
Copyright © 2023 Accellera. All rights reserved.

Portable Test and Stimulus Standard
Version 2.1

October 2023

Copyright © 2023 Accellera. All rights reserved.
2

Portable Test and Stimulus Standard 2.1 — October 2023

Abstract: The definition of the language syntax and accompanying semantics for the specification of
verification intent and behaviors reusable across multiple target platforms and allowing for the automation of
test generation is provided. This standard provides a declarative environment designed for abstract behavioral
description using actions, their inputs, outputs, and resource dependencies, and their composition into use
cases including data and control flows. These use cases capture verification intent that can be analyzed to
produce a wide range of possible legal scenarios for multiple execution platforms. It also includes a
preliminary mechanism to capture the programmer’s view of a peripheral device, independent of the
underlying platform, further enhancing portability.

Keywords: behavioral model, constrained randomization, functional verification, hardware-software inter-
face, portability, PSS, test generation.

Copyright © 2023 Accellera. All rights reserved.
3

Portable Test and Stimulus Standard 2.1 — October 2023

Notices

Accellera Systems Initiative (Accellera) Standards documents are developed within Accellera and the
Technical Committee of Accellera. Accellera develops its standards through a consensus development pro-
cess, approved by its members and board of directors, which brings together volunteers representing varied
viewpoints and interests to achieve the final product. Volunteers are members of Accellera and serve with-
out compensation. While Accellera administers the process and establishes rules to promote fairness in the
consensus development process, Accellera does not independently evaluate, test, or verify the accuracy of
any of the information contained in its standards.

Use of an Accellera Standard is wholly voluntary. Accellera disclaims liability for any personal injury, prop-
erty or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory,
directly or indirectly resulting from the publication, use of, or reliance upon this, or any other Accellera
Standard document.

Accellera does not warrant or represent the accuracy or content of the material contained herein, and
expressly disclaims any express or implied warranty, including any implied warranty of merchantability or
suitability for a specific purpose, or that the use of the material contained herein is free from patent infringe-
ment. Accellera Standards documents are supplied "AS IS."

The existence of an Accellera Standard does not imply that there are no other ways to produce, test, mea-
sure, purchase, market, or provide other goods and services related to the scope of an Accellera Standard.
Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change due
to developments in the state of the art and comments received from users of the standard. Every Accellera
Standard is subjected to review periodically for revision and update. Users are cautioned to check to deter-
mine that they have the latest edition of any Accellera Standard.

In publishing and making this document available, Accellera is not suggesting or rendering professional or
other services for, or on behalf of, any person or entity. Nor is Accellera undertaking to perform any duty
owed by any other person or entity to another. Any person utilizing this, and any other Accellera Standards
document, should rely upon the advice of a competent professional in determining the exercise of reasonable
care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they
relate to specific applications. When the need for interpretations is brought to the attention of Accellera,
Accellera will initiate action to prepare appropriate responses. Since Accellera Standards represent a consen-
sus of concerned interests, it is important to ensure that any interpretation has also received the concurrence
of a balance of interests. For this reason, Accellera and the members of its Technical Committees are not
able to provide an instant response to interpretation requests except in those cases where the matter has pre-
viously received formal consideration.

Comments for revision of Accellera Standards are welcome from any interested party, regardless of mem-
bership affiliation with Accellera. Suggestions for changes in documents should be in the form of a proposed
change of text, together with appropriate supporting comments. Comments on standards and requests for
interpretations should be addressed to:

Accellera Systems Initiative.
8698 Elk Grove Blvd Suite 1, #114
Elk Grove, CA 95624
USA

Note: Attention is called to the possibility that implementation of this standard may require use of
subject matter covered by patent rights. By publication of this standard, no position is taken with
respect to the existence or validity of any patent rights in connection therewith. Accellera shall not

Copyright © 2023 Accellera. All rights reserved.
4

Portable Test and Stimulus Standard 2.1 — October 2023

be responsible for identifying patents for which a license may be required by an Accellera standard
or for conducting inquiries into the legal validity or scope of those patents that are brought to its
attention.

Accellera is the sole entity that may authorize the use of Accellera-owned certification marks and/or trade-
marks to indicate compliance with the materials set forth herein.

Authorization to photocopy portions of any individual standard for internal or personal use must be granted
by Accellera, provided that permission is obtained from and any required fee is paid to Accellera. To arrange
for authorization please contact Lynn Garibaldi, Accellera Systems Initiative, 8698 Elk Grove Blvd Suite 1,
#114, Elk Grove, CA 95624, phone (916) 670-1056, e-mail lynn@accellera.org. Permission to photocopy
portions of any individual standard for educational classroom use can also be obtained from Accellera.

Suggestions for improvements to the Portable Test and Stimulus Standard 2.1 are welcome. They should be
posted to the PSS Community Forum at:

https://forums.accellera.org/forum/44-portable-stimulus-discussion/

The current Working Group web page is:
http://www.accellera.org/activities/working-groups/portable-stimulus

Copyright © 2023 Accellera. All rights reserved.
5

Portable Test and Stimulus Standard 2.1 — October 2023

Introduction

The definition of a Portable Test and Stimulus Standard (PSS) will enable user companies to select the best
tool(s) from competing vendors to meet their verification needs. Creation of a specification language for
abstract use-cases is required. The goal is to allow stimulus and tests, including coverage and results
checking, to be specified at a high level of abstraction, suitable for tools to interpret and create scenarios and
generate implementations in a variety of languages and tool environments, with consistent behavior across
multiple implementations.

This revision adds new features, corrects errors, clarifies aspects of the language and semantic
definitions, removes some features, and reorganizes some sections relative to version 2.0 of the Portable
Test and Stimulus Standard (April 2021). The most substantial feature removed relative to version 2.0 is the
use of C++ as an input format for PSS.

The new features include (by section number):

Section(s) Description

4.6, 7.3,
23.5

Floating-point data types and associated math functions

7.5.1 Added the ability to specify a base data type for enumerated types

7.9.3.4,
16.4.2

Support for randomizing the content of the list collection type

12.3.7 Support for specifying atomic regions protected from interference by inferred actions

15.3.1 Convenience features to assist with static binding to arrays of components

16.1.11 Support for specifying value distributions across expressions of random variables

16.4.6,
21.7.12,
23.4

Support for randomizing data inside procedural functions and exec blocks

22.2.1 Support for conditional compilation directives in covergroups, exec blocks, constraints, and override
blocks

21.1.2 Addition of a pre_body solve-platform exec block, in which assignment of memory allocation and
executors is guaranteed to be complete

21.2 Support for static functions in component contexts

23.1 Functions for string formatting and output

23.2 Functions for operating on files

23.3 Functions for error reporting

23.7.3.1,
23.9.8

Support for associating a string tag with an address-space region, and retrieving the tag associated with
an address handle

23.9 Allow packed structs to contain Boolean fields, and enumerated types that specify a base data type

23.9.6,
23.9.7

Functions to query resolved memory-allocation addresses on the solve platform

23.9.9.5 Support user-specified address translation on a per-executor basis

23.10.1 Added register masked-write functions to simplifying writing individual register fields

Copyright © 2023 Accellera. All rights reserved.
6

Portable Test and Stimulus Standard 2.1 — October 2023

Participants

The Portable Stimulus Working Group (PSWG) is entity-based. At the time this standard was developed, the
PSWG had the following active participants:

Faris Khundakjie, Intel Corporation, Chair
Tom Fitzpatrick, Siemens EDA, Vice-Chair

Tom Anderson, AMIQ EDA, Secretary
Shalom Bresticker, Technical Editor

Advantest Europe GmbH: Maximilian Suckert
Agnisys, Inc.: Sudhir Bisht
AMD: Matthew Ballance, Prabhat Gupta
AMIQ EDA: Tom Anderson, Adrian Simionescu
Analog Devices, Inc.: David Brownell
Arteris, Inc.: Jamsheed Agahi
Breker Verification Systems, Inc.: Leigh Brady, Adnan Hamid, David Kelf
Cadence Design Systems, Inc.: Sergey Khaikin, Rodion Melnikov, Angelina Silver, Yuri Tsoglin,

Matan Vax
Intel Corporation: Jonathan Edwards, Faris Khundakjie
Qualcomm Incorporated: Tommy Brunansky, Santosh Kumar, Arjun Ashok Vazhayil
Siemens EDA: Tom Fitzpatrick
Synopsys, Inc.: Dmitry Korchemny, Hillel Miller
Vayavya Labs Pvt. Ltd.: Mohan G, Karthick Gururaj
Western Digital Corporation: Kuntal Nanshi

At the time of standardization, the PSWG had the following eligible voters:

Agnisys, Inc. Intel Corporation

AMD Qualcomm Incorporated

AMIQ EDA Siemens EDA

Arteris, Inc. Synopsys, Inc.

Breker Verification Systems, Inc. Vayavya Labs Pvt. Ltd.

Cadence Design Systems, Inc. Western Digital Corporation

Copyright © 2023 Accellera. All rights reserved.
7

Portable Test and Stimulus Standard 2.1 — October 2023

Contents

List of figures.. 17
List of tables.. 18
List of syntax excerpts .. 19
List of examples.. 22

1. Overview.. 28

1.1 Purpose ... 28
1.2 Language design considerations... 28
1.3 Modeling basics.. 29
1.4 Test realization ... 29
1.5 Conventions used ... 30

1.5.1 Visual cues (meta-syntax) ... 30
1.5.2 Notational conventions ... 31
1.5.3 Examples ... 31

1.6 Use of color in this standard... 31
1.7 Contents of this standard .. 31

2. References.. 33

3. Definitions, acronyms, and abbreviations.. 34

3.1 Definitions .. 34
3.2 Acronyms and abbreviations .. 35

4. Lexical conventions ... 36

4.1 Comments... 36
4.2 Identifiers ... 36
4.3 Escaped identifiers ... 36
4.4 Keywords ... 37
4.5 Operators .. 37
4.6 Numbers ... 38

4.6.1 Integer constants ... 39
4.6.2 Floating-point constants .. 40

4.7 String literals .. 40
4.7.1 Examples ... 42

4.8 Aggregate literals ... 42
4.8.1 Empty aggregate literal ... 42
4.8.2 Value list literals ... 42
4.8.3 Map literals ... 43
4.8.4 Structure literals .. 43
4.8.5 Nesting aggregate literals .. 44

5. Modeling concepts ... 45

5.1 Modeling data flow .. 46
5.1.1 Buffers ... 46
5.1.2 Streams .. 47
5.1.3 States ... 47
5.1.4 Data flow object pools .. 48

Copyright © 2023 Accellera. All rights reserved.
8

Portable Test and Stimulus Standard 2.1 — October 2023

5.2 Modeling system resources .. 48
5.2.1 Resource objects ... 48
5.2.2 Resource pools .. 48

5.3 Basic building blocks ... 49
5.3.1 Components and binding .. 49
5.3.2 Evaluation and inference ... 49

5.4 Constraints and inferencing.. 51
5.5 Summary .. 51

6. Execution semantic concepts ... 52

6.1 Overview .. 52
6.2 Assumptions of abstract scheduling... 52

6.2.1 Starting and ending action executions .. 52
6.2.2 Concurrency .. 52
6.2.3 Synchronized invocation ... 52

6.3 Scheduling concepts ... 53
6.3.1 Preliminary definitions .. 53
6.3.2 Sequential scheduling ... 54
6.3.3 Parallel scheduling .. 54
6.3.4 Concurrent scheduling .. 54

7. Data types... 55

7.1 General ... 55
7.1.1 Syntax ... 55

7.2 Integer types ... 56
7.2.1 Syntax ... 56
7.2.2 Examples ... 57

7.3 Floating-point types.. 57
7.3.1 Syntax ... 57
7.3.2 Cross-platform results ... 58

7.4 Booleans ... 58
7.5 Enumeration types.. 58

7.5.1 Syntax ... 58
7.5.2 Examples ... 60

7.6 Strings... 61
7.6.1 Syntax ... 61
7.6.2 Examples ... 61

7.7 Chandles ... 61
7.7.1 Syntax ... 62
7.7.2 Example .. 62

7.8 Structs... 63
7.8.1 Syntax ... 63
7.8.2 Examples ... 64

7.9 Collections.. 64
7.9.1 Syntax ... 64
7.9.2 Arrays .. 65
7.9.3 Lists ... 68
7.9.4 Maps .. 72
7.9.5 Sets .. 75

7.10 Reference types .. 78
7.10.1 Syntax ... 79
7.10.2 Examples ... 80

Copyright © 2023 Accellera. All rights reserved.
9

Portable Test and Stimulus Standard 2.1 — October 2023

7.11 User-defined data types .. 81
7.11.1 Syntax ... 81
7.11.2 Examples ... 81

7.12 Data type conversion.. 81
7.12.1 Syntax ... 81
7.12.2 Examples ... 83

8. Operators and expressions ... 85

8.1 Syntax... 85
8.2 Constant expressions .. 85
8.3 Assignment operators ... 86
8.4 Expression operators .. 87

8.4.1 Operator precedence and associativity .. 87
8.4.2 Using aggregate literals in expressions ... 88
8.4.3 Type inference rules .. 90
8.4.4 Operator expression short-circuiting ... 91

8.5 Operator descriptions ... 92
8.5.1 Arithmetic operators ... 92
8.5.2 Relational operators .. 93
8.5.3 Equality operators ... 93
8.5.4 Logical operators .. 94
8.5.5 Bitwise operators .. 95
8.5.6 Reduction operators .. 96
8.5.7 Shift operators ... 96
8.5.8 Conditional operator ... 96
8.5.9 Set membership operator .. 97

8.6 Primary expressions ... 98
8.6.1 Bit-selects and part-selects .. 98
8.6.2 Selecting an element from a collection (indexing) ... 99

8.7 Bit sizes for numeric expressions... 99
8.7.1 Rules for expression bit sizes .. 99

8.8 Evaluation rules for numeric expressions .. 100
8.8.1 Rules for expression signedness ... 100
8.8.2 Steps for evaluating a numeric expression .. 100
8.8.3 Steps for evaluating an assignment ... 101

9. Components ... 102

9.1 Syntax... 102
9.2 Examples .. 103
9.3 Components as namespaces ... 103
9.4 Component instantiation .. 104

9.4.1 Semantics .. 104
9.4.2 Examples ... 105

9.5 Component references.. 106
9.5.1 Semantics .. 106
9.5.2 Examples ... 107

9.6 Pure components .. 108

10. Actions ... 110

10.1 Syntax... 111
10.2 Examples .. 112

Copyright © 2023 Accellera. All rights reserved.
10

Portable Test and Stimulus Standard 2.1 — October 2023

10.2.1 Atomic actions .. 112
10.2.2 Compound actions .. 112
10.2.3 Abstract actions ... 113

11. Template types ... 114

11.1 General ... 114
11.2 Template type declarations... 114

11.2.1 Syntax ... 114
11.2.2 Examples ... 115

11.3 Template parameter declarations ... 115
11.3.1 Template value parameter declarations .. 115
11.3.2 Template type parameter declarations .. 116

11.4 Template type instantiation .. 118
11.4.1 Syntax ... 118
11.4.2 Examples ... 119

11.5 Template type user restrictions .. 120

12. Activities .. 121

12.1 Activity declarations .. 121
12.2 Activity constructs.. 121

12.2.1 Syntax ... 122
12.3 Action scheduling statements... 122

12.3.1 Action traversal statement ... 122
12.3.2 Action handle array traversal .. 126
12.3.3 Sequential block .. 127
12.3.4 parallel ... 128
12.3.5 schedule ... 130
12.3.6 Fine-grained scheduling specifiers ... 133
12.3.7 Atomic block specifier .. 141

12.4 Activity control flow constructs ... 146
12.4.1 repeat (count) .. 146
12.4.2 repeat-while ... 147
12.4.3 foreach ... 148
12.4.4 select ... 149
12.4.5 if-else ... 151
12.4.6 match ... 152

12.5 Activity construction statements .. 153
12.5.1 replicate ... 153

12.6 Activity evaluation with extension and inheritance ... 157
12.7 Symbols .. 159

12.7.1 Syntax ... 159
12.7.2 Examples ... 159

12.8 Named sub-activities .. 160
12.8.1 Syntax ... 160
12.8.2 Scoping rules for named sub-activities ... 160
12.8.3 Hierarchical references using named sub-activity .. 161

