVM 1.2 Class Reference 909

Method Index
$#! · 0-9 · A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y ·

Z

U
 ungrab

uvm_sequence_base
uvm_sequencer_base

 unlock
uvm_sequence_base
uvm_sequencer_base
uvm_simple_lock_dap

 unpack
uvm_object

 unpack_bits
uvm_packer

 unpack_bytes
uvm_object
uvm_packer

 unpack_field
uvm_packer

 unpack_field_int
uvm_packer

 unpack_ints
uvm_object
uvm_packer

 unpack_object
uvm_packer

 unpack_real
uvm_packer

 unpack_string
uvm_packer

 unpack_time
uvm_packer

 unsync
uvm_phase

 update
uvm_reg
uvm_reg_block
uvm_reg_fifo

 update_reg
uvm_reg_sequence

 use_record_attribute
uvm_recorder

 use_response_handler
uvm_sequence_base

 used
uvm_tlm_fifo#(T)

UVM 1.2 Class Reference 910

 user_priority_arbitration
uvm_sequencer_base

 uvm_bits_to_string
 uvm_get_report_object

Global
uvm_report_object

 uvm_hdl_check_path
 uvm_hdl_deposit
 uvm_hdl_force
 uvm_hdl_force_time
 uvm_hdl_read
 uvm_hdl_release
 uvm_hdl_release_and_read
 uvm_is_match
 uvm_process_report_message

Global
uvm_report_object

 uvm_report
Global
uvm_report_catcher
uvm_report_object
uvm_sequence_item

 uvm_report_enabled
Global
uvm_report_object

 uvm_report_error
Global
uvm_report_catcher
uvm_report_object
uvm_sequence_item

 uvm_report_fatal
Global
uvm_report_catcher
uvm_report_object
uvm_sequence_item

 uvm_report_info
Global
uvm_report_catcher
uvm_report_object
uvm_sequence_item

 uvm_report_warning
Global
uvm_report_catcher
uvm_report_object
uvm_sequence_item

 uvm_split_string
 uvm_string_to_bits
 uvm_wait_for_nba_region

V
 visit

uvm_visitor#(NODE)

UVM 1.2 Class Reference 911

W
 wait_for

uvm_barrier
uvm_objection

 wait_for_change
uvm_reg_backdoor

 wait_for_grant
uvm_sequence_base
uvm_sequencer_base

 wait_for_item_done
uvm_sequence_base
uvm_sequencer_base

 wait_for_relevant
uvm_sequence_base

 wait_for_sequence_state
uvm_sequence_base

 wait_for_sequences
uvm_sequencer#(REQ,RSP)
uvm_sequencer_base
uvm_sqr_if_base#(REQ,RSP)

 wait_for_state
uvm_phase

 wait_modified
uvm_config_db
uvm_resource_base

 wait_off
uvm_event_base

 wait_on
uvm_event_base

 wait_ptrigger
uvm_event_base

 wait_ptrigger_data
uvm_event#(T)

 wait_trigger
uvm_event_base

 wait_trigger_data
uvm_event#(T)

 write
uvm_analysis_port
uvm_mem
uvm_mem_region
uvm_reg
uvm_reg_backdoor
uvm_reg_field
uvm_reg_fifo
uvm_resource#(T)
uvm_subscriber
uvm_tlm_if_base#(T1,T2)
uvm_vreg
uvm_vreg_field