12.9 Explicitly binding flow objects .. 163
12.9.1 Syntax ... 163
12.9.2 Examples ... 164

12.10 Hierarchical flow object binding.. 164
12.11 Hierarchical resource object binding.. 166

Copyright © 2023 Accellera. All rights reserved.
11

Portable Test and Stimulus Standard 2.1 — October 2023

13. Flow objects ... 167

13.1 Buffer objects ... 167
13.1.1 Syntax ... 167
13.1.2 Examples ... 167

13.2 Stream objects .. 167
13.2.1 Syntax ... 168
13.2.2 Examples ... 168

13.3 State objects.. 168
13.3.1 Syntax ... 168
13.3.2 Examples ... 169

13.4 Using flow objects.. 170
13.4.1 Syntax ... 170
13.4.2 Examples ... 171

14. Resource objects .. 173

14.1 Declaring resource objects ... 173
14.1.1 Syntax ... 173
14.1.2 Examples ... 173

14.2 Claiming resource objects .. 173
14.2.1 Syntax ... 174
14.2.2 Examples ... 174

15. Pools .. 176

15.1 Syntax... 176
15.2 Examples .. 176
15.3 Static pool binding directive .. 177

15.3.1 Syntax ... 177
15.3.2 Examples ... 178

15.4 Resource pools and the instance_id attribute ... 182
15.5 Pool of states and the initial attribute ... 183

16. Randomization specification constructs .. 184

16.1 Algebraic constraints.. 184
16.1.1 Member constraints ... 184
16.1.2 Constraint inheritance ... 186
16.1.3 Action traversal in-line constraints ... 187
16.1.4 Logical expression constraints .. 189
16.1.5 Implication constraints .. 189
16.1.6 if-else constraints .. 190
16.1.7 foreach constraints .. 191
16.1.8 forall constraints .. 192
16.1.9 Unique constraints .. 195
16.1.10 Default value constraints ... 196
16.1.11 Distribution directive .. 198

16.2 Scheduling constraints.. 200
16.2.1 Syntax ... 200
16.2.2 Example .. 201

16.3 Sequencing constraints on state objects ... 202
16.4 Randomization process .. 202

16.4.1 Random attribute fields ... 203

Copyright © 2023 Accellera. All rights reserved.
12

Portable Test and Stimulus Standard 2.1 — October 2023

16.4.2 Randomization of lists .. 204
16.4.3 Randomization of flow objects ... 205
16.4.4 Randomization of resource objects ... 206
16.4.5 Randomization of component assignment .. 207
16.4.6 Procedural randomization of data ... 208
16.4.7 Random value selection order ... 210
16.4.8 Evaluation of expressions with action handles ... 210
16.4.9 Relationship lookahead ... 212
16.4.10 Lookahead and sub-actions ... 213
16.4.11 Lookahead and dynamic constraints ... 214
16.4.12 pre_solve and post_solve exec blocks .. 215
16.4.13 Body blocks and sampling external data .. 218

17. Action inferencing ... 220

17.1 Implicit binding and action inferences ... 221
17.2 Object pools and action inferences... 224
17.3 Data constraints and action inferences ... 226

18. Coverage specification constructs.. 228

18.1 Defining the coverage model: covergroup ... 228
18.1.1 Syntax ... 229
18.1.2 Examples ... 229

18.2 covergroup instantiation... 230
18.2.1 Syntax ... 231
18.2.2 Examples ... 231

18.3 Defining coverage points ... 232
18.3.1 Syntax ... 232
18.3.2 Examples ... 233
18.3.3 Specifying bins .. 234
18.3.4 Automatic bin creation for coverage points .. 236
18.3.5 Excluding coverage point values .. 237
18.3.6 Specifying illegal coverage point values .. 237
18.3.7 Value resolution .. 238

18.4 Defining cross coverage ... 239
18.4.1 Syntax ... 239
18.4.2 Examples ... 239
18.4.3 Defining cross bins ... 240

18.5 Specifying coverage options .. 240
18.5.1 Examples ... 242

18.6 covergroup sampling .. 242
18.7 Per-type and per-instance coverage collection... 242

18.7.1 Per-instance coverage of flow and resource objects ... 243
18.7.2 Per-instance coverage in actions ... 243

19. Type inheritance, extension, and overrides.. 245

19.1 Type inheritance... 245
19.2 Type extension ... 251

19.2.1 Syntax ... 252
19.2.2 Examples ... 252
19.2.3 Composite type extensions ... 253
19.2.4 Enumeration type extensions .. 254

Copyright © 2023 Accellera. All rights reserved.
13

Portable Test and Stimulus Standard 2.1 — October 2023

19.2.5 Ordering of type extensions .. 255
19.2.6 Template type extensions .. 256

19.3 Combining inheritance and extension .. 257
19.4 Access protection ... 259
19.5 Overriding types ... 260

19.5.1 Syntax ... 261
19.5.2 Examples ... 261

20. Source organization and processing... 263

20.1 Packages ... 263
20.1.1 Package declarations ... 264
20.1.2 Nested packages .. 264
20.1.3 Referencing package members ... 265
20.1.4 Package aliases .. 267

20.2 Declaration and reference ordering .. 268
20.2.1 Examples ... 269

20.3 Name resolution ... 270
20.3.1 Name resolution examples .. 271

21. Test realization... 276

21.1 exec blocks ... 276
21.1.1 Syntax ... 277
21.1.2 exec block kinds .. 277
21.1.3 Examples ... 279
21.1.4 exec block evaluation with inheritance and extension .. 282

21.2 Functions .. 286
21.2.1 Function declarations .. 286
21.2.2 Parameters and return types .. 287
21.2.3 Default parameter values .. 288
21.2.4 Generic and varargs parameters .. 288
21.2.5 Pure functions ... 289
21.2.6 Calling functions ... 290

21.3 Native PSS functions.. 291
21.3.1 Syntax ... 292
21.3.2 Parameter passing semantics ... 292

21.4 Foreign procedural interface .. 295
21.4.1 Definition using imported functions ... 295
21.4.2 Imported classes .. 298

21.5 Target-template implementation of exec blocks .. 299
21.5.1 Target language ... 299
21.5.2 exec file ... 299
21.5.3 Referencing PSS fields in target-template exec blocks .. 299

21.6 Target-template implementation for functions... 301
21.6.1 Syntax ... 302
21.6.2 Examples ... 302

21.7 Procedural constructs ... 302
21.7.1 Scoped blocks ... 302
21.7.2 Variable declarations .. 304
21.7.3 Assignments .. 304
21.7.4 Void function calls .. 305
21.7.5 return statement ... 305
21.7.6 repeat (count) statement .. 306

Copyright © 2023 Accellera. All rights reserved.
14

Portable Test and Stimulus Standard 2.1 — October 2023

21.7.7 repeat-while statement .. 307
21.7.8 foreach statement .. 308
21.7.9 if-else statement .. 309
21.7.10 match statement .. 310
21.7.11 break/continue statement .. 311
21.7.12 randomize statement ... 312
21.7.13 exec block ... 313

21.8 Comparison between mapping mechanisms .. 314
21.9 Exported actions ... 315

21.9.1 Syntax ... 315
21.9.2 Examples ... 316
21.9.3 Export action foreign language binding .. 316

22. Conditional code processing .. 317

22.1 Overview .. 317
22.1.1 Statically-evaluated statements ... 317
22.1.2 Elaboration procedure ... 317
22.1.3 Compile-time expressions ... 317

22.2 compile if.. 318
22.2.1 Scope ... 318
22.2.2 Syntax ... 319
22.2.3 Examples ... 319

22.3 compile has... 320
22.3.1 Syntax ... 320
22.3.2 Examples ... 321

22.4 compile assert ... 322
22.4.1 Syntax ... 322
22.4.2 Examples ... 322

23. PSS core library ... 323

23.1 String formatting and output .. 323
23.1.1 String formatting ... 324
23.1.2 Solve-time string formatting and output ... 325
23.1.3 Runtime messaging ... 326

23.2 File operations .. 327
23.3 Error reporting.. 330
23.4 Randomization ... 331

23.4.1 urandom() .. 331
23.4.2 urandom_range(min, max) .. 331

23.5 Floating-point ... 331
23.5.1 Floating-point storage types .. 331
23.5.2 Floating-point computation functions ... 332
23.5.3 Computation-type field extraction and composition ... 333

23.6 Executors .. 334
23.6.1 Executor representation .. 335
23.6.2 Executor assignment ... 337

23.7 Address spaces ... 344
23.7.1 Address space categories .. 345
23.7.2 Address space traits ... 348
23.7.3 Address space regions ... 350

23.8 Allocation within address spaces ... 351
23.8.1 Base claim type ... 351

Copyright © 2023 Accellera. All rights reserved.
15

Portable Test and Stimulus Standard 2.1 — October 2023

23.8.2 Contiguous claims ... 351
23.8.3 Transparent claims .. 352
23.8.4 Claim trait semantics ... 353
23.8.5 Allocation consistency .. 353
23.8.6 Rules for matching a claim to an address space ... 356
23.8.7 Allocation example ... 356

23.9 Data layout and access operations.. 358
23.9.1 Data layout .. 358
23.9.2 sizeof_s ... 360
23.9.3 Address space handles .. 361
23.9.4 Obtaining an address space handle ... 362
23.9.5 addr_value function .. 364
23.9.6 addr_value_solve function .. 364
23.9.7 addr_value_abs function ... 365
23.9.8 get_tag function .. 365
23.9.9 Access operations .. 365
23.9.10 Target data structure setup example ... 371

23.10 Registers ... 373
23.10.1 PSS register definition .. 373
23.10.2 PSS register group definition .. 377
23.10.3 Association with address region ... 379
23.10.4 Translation of register read/write .. 380
23.10.5 Recommended packaging ... 381

Annex A (informative) Bibliography... 382

Annex B (normative) Formal syntax ... 383
B.1 Package declarations .. 383
B.2 Action declarations... 384
B.3 Struct declarations .. 385
B.4 Exec blocks .. 386
B.5 Functions .. 386
B.6 Foreign procedural interface .. 387
B.7 Procedural statements... 387
B.8 Component declarations ... 388
B.9 Activity statements ... 389
B.10 Overrides .. 391
B.11 Data declarations .. 391
B.12 Template types ... 392
B.13 Data types ... 392
B.14 Constraints.. 393
B.15 Coverage specification ... 394
B.16 Conditional compilation... 396
B.17 Expressions... 397
B.18 Identifiers ... 398
B.19 Numbers and literals... 399
B.20 Additional lexical conventions... 401

Annex C (normative) Core library package... 402
C.1 Package std_pkg... 402
C.2 Package executor_pkg.. 404
C.3 Package addr_reg_pkg ... 404

Copyright © 2023 Accellera. All rights reserved.
16

Portable Test and Stimulus Standard 2.1 — October 2023

Annex D (normative) Foreign language bindings ... 408
D.1 Function prototype mapping .. 408
D.2 Data type mapping ... 408
D.3 C language bindings ... 408

D.3.1 Function names .. 408
D.3.2 Primitive types ... 409
D.3.3 Arrays... 409
D.3.4 Structs .. 409
D.3.5 Enumeration types ... 411

D.4 C++ language bindings... 412
D.4.1 Function name mapping and namespaces.. 412
D.4.2 Primitive types ... 412
D.4.3 Arrays... 413
D.4.4 Structs .. 413
D.4.5 Enumeration types ... 414

D.5 SystemVerilog language bindings.. 415
D.5.1 Function names .. 415
D.5.2 Primitive types ... 415
D.5.3 Numeric value mapping... 416
D.5.4 Arrays... 416
D.5.5 Structs .. 416
D.5.6 Enumeration types ... 416

Annex E (informative) Solution space... 417

Copyright © 2023 Accellera. All rights reserved.
17

Portable Test and Stimulus Standard 2.1 — October 2023

List of figures

Figure 1—Partial specification of verification intent .. 45
Figure 2—Buffer flow object semantics.. 46
Figure 3—Stream flow object semantics... 47
Figure 4—State flow object semantics .. 48
Figure 5—Single activity, multiple scenarios.. 50
Figure 6—Scheduling graph of activity with schedule block.. 131
Figure 7—Runtime behavior of activity with schedule block ... 132
Figure 8—Runtime behavior of scheduling block with sequential sub-blocks ... 133
Figure 9—join_branch scheduling graph... 135
Figure 10—join_branch runtime behavior... 136
Figure 11—Scheduling graph of join_branch with scheduling dependency ... 137
Figure 12—Runtime behavior of join_branch with scheduling dependency .. 137
Figure 13—join_none scheduling graph.. 138
Figure 14—join_first runtime behavior ... 139
Figure 15—Scheduling graph of join inside sequence block .. 140
Figure 16—Runtime behavior of join inside sequence block.. 140
Figure 17—Scheduling graph join with schedule block.. 141
Figure 18—Scheduling graph of action interference... 143
Figure 19—Scheduling graph of atomic block avoiding interference... 144
Figure 20—Scheduling graph of resource allocation issues.. 145
Figure 21—Order of invocation of init_down and init_up exec blocks .. 280
Figure 22—Address space regions with trait values.. 349
Figure 23—Little-endian struct packing in register... 359
Figure 24—Little-endian struct packing in byte-addressable space .. 360
Figure 25—Big-endian struct packing in register.. 360
Figure 26—Big-endian struct packing in byte-addressable space... 360
Figure 27—Executor address mapping.. 369

Copyright © 2023 Accellera. All rights reserved.
18

Portable Test and Stimulus Standard 2.1 — October 2023

List of tables

Table 1—Document conventions .. 30
Table 2—PSS keywords .. 37
Table 3—Specifying special characters in string literals... 41
Table 4—Integer data types ... 56
Table 5—Floating-point computation data types .. 57
Table 6—Return type of sum() function.. 67
Table 7—Assignment operators and data types... 86
Table 8—Expression operators and data types.. 87
Table 9—Operator precedence and associativity .. 87
Table 10—Binary arithmetic operators ... 92
Table 11—Power operator rules for integers... 92
Table 12—Relational operators ... 93
Table 13—Equality operators .. 93
Table 14—Bitwise binary AND operator .. 95
Table 15—Bitwise binary OR operator ... 95
Table 16—Bitwise binary XOR operator .. 95
Table 17—Bitwise unary negation operator .. 95
Table 18—Results of unary reduction operations ... 96
Table 19—Bit sizes resulting from self-determined expressions .. 99
Table 20—Action handle array traversal contexts and semantics ... 127
Table 21—Instance-specific covergroup options .. 241
Table 22—covergroup sampling.. 242
Table 23—Derived type element behaviors .. 246
Table 24—Flows supported for mapping mechanisms ... 314
Table 25—exec block kinds supported for mapping mechanisms .. 315
Table 26—Data passing supported for mapping mechanisms... 315
Table 27—Floating-point computation functions.. 332
Table 28—Scenario entity lifetimes .. 354
Table D.1—Mapping PSS primitive types and C types .. 409
Table D.2—Mapping PSS struct types and C types .. 409
Table D.3—Mapping PSS struct field primitive types and C types .. 410
Table D.4—Mapping PSS enum types and C types .. 411
Table D.5—Mapping PSS primitive types and C++ types.. 412
Table D.6—Mapping PSS struct types and C++ types.. 413
Table D.7—Mapping PSS primitive types and SystemVerilog types ... 415

Copyright © 2023 Accellera. All rights reserved.
19

Portable Test and Stimulus Standard 2.1 — October 2023

List of syntax excerpts

Syntax 1—Numeric constants... 38
Syntax 2—String literals... 40
Syntax 3—Aggregate literals.. 42
Syntax 4—Empty aggregate literal... 42
Syntax 5—Value list literal... 42
Syntax 6—Map literal... 43
Syntax 7—Structure literal ... 43
Syntax 8—Data types and data declarations... 55
Syntax 9—Integer type declaration .. 56
Syntax 10—Floating-point type declaration... 58
Syntax 11—enum declaration... 59
Syntax 12—string declaration... 61
Syntax 13—chandle declaration ... 62
Syntax 14—struct declaration... 63
Syntax 15—Collection data types... 64
Syntax 16—ref declaration ... 79
Syntax 17—User-defined type declaration... 81
Syntax 18—cast operation .. 81
Syntax 19—Expressions and operators .. 85
Syntax 20—Conditional operator ... 96
Syntax 21—Set membership operator .. 97
Syntax 22—component declaration.. 102
Syntax 23—action declaration.. 111
Syntax 24—Template type declaration... 114
Syntax 25—Template value parameter declaration.. 115
Syntax 26—Template type parameter declaration.. 116
Syntax 27—Template type instantiation... 118
Syntax 28—activity statement .. 122
Syntax 29—Action traversal statement .. 123
Syntax 30—Activity sequence block.. 127
Syntax 31—Parallel statement.. 128
Syntax 32—Schedule statement ... 130
Syntax 33—Activity join specification... 133
Syntax 34—Atomic block... 142
Syntax 35—repeat-count statement .. 146
Syntax 36—repeat-while statement .. 147
Syntax 37—foreach statement .. 148
Syntax 38—select statement ... 149
Syntax 39—if-else statement .. 151
Syntax 40—match statement .. 152
Syntax 41—replicate statement .. 153
Syntax 42—symbol declaration.. 159
Syntax 43—bind statement ... 163
Syntax 44—buffer declaration.. 167
Syntax 45—stream declaration ... 168
Syntax 46—state declaration .. 168
Syntax 47—Flow object reference.. 170
Syntax 48—resource declaration .. 173
Syntax 49—Resource object reference... 174
Syntax 50—Pool instantiation .. 176
Syntax 51—Static bind directives... 177

Copyright © 2023 Accellera. All rights reserved.
20

Portable Test and Stimulus Standard 2.1 — October 2023

Syntax 52—Member constraint declaration ... 185
Syntax 53—Expression constraint.. 189
Syntax 54—Implication constraint ... 189
Syntax 55—Conditional constraint... 190
Syntax 56—foreach constraint.. 191
Syntax 57—forall constraint ... 192
Syntax 58—unique constraint... 195
Syntax 59—Default constraints .. 196
Syntax 60—Distribution directive .. 198
Syntax 61—Scheduling constraint statement ... 200
Syntax 62—covergroup declaration ... 229
Syntax 63—covergroup instantiation ... 231
Syntax 64—coverpoint declaration... 233
Syntax 65—bins declaration ... 234
Syntax 66—cross declaration ... 239
Syntax 67—type extension ... 252
Syntax 68—override declaration .. 261
Syntax 69—package declaration... 264
Syntax 70—import statement ... 266
Syntax 71—exec block declaration .. 277
Syntax 72—Function declaration ... 287
Syntax 73—Function definition.. 292
Syntax 74—Imported function qualifiers ... 295
Syntax 75—Import class declaration .. 298
Syntax 76—Target-template function implementation .. 302
Syntax 77—Procedural block statement... 303
Syntax 78—Procedural variable declaration .. 304
Syntax 79—Procedural assignment statement.. 304
Syntax 80—Void function call ... 305
Syntax 81—Procedural return statement .. 306
Syntax 82—Procedural repeat-count statement.. 306
Syntax 83—Procedural repeat-while statement.. 307
Syntax 84—Procedural foreach statement.. 308
Syntax 85—Procedural if-else statement.. 309
Syntax 86—Procedural match statement .. 310
Syntax 87—Procedural break/continue statement .. 311
Syntax 88—Procedural randomize statement... 313
Syntax 89—Export action declaration .. 315
Syntax 90—compile if declaration ... 319
Syntax 91—compile has expression ... 321
Syntax 92—compile assert statement ... 322
Syntax 93—String formatting and output functions... 325
Syntax 94—Runtime messaging function .. 326
Syntax 95—Text file operations using file handles.. 328
Syntax 96—Simple text file operations .. 329
Syntax 97—Error reporting functions .. 330
Syntax 98—Randomization functions .. 331
Syntax 99—Floating-point storage types.. 331
Syntax 100—float_mantissa function... 333
Syntax 101—float_exponent function .. 333
Syntax 102—float_sign function .. 333
Syntax 103—to_float function.. 333
Syntax 104—Executor component ... 335
Syntax 105—Executor group component... 336

Copyright © 2023 Accellera. All rights reserved.
21

Portable Test and Stimulus Standard 2.1 — October 2023

Syntax 106—Executor claim struct .. 338
Syntax 107—Executor query function.. 343
Syntax 108—Generic address space component .. 345
Syntax 109—Contiguous address space component .. 346
Syntax 110—Transparent address space component.. 348
Syntax 111—Base address region type... 350
Syntax 112—Contiguous address space region type .. 350
Syntax 113—Transparent region type .. 351
Syntax 114—Base address space claim type .. 351
Syntax 115—Contiguous address space claim type ... 352
Syntax 116—Transparent contiguous address space claim type .. 352
Syntax 117—packed_s base struct.. 358
Syntax 118—sizeof_s struct ... 361
Syntax 119—Address space handle.. 361
Syntax 120—make_handle_from_claim function .. 362
Syntax 121—make_handle_from_handle function .. 363
Syntax 122—addr_value function .. 364
Syntax 123—addr_value_solve function.. 364
Syntax 124—addr_value_abs function ... 365
Syntax 125—get_tag function .. 365
Syntax 126—Primitive read operations for byte addressable spaces ... 365
Syntax 127—Primitive write operations for byte addressable spaces .. 366
Syntax 128—Read and write series of bytes .. 366
Syntax 129—Read and write packed structs .. 366
Syntax 130—Primitive operation implementation functions ... 367
Syntax 131—PSS register definition .. 374
Syntax 132—PSS register group definition.. 378

Copyright © 2023 Accellera. All rights reserved.
22

Portable Test and Stimulus Standard 2.1 — October 2023

List of examples

Example 1—Value list literals .. 43
Example 2—Map literals .. 43
Example 3—Structure literals... 44
Example 4—Nesting aggregate literals .. 44
Example 5—enum data type... 60
Example 6—String data type .. 61
Example 7—chandle data type ... 62
Example 8—Struct with rand qualifiers ... 64
Example 9—Modifying collection contents ... 65
Example 10—Nested collection types .. 65
Example 11—Array declarations.. 65
Example 12—Fixed-size arrays.. 67
Example 13—Array operators and methods... 68
Example 14—Declaring a list in a struct .. 69
Example 15—List operators and methods.. 71
Example 16—List randomization ... 72
Example 17—Declaring a map in a struct .. 72
Example 18—Map operators and methods... 75
Example 19—Declaring a set in a struct... 76
Example 20—Set operators and methods ... 78
Example 21—Use of reference as local variable and function return value... 80
Example 22—Use of reference field and null value... 80
Example 23—typedef ... 81
Example 24—Overlap of possible enum values... 83
Example 25—Casting of variable to a bit vector.. 83
Example 26—Casting of reference type ... 84
Example 27—Using a structure literal with an equality operator... 89
Example 28—Using an aggregate literal with a set.. 89
Example 29—Using non-constant expressions in aggregate literals.. 89
Example 30—Contextual typing in structure literal interpretation... 91
Example 31—Contextual typing in enum_item resolution .. 91
Example 32—Value range constraint ... 97
Example 33—Set membership in collection... 98
Example 34—Set membership in variable range.. 98
Example 35—Component... 103
Example 36—Namespace... 103
Example 37—Component declared in package.. 104
Example 38—Component instantiation.. 105
Example 39—Component attribute and function access .. 106
Example 40—Illegal traversal of an action outside of the containing component hierarchy..................... 107
Example 41—Using the comp attribute in constraints ... 108
Example 42—Pure components.. 109
Example 43—atomic action.. 112
Example 44—compound action.. 112
Example 45—abstract action .. 113
Example 46—Template type declarations .. 115
Example 47—Template value parameter declaration... 116
Example 48—Another template value parameter declaration .. 116
Example 49—Template generic type and category type parameters.. 117
Example 50—Template parameter type restriction .. 117
Example 51—Template parameter used as base type .. 118

Copyright © 2023 Accellera. All rights reserved.
23

Portable Test and Stimulus Standard 2.1 — October 2023

Example 52—Template type instantiation.. 119
Example 53—Template type qualification ... 119
Example 54—Overriding the default values... 120
Example 55—Action traversal.. 124
Example 56—Anonymous action traversal .. 124
Example 57—Labeled action traversal... 125
Example 58—Compound action traversal .. 125
Example 59—Individual action handle array element traversal... 126
Example 60—Action handle array traversal... 126
Example 61—Sequential block... 128
Example 62—Variants of specifying sequential execution in activity... 128
Example 63—Parallel statement... 129
Example 64—Another parallel statement... 130
Example 65—Schedule statement .. 131
Example 66—Scheduling block with sequential sub-blocks.. 132
Example 67—join_branch .. 135
Example 68—join_branch with scheduling dependency.. 136
Example 69—join_select .. 138
Example 70—join_none ... 138
Example 71—join_first... 139
Example 72—Scope of join inside sequence block.. 139
Example 73—join with schedule block .. 141
Example 74—Atomic block to avoid action interference... 143
Example 75—Atomic block to avoid resource allocation issues.. 145
Example 76—repeat statement ... 146
Example 77—Another repeat statement ... 147
Example 78—repeat-while statement ... 148
Example 79—foreach statement ... 149
Example 80—Select statement ... 150
Example 81—Select statement with guard conditions and weights ... 151
Example 82—Select statement with array of action handles.. 151
Example 83—if-else statement ... 152
Example 84—match statement ... 153
Example 85—replicate statement ... 154
Example 86—replicate statement with index variable ... 155
Example 87—Rewriting previous example without replicate statement.. 155
Example 88—replicate statement with label array ... 156
Example 89—replicate statement error situations .. 156
Example 90—Extended action traversal... 157
Example 91—Hand-coded action traversal .. 158
Example 92—Inheritance and traversal.. 158
Example 93—Using a symbol .. 159
Example 94—Using a parameterized symbol... 160
Example 95—Scoping and named sub-activities ... 161
Example 96—Activity statement label name conflict .. 161
Example 97—Hierarchical references and named sub-activities ... 162
Example 98—bind statement.. 164
Example 99—Hierarchical flow binding for buffer objects ... 165
Example 100—Hierarchical flow binding for stream objects .. 165
Example 101—Hierarchical resource binding.. 166
Example 102—buffer object... 167
Example 103—stream object.. 168
Example 104—state object ... 169
Example 105—buffer flow object .. 171

Copyright © 2023 Accellera. All rights reserved.
24

Portable Test and Stimulus Standard 2.1 — October 2023

Example 106—stream flow object.. 171
Example 107—Multiple producers/consumers using the same buffer pool... 172
Example 108—Declaring a resource .. 173
Example 109—Resource object.. 175
Example 110—Locking and sharing arrays of resource objects .. 175
Example 111—Pool declaration ... 176
Example 112—Static binding ... 178
Example 113—Binding of pools to array of components .. 179
Example 114—Pool binding... 180
Example 115—Multiple state pools of the same state type.. 181
Example 116—Resource object assignment... 182
Example 117—State object binding ... 183
Example 118—Declaring a static constraint... 185
Example 119—Declaring a dynamic constraint ... 186
Example 120—Referencing a dynamic constraint inside a static constraint .. 186
Example 121—Inheriting and shadowing constraints .. 187
Example 122—Action traversal in-line constraint ... 188
Example 123—Name resolution inside with constraint block ... 188
Example 124—Implication constraint .. 189
Example 125—if constraint .. 190
Example 126—foreach iterative constraint .. 192
Example 127—forall constraint.. 193
Example 128—rewrite of forall constraint in terms of explicit paths .. 194
Example 129—forall constraint in different activity scopes .. 194
Example 130—forall constraint item in a dynamic constraint ... 195
Example 131—unique constraint.. 195
Example 132—Use of default value constraints... 197
Example 133—Contradiction with default value constraints ... 197
Example 134—Default value constraints on compound data types ... 198
Example 135—Distribution directive on single variable.. 199
Example 136—Distribution directive on expression.. 199
Example 137—Distribution directive weight specification forms ... 199
Example 138—Constraint priority over distribution directive ... 200
Example 139—Zero-valued distribution weight .. 200
Example 140—Scheduling constraints ... 201
Example 141—Sequencing constraints .. 202
Example 142—Struct rand and non-rand fields.. 203
Example 143—Action rand-qualified fields... 203
Example 144—Action-qualified fields ... 204
Example 145—Hierarchical constraint reference to list element ... 204
Example 146—Randomizing flow object attributes... 206
Example 147—Randomizing resource object attributes... 207
Example 148—procedural randomization .. 208
Example 149—Evaluation of solve-time exec blocks in procedural randomization.................................. 209
Example 150—Activity with random fields ... 210
Example 151—Value selection of multiple traversals.. 211
Example 152—Illegal accesses to sub-action attributes... 212
Example 153—Struct with random fields... 212
Example 154—Activity with random fields ... 213
Example 155—Sub-activity traversal ... 214
Example 156—Activity with dynamic constraints ... 215
Example 157—pre_solve/post_solve.. 217
Example 158—post_solve ordering between action and flow objects ... 218
Example 159—exec body block sampling external data.. 219

Copyright © 2023 Accellera. All rights reserved.
25

Portable Test and Stimulus Standard 2.1 — October 2023

Example 160—Generating multiple scenarios ... 220
Example 161—Action inferences for partially-specified flows ... 222
Example 162—Buffer equality constraint to limit inferencing .. 223
Example 163—Resource equality constraint may affect scheduling ... 224
Example 164—Object pools affect inferencing.. 225
Example 165—Inferred traversal of an action outside of the containing component hierarchy 225
Example 166—In-line data constraints affect action inferencing... 226
Example 167—Data constraints affect action inferencing ... 227
Example 168—Single coverage point .. 230
Example 169—Two coverage points and cross coverage items... 230
Example 170—Creating and instantiating a covergroup type with a formal parameter list....................... 231
Example 171—Creating a covergroup instance with instance-specific options... 232
Example 172—Creating an in-line covergroup instance .. 232
Example 173—Specifying an iff condition .. 233
Example 174—Specifying bins .. 235
Example 175—Select constrained values between 0 and 255.. 236
Example 176—Using with in a coverpoint... 236
Example 177—Excluding coverage point values ... 237
Example 178—Specifying illegal coverage point values ... 237
Example 179—Value resolution... 238
Example 180—Specifying a cross .. 240
Example 181—Specifying cross bins ... 240
Example 182—Setting options ... 242
Example 183—Per-instance coverage of flow objects ... 243
Example 184—Per-instance coverage in actions.. 244
Example 185—Declaring derived components and actions ... 247
Example 186—Default pool with inheritance .. 247
Example 187—Polymorphic function calls .. 248
Example 188—Derived type is also a base type... 249
Example 189—Use of comp and this.comp with inheritance... 250
Example 190—Illegal inheritance declaration.. 251
Example 191—Type extension... 252
Example 192—Action type extension .. 254
Example 193—Enum type extensions .. 255
Example 194—Template type extension .. 257
Example 195—Combining inheritance and extension ... 258
Example 196—Inheritance and extension of constraints.. 259
Example 197—Per-attribute access modifier ... 260
Example 198—Block access modifier.. 260
Example 199—Type inheritance and overrides.. 262
Example 200—Hierarchical declaration of nested package ... 265
Example 201—Direct declaration of nested package... 265
Example 202—Declaration of nested package before outer package .. 265
Example 203—Importing the name of a nested package ... 267
Example 204—Package alias.. 268
Example 205—Illegal package alias declarations .. 268
Example 206—Reference to a previous source unit... 269
Example 207—Reference to a later-declared action field .. 269
Example 208—Reference to local variable after declaration ... 269
Example 209—Initialization of constants... 270
Example 210—Name resolution to declaration in nested namespace .. 271
Example 211—Name resolution to declaration in imported package in nested namespace 272
Example 212—Name resolution to declaration in encapsulating package... 272
Example 213—Name resolution to declaration in imported package in encapsulating package 272

Copyright © 2023 Accellera. All rights reserved.
26

Portable Test and Stimulus Standard 2.1 — October 2023

Example 214—Package import has no effect on name resolution ... 273
Example 215—Package import affects name resolution .. 273
Example 216—Package import is not a declaration ... 274
Example 217—Resolution of enum item references .. 274
Example 218—Resolution in presence of package alias .. 275
Example 219—Data initialization in a component... 279
Example 220—init_down and init_up exec blocks .. 280
Example 221—Accessing component data field from an action.. 281
Example 222—Inheritance and shadowing .. 282
Example 223—Using super .. 283
Example 224—Type extension contributes an exec block ... 284
Example 225—exec blocks added via extension.. 285
Example 226—Function declaration .. 288
Example 227—Default parameter value... 288
Example 228—Generic parameter.. 289
Example 229—Varargs parameter.. 289
Example 230—Pure function.. 290
Example 231—Calling functions.. 291
Example 232—Parameter passing semantics ... 294
Example 233—Function availability .. 297
Example 234—Reactive control flow... 297
Example 235—Explicit specification of the implementation language ... 298
Example 236—Import class.. 299
Example 237—Referencing PSS variables using mustache notation... 300
Example 238—Variable reference used to select the function... 300
Example 239—Allowing programmatic declaration of a target variable declaration 301
Example 240—Target-template function implementation ... 302
Example 241—Procedural return statement ... 306
Example 242—Procedural repeat-count statement... 307
Example 243—Procedural while statement.. 308
Example 244—Procedural if-else statement... 310
Example 245—Procedural match statement... 311
Example 246—Procedural foreach statement with break/continue.. 312
Example 247—exec block using procedural control flow statements.. 313
Example 248—Export action.. 316
Example 249—Export action foreign language implementation.. 316
Example 250—Conditional compilation evaluation... 318
Example 251—Conditional processing (C pre-processor) ... 320
Example 252—Conditional processing (compile if) .. 320
Example 253—compile has .. 321
Example 254—Nested conditions... 321
Example 255—compile assert .. 322
Example 256—Printing or formatting the context of a struct... 326
Example 257—Runtime messages ... 327
Example 258—File operations ... 330
Example 259—Error reporting ... 331
Example 260—Conversion to and from storage type... 334
Example 261—Defining an executor group ... 337
Example 262—Simple executor assignment .. 338
Example 263—Definition and use of executor trait ... 340
Example 264—Use of resource objects as executor claims ... 342
Example 265—Function delegation to executor... 344
Example 266—Contiguous address space in pss_top... 347
Example 267—Example address trait type... 348

Copyright © 2023 Accellera. All rights reserved.
27

Portable Test and Stimulus Standard 2.1 — October 2023

Example 268—Address space with trait... 349
Example 269—Transparent address claim ... 353
Example 270—Address space allocation example ... 355
Example 271—Address space allocation example ... 357
Example 271—Address space allocation example (cont.) ... 358
Example 272—Packed PSS little-endian struct.. 359
Example 273—Packed PSS big-endian struct .. 360
Example 274—make_handle_from_claim example... 363
Example 275—make_handle_from_handle example ... 364
Example 276—Illustration of read32()... 367
Example 277—Mapping of primitive operations to foreign C functions ... 368
Example 278—Mapping of primitive operations to UVM sequences.. 368
Example 279—Implementing primitive operations in terms of other operations 369
Example 280—Customization of addr_value() .. 370
Example 281—Example using complex data structures .. 371
Example 281—Example using complex data structures (cont.) ... 372
Example 281—Example using complex data structures (cont.) ... 373
Example 282—Read-modify-write operations ... 376
Example 283—Examples of register declarations.. 377
Example 284—Example of register group declaration... 379
Example 285—Top-level group and address region association.. 380
Example 286—Recommended packaging.. 381
Example D.1—PSS struct mapping into C... 411

Copyright © 2023 Accellera. All rights reserved.
28

Portable Test and Stimulus Standard 2.1 — October 2023

Portable Test and Stimulus Standard
Version 2.1

1. Overview

This clause explains the purpose of this standard, describes its key concepts and considerations, details the
conventions used, and summarizes its contents.