UVM 1.2 Class Reference 912

 write_attribute
uvm_text_recorder

 write_attribute_int
uvm_text_recorder

 write_by_name
uvm_resource_db

 write_by_type
uvm_resource_db

 write_mem
uvm_reg_sequence

 write_mem_by_name
uvm_reg_block

 write_reg
uvm_reg_sequence

 write_reg_by_name
uvm_reg_block

UVM 1.2 Class Reference 913

Type Index
$#! · 0-9 · A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z

A
 alloc_mode_e

uvm_mem_mam

L
 locality_e

uvm_mem_mam

U
 uvm_access_e
 uvm_action
 uvm_active_passive_enum
 uvm_bitstream_t
 uvm_check_e
 uvm_coverage_model_e
 uvm_elem_kind_e
 uvm_endianness_e
 uvm_hdl_path_slice
 uvm_hier_e
 uvm_integral_t
 uvm_mem_cb
 uvm_mem_cb_iter
 uvm_objection_event
 uvm_path_e
 uvm_phase_state
 uvm_phase_type
 uvm_port_type_e
 uvm_predict_e
 uvm_radix_enum
 uvm_recursion_policy_enum
 uvm_reg_addr_logic_t
 uvm_reg_addr_t
 uvm_reg_bd_cb
 uvm_reg_bd_cb_iter
 uvm_reg_byte_en_t
 uvm_reg_cb
 uvm_reg_cb_iter
 uvm_reg_cvr_t
 uvm_reg_data_logic_t
 uvm_reg_data_t
 uvm_reg_field_cb
 uvm_reg_field_cb_iter
 uvm_reg_mem_tests_e
 uvm_sequence_lib_mode

UVM 1.2 Class Reference 914

 uvm_sequence_state_enum
 uvm_sequencer_arb_mode
 uvm_severity
 uvm_status_e
 uvm_tlm_command_e
 uvm_tlm_phase_e
 uvm_tlm_response_status_e
 uvm_tlm_sync_e
 uvm_verbosity
 uvm_vreg_cb

uvm_vreg_cbs
 uvm_vreg_cb_iter

uvm_vreg_cbs
 uvm_vreg_field_cb

uvm_vreg_field_cbs
 uvm_vreg_field_cb_iter

uvm_vreg_field_cbs
 uvm_wait_op

UVM 1.2 Class Reference 915

Variable Index
$#! · 0-9 · A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y ·