The Portable Test and Stimulus Standard syntax is specified using Backus-Naur Form (BNF). The rest of
this standard is intended to be consistent with the BNF description. If any discrepancies between the two
occur, the BNF formal syntax in Annex B shall take precedence.

1.1 Purpose

The Portable Test and Stimulus Standard defines a specification for creating a single representation of
stimulus and test scenarios, usable by a variety of users across different levels of integration under different
configurations, enabling the generation of different implementations of a scenario that run on a variety of
execution platforms, including, but not necessarily limited to, simulation, emulation, FPGA prototyping, and
post-silicon. With this standard, users can specify a set of behaviors once, from which multiple
implementations may be derived.

1.2 Language design considerations

The Portable Test and Stimulus Standard (PSS) describes a declarative domain-specific language (DSL),
intended for modeling scenario spaces of systems, generating test cases, and analyzing test runs. Scenario
elements and formation rules are captured in a way that abstracts from implementation details and is thus
reusable, portable, and adaptable. The portable stimulus specification captured in the DSL is herein referred
to as PSS.

PSS borrows its core concepts from object-oriented programming languages, hardware-verification
languages, and behavioral modeling languages. PSS features native constructs for system notions, such as
data/control flow, concurrency and synchronization, resource requirements, and states and transitions. It also
includes native constructs for mapping these to target implementation artifacts.

Introducing a new language has major benefits insofar as it expresses user intention that would be lost in
other languages. However, user tasks that can be handled well enough in existing languages should be left to
the language of choice, so as to leverage existing skill, tools, flows, and code bases. Thus, PSS focuses on

Copyright © 2023 Accellera. All rights reserved.
29

Portable Test and Stimulus Standard 2.1 — October 2023

the essential domain-specific semantic layer and links with other languages to achieve other related
purposes. This eases adoption and facilitates project efficiency and productivity.

Finally, PSS builds on prevailing linguistic intuitions in its constructs. In particular, its lexical and syntactic
conventions come from the C/C++ family, and its constraint and coverage language uses SystemVerilog
(IEEE Std 1800)1 as a reference.

1.3 Modeling basics

A PSS model is a representation of some view of a system’s behavior, along with a set of abstract flows. It is
essentially a set of class definitions augmented with rules constraining their legal instantiation. A model
consists of two types of class definitions: elements of behavior, called actions; and passive entities used by
actions, such as resources, states, and data flow items, collectively called objects. The behaviors associated
with an action are specified as activities. Actions and object definitions may be encapsulated in components
to form reusable model pieces. All of these elements may also be encapsulated and extended in a package to
allow for additional reuse and customization.

A particular instantiation of a given PSS model is a called a scenario. Each scenario consists of a set of
action instances and data object instances, as well as scheduling constraints and rules defining the
relationships between them. The scheduling rules define a partial-order dependency relation over the
included actions, which determines the execution semantics. A consistent scenario is one that conforms to
model rules and satisfies all constraints.

Actions constitute the main abstraction mechanism in PSS. An action represents an element in the space of
modeled behavior. Actions may correspond directly to operations of the underlying system under test (SUT)
and test environment, in which case they are called atomic actions. Actions also use activities to encapsulate
flows of simpler actions, constituting some joint activity or scenario intention. As such, actions can be used
as top-level test intent or reusable test specification elements. Actions and objects have data attributes and
data constraints over them.

Actions define the rules for legal combinations in general, not relative to a specific scenario. These are stated
in terms of references to objects, having some role from the action’s perspective. Objects thus serve as data,
and control inputs and outputs of actions, or they are exclusively used as resources. Assembling actions and
objects together, along with the scheduling and arithmetic constraints defined for them, produces a model
that captures the full state-space of possible scenarios. A scenario is a particular solution of the constraints
described by the model to produce an implementation consistent with the described intent.

1.4 Test realization

A key purpose of PSS is to automate the generation of test cases and test suites. Tests for electronic systems
often involve code running on embedded controllers, exercising the underlying hardware and software
layers. Tests may involve code in hardware-verification languages (HVLs) controlling bus functional
models, as well as scripts, command files, data files, and other related artifacts. From the PSS model
perspective, these are called target files, and target languages, which jointly implement the test case for a
target platform.

The execution of a consistent scenario essentially consists of invoking its actions’ implementations, if any,
in their respective scheduling order. An action is invoked immediately after all its dependencies have
completed, and subsequent actions wait for it to complete. Thus, actions that have the same set of

1Information on references can be found in Clause 2.

Copyright © 2023 Accellera. All rights reserved.
30

Portable Test and Stimulus Standard 2.1 — October 2023

dependencies are logically invoked at the same time. Mapping atomic actions to their respective
implementation for a target platform is captured in several ways, defined in Clause 21.

PSS features a native mechanism for referring to the actual state of the system under test (SUT) and the
environment. Runtime values accessible to the generated test can be sampled and fed back into the model as
part of an action’s execution. These external values are sampled and, in turn, affect subsequent generation,
which can be checked against model constraints and/or collected as coverage. The system/environment state
can also be sampled during pre-run processing utilizing models and during post-run processing, given a run
trace.

Similarly, the generation of a specific test-case from a given scenario may require further refinement or
annotations, such as the external computation of expected results, memory modeling, and/or allocation
policies. For these, external models, software libraries, or dedicated algorithmic code in other languages or
tools may need to be employed. In PSS, the execution of these pre-run computations is defined using the
same scheme as described above, with the results linked in the target language of choice.

1.5 Conventions used

The conventions used throughout the document are included here.

1.5.1 Visual cues (meta-syntax)

The meta-syntax for the description of the syntax rules uses the conventions shown in Table 1.

Table 1—Document conventions

Visual cue Represents

bold The bold font is used to indicate keywords and punctuation, text that shall be typed exactly as
it appears. For example, in the following line, the keyword "state" and special characters "{"
and "}" shall be typed exactly as they appear:

state identifier [template_param_decl_list] [struct_super_spec] { { struct_body_item } }

plain text The normal or plain text font indicates syntactic categories. For example, an identifier shall be
specified in the following line (after the "state" keyword):

state identifier [template_param_decl_list] [struct_super_spec] { { struct_body_item } }

italics The italics font in running text indicates a definition. For example, the following line shows
the definition of "activities":

The behaviors associated with an action are specified as activities.

The italics font in syntax definitions depicts a meta-identifier, e.g., action_identifier.
See also 4.2.

courier The courier font in running text indicates PSS code. For example, the following line indi-
cates PSS code (for a state):

state power_state_s { int in [0..4] val; };

[] square brackets Square brackets indicate optional items. For example, the struct_super_spec is optional in the
following line:

state identifier [template_param_decl_list] [struct_super_spec] { { struct_body_item } }

Copyright © 2023 Accellera. All rights reserved.
31

Portable Test and Stimulus Standard 2.1 — October 2023

1.5.2 Notational conventions

The terms “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional”
in this document are to be interpreted as described in the IETF Best Practices Document 14, RFC 2119.

1.5.3 Examples

Any examples shown in this standard are for information only and are only intended to illustrate the use of
PSS.

Many of the examples use “...” to indicate code omitted for brevity.

1.6 Use of color in this standard

This standard uses a minimal amount of color to enhance readability. The coloring is not essential and does
not affect the accuracy of this standard when viewed in pure black and white. The places where color is used
are the following:

— Cross references that are hyperlinked to other portions of this standard are shown in underlined-blue
text (hyperlinking works when this standard is viewed interactively as a PDF file).

— Syntactic keywords and tokens in the formal language definitions are shown in boldface-red text
when initially defined.

1.7 Contents of this standard

The organization of the remainder of this standard is as follows:
— Clause 2 provides references to other applicable standards that are assumed or required for this stan-

dard.
— Clause 3 defines terms and acronyms used throughout the different specifications contained in this

standard.
— Clause 4 defines the lexical conventions used in PSS.
— Clause 5 defines the PSS modeling concepts.

{ } curly braces Curly braces ({ }) indicate items that can be repeated zero or more times. For example, the
following line shows that zero or more struct_body_items can be specified in this declaration:

state identifier [template_param_decl_list] [struct_super_spec] { { struct_body_item } }

| separator bar The separator bar (|) character indicates alternative choices. For example, the following line
shows that the "input" or "output" keywords are possible values in a flow object reference:

flow_ref_field_declaration ::=
 (input | output) flow_object_type object_ref_field { , object_ref_field } ;

() parentheses Parentheses (()) group together alternative choices. For example, the following line shows
that a flow object reference begins with either an "input" or an "output" keyword:

flow_ref_field_declaration ::=
 (input | output) flow_object_type object_ref_field { , object_ref_field } ;

Table 1—Document conventions (Continued)

Visual cue Represents

Copyright © 2023 Accellera. All rights reserved.
32

Portable Test and Stimulus Standard 2.1 — October 2023

— Clause 6 defines the PSS execution semantic concepts.
— Clause 7 highlights the PSS data types.
— Clause 8 describes the operators and operands that can be used in expressions and how expressions

are evaluated.
— Clause 9 - Clause 20 describe the PSS abstract modeling constructs.
— Clause 21 describes the realization of PSS atomic actions.
— Clause 22 describes the process for conditional code processing.
— Clause 23 describes the PSS core library, which consists of portable functionality and utilities that

PSS tools must implement.
— Annexes. Following Clause 23 is a series of annexes.

Copyright © 2023 Accellera. All rights reserved.
33

Portable Test and Stimulus Standard 2.1 — October 2023

2. References

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments or corrigenda) applies.

ANSI X3.4-1986: Coded Character Sets—7-Bit American National Standard Code for Information Inter-
change (7-Bit ASCII)2 (ISO 646 International Reference Version)

IEEE Std 1800™-2017, IEEE Standard for SystemVerilog Unified Hardware Design, Specification and Ver-
ification Language.3, 4

The IETF Best Practices Document (for notational conventions) is available from the IETF web site:
https://www.ietf.org/rfc/rfc2119.txt.

ISO/IEC 14882:2011, Programming Languages—C++.5

2ANSI publications are available from the American National Standards Institute (https://www.ansi.org/).
3The IEEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.
4IEEE publications are available from the Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, Piscataway, NJ 08854,
USA (https://standards.ieee.org/).
5ISO/IEC publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genève 20, Swit-
zerland/Suisse (https://www.iso.org/). ISO/IEC publications are also available in the United States from Global Engineering Docu-
ments, 15 Inverness Way East, Englewood, Colorado 80112, USA (https://global.ihs.com/). Electronic copies are available in the
United States from the American National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 10036, USA (https://
www.ansi.org/).

Copyright © 2023 Accellera. All rights reserved.
34

Portable Test and Stimulus Standard 2.1 — October 2023

3. Definitions, acronyms, and abbreviations

For the purposes of this document, the following terms and definitions apply. The Authoritative Dictionary
of IEEE Standards Terms [B1]6 should be referenced for terms not defined in this clause.

3.1 Definitions

action: An element of behavior.

activity: An abstract, partial specification of a scenario that is used in a compound action to determine the
high-level intent and leaves all other details open.

atomic action: An action that corresponds directly to operations of the underlying system under test (SUT)
and test environment.

component: A structural entity, defined per type and instantiated under other components.

compound action: An action that includes an activity to traverse one or more sub-actions.

constraint: An algebraic expression relating attributes of model entities used to limit the resulting scenario
space of the model.

coverage: A metric to measure the percentage of possible scenarios that have actually been processed for a
given model.

exec block: Specifies the mapping of PSS scenario entities to their non-PSS implementation.

field: A variable associated with an instance of a type.

inheritance: The process of deriving one model element from another of a similar type, but adding or mod-
ifying functionality as desired. It allows multiple types to share functionality that only needs to be specified
once, thereby maximizing reuse and portability.

loop: A traversal region of an activity in which a set of sub-actions is repeatedly executed. Values for the
fields of the action are selected for each traversal of the loop, subject to the active constraints and resource
requirements present.

model: A representation of some view of a system’s behavior, along with a set of abstract flows.

object: A passive entity used by an action, such as resources, states, and data flow items.

override: To replace one or all instances of an element of a given type with an element of a compatible type
inherited from the original type.

package: A way to group, encapsulate, and identify sets of related definitions, namely type declarations and
type extensions.

resource: A computational element available in the target environment that may be claimed by an action for
the duration of its execution.

6The numbers in brackets correspond to those of the bibliography in Annex A.

Copyright © 2023 Accellera. All rights reserved.
35

Portable Test and Stimulus Standard 2.1 — October 2023

root action: An action designated explicitly as the entry point for the generation of a specific scenario. Any
action in a model can serve as the root action of some scenario.

scenario: A particular instantiation of a given PSS model.

solve platform: The platform on which the test scenario is solved and, where applicable, target test code is
generated. In some generation flows, the solve and target platforms may be the same.

target file: Contains textual content to be used in realizing the test intent.

target language: The language used to realize a specific unit of test intent, e.g., ANSI C, assembly lan-
guage, Perl.

target platform: The execution platform on which test intent is executed.

type extension: The process of adding additional functionality to a model element of a given type, thereby
maximizing reuse and portability. As opposed to inheritance, extension does not create a new type.

3.2 Acronyms and abbreviations

API Application Programming Interface

PI Procedural Interface

PSS Portable Test and Stimulus Standard

SUT System Under Test

UVM Universal Verification Methodology

Copyright © 2023 Accellera. All rights reserved.
36

Portable Test and Stimulus Standard 2.1 — October 2023

4. Lexical conventions

PSS borrows its lexical conventions from the C language family.

4.1 Comments

The token /* introduces a comment, which terminates with the first occurrence of the token */. The C++
comment delimiter // is also supported and introduces a comment which terminates at the end of the
current line.

4.2 Identifiers

An identifier is a sequence of letters, digits, and underscores; it is used to give an object a unique name so
that it can be referenced. In a given namespace, identifiers shall be unique. Identifiers are case-sensitive.

A meta-identifier can appear in syntax definitions using the form: construct_name_identifier, e.g.,
action_identifier. See also B.18.

4.3 Escaped identifiers

Escaped identifiers shall start with the backslash character (\) and end with white space (space, tab,
newline). They provide a means of including any of the printable non-whitespace ASCII characters in an
identifier (the decimal values 33 through 126, or 0x21 through 0x7E in hexadecimal).

Neither the leading backslash character nor the terminating white space is considered to be part of the
identifier. Therefore, an escaped identifier \cpu3 is treated the same as a non-escaped identifier cpu3.

Some examples of legal escaped identifiers are shown here:
\busa+index
\-clock
error-condition
\net1/\net2
\{a,b}
\a*(b+c)

Copyright © 2023 Accellera. All rights reserved.
37

Portable Test and Stimulus Standard 2.1 — October 2023

4.4 Keywords

PSS reserves the keywords listed in Table 2.

4.5 Operators

Operators are single-, double-, and triple-character sequences and are used in expressions. Unary operators
appear to the left of their operand. Binary operators appear between their operands. A conditional operator
has two operator characters that separate three operands.

Table 2—PSS keywords

abstract action activity array as assert

atomic bind bins bit body bool

break buffer chandle class compile component

const constraint continue covergroup coverpoint cross

declaration default disable dist do dynamic

else enum exec export extend false

file float32 float64 forall foreach function

has header if iff ignore_bins illegal_bins

import in init init_down init_up inout

input instance int join_branch join_first join_none

join_select list lock map match null

output override package parallel pool post_solve

pre_body pre_solve private protected public pure

rand randomize ref repeat replicate resource

return run_end run_start schedule select sequence

set share solve state static stream

string struct super symbol target this

true type typedef unique void while

with

Copyright © 2023 Accellera. All rights reserved.
38

Portable Test and Stimulus Standard 2.1 — October 2023

4.6 Numbers

Constant numbers are specified as integer constants (see 4.6.1) or floating-point constants (see 4.6.2). The
formal syntax for numbers is shown in Syntax 1.

Syntax 1—Numeric constants

number ::=
 integer_number
 | floating_point_number
integer_number ::=
 bin_number
 | oct_number
 | dec_number
 | hex_number
 | based_bin_number
 | based_oct_number
 | based_dec_number
 | based_hex_number
bin_digit ::= [0-1]
oct_digit ::= [0-7]
dec_digit ::= [0-9]
hex_digit ::= [0-9] | [a-f] | [A-F]
bin_number ::= 0[b|B] bin_digit { bin_digit | _ }
oct_number ::= 0 { oct_digit | _ }
dec_number ::= [1-9] { dec_digit | _ }
hex_number ::= 0[x|X] hex_digit { hex_digit | _ }
BASED_BIN_LITERAL ::= '[s|S]b|B bin_digit { bin_digit | _ }
BASED_OCT_LITERAL ::= '[s|S]o|O oct_digit { oct_digit | _ }
BASED_DEC_LITERAL ::= '[s|S]d|D dec_digit { dec_digit | _ }
BASED_HEX_LITERAL ::= '[s|S]h|H hex_digit { hex_digit | _ }
based_bin_number ::= [dec_number] BASED_BIN_LITERAL
based_oct_number ::= [dec_number] BASED_OCT_LITERAL
based_dec_number ::= [dec_number] BASED_DEC_LITERAL
based_hex_number ::= [dec_number] BASED_HEX_LITERAL
floating_point_number ::=
 floating_point_dec_number
 | floating_point_sci_number
unsigned_number ::= dec_digit { dec_digit | _ }
floating_point_dec_number ::= unsigned_number . unsigned_number
floating_point_sci_number ::=
 unsigned_number [. unsigned_number] exp [sign] unsigned_number
exp ::= e | E
sign ::= + | -

Copyright © 2023 Accellera. All rights reserved.
39

Portable Test and Stimulus Standard 2.1 — October 2023

4.6.1 Integer constants

Integer literal constants can be specified in decimal, hexadecimal, octal, or binary format.

Several forms may be used to express an integer literal constant. The first form is a simple unsized decimal
number, which is specified as a sequence of digits starting with 1 though 9 and containing the digits 0
through 9.

The second form is an unsized hexadecimal number, which is specified with a prefix of 0x or 0X followed
by a sequence of digits 0 through 9, a through f, and A through F.

The third form is an unsized octal number, which is specified as a sequence of digits starting with 0 and
containing the digits 0 through 7.

The fourth form is an unsized binary number, which is specified with a prefix of 0b or 0B followed by a
sequence of digits 0 and 1.

The fifth form specifies a based literal constant, which is composed of up to three tokens:
— An optional size constant
— An apostrophe character (') followed by a base format character
— Digits representing the value of the number.

The first token, a size constant, specifies the size of the integer literal constant in bits. This token shall be
specified as an unsigned non-zero decimal number.

The second token, a base format, is a case-insensitive letter specifying the base for the number. The base is
optionally preceded by the single character s (or S) to indicate a signed quantity. Legal base specifications
are d, D, h, H, o, O, b, or B. These specify, respectively, decimal, hexadecimal, octal, and binary formats.
The base format character and the optional sign character shall be preceded by an apostrophe. The
apostrophe character and the base format character shall not be separated by white space.

The third token, an unsigned number, shall consist of digits that are legal for the specified base format. The
unsigned number token immediately follows the base format, optionally separated by white space.

Simple decimal and octal numbers without the size and the base format shall be treated as signed integers.
Unsized unbased hexadecimal and binary numbers shall be treated as unsigned. Numbers specified with a
base format shall be treated as signed integers only if the s designator is included. If the s designator is not
included, the number shall be treated as an unsigned integer.

If the size of an unsigned number is smaller than the size specified for the literal constant, the unsigned
number shall be padded to the left with zeros. If the size of an unsigned number is larger than the size
specified for the literal constant, the unsigned number shall be truncated from the left.

The number of bits that compose an unsized number is tool-specific, but shall be at least 32. An unsized
number that requires more than 32 bits shall have at least the minimum width needed to properly represent
the value, including a sign bit if the number is signed. For example, 0x7_0000_0000, an unsigned
hexadecimal number, shall have at least 35 bits. 4294967296 (2**32), a positive signed integer, shall be
represented by at least 34 bits.

The underscore character (_) shall be legal anywhere in a number except as the first character. The
underscore character can be used to break up long integer literals to improve readability.

Copyright © 2023 Accellera. All rights reserved.
40

Portable Test and Stimulus Standard 2.1 — October 2023

4.6.1.1 Using integer literals in expressions

A negative value for an integer with no base specifier shall be interpreted differently from an integer with a
base specifier. An integer with no base specifier shall be interpreted as a signed value in two’s-complement
form. An integer with an unsigned base specifier shall be interpreted as an unsigned value.

The following example shows four ways to write the expression “minus 12 divided by 3.” Note that -12 and
-'d12 both evaluate to the same two’s-complement bit pattern, but, in an expression, the -'d12 loses its
identity as a signed negative number.

int IntA;
IntA = -12 / 3; // The result is -4.
IntA = -'d12 / 3; // The result is 1431655761.
IntA = -'sd12 / 3; // The result is -4.
IntA = -4'sd12 / 3; // -4'sd12 is the negative of the 4-bit quantity 1100,

// which is -4. -(-4) = 4. The result is 1.

4.6.2 Floating-point constants

Floating-point constant numbers can be specified either in decimal notation (e.g., 14.72) or in scientific
notation (e.g., 39e8, which means 39 multiplied by 10 to the 8th power). Floating-point numbers expressed
with a decimal point shall have at least one digit on each side of the decimal point. Whitespace is not
permitted between the components of a floating-point constant.

Examples:

20.14 // Legal
20 .15 // Illegal. No whitespace is permitted between components.
2e6 // Legal, means 2 * 10**6
1e-9 // Legal, means 1 * 10**-9

4.7 String literals

A string literal is a sequence of ASCII characters enclosed by a single pair of quotation marks (" ... "),
called a quoted string, or a triple pair of quotation marks (""" ... """), called a triple-quoted string.
There is no predefined limit to the length of a string literal. The formal syntax for string literals is shown in
Syntax 2.

Syntax 2—String literals

PSS also includes a string data type to which a string literal can be assigned or compared. Variables of type
string have arbitrary length; they are dynamically resized to hold any string. String literals are implicitly

string_literal ::=
 QUOTED_STRING
 | TRIPLE_QUOTED_STRING
QUOTED_STRING ::= " { unescaped_character | escaped_character } "
TRIPLE_QUOTED_STRING ::= """{any_ASCII_character}"""
unescaped_character ::= any_printable_ASCII_character
escaped_character ::= \('|"|?|\|a|b|f|n|r|t|v|[0-7][0-7][0-7])
filename_string ::= QUOTED_STRING

Copyright © 2023 Accellera. All rights reserved.
41

Portable Test and Stimulus Standard 2.1 — October 2023

converted to the string type when assigned to a string type or used in an expression involving string type
operands.

The empty string literal ("") represents an empty, or null, string.

Quoted string literals may only contain printable ASCII characters (the decimal values 32 through 126, or
0x20 through 0x7E in hexadecimal). Certain characters can be used in quoted string literals when preceded
by an escape character (a backslash). Table 3 lists these characters, with the escape sequence that represents
them. A quoted string shall be contained in a single line.

An escape sequence is considered a single character in the string literal. An escaped apostrophe or question
mark is treated the same as an unescaped apostrophe or question mark, respectively, i.e., the backslash is
ignored. The other escaped characters in the table have different meanings from their unescaped versions. It
is illegal for an escape character in a quoted string literal to be followed by any character not appearing in
the table above.

In contrast, a triple-quoted string literal may contain any ASCII character, printing or nonprinting. There is
no escape character. All characters are passed as they are, unchanged. For example, triple-quoted strings
may contain both single and double quotation marks (except for three consecutive double quotation marks)
and newline characters.

Both quoted string literals and triple-quoted string literals may be used anywhere a string literal is desired or
required, except for filename_strings (see target_file_exec_block in Syntax 71), where a quoted string is
required.

In a string literal that appears in target-template code, mustache notation ({{expression}}) can be used
to reference PSS variables. See 21.5.3 and 21.6 for details.

Table 3—Specifying special characters in string literals

Escape
sequence

ASCII hex
value Character produced by escape sequence

\a 0x07 Alert (Beep, Bell)

\b 0x08 Backspace

\f 0x0C Formfeed

\n 0x0A Newline

\r 0x0D Carriage return

\t 0x09 Horizontal tab

\v 0x0B Vertical tab

\\ 0x5C \ character (backslash)

\" 0x22 " character (double quotation mark)

\' 0x27 ' character (apostrophe, single quotation mark)

\? 0x3F ? character (question mark)

\ddd any A character specified in 3 octal digits (see Syntax 1). Implementations may issue
an error if the character represented is greater than \377.

Copyright © 2023 Accellera. All rights reserved.
42

Portable Test and Stimulus Standard 2.1 — October 2023

4.7.1 Examples

The following string literals are equivalent:

" \"Humpty Dumpty sat on a wall.\nHumpty Dumpty had a great fall.\" "

""" "Humpty Dumpty sat on a wall.
Humpty Dumpty had a great fall." """

4.8 Aggregate literals

Aggregate literals are used to specify the content values of collections and structure types. The different
types of aggregate literals are described in the following sections. The use of aggregate literals in
expressions is described in 8.4.2.

Syntax 3—Aggregate literals

4.8.1 Empty aggregate literal

Syntax 4—Empty aggregate literal

Aggregate literals with no values specify an empty collection (see 7.9) when used in the context of a
variable-sized collection type (list, set, map).

4.8.2 Value list literals

Syntax 5—Value list literal

Aggregate literals for use with arrays, lists, and sets (see 7.9) use value list literals. Each element in the list
specifies an individual value. When used in the context of a variable-size data type (list, set), the number of
elements in the value list literal specifies the size as well as the values. However, when used in the context of
sets, each value is counted only once, even if it appears multiple times. When used in the context of arrays
and lists, the value list literal also specifies the order of elements, starting with element 0. The data types of
the values must match the data type specified in the collection declaration.

When a value list literal is used in the context of an array, the value list literal must have the same number
of elements as the array. It is an error if the value list literal has more or fewer elements than the array.

aggregate_literal ::=
 empty_aggregate_literal
 | value_list_literal
 | map_literal
 | struct_literal

empty_aggregate_literal ::= { }

value_list_literal ::= { expression { , expression } }

Copyright © 2023 Accellera. All rights reserved.
43

Portable Test and Stimulus Standard 2.1 — October 2023

Example 1—Value list literals

Values in value list literals may be non-constant expressions.

4.8.3 Map literals

Syntax 6—Map literal

Aggregate literals for use with maps (see 7.9.4) use map literals. The first element in each colon-separated
pair is the key. The second element is the value to be associated with the key. The data types of the
expressions must match the data types specified in the map declaration. If the same key appears more than
once, the last value specified is used.

In Example 2, a map literal is used to set the value of a map with integer keys and Boolean values.

Example 2—Map literals

Both keys and values in map literals may be non-constant expressions.

4.8.4 Structure literals

Syntax 7—Structure literal

A structure literal explicitly specifies the name of the struct attribute that a given expression is associated
with. Struct attributes whose value is not specified are assigned the default value of the attribute’s data type.
The order of the attributes in the literal does not have to match their order in the struct declaration. It shall
be illegal to specify the same attribute more than once in the literal.

In Example 3, the initial value for the attributes of s1 is explicitly specified for all attributes. The initial
value for the attributes of s2 is specified for a subset of attributes. The resulting value of both s1 and s2 is
{.a=1,.b=2,.c=0,.d=0}. Consequently, the constraint s1==s2 holds.

int c1[4] = {1, 2, 3, 4}; // OK
int c2[4] = {1}; // Error: literal has fewer elements than array
int c3[4] = {1, 2, 3, 4, 5, 6}; // Error: literal has more elements than array

map_literal ::= { map_literal_item { , map_literal_item } }
map_literal_item ::= expression : expression

struct t {
 map<int,bool> m = {1:true, 2:false, 4:true, 8:false};
 constraint m[1]; // True, since the value "true" is associated with key "1"
}

struct_literal ::= { struct_literal_item { , struct_literal_item } }
struct_literal_item ::= . identifier = expression

Copyright © 2023 Accellera. All rights reserved.
44

Portable Test and Stimulus Standard 2.1 — October 2023

Example 3—Structure literals

Values in structure literals may be non-constant expressions.

4.8.5 Nesting aggregate literals

Aggregate literals may be nested to form the value of data structures formed from nesting of aggregate data
types.

In Example 4, an aggregate literal is used to form a list of struct values. Each structure literal specifies a
subset of the struct attributes.

Example 4—Nesting aggregate literals

struct s {
 int a, b, c, d;
};
struct t {
 s s1 = {.a=1,.b=2,.c=0,.d=0};
 s s2 = {.b=2,.a=1};
 constraint s1 == s2;
}

struct s {
 int a, b, c, d;
};
struct t {
 list<s> my_l = {
 {.a=1,.d=4},
 {.b=2,.c=8}
 };
}

Copyright © 2023 Accellera. All rights reserved.
45

Portable Test and Stimulus Standard 2.1 — October 2023

5. Modeling concepts

A PSS model is made up of a number of elements (described briefly in 1.3) that define a set of possible
scenarios to be applied to the Design Under Test (DUT) via the associated test environment. Scenarios are
composed of behaviors—ultimately executed on some combination of components that make up the DUT or
on verification components that define the test environment—and the communication between them. This
clause introduces the elements of a PSS model and defines their relationships.

The primary behavior abstraction mechanism in PSS is an action, which represents a particular behavior or
set of behaviors. Actions combine to form the scenarios that represents the verification intent. Actions that
correspond directly to operations performed by the underlying DUT or test environment are referred to as
atomic actions, which contain an explicit mapping of the behavior to an implementation on the target
platform in one of several supported forms. Compound actions encapsulate flows of other actions using an
activity that defines the critical intent to be verified by specifying the relationships between specific actions.

The remainder of the PSS model describes a set of rules that are used by a PSS processing tool to create the
scenarios that implements the critical verification intent while satisfying the data flow, scheduling, and
resource constraints of the target DUT and associated test environment. In the case where the specification
of intent is incomplete (partial), the PSS processing tool shall infer the execution of additional actions and
other model elements necessary to make the partial specification complete and valid. In this way, a single
partial specification of verification intent may be expanded into a variety of actual scenarios that all
implement the critical intent, but might also include a wide range of other behaviors that may provide
greater coverage of the functionality of the DUT as demonstrated in the example in Figure 1.

Figure 1—Partial specification of verification intent

Copyright © 2023 Accellera. All rights reserved.
46

Portable Test and Stimulus Standard 2.1 — October 2023

In Figure 1, actions a, b, and c are specified to be traversed sequentially in an activity. Depending on the
data flow between them, and on other constraints in the model, this may describe a complete scenario
specification (see Figure 1(i)), or it may describe a partial specification, which may be expanded into
multiple scenarios that infer other actions. All scenarios satisfy the critical intent defined by the activity,
where a will be traversed, followed sometime later by b, followed sometime later by c. Figure 1 shows
several possible scenarios that may be generated from the partial specification, depending on various factors
to be discussed later in this section.

An activity primarily specifies the set of actions to be executed and the scheduling relationships between
them. Actions may be scheduled sequentially, in parallel, or in various combinations based on conditional
evaluation, looping, or randomization constructs. Activities may also include explicit data bindings between
actions. An activity that traverses a compound action is evaluated hierarchically, i.e., when a compound sub-
action is traversed in an activity, the sub-action activity is traversed fully at that point in the parent activity
(see 5.3.2).

5.1 Modeling data flow

Actions may be declared to have inputs and/or outputs of a given data flow object type. The data flow object
types define scheduling semantics for the given action relative to those with which it shares the object. Data
flow objects may be declared directly or may inherit from user-defined data structures or other flow objects
of a compatible type. An action that outputs a flow object is said to produce that object and an action that
inputs a flow object is said to consume the object. Data flow objects are described in Clause 13.

5.1.1 Buffers

The first kind of data flow object is the buffer type. A buffer represents persistent data that can be written
(output) by a producing action and may be read (input) by any number of consuming actions. As such, a
buffer defines a strict scheduling dependency between the producer and the consumer that requires the
producing action to complete its execution—and, thus, complete writing the buffer object—before execution
of the consuming action may begin to read the buffer (see Figure 2). Note that other consuming actions may
also input the same buffer object. While there are no implied scheduling constraints between the consuming
actions, none of them may start until the producing action completes.

Figure 2—Buffer flow object semantics

Figure 2 illustrates the sequential scheduling semantics between the producer and consumer of a buffer flow
object.