Z

$#!
 +UVM_CONFIG_DB_TRACE

uvm_cmdline_processor
 +UVM_DUMP_CMDLINE_ARGS

uvm_cmdline_processor
 +UVM_MAX_QUIT_COUNT

uvm_cmdline_processor
 +UVM_OBJECTION_TRACE

uvm_cmdline_processor
 +UVM_PHASE_TRACE

uvm_cmdline_processor
 +UVM_RESOURCE_DB_TRACE

uvm_cmdline_processor
 +uvm_set_action

uvm_cmdline_processor
 +uvm_set_config_int

uvm_cmdline_processor
 +uvm_set_config_string

uvm_cmdline_processor
 +uvm_set_default_sequence

uvm_cmdline_processor
 +uvm_set_inst_override

uvm_cmdline_processor
 +uvm_set_severity

uvm_cmdline_processor
 +uvm_set_type_override

uvm_cmdline_processor
 +uvm_set_verbosity

uvm_cmdline_processor
 +UVM_TESTNAME

uvm_cmdline_processor
 +UVM_TIMEOUT

uvm_cmdline_processor
 +UVM_VERBOSITY

uvm_cmdline_processor

A
 abstract

uvm_comparer
uvm_packer
uvm_recorder

UVM 1.2 Class Reference 916

 abstractions
uvm_reg_mem_hdl_paths_seq

 adapter
uvm_reg_predictor
uvm_reg_sequence

 addr
uvm_reg_bus_op

B
 bd_kind

uvm_reg_item
 begin_elements

uvm_printer_knobs
 begin_event

uvm_transaction
 big_endian

uvm_packer
 bin_radix

uvm_printer_knobs
 body

uvm_reg_hw_reset_seq
 bus_in

uvm_reg_predictor
 byte_en

uvm_reg_bus_op

C
 check_type

uvm_comparer

D
 data

uvm_reg_bus_op
 dec_radix

uvm_printer_knobs
 default_alloc

uvm_mem_mam
 default_map

uvm_reg_block
 default_path

uvm_reg_block
 default_precedence

uvm_resource_base

UVM 1.2 Class Reference 917

 default_radix
uvm_printer_knobs
uvm_recorder

 depth
uvm_printer_knobs

 do_not_randomize
uvm_sequence_base

E
 element

uvm_reg_item
 element_kind

uvm_reg_item
 enable_print_topology

uvm_root
 enable_report_id_count_summary

uvm_default_report_server
 end_elements

uvm_printer_knobs
 end_event

uvm_transaction
 end_offset

uvm_mem_mam_cfg
 events

uvm_transaction
 extension

uvm_reg_item

F
 fifo

uvm_reg_fifo
 finish_on_completion

uvm_root
 fname

uvm_reg_item
 footer

uvm_printer_knobs
 full_name

uvm_printer_knobs

H
 header

UVM 1.2 Class Reference 918

uvm_printer_knobs
 hex_radix

uvm_printer_knobs

I
 identifier

uvm_printer_knobs
uvm_recorder

 in_use
uvm_mem_mam_policy

 indent
uvm_printer_knobs

K
 kind

uvm_reg_bus_op
uvm_reg_item

 knobs
uvm_printer

L
 len

uvm_mem_mam_policy
 lineno

uvm_reg_item
 local_map

uvm_reg_item
 locality

uvm_mem_mam_cfg

M
 m_address

uvm_tlm_generic_payload
 m_byte_enable

uvm_tlm_generic_payload
 m_byte_enable_length

uvm_tlm_generic_payload
 m_command

uvm_tlm_generic_payload
 m_data

UVM 1.2 Class Reference 919

uvm_tlm_generic_payload
 m_dmi

uvm_tlm_generic_payload
 m_length

uvm_tlm_generic_payload
 m_response_status

uvm_tlm_generic_payload
 m_streaming_width

uvm_tlm_generic_payload
 mam

uvm_mem
 map

uvm_reg_item
uvm_reg_predictor

 max_offset
uvm_mem_mam_policy

 max_random_count
uvm_sequence_library

 mcd
uvm_printer_knobs

 mem
uvm_mem_shared_access_seq
uvm_mem_single_access_seq
uvm_mem_single_walk_seq

 mem_seq
uvm_mem_access_seq
uvm_mem_walk_seq
uvm_reg_mem_shared_access_seq

 min_offset
uvm_mem_mam_policy

 min_random_count
uvm_sequence_library

 miscompares
uvm_comparer

 mode
uvm_mem_mam_cfg

 model
uvm_mem_access_seq
uvm_mem_walk_seq
uvm_reg_access_seq
uvm_reg_bit_bash_seq
uvm_reg_hw_reset_seq
uvm_reg_mem_built_in_seq
uvm_reg_mem_shared_access_seq
uvm_reg_sequence

N
 n_bits

uvm_reg_bus_op

UVM 1.2 Class Reference 920

 n_bytes
uvm_mem_mam_cfg

 new
uvm_line_printer
uvm_table_printer
uvm_tree_printer

O
 oct_radix

uvm_printer_knobs
 offset

uvm_reg_item

P
 parent

uvm_reg_item
 parent_sequence

uvm_reg_adapter
 path

uvm_reg_item
 physical

uvm_comparer
uvm_packer
uvm_recorder

 policy
uvm_comparer

 precedence
uvm_resource_base

 prefix
uvm_printer_knobs

 print_config_matches
uvm_component

 print_enabled
uvm_component

 prior
uvm_reg_item

 provides_responses
uvm_reg_adapter

R
 record_all_messages

uvm_default_report_server
 recursion_policy

UVM 1.2 Class Reference 921

uvm_recorder
 reference

uvm_printer_knobs
 reg_ap

uvm_reg_predictor
 reg_seq

uvm_reg_access_seq
uvm_reg_bit_bash_seq
uvm_reg_mem_shared_access_seq

 reg_seqr
uvm_reg_sequence

 req
uvm_sequence#(REQ,RSP)

 result
uvm_comparer

 rg
uvm_reg_shared_access_seq
uvm_reg_single_access_seq
uvm_reg_single_bit_bash_seq

 rsp
uvm_sequence#(REQ,RSP)