In Figure 1(i), assume that action a produces a buffer of a particular type, and b inputs a buffer object of a
compatible type, In this case, we say that the buffer object is bound from the output of a to the input of b,
since the semantics of the buffer object support the activity. Similarly, in Figure 1(ii), if, instead of action a,

Copyright © 2023 Accellera. All rights reserved.
47

Portable Test and Stimulus Standard 2.1 — October 2023

action d produced a buffer object of a compatible type for action b, action d could be inferred as the
producer of the buffer for action b to consume. The buffer scheduling semantics allow action d to be
inferred at any point in the schedule prior to the start of action b (shown in Figure 1(ii) as either d1, d2, or
d3), while the activity requires only that action a completes before action b starts. In this case, there is no
explicit scheduling constraint between a and d.

5.1.2 Streams

The stream flow object type represents transient data exchanged between actions. The semantics of the
stream flow object require that the producing and consuming actions execute in parallel (i.e., both activities
shall begin execution when the same preceding actions complete; see Figure 3). In a stream object, there
shall be a one-to-one connection between the producer and consumer.

Figure 3—Stream flow object semantics

Figure 3 illustrates the parallel scheduling semantics between the producer and the consumer of a stream
flow object.

In Figure 1(iii), the parallel execution of actions f and g dictates that any data exchanged between these
actions shall be of the stream type. Again, assuming that action a does not output a compatible buffer for
action b to input, then action f may be inferred to supply the buffer to action b. If action f inputs or outputs
a stream object, then the one-to-one requirement of the stream object would require that action g, which has
a compatible stream type, also be inferred to execute in parallel with f. Action e may be inferred if it is
needed to supply a buffer input to either f or g.

NOTE—Figure 1(iv) shows an alternate inferred scenario that also satisfies the base scenario of sequential execution of
actions a, b, and c, but in this case, the binding between a and b is legal, and action c requires a buffer input that can
only be supplied by f or g.

5.1.3 States

The state flow object represents the state of some element in the DUT or test environment at a given time.
Multiple actions may read or write the state object, but only one write action may execute at a time. Any
number of read actions may execute in parallel, but read and write actions shall be sequential (see Figure 4).

Copyright © 2023 Accellera. All rights reserved.
48

Portable Test and Stimulus Standard 2.1 — October 2023

Figure 4—State flow object semantics

State flow objects have a built-in Boolean initial attribute that is automatically set to true initially and
automatically set to false on the first write operation to the state object. This attribute can be used in
constraint expressions to define the starting value for fields of the state object and then allow the values to be
modified on subsequent writes of the state object.

5.1.4 Data flow object pools

Data flow objects are grouped into pools, which can be used to limit the set of actions that can communicate
using objects of a given type. For buffer and stream types, the pool will contain the number of objects of the
given type needed to support the communication between actions sharing the pool. For state objects, the
pool will only contain a single object of the state type at any given time. Thus, all actions sharing a state
object via a pool will see the same value for the state object at a given time. Pools are described in
Clause 15.

5.2 Modeling system resources

5.2.1 Resource objects

In addition to declaring inputs and outputs, actions may require system resources that must be accessible in
order to accomplish the specified behavior. The resource object is a user-defined data object that represents
this functionality. Similar to data flow objects, a resource may be declared directly or may inherit from a
user-defined data structure or another resource object. Resource objects are described in Clause 14.

5.2.2 Resource pools

Resource objects are also grouped into pools to define the set of actions that have access to the resources. A
resource pool is defined to have an explicit number of resource objects in it (the default is 1), corresponding
to the available resources in the DUT and/or test environment. In addition to optionally randomizable data
fields, the resource has a built-in non-negative integer attribute called instance_id, which serves to
identify the resource and is unique for each resource in the given pool. Pools are described in Clause 15.

5.2.2.1 Locking resources

An action that requires exclusive access to a resource may lock the resource, which prevents any other action
that claims the same resource instance from executing until the locking action completes. For a given pool of
resource R, with size S, there may be S actions that lock a resource of type R executing at any given time.
Each action that locks a resource in a given pool at a given time shall have access to a unique instance of the
resource, identified by the integer attribute instance_id. For example, if a DUT contains two DMA
channels, the PSS model would define a pool containing two instances of the DMA_channel resource type.

Copyright © 2023 Accellera. All rights reserved.
49

Portable Test and Stimulus Standard 2.1 — October 2023

In this case, no more than two actions that lock the DMA_channel resource could be scheduled
concurrently.

5.2.2.2 Sharing resources

An action that requires non-exclusive access to a resource may share the resource. An action may not share
a resource instance that is locked by another action, but may share the resource instance with other actions
that also share the same resource instance. If all resources in a given pool are locked at a given time, then no
sharing actions can execute until at least one locking action completes to free a resource in that pool.

5.3 Basic building blocks

5.3.1 Components and binding

A critical aspect of portability is the ability to encapsulate elements of verification intent into “building
blocks” that can be used to combine and compose PSS models. A component is a structural element of the
PSS model that serves to encapsulate other elements of the model for reuse. A component is typically
associated with a structural element of the DUT or testbench environment, such as hardware engines,
software packages, or testbench agents, and contains the actions that the element is intended to perform, as
well as the data and resource pools associated with those actions. Each component declaration defines a
unique type that can be instantiated inside other components. The component declaration also serves as a
type namespace in which other types may be declared.

A PSS model is composed of one or more component instantiations constituting a static hierarchy beginning
with the top-level or root component, called pss_top by default, which is implicitly instantiated.
Components are identified uniquely by their hierarchical path. In addition to instantiating other components,
a component may declare functions and class instances (see Clause 9).

When a component instantiates a pool of data flow or resource objects, it also shall bind the pool to a set of
actions and/or subcomponents to define who has access to the objects in the pool. Actions may only
communicate via an object pool with other actions that are bound to the same object pool. Object binding
may be specified hierarchically, so a given pool may be shared across subcomponents, allowing actions in
different components to communicate with each other via the pool.

5.3.2 Evaluation and inference

A PSS model is evaluated starting with the top-level root action, which shall be specified to a tool. The
component hierarchy, starting with pss_top or a user-specified top-level component, provides the context
in which the model rules are defined. If the root action is a compound action, its activity forms the root of a
potentially hierarchical activity tree that includes all activities present in any sub-activities traversed in the
activity. Additional actions may be inferred as necessary to support the data flow and binding requirements
of all actions explicitly traversed in the activity, as well as those previously inferred. Resources add an
additional set of scheduling constraints that may limit which actions actually get inferred, but resources do
not cause additional actions to be inferred.

The semantics of data flow objects allow the tool to infer, for each action in the overall activity, connections
to other actions already instantiated in the activity; or to infer and connect new action instances to conform
to the scheduling constraints defined in the activity and/or by the data and resource requirements of the
actions, including pool bindings. The model thus consists of a set of actions, with defined scheduling
dependencies, along with a set of data flow objects that may be explicitly bound or inferred to connect
between actions and a set of resources that may be claimed by the actions as each executes. Actions and flow
objects and their bindings may only be inferred as required to make the (partial) activity specification legal.

Copyright © 2023 Accellera. All rights reserved.
50

Portable Test and Stimulus Standard 2.1 — October 2023

A PSS implementation shall not infer an action or object binding that is not required, either directly or
indirectly, to make the activity specification legal. Clause 17 describes action inferencing in more detail.

Figure 5 demonstrates how actions can be inferred to generate multiple scenarios from a single activity.

Figure 5—Single activity, multiple scenarios

Looking at Figure 5, actions a, b, and c are scheduled sequentially in an activity. The data flow and
resource requirements specified in the model (which are not shown in Figure 5) allow for multiple scenarios
to be generated. If action a has a buffer or state input, then an action, f in this case, is inferred to execute
sequentially before a in order to provide the buffer or state object. If a does not have a buffer or state input,
f may still be inferred in order to supply an input to b or c, and may ultimately be scheduled before a as
shown, although the only real scheduling constraint is that f complete before the start of the action that
requires the input flow object.

Once inferred, if f also has a buffer or state input, then another action shall be inferred to supply that object
and so on until an action is inferred that does not have an input (or the tool’s inferencing limit is exceeded, at
which point an error shall be generated). For the purposes of this example, action f does not have an input.

In Figure 5(i), presume that action a produces (or consumes) a stream object. In this case, action d is
inferred in parallel with a since stream objects require a one-to-one connection between actions. Actions a
and d both start upon completion of action f. If action d also has a buffer input, then another action shall be

Copyright © 2023 Accellera. All rights reserved.
51

Portable Test and Stimulus Standard 2.1 — October 2023

inferred to provide that input. For Figure 5(i), action f can be presumed to have a second buffer output that
gets bound to action d, although a second buffer-providing action could also have been inferred.

If action a produces a buffer object, the buffer may be connected to another action with a compatible input
type. In the case where a.out and b.in are incompatible, action e (or a series of actions) may be inferred
to receive the output of action a and produce the input to action b. If a.out and b.in are compatible, then
the direct connection between a.out and b.in would be inferred here, in which case no action would be
inferred between them, although an action inferred to supply the input to c (or for some other reason) could
be scheduled between them.

Similarly, in the absence of an explicit binding of b.out to c.in, and if they are incompatible, a series of
actions may be inferred prior to the start of action c in order to provide the input of action c. These inferred
actions will be scheduled independent of b unless their data flow requirements create scheduling constraints
relative to b. As the terminal action in the activity, no action may be inferred after action c however, even if
action c produces a buffer object as an output.

If b.out and c.in are incompatible, it is possible to infer another action, j, to supply the buffer input to
c.in, as shown in Figure 5(ii). In this case, there are two constraints on when the execution of action c may
begin. The activity scheduling requires action b to complete before action c starts. The buffer object
semantics also require action j to complete before action c starts. If action j requires a buffer input, a series
of actions could be inferred to supply the buffer object. That inferred action chain could eventually be bound
to a previously inferred action, such as action d as shown in Figure 5(ii), or it may infer an independent
series of actions until it infers an initial action that only produces an output or until the inferencing limit is
reached. Since the output of action b is not bound to action c, action b is treated as a terminating action, so
no subsequent actions may be inferred after action b.

Finally, Figure 5(iii) shows the case where action c produces or consumes a stream object. In this case, even
though action c is the terminating action of the activity, action p shall be inferred to satisfy the stream object
semantics for action c. Here, action p is also treated as a terminating action, so no subsequent actions may
be inferred. However, additional actions may be inferred either preceding or in parallel to action p to satisfy
its data flow requirements. Each action thus inferred is also treated as a terminating action. Similarly, since
action b is not bound to action c, b shall also be treated as a terminating action.

5.4 Constraints and inferencing

Data flow and resource objects may define constraint expressions on the values of their data fields
(including instance_id in the case of resource objects). In addition, actions may also define constraint
expressions on the data fields of their input/output flow objects and locked/shared resource objects. For data
flow objects, all constraints defined in the object and in all actions that are bound to the object are combined
to define the legal set of values available for the object field. Similarly, the constraints defined for a resource
object shall be combined with the constraints defined in all actions that claim the resource. Inferred actions
or data flow objects that result in constraint contradictions are excluded from the legal scenario. At least one
valid solution must exist for the scenario model for that model to be considered valid.

5.5 Summary

In portable stimulus, a single PSS model may be used to generate a set of scenarios, each of which may have
different sets of inferred actions, data flow objects, and resources, while still implementing the critical
verification intent explicitly specified in the activity. Each resulting scenario may be generated as a test
implementation for the target platform by taking the behavior mapping implementation embedded in each
resulting atomic action and generating output code that assembles the implementations and provides any
other required infrastructure to ensure the behaviors execute on the target platform according to the
scheduling semantics defined by the original PSS model.

Copyright © 2023 Accellera. All rights reserved.
52

Portable Test and Stimulus Standard 2.1 — October 2023

6. Execution semantic concepts

6.1 Overview

A PSS test scenario is identified given a PSS model and an action type designated as the root action. The
execution of the scenario consists essentially in executing a set of actions defined in the model, in some
(partial) order. In the case of atomic actions, the mapped behavior of any exec body clauses (see 21.1.2) is
invoked in the target execution environment, while for compound actions the behaviors specified by their
activity statements are executed.

All action executions observed in a test run either correspond to those explicitly called by traversed activities
or are implicitly introduced to establish flows that are correct with respect to the model rules. The order in
which actions are executed shall conform to the flow dictated by the activities, starting from the root action,
and shall also be correct with respect to the model rules. Correctness involves consistent resolution of
actions’ inputs, outputs, and resource references, as well as satisfaction of scheduling constraints. Action
executions themselves shall reflect data attribute assignments that satisfy all constraints.

6.2 Assumptions of abstract scheduling

Guarantees provided by PSS are based on general capabilities that test realizations need to have in any target
execution environment. The following are assumptions and invariants from the abstract semantics
viewpoint.

6.2.1 Starting and ending action executions

PSS semantics assume that target-mapped behavior associated with atomic actions can be invoked in the
execution environment at arbitrary points in time, unless model rules (such as state or data dependencies)
restrict doing so. They also assume that target-mapped behavior of actions can be known to have completed.

PSS semantics make no assumptions on the duration of the execution of the behavior. They also make no
assumptions on the mechanism by which an implementation would monitor or be notified upon action
completion.

6.2.2 Concurrency

PSS semantics assume that actions can be invoked to execute concurrently, under restrictions of model rules
(such as resource contentions).

PSS semantics make no assumptions on the actual threading framework employed in the execution
environment. In particular, a target may have a native notion of concurrent tasks, as in SystemVerilog
simulation; it may provide native asynchronous execution threads and means for synchronizing them, such
as embedded code running on multi-core processors; or it may implement time sharing of native execution
thread(s) in a preemptive or cooperative threading scheme, as is the case with a runtime operating system
kernel. PSS semantics do not distinguish between these.

6.2.3 Synchronized invocation

PSS semantics assume that action invocations can be synchronized, i.e., logically starting at the same time.
In practice there may be some delay between the invocations of synchronized actions. However, the “sync-
time” overhead is (at worse) relative to the number of actions that are synchronized and is constant with
respect to any other properties of the scenario or the duration of any specific action execution.

Copyright © 2023 Accellera. All rights reserved.
53

Portable Test and Stimulus Standard 2.1 — October 2023

PSS semantics make no assumptions on the actual runtime logic that synchronizes native execution threads
and put no absolute limit on the “sync-time” of synchronized action invocations.

6.3 Scheduling concepts

PSS execution semantics define the criteria for legal runs of scenarios. The criterion covered in this section
is stated in terms of scheduling dependency—the fundamental scheduling relation between action
executions. Ultimately, scheduling is observed as the relative order of behaviors in the target environment
per the respective mapping of atomic actions. This section defines the basic concepts, leading up to the
definition of sequential and parallel scheduling of action executions.

6.3.1 Preliminary definitions

a) An action execution of an atomic action type is the execution of its exec-body block,7 with values
assigned to all of its parameters (reachable attributes). The execution of a compound action consists
in executing the set of atomic actions it contains, directly or indirectly. For more on execution
semantics of compound actions and activities, see Clause 12.
An atomic action execution has a specific start-time—the time in which its exec-body block is
entered, and end-time—the time in which its exec-body block exits (the test itself does not complete
successfully until all actions that have started complete themselves). The start-time of an atomic
action execution is assumed to be under the direct control of the PSS implementation. In contrast,
the end-time of an atomic action execution, once started, depends on its implementation in the target
environment, if any (see 6.2.1).
The difference between end-time and start-time of an action execution is its duration.

b) A scheduling dependency is the relation between two action executions, by which one necessarily
starts after the other ends. Action execution b has a scheduling dependency on a if b’s start has to
wait for a’s end. The temporal order between action executions with a scheduling dependency
between them shall be guaranteed by the PSS implementation regardless of their actual duration or
that of any other action execution in the scenario. Taken as a whole, scheduling dependencies con-
stitute a partial order over action executions, which a PSS solver determines and a PSS scheduler
obeys.
Consequently, the lack of scheduling dependency between two action executions (direct or indirect)
means neither one must wait for the other. Having no scheduling dependency between two action
executions implies that they may (or may not) overlap in time.

c) Action executions are synchronized (scheduled to start at the same time) if they all have the exact
same scheduling dependencies. No delay shall be introduced between their invocations, except a
minimal constant delay (see 6.2.3).

d) Two or more sets of action executions are independent (scheduling-wise) if there is no scheduling
dependency between any two action executions across the sets. Note that within each set, there may
be scheduling dependencies.

e) Within a set of action executions, the initial ones are those without scheduling dependency on any
other action execution in the set. The final action executions within the set are those in which no
other action execution within the set depends.

7Throughout this section, exec-body block is referred to in the singular, although it may be the aggregate of multiple exec-body clauses
in different locations in PSS source code (e.g., multiple declarations in a given action type definition or in different extensions of the
same action type).

Copyright © 2023 Accellera. All rights reserved.
54

Portable Test and Stimulus Standard 2.1 — October 2023

6.3.2 Sequential scheduling

Action executions a and b are scheduled in sequence if b has a scheduling dependency on a. Two sets of
action executions, S1 and S2, are scheduled in sequence if every initial action execution in S2 has a
scheduling dependency on every final action execution in S1. Generally, sequential scheduling of N action
execution sets S1 .. Sn is the scheduling dependency of every initial action execution in Si on every final
action execution in Si-1 for every i from 2 to N, inclusive.

For examples of sequential scheduling, see 12.3.3.2.

6.3.3 Parallel scheduling

N sets of action executions S1 .. Sn are scheduled in parallel if the following two conditions hold:
— All initial action executions in all N sets are synchronized (i.e., all have the exact same set of sched-

uling dependencies).
— S1 .. Sn are all scheduled independently with respect to one another (i.e., there are no scheduling

dependencies across any two sets Si and Sj).

For examples of parallel scheduling, see 12.3.4.2.

6.3.4 Concurrent scheduling

N sets of action executions S1 .. Sn are scheduled concurrently if S1 .. Sn are all scheduled independently with
respect to one another (i.e., there are no scheduling dependencies across any two sets Si and Sj).

Copyright © 2023 Accellera. All rights reserved.
55

Portable Test and Stimulus Standard 2.1 — October 2023

7. Data types

7.1 General

In this document, “scalar” means a single data item of type bit, int, bool, enum, string, float32, float64, or
chandle, unless otherwise specified. A struct (see 7.8) or collection (see 7.9) is not a scalar. A typedef (see
7.11) of a scalar data type is also a scalar data type.

The term “aggregate” refers both to collections and to structs. The term “aggregate” does not include
actions, components, flow objects, or resource objects. Aggregates may be nested. A typedef of an
aggregate data type is also an aggregate data type.

A “plain-data type” is a scalar or an aggregate of scalars. Nested aggregates are also plain-data types. A
typedef of a plain-data type is also a plain-data type.

Fields of all scalar types except chandle, float32, and float64 are randomizable. Array and list collections
of randomizable types are also randomizable, but the map and set collection types are not randomizable.

A field of randomizable type may be declared as random by preceding its declaration with the rand
keyword. It shall be an error to declare a field of non-randomizable type as rand.

7.1.1 Syntax

The syntax for data types and data declarations is shown in Syntax 8.

Syntax 8—Data types and data declarations

Scalar data types are described in 7.2 through 7.7, structure data types are described in 7.8, and collection
data types are described in 7.9. Reference types are described in 7.10. Access protection and access
modifiers are described in 19.4.

data_type ::=
 scalar_data_type
 | collection_type
 | reference_type
 | type_identifier
scalar_data_type ::=
 chandle_type
 | integer_type
 | string_type
 | bool_type
 | enum_type
 | float_type
data_declaration ::= data_type data_instantiation { , data_instantiation } ;
data_instantiation ::= identifier [array_dim] [= constant_expression]
array_dim ::= [constant_expression]
attr_field ::= [access_modifier] [rand | static const] data_declaration
access_modifier ::= public | protected | private

Copyright © 2023 Accellera. All rights reserved.
56

Portable Test and Stimulus Standard 2.1 — October 2023

7.2 Integer types

PSS supports two 2-state integer data types. These fundamental integer data types are summarized in
Table 4, along with their default widths and value domains.

4-state values are not supported. If 4-state values are passed into the PSS model via the foreign procedural
interface (see 21.4), any X or Z values are converted to 0.

7.2.1 Syntax

The syntax for integer types is shown in Syntax 9.

Syntax 9—Integer type declaration

The following also apply:
a) Integer values of bit type are unsigned. Integer values of int type are signed.
b) The default value of the bit and int types is 0.
c) Widths should be specified with a single expression with a constant positive integer value (e.g.,

bit[4]). A specification of [N] is equivalent to [N-1:0]. A type specified using dual bounds
shall use 0 as the lower bound and a constant non-negative integer value as the upper bound. Speci-
fying a width using dual bounds is considered deprecated in PSS 2.0, and may be removed in a
future version.

d) A value domain may be specified for the type. The domain specification consists of a list of one or
more values and/or value ranges.

e) The width and value domain specifications are independent. A variable of the declared type can hold
values within the intersection of the possible values determined by the specified width (or the
default width, if not specified) and the explicit value domain specification, if present.

Table 4—Integer data types

Data type Default width Default domain Signed/Unsigned

int 32 bits -231 .. (231-1) Signed

bit 1 bit 0..1 Unsigned

integer_type ::= integer_atom_type
 [[constant_expression [: 0]]]
 [in [domain_open_range_list]]
integer_atom_type ::=
 int
 | bit
domain_open_range_list ::= domain_open_range_value { , domain_open_range_value }
domain_open_range_value ::=
 constant_expression [.. constant_expression]
 | constant_expression ..
 | .. constant_expression

Copyright © 2023 Accellera. All rights reserved.
57

Portable Test and Stimulus Standard 2.1 — October 2023

7.2.2 Examples

PSS integer data type examples are shown in-line in this section.

Declare a signed variable that is 32 bits wide.

int a;

Declare a signed variable that is 5 bits wide.

int [4:0] a;

Declare an unsigned variable that is 5 bits wide and has the valid values 0..31.

bit [5] in [0..31] b;

Declare an unsigned variable that is 5 bits wide and has the valid values 1, 2, and 4.

bit [5] in [1,2,4] c;

Declare an unsigned variable that is 5 bits wide and has the valid values 0..10.

bit [5] in [..10] b; // 0 <= b <= 10

Declare an unsigned variable that is 5 bits wide and has the valid values 10..31.

bit [5] in [10..] b; // 10 <= b <= 31

7.3 Floating-point types

PSS supports two floating-point computation data types, as summarized by Table 5 below.

7.3.1 Syntax

The syntax for floating-point computation data types is shown in Syntax 10 below.

Table 5—Floating-point computation data types

Data type Width Format

float32 32 bits IEEE 754 binary32

float64 64 bits IEEE 754 binary64

Copyright © 2023 Accellera. All rights reserved.
58

Portable Test and Stimulus Standard 2.1 — October 2023

Syntax 10—Floating-point type declaration

Variables of floating-point type may not be declared rand, and may not be randomized using the
randomize statement.

PSS also defines packed-struct storage types as part of the core library (see 23.9.1). These types support
various non-IEEE floating-point number formats.

Arithmetic operations may be performed on the computation data types. Arithmetic operations may not be
performed directly on storage data types. Data held in a variable of floating-point storage type must first be
converted into a computation type.

7.3.2 Cross-platform results

Floating-point computation has platform dependencies, with different processors and algorithms
legitimately producing slightly different results. These differences may be apparent, for example, when
comparing the result of computations performed on the solve platform with those performed on the target
platform. The PSS LRM makes no attempt to force the result of floating-point computations to be identical
across platforms.

7.4 Booleans

The PSS language supports a built-in Boolean type, with the type name bool. The bool type has two
enumerated values true (=1) and false (=0). When not initialized, the default value of a bool type is false.

7.5 Enumeration types

An enumeration type is a distinct user-defined type whose value is restricted to a specified set of integral
named constants. Enumeration data types also can be easily referenced or displayed using the enumeration
constant names as opposed to their numeric values.

7.5.1 Syntax

The syntax for declaration of enumeration types is shown in Syntax 11.

scalar_data_type ::=
 ...
 | float_type
float_type ::=
 float32
 | float64

Copyright © 2023 Accellera. All rights reserved.
59

Portable Test and Stimulus Standard 2.1 — October 2023

Syntax 11—enum declaration

An enumeration type declaration (enum_declaration) consists of the keyword enum followed by the name
of the type (enum_identifier), an optional base type name (data_type), and a list in curly braces of constant
names (enum items) with optional constant integer value assignments.

The optional data_type denotes the base type. It must be the name of an integer type, which shall determine
the set of possible values to be assigned to enum_items, for example: int, or bit[16], or int[3]. In effect, it
shall determine the width and the signedness of the items. The base type shall not have a value domain (for
example, ‘int in [1..10]’ cannot be used as a base type).

The following also apply:
a) enum_items are considered static constant members of the enumeration type in which they are

declared.
b) The first enum_item in the list, if not explicitly assigned a value, is by default assigned the value 0.

Each following enum_item, if not explicitly assigned a value, is assigned a value of the previous
enum_item + 1.

c) If a base type (data_type) is specified, enum_item values are limited to the set of valid values of the
base type. It shall be an error to explicitly assign a value which does not belong to the base type (for
example, if the base type is unsigned, it shall be an error to assign a negative value). It shall also be
an error to declare an enum_item without an explicit value if the previous enum_item has been
assigned the greatest possible value of the base type (for example, if the base type is bit[2], declar-
ing an item without an explicit value is illegal if the previous item has the value 3).

d) enum_item values need not be contiguous, nor need they be in ascending arithmetic order. An
enum_item may be assigned a negative value (unless the base type is unsigned).

e) Each enum_item must have a distinct integer value. No two enum_items may have the same value.
f) Enumeration types may be extended with the extend statement. See 19.2, particularly 19.2.4.
g) enum_item identifiers must be unique in the scope of the enumeration type across its initial defini-

tion and extensions, if any. However, they need not be unique across different enumeration types
declared in the same namespace.

h) enum_items can be referenced using their qualified name in the form 'enum-type-
name::enum-item-name'.

i) In expression contexts where the expected type is an enumeration type, enum_items of that type can
be referenced without qualification (see 8.4.3 for the definition of the expected type in expression
contexts).

j) An enum_declaration may contain an empty set of enum_items, and then have enum_items added in
extensions. It shall be illegal to declare an enumeration variable whose type contains no enum_items
across its initial definition and extensions.

k) When not initialized, the default value of an enum field shall be the first enum_item in the list. This
is not necessarily the value 0 nor the enum_item with the minimum value.

enum_declaration ::= enum enum_identifier [: data_type] { [enum_item { , enum_item }] }
enum_identifier ::= identifier
enum_item ::= identifier [= constant_expression]
enum_type_identifier ::= type_identifier
enum_type ::= enum_type_identifier [in [domain_open_range_list]]

Copyright © 2023 Accellera. All rights reserved.
60

Portable Test and Stimulus Standard 2.1 — October 2023

Like numeric types, an enumeration type can be restricted to a range of values specified by a
domain_open_range_list (see 7.2.1 and 7.2.2). The domain specification cannot be specified in the
enum_declaration itself. See examples of use in 7.5.2.

An enum attribute or enum_item may be used to assign values to an attribute of the same enumeration type
or in an equality comparison.

An enum attribute or enum_item of one enumeration type may be cast to another enumeration type using the
cast operator (see 7.12). An enum attribute or enum_item may be cast to integer and Boolean data types
using the cast operator. Similarly, an integer or Boolean value may be explicitly cast to an enumeration type.

7.5.2 Examples

Examples of enum usage are shown in Example 5.

Example 5—enum data type

See an example of extending an enumeration in 19.2.4.

Examples of domain specifications for enumeration types are shown below:

Declare an enum of type config_modes_e with values MODE_A, MODE_B, or MODE_C.

rand config_modes_e in [MODE_A..MODE_C] mode_ac;

Declare an enum of type config_modes_e with values MODE_A or MODE_C.

rand config_modes_e in [MODE_A, MODE_C] mode_ac;

Declare an enum of type config_modes_e with values UNKNOWN, MODE_A, or MODE_B.

rand config_modes_e in [..MODE_B] mode_ub;

Declare an enum of type config_modes_e with values MODE_B, MODE_C, or MODE_D.

rand config_modes_e in [MODE_B..] mode_bd;

Note that an open_range_list of enums may be used in set membership (in) expressions (see 8.5.9) and as a
match_choice expression in match statements (see 12.4.6 and 21.7.10).

enum config_modes_e {UNKNOWN, MODE_A=10, MODE_B=20, MODE_C=35, MODE_D=40};

component uart_c {
 action configure {
 rand config_modes_e mode;
 constraint {mode != UNKNOWN;}
 }
};

Copyright © 2023 Accellera. All rights reserved.
61

Portable Test and Stimulus Standard 2.1 — October 2023

7.6 Strings

The PSS language supports a built-in string type with the type name string. When not initialized, the default
value of a string shall be the empty string literal ("").

7.6.1 Syntax

Syntax 12—string declaration

Comma-separated domain specifications are allowed for string data types (see 7.2.1).

7.6.2 Examples

The value of a random string-type field can be constrained with equality constraints and can be compared
using equality operators, as shown in Example 6.

Example 6—String data type

Declare string with values "Hello", "Hallo", or "Ni Hao".

rand string in ["Hello", "Hallo", "Ni Hao"] hello_s;

Note that an open_range_list, composed solely of individual string literals, may also be used in set
membership (in) expressions (see 8.5.9) and as a match_choice expression in match statements (see 12.4.6
and 21.7.10). Ranges of string literals (e.g., "a".."b") are not permitted.

7.7 Chandles

The chandle type (pronounced “see-handle”) represents an opaque handle to a foreign language pointer as
shown in Syntax 13. A chandle is used with the foreign procedural interface (see 21.4) to store foreign
language pointers in the PSS model and pass them to foreign language functions. See Annex D for more
information about the foreign procedural interface.

A chandle has the following restrictions:
— The rand qualifier may not be applied to it.
— The only logical operators it may be used with are == and !=.

string_type ::= string [in [string_literal { , string_literal }]]

struct string_s {
 rand bit a;
 rand string s;

 constraint {
 if (a == 1) {
 s == "FOO";
 } else {
 s == "BAR";
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
62

Portable Test and Stimulus Standard 2.1 — October 2023

— The only literal value with which it may be compared is 0, which is equivalent to a null handle in the
foreign language.

When not initialized, the default value of a chandle shall be 0.

7.7.1 Syntax

Syntax 13—chandle declaration

7.7.2 Example

Example 7 shows a struct containing a chandle field that is initialized by the return of a foreign language
function.

Example 7—chandle data type

chandle_type ::= chandle

function chandle do_init();

struct info_s {
 chandle ptr;

 exec pre_solve {
 ptr = do_init();
 }
}

Copyright © 2023 Accellera. All rights reserved.
63

Portable Test and Stimulus Standard 2.1 — October 2023

7.8 Structs

A struct type is an aggregate of data items, as shown in Syntax 14.

7.8.1 Syntax

Syntax 14—struct declaration

A struct is a plain-data type (see 7.1). That is, a struct may contain scalar data items and aggregates thereof.
A struct declaration may specify a struct_super_spec, a previously defined struct type from which the new
type inherits its members, by using a colon (:), as in C++. In addition, structs may

— include constraints (see 16.1) and covergroups (see 18.1 and 18.2);
— include exec blocks of any kind other than init_down, init_up, and body (see 21.1).

Data items in a struct shall be of plain-data types (whether randomizable or not). Declarations of
randomizable data items may optionally include the rand keyword to indicate that the element shall be
randomized when the overall struct is randomized (see Example 8). 16.4.1 describes struct randomization
in detail.

struct_declaration ::= struct_kind struct_identifier [template_param_decl_list]
 [struct_super_spec] { { struct_body_item } }
struct_kind ::=
 struct
 | object_kind
object_kind ::=
 buffer
 | stream
 | state
 | resource
struct_super_spec ::= : type_identifier
struct_body_item ::=
 constraint_declaration
 | attr_field
 | typedef_declaration
 | exec_block_stmt
 | attr_group
 | compile_assert_stmt
 | covergroup_declaration
 | covergroup_instantiation
 | struct_body_compile_if
 | stmt_terminator

Copyright © 2023 Accellera. All rights reserved.
64

Portable Test and Stimulus Standard 2.1 — October 2023

7.8.2 Examples

A struct example is shown in Example 8.

Example 8—Struct with rand qualifiers

7.9 Collections

Collection types are built-in data types. PSS supports fixed-size array and variable-size list, map, and set
collections of plain-data types (see 7.1). Each kind of collection has its own keyword, and its declaration
specifies the data type of the collection elements (and for maps, also the data type of the key).

PSS also has limited support for fixed-sized arrays of action handles, components, and flow and resource
object references, as described in 7.9.2. These are not considered plain-data types. All other collections are
plain-data types.

7.9.1 Syntax

Syntax 15—Collection data types

In an array, each element is initialized to the default initial value of the element type, unless the array
declaration contains an initialization assignment. A list, map or set is initialized as an empty collection
unless the declaration contains an initialization assignment. A collection that is empty is as if it was assigned
an empty aggregate literal ({}). See 4.8 for more information on literal syntax and semantics used to
initialize collection types.

Collections store both scalar and aggregate elements by value. This means that an element’s value is
captured when it is added or assigned to a collection. Modifying the value of an element in a collection does
not modify the element originally added to the collection. In the example below, v1, a struct with two
integer values, is assigned as the first element of my_list. Modifying a in that element does not modify
v1. (See 7.9.3 for more details on list operators and methods.)

struct axi4_trans_req {
rand bit[31:0] axi_addr;
rand bit[31:0] axi_write_data;
bit is_write;
rand bit[3:0] prot;
rand bit[1:0] sema4;

}

collection_type ::=
 array < data_type , array_size_expression >
 | list < data_type >
 | map < data_type , data_type >
 | set < data_type >
array_size_expression ::= constant_expression

Copyright © 2023 Accellera. All rights reserved.
65

Portable Test and Stimulus Standard 2.1 — October 2023

Example 9—Modifying collection contents

Collection variables can be operated on with built-in operators using standard operator symbols (e.g., [], =,
==, etc.) or with built-in methods using a method name and an argument list in parentheses.