 rw_info
uvm_reg_frontdoor

S
 select_rand

uvm_sequence_library
 select_randc

uvm_sequence_library
 selection_mode

uvm_sequence_library
 separator

uvm_printer_knobs
 seq_item_export

uvm_sequencer#(REQ,RSP)
 sequence_count

uvm_sequence_library
 sequencer

uvm_reg_frontdoor
 sequences_executed

uvm_sequence_library
 sev

uvm_comparer
 show_max

uvm_comparer
 show_radix

uvm_printer_knobs
 show_root

UVM 1.2 Class Reference 922

uvm_printer_knobs
 show_terminator

uvm_default_report_server
 show_verbosity

uvm_default_report_server
 size

uvm_printer_knobs
 slices

uvm_hdl_path_concat
 start_offset

uvm_mem_mam_policy
 status

uvm_reg_bus_op
uvm_reg_item

 supports_byte_enable
uvm_reg_adapter

T
 T1 first

uvm_built_in_pair#(T1,T2)
uvm_class_pair#(T1,T2)

 T2 second
uvm_built_in_pair#(T1,T2)
uvm_class_pair#(T1,T2)

 tests
uvm_reg_mem_built_in_seq

 top_levels
uvm_root

 tr_database
uvm_component

 type_name
uvm_printer_knobs

U
 unsigned_radix

uvm_printer_knobs
 use_metadata

uvm_packer
 use_uvm_seeding

uvm_object
 uvm_default_comparer
 uvm_default_line_printer
 uvm_default_packer
 uvm_default_printer
 uvm_default_table_printer
 uvm_default_tree_printer

UVM 1.2 Class Reference 923

 UVM_HDL_MAX_WIDTH
 uvm_top

uvm_root

V
 value

uvm_reg_field
uvm_reg_item

 verbosity
uvm_comparer

UVM 1.2 Class Reference 924

Constant Index
$#! · 0-9 · A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z

B
 BEGIN_REQ
 BEGIN_RESP

E
 END_REQ
 END_RESP

U
 UNINITIALIZED_PHASE
 UVM_ACTIVE
 UVM_ALL_DROPPED
 UVM_BACKDOOR
 UVM_BIG_ENDIAN
 UVM_BIG_FIFO
 UVM_BIN
 UVM_BODY
 UVM_CALL_HOOK
 UVM_CHECK
 UVM_COUNT
 UVM_CREATED
 UVM_CVR_ADDR_MAP
 UVM_CVR_ALL
 UVM_CVR_FIELD_VALS
 UVM_CVR_REG_BITS
 UVM_DEC
 UVM_DEEP
 UVM_DEFAULT_PATH
 UVM_DISPLAY
 UVM_DO_ALL_REG_MEM_TESTS
 UVM_DO_MEM_ACCESS
 UVM_DO_MEM_WALK
 UVM_DO_REG_ACCESS
 UVM_DO_REG_BIT_BASH
 UVM_DO_REG_HW_RESET
 UVM_DO_SHARED_ACCESS
 UVM_DROPPED
 UVM_ENDED
 UVM_ENUM
 UVM_EQ
 UVM_ERROR
 UVM_EXIT
 UVM_EXPORT
 UVM_FATAL
 UVM_FIELD

UVM 1.2 Class Reference 925

 UVM_FINISHED
 UVM_FRONTDOOR
 UVM_FULL
 UVM_GT
 UVM_GTE
 UVM_HAS_X
 UVM_HEX
 UVM_HIER
 UVM_HIGH
 UVM_IMPLEMENTATION
 UVM_INFO
 UVM_IS_OK
 UVM_LITTLE_ENDIAN
 UVM_LITTLE_FIFO
 UVM_LOG
 UVM_LOW
 UVM_LT
 UVM_LTE
 UVM_MEDIUM
 UVM_MEM
 UVM_NE
 UVM_NO_ACTION
 UVM_NO_CHECK
 UVM_NO_COVERAGE
 UVM_NO_ENDIAN
 UVM_NO_HIER
 UVM_NONE
 UVM_NOT_OK
 UVM_OCT
 UVM_PASSIVE
 UVM_PHASE_CLEANUP
 UVM_PHASE_DOMAIN
 UVM_PHASE_DONE
 UVM_PHASE_DORMANT
 UVM_PHASE_ENDED
 UVM_PHASE_EXECUTING
 UVM_PHASE_IMP
 UVM_PHASE_JUMPING
 UVM_PHASE_NODE
 UVM_PHASE_READY_TO_END
 UVM_PHASE_SCHEDULE
 UVM_PHASE_SCHEDULED
 UVM_PHASE_STARTED
 UVM_PHASE_SYNCING
 UVM_PHASE_TERMINAL
 UVM_PHASE_UNINITIALIZED
 UVM_PORT
 UVM_POST_BODY
 UVM_POST_START
 UVM_PRE_BODY
 UVM_PRE_START
 UVM_PREDICT
 UVM_PREDICT_DIRECT
 UVM_PREDICT_READ
 UVM_PREDICT_WRITE
 UVM_RAISED
 UVM_READ
 UVM_REAL
 UVM_REAL_DEC
 UVM_REAL_EXP

UVM 1.2 Class Reference 926

 UVM_REFERENCE
 UVM_REG
 UVM_RM_RECORD
 UVM_SEQ_ARB_FIFO
 UVM_SEQ_ARB_RANDOM
 UVM_SEQ_ARB_STRICT_FIFO
 UVM_SEQ_ARB_STRICT_RANDOM
 UVM_SEQ_ARB_USER
 UVM_SEQ_ARB_WEIGHTED
 UVM_SEQ_LIB_ITEM
 UVM_SEQ_LIB_RAND
 UVM_SEQ_LIB_RANDC
 UVM_SEQ_LIB_USER
 UVM_SHALLOW
 UVM_STOP
 UVM_STOPPED
 UVM_STRING
 UVM_TIME
 UVM_TLM_ACCEPTED
 UVM_TLM_ADDRESS_ERROR_RESPONSE
 UVM_TLM_BURST_ERROR_RESPONSE
 UVM_TLM_BYTE_ENABLE_ERROR_RESPONSE
 UVM_TLM_COMMAND_ERROR_RESPONSE
 UVM_TLM_COMPLETED
 UVM_TLM_GENERIC_ERROR_RESPONSE
 UVM_TLM_IGNORE_COMMAND
 UVM_TLM_INCOMPLETE_RESPONSE
 UVM_TLM_OK_RESPONSE
 UVM_TLM_READ_COMMAND
 UVM_TLM_UPDATED
 UVM_TLM_WRITE_COMMAND
 UVM_UNFORMAT2
 UVM_UNFORMAT4
 UVM_UNSIGNED
 UVM_WARNING
 UVM_WRITE

UVM 1.2 Class Reference 927

Port Index
$#! · 0-9 · A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z

A
 after_export

uvm_algorithmic_comparator#(BEFORE,AFTER,TRANSFORMER)
uvm_in_order_comparator#(T,comp_type,convert,pair_type)

 analysis_export
uvm_subscriber

 analysis_export#(T)
uvm_tlm_analysis_fifo#(T)

B
 before_export

uvm_algorithmic_comparator#(BEFORE,AFTER,TRANSFORMER)
uvm_in_order_comparator#(T,comp_type,convert,pair_type)

 blocking_put_port
uvm_random_stimulus#(T)

G
 get_ap

uvm_tlm_fifo_base#(T)
 get_peek_export

uvm_tlm_fifo_base#(T)
 get_peek_request_export

uvm_tlm_req_rsp_channel#(REQ,RSP)
 get_peek_response_export

uvm_tlm_req_rsp_channel#(REQ,RSP)

M
 master_export

uvm_tlm_req_rsp_channel#(REQ,RSP)

P
 pair_ap

uvm_in_order_comparator#(T,comp_type,convert,pair_type)
 put_ap

UVM 1.2 Class Reference 928

uvm_tlm_fifo_base#(T)
 put_export

uvm_tlm_fifo_base#(T)
 put_request_export

uvm_tlm_req_rsp_channel#(REQ,RSP)
 put_response_export

uvm_tlm_req_rsp_channel#(REQ,RSP)

R
 req_export

uvm_push_driver#(REQ,RSP)
 req_port

uvm_push_sequencer#(REQ,RSP)
 request_ap

uvm_tlm_req_rsp_channel#(REQ,RSP)
 response_ap

uvm_tlm_req_rsp_channel#(REQ,RSP)
 rsp_export

uvm_sequencer_param_base#(REQ,RSP)
 rsp_port

uvm_driver#(REQ,RSP)
uvm_push_driver#(REQ,RSP)

S
 seq_item_port

uvm_driver#(REQ,RSP)
 slave_export

uvm_tlm_req_rsp_channel#(REQ,RSP)

T
 transport_export

uvm_tlm_transport_channel#(REQ,RSP)

UVM 1.2 Class Reference 929

	UVM Class 1.2 Reference
	Contents

	Overview
	Scope
	Purpose

	Normative References
	Definitions, Acronyms, and Abbreviations
	Definitions
	Acronyms and Abbreviations

	Classes and Utilities
	Base Classes
	Miscellaneous Structures
	uvm_object
	uvm_transaction
	uvm_root
	Port Base Classes

	Reporting Classes
	uvm_report_message
	uvm_report_object
	uvm_report_handler
	uvm_report_server
	uvm_report_catcher

	Recording Classes
	uvm_tr_database
	uvm_tr_stream

	Factory Classes
	uvm_registry
	uvm_factory

	Phasing
	uvm_phase
	uvm_domain
	uvm_bottomup_phase
	uvm_task_phase
	uvm_topdown_phase
	UVM Common Phases
	UVM Run-Time Phases
	User-Defined Phases

	Configuration and Resource Classes
	uvm_resource
	uvm_resource_db
	uvm_config_db

	Synchronization Classes
	uvm_event
	uvm_event_callback
	uvm_barrier
	uvm_objection
	uvm_heartbeat
	uvm_callback

	Container Classes
	uvm_pool
	uvm_queue

	TLM Interfaces
	TLM1
	Interfaces
	Exports
	Ports
	Implementation Classes
	FIFOs
	FIFO Base
	Channel Classes
	Sequence Item Pull Ports
	Sequencer Base

	TLM2
	Interface Masks
	Types
	Generic Payload & Extensions
	Socket Base Classes
	Sockets
	Export Classes
	Interface Implementations
	Ports
	uvm_tlm2_time

	Analysis Ports

	Components
	uvm_component
	uvm_test
	uvm_env
	uvm_agent
	uvm_monitor
	uvm_scoreboard
	uvm_driver
	uvm_push_driver
	uvm_random_stimulus
	uvm_subscriber
	Comparators
	uvm_in_order_comparator
	uvm_algorithmic_comparator
	uvm_pair
	uvm_policies

	Sequencers
	uvm_sequencer_base
	uvm_sequencer_param_base
	uvm_sequencer
	uvm_push_sequencer

	Sequences
	uvm_sequence_item
	uvm_sequence_base
	uvm_sequence
	uvm_sequence_library

	Macros and Defines
	Report Macros
	Component and Object
	Sequence and Do Action
	Callback Macros
	TLM Macros
	Register Defines
	Version Defines

	Policies
	uvm_printer
	uvm_comparer
	uvm_recorder
	uvm_packer
	Links
	Data Access
	Set / Get Base
	Simple Lock
	Get To Lock
	Set Before Get

	Register Layer
	Overview
	Global Declarations
	Register Model
	Blocks
	Address Maps
	Register Files
	Registers
	Fields
	Memories
	Indirect Registers
	FIFO Registers
	Virtual Registers
	Virtual Fields
	Callbacks
	Memory Allocation Manager

	DUT Integration
	Generic Register Operation Descriptors
	Register Model Adaptor
	Explicit Register Predictor
	Register Sequences
	Backdoors
	HDL Access

	Test Sequences
	Run All Built-In
	Reset
	Register Bit Bash
	Register Access
	Shared Access
	Memory Access
	Memory Walk
	HDL Paths Checking

	Command Line Processor
	CLP Overview
	uvm_cmdline_processor

	Globals
	Types and Enumerations
	Globals
	Core Service
	Traversal

	Bibliography
	Index
	Everything
	Classes
	Files
	Macros
	Methods
	Types
	Variables
	Constants
	Ports