Operators and methods that modify the contents of a collection shall not be used in activities, constraints, or
covergroups. These are allowed only in exec blocks (see 21.1) and native functions (see 21.3). Operators
and methods that do not modify collection contents may be used in activities, constraints, and covergroups.

Arrays and lists of randomizable types are randomizable. Maps and sets are non-randomizable. It is legal to
have a rand struct field that contains non-randomizable collection types.

Collection types may be nested to describe more complex collections.

Example 10—Nested collection types

7.9.2 Arrays

PSS supports fixed-sized arrays of plain-data types. Arrays may be declared with two different syntaxes, the
classical syntax where arrays are declared by adding square brackets with the array size
([constant_expression]) after the array name, referred to as the square array syntax, and the syntax that is
aligned to the other collection types, using angle brackets, referred to as the template array syntax.

Example 11—Array declarations

The same operators and methods may be applied to arrays declared using both syntaxes. However, the
template array syntax may be used where a data_type is required, enabling such capabilities as use as a
function return type, nested array types, and more.

struct my_s1 {
 int a, b;
}

struct my_s2 {
 list<my_s1> my_list;

 exec pre_solve {
 my_s1 v1 = {.a=1,.b=2};
 my_list.push_back(v1);
 my_list[0].a = 10; // my_list == {{.a=10,.b=2}}, v1 == {.a=1,.b=2}
 }
}

struct my_s {
 list<map<string, int>> m_list_of_maps;
 map<string, list<int>> m_map_of_lists;
}

int my_int_arr1[20]; // Square array declaration syntax
array<int,20> my_int_arr2; // Template array declaration syntax

Copyright © 2023 Accellera. All rights reserved.
66

Portable Test and Stimulus Standard 2.1 — October 2023

An array with N elements, is ordered, with the first element accessed using 0 as an index value with the []
operator, and the last element accessed using N-1 as an index value.

The square array syntax can also be used to declare fixed-size arrays of action handles, components, and
flow and resource object references. Individual elements of such arrays may be accessed using the []
operator. However, other operators and methods do not apply to these arrays, unless otherwise specified.
Action handle arrays are described in 12.3.1.1 and 12.3.2, component arrays are described in 9.4, and object
reference arrays are described in 13.4 and 14.2. Note that the elements of action handle arrays and object
reference arrays have reference semantics (see 7.10).

7.9.2.1 Array operators

The following operators are defined for arrays:

Index operator []

Used to access a specific element of an array, given an index into the array. The index shall be an integral
value. See 8.6.2 for more information on the index operator.

Assignment operator =

Creates a copy of the array-type expression on the RHS and assigns it to the array on the LHS. See 8.3 for
more information on the assignment operator.

Equality operator ==

Evaluates to true if all elements with corresponding indexes are equal. Two arrays of different element types
or different sizes are incomparable. See 8.5.3 for more information on the equality operator.

Inequality operator !=

Evaluates to true if not all elements with corresponding indexes are equal. Two arrays of different element
types or different sizes are incomparable. See 8.5.3 for more information on the inequality operator.

Set membership operator in

The set membership operator can be applied to an array to check whether a specific element is currently
within the array. It evaluates to true if the element specified on the left of the operator exists in the array
collection on the right of the operator. The type of the element shall be the same as the array’s element data
type. See 8.5.9 for more information on the set membership operator.

foreach statement

The foreach statement can be applied to an array to iterate over the array elements within an activity, a
constraint or native exec code. See 12.4.3, 16.1.7, and 21.7.8, respectively, for more information on the
foreach statements in these contexts.

Copyright © 2023 Accellera. All rights reserved.
67

Portable Test and Stimulus Standard 2.1 — October 2023

7.9.2.2 Array methods

The following methods are defined for arrays:

function int size();

Returns the number of elements in the array. Since arrays have fixed sizes, the returned value is considered a
constant expression. This function can also be used with arrays of action handles, components, and flow
and resource object references.

function <data_type> sum();

Returns the sum of all elements currently stored in the array. This function can only be used on arrays of a
numeric data type (int, bit, or floating-point type). The method can be used in a constraint to constrain an
array of random int or bit elements to have a sum of a certain value.

The return type of this function is dependent on the type of the data element:

function list<data_type> to_list();

Returns a list containing the elements of the array. The list’s element data type is the same as the data type
of the array elements. The list elements are ordered in the same order as the array.

function set<data_type> to_set();

Returns a set containing the elements of the array. Each element value will appear once. The set’s element
data type is the same as the data type of the array elements. The set is unordered.

7.9.2.3 Examples

Examples of fixed-size array declarations are shown in Example 12.

Example 12—Fixed-size arrays

In Example 12, individual elements of the east_routes array are accessed using the index operator [],
i.e., east_routes[0], east_routes[1],….

Table 6—Return type of sum() function

Data type Return type

int, bit int

float32, float64 float64

Other (e.g., string, struct) Not applicable

int fixed_sized_arr [16]; // array of 16 signed integers
array<bit[7:0],256> byte_arr; // array of 256 bytes
array<route,8> east_routes; // array of 8 route structs

Copyright © 2023 Accellera. All rights reserved.
68

Portable Test and Stimulus Standard 2.1 — October 2023

The following example shows use of array operators and methods. In this example, action type A is traversed
six times, once for each element in foo_arr, and once more since foo_arr[0] is greater than 3.

Example 13—Array operators and methods

7.9.2.4 Array properties

Arrays provide the properties size and sum, which may be used in expressions. These properties are
deprecated and have matching methods that should be used instead. They are used as follows:

int data[4];
... data.size ... // same as data.size()
... data.sum ... // same as data.sum()

7.9.3 Lists

The list collection type is used to declare a variable-sized ordered list of elements. Using an index, an
element in the list can be assigned or used in an expression. A list with N elements, is ordered, with the first
element accessed using 0 as an index value with the [] operator, and the last element accessed using N-1 as
an index value.

component pss_top {
 array<bit[15:0],5> foo_arr;
 set <bit[15:0]> foo_set;

 exec init_up {
 foo_arr = {1, 2, 3, 4, 4}; // Array initialization assignment
 foo_arr[0] = 5; // Use of [] to select an array element
 foo_set = foo_arr.to_set(); // Use of to_set() method
 }

 action A{ rand bit[15:0] x; }
 action B{}
 action C{}

 action traverse_array_a {

 // foo_arr has 5 elements and foo_set has 4
 rand int in [1..] y;
 constraint y < comp.foo_arr.size(); // Use of size() method in constraint

 activity {
 foreach (elem: comp.foo_arr) // "foreach" used on an array
 do A with { x == elem; };

 if (comp.foo_arr[0] > 3)
 do A;
 else if (4 in comp.foo_arr) // Use of "in" operator
 do B;
 else if (comp.foo_arr.size() < 4) // Use of size() method
 do C;
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
69

Portable Test and Stimulus Standard 2.1 — October 2023

A list is initialized as an empty collection unless the declaration contains an initialization assignment. A list
that is empty is as if it was assigned an empty aggregate literal ({}). List elements can be added or removed
in exec blocks; therefore the size of a list is not fixed like an array.

A list declaration consists of the keyword list, followed by the data type of the list elements between angle
brackets, followed by the name(s) of the list(s).

Example 14—Declaring a list in a struct

7.9.3.1 List operators

The following operators are defined for lists:

Index operator []

Used to access a specific element of a list, given an index into the list. The index shall be an integral value.
See 8.6.2 for more information on the index operator.

Assignment operator =

Creates a copy of the list-type expression on the RHS and assigns it to the list on the LHS. See 8.3 for more
information on the assignment operator.

Equality operator ==

Evaluates to true if the two lists are the same size and all elements with corresponding indexes are equal.
Two lists of different element types are incomparable. See 8.5.3 for more information on the equality
operator.

Inequality operator !=

Evaluates to true if the two lists are not the same size or not all elements with corresponding indexes are
equal. Two lists of different element types are incomparable. See 8.5.3 for more information on the
inequality operator.

Set membership operator in

The set membership operator can be applied to a list to check whether a specific element is currently in the
list. It evaluates to true if the element specified on the left of the operator exists in the list collection on the
right of the operator. The type of the element shall be the same as the list’s element data type. See 8.5.9 for
more information on the set membership operator.

foreach statement

The foreach statement can be applied to a list to iterate over the list elements within an activity, a constraint
or native exec code. See 12.4.3, 16.1.7, and 21.7.8, respectively, for more information on the foreach
statements in these contexts.

struct my_s {
 list<int> my_list;
}

Copyright © 2023 Accellera. All rights reserved.
70

Portable Test and Stimulus Standard 2.1 — October 2023

7.9.3.2 List methods

The following methods are defined for lists:

function int size();

Returns the number of elements in the list.

function void clear();

Removes all elements from the list.

function data_type delete(int index);

Removes an element at the specified index of type integer and returns the element value. The return value
data type is the same as the data type of the list elements. If the index is out of bounds, the operation is
illegal.

function void insert(int index, data_type element);

Adds an element to the list at the specified index of type integer. If the index is equal to the size of the list,
insert is equivalent to push_back(). If the index is less than the size of the list, then elements at and beyond
the index are moved by one. If the index is greater than the size of the list, the operation is illegal. The
inserted element’s data type shall be the same as the data type of the list elements.

function data_type pop_front();

Removes the first element of the list and returns the element value. This is equivalent to delete(0).

function void push_front(data_type element);

Inserts an element at the beginning of the list. This is equivalent to insert(0, element).

function data_type pop_back();

Removes the last element of the list and returns the element value. This is equivalent to delete(size()-1).

function void push_back(data_type element);

Appends an element to the end of the list. This is equivalent to insert(size(), element).

function set<data_type> to_set();

Returns a set containing the elements of the list. Each element value will appear once. The set’s element
data type is the same as the data type of the list elements. The set is unordered.

function void shuffle();

Randomly reorders the elements in the list.

7.9.3.3 Examples

The following example shows use of list operators and methods. In this example, an action of type B will be
traversed six times. There are six elements in foo_list3, foo_list2[0] is 1 and 4 is in
comp.foo_list1. Action A and action C are never traversed.

Copyright © 2023 Accellera. All rights reserved.
71

Portable Test and Stimulus Standard 2.1 — October 2023

Example 15—List operators and methods

7.9.3.4 List randomization

When the context containing the list attribute is randomized, the elements of the list are randomized.
Random-size lists are not supported. Consequently, it is illegal to place a constraint on the size() method
of a list outside an iterative constraint on the same list. The list size is considered to be an invariant inside an
iterative constraint. Consequently, the size() method may be referenced in constraints within an iterative
constraint. Example 16 shows declaration of a list with bit-type elements and illustrates valid and invalid
constraints on the size() method.

component pss_top {
 list<bit[15:0]> foo_list1, foo_list2;

 exec init_up {
 foo_list1 = {1, 2, 3, 4}; // List initialization with aggregate literal
 foo_list2.push_back(1); // List initialization with push_back
 foo_list2.push_back(4);
 }

 action A{}
 action B{}
 action C{}

 action traverse_list_a {
 list <bit[15:0]> foo_list3;
 bit[15:0] deleted;

 exec pre_solve {
 foo_list3 = pss_top.foo_list1; // foo_list3 = {1, 2, 3, 4}
 foo_list3.push_front(0); // foo_list3 = {0, 1, 2, 3, 4}
 foo_list3.push_back(5); // foo_list3 = {0, 1, 2, 3, 4, 5}
 foo_list3.insert(0, 1); // foo_list3 = {1, 0, 1, 2, 3, 4, 5}
 foo_list3[0] = 6; // foo_list3 = {6, 0, 1, 2, 3, 4, 5}
 deleted = foo_list3.delete(0); // foo_list3 = {0, 1, 2, 3, 4, 5}
 }

 activity {
 if (comp.foo_list1 == comp.foo_list2) // Use of == operator on list
 do A;
 else foreach (e: foo_list3) // Use of "foreach" on list
 if (comp.foo_list2[0] > 3) // Use of [] operator on list
 do A;
 else if (4 in comp.foo_list1) // Use of "in" operator on list
 do B;
 else
 do C;
 }

 exec post_solve {
 foo_list3.clear(); // foo_list3 = {}
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
72

Portable Test and Stimulus Standard 2.1 — October 2023

Example 16—List randomization

7.9.4 Maps

The map collection type is used to declare a variable-sized associative array that associates a key with an
element (or value). The keys serve as indexes into the map collection. Using a key, an element in the map
can be assigned or used in an expression. A map is unordered.

A map is initialized as an empty collection unless the declaration contains an initialization assignment. A
map that is empty is as if it was assigned an empty aggregate literal ({}). Map elements can be added or
removed within exec blocks.

A map declaration consists of the keyword map, followed by the data type of the map keys and the data
type of map elements, between angle brackets, followed by the name(s) of the map(s). Both keys and
element values may be of any plain-data type. Maps are non-randomizable.

Example 17—Declaring a map in a struct

7.9.4.1 Map operators

The following operators are defined for maps:

Index operator []

Used to access a specific element of a map, given a key of the specified data type. When used on the LHS in
an assignment, the index operator sets the element value associated with the specified key. If the key already
exists, the current value associated with the key is replaced with the value of the expression on the RHS. If
the key does not exist, then a new key is added to the map collection and the value of the expression on the
RHS is assigned to the new key’s associated map entry. Use of a key that does not exist in the map to
reference an element in the map is illegal. See 8.6.2 for more information on the index operator.

struct S {
 rand list<bit[8]> lst;

 exec pre_solve { // Initialize the list
 repeat (100) {
 lst.push_back(0);
 }
 }

 constraint {
 lst.size() in [4..100]; // Error: illegal constraint on size()
 foreach (lst[i]) {
 lst[i] == i+lst.size(); // OK: size() is an invariant in foreach
 }
 }
}

struct my_s {
 map<int, string> my_map;
}

Copyright © 2023 Accellera. All rights reserved.
73

Portable Test and Stimulus Standard 2.1 — October 2023

Assignment operator =

Creates a copy of the map-type expression on the RHS and assigns it to the map on the LHS. If the same key
appears more than once in the expression on the RHS, the last value specified is used. See 8.3 for more
information on the assignment operator.

Equality operator ==

Evaluates to true if the two maps are the same size, have the same set of keys, and all elements with
corresponding keys are equal. Two maps of different key or element types are incomparable. See 8.5.3 for
more information on the equality operator.

Inequality operator !=

Evaluates to true if the two maps are not the same size, do not have the same set of keys, or not all elements
with corresponding keys are equal. Two maps of different key or element types are incomparable. See 8.5.3
for more information on the inequality operator.

foreach statement

The foreach statement can be applied to a map to iterate over the map elements within an activity, a
constraint or native exec code. See 12.4.3, 16.1.7, and 21.7.8, respectively, for more information on the
foreach statements in these contexts.

The set membership operator (in) cannot be applied directly to a map. However, it may be applied to the set
of keys or the list of values produced by the keys() and values() methods, respectively, described below.

7.9.4.2 Map methods

The following methods are defined for maps:

function int size();

Returns the number of elements in the map.

function void clear();

Removes all elements from the map.

function data_type delete(data_type key);

Removes the element associated with the specified key from the map and returns the element value. The
return value data type is the same as the data type of the map elements. The key argument shall have the
same type as specified in the map declaration. If the specified key does not exist in the map, the operation is
illegal.

function void insert(data_type key, data_type value);

Adds the specified key/value pair to the map. If the key currently exists in the map, then the current value is
replaced with the new value. The arguments shall have the same types as specified in the map declaration.

function set<data_type> keys();

Returns a set containing the map keys. The set’s element data type is the same as the data type of the map
keys. Since each key is unique and no order is defined on the keys, the method returns a set collection.

Copyright © 2023 Accellera. All rights reserved.
74

Portable Test and Stimulus Standard 2.1 — October 2023

function list<data_type> values();

Returns a list containing the map element values. The list’s element data type is the same as the data type of
the map elements. Since element values may not be unique, the method returns a list collection. However,
the order of the list elements is unspecified.

7.9.4.3 Example

The following example shows use of map operators and methods. In this example, an action of type B will
be traversed four times: foo_map1 is not equal to foo_map2, foo_map3 has four elements,
foo_map2["a"] is 1 which is not greater than 3, and "b" exists in foo_map1.

Copyright © 2023 Accellera. All rights reserved.
75

Portable Test and Stimulus Standard 2.1 — October 2023

Example 18—Map operators and methods

7.9.5 Sets

The set collection type is used to declare a variable-sized unordered set of unique elements of plain-data
type. Sets can be created, modified, and queried using the operators and methods described below.

A set is initialized as an empty collection unless the declaration contains an initialization assignment. A set
that is empty is as if it was assigned an empty aggregate literal ({}). Set elements can be added or removed
within exec blocks; therefore the size of a list is not fixed like an array.

component pss_top {
 map<string, bit[15:0]> foo_map1, foo_map2;
 list<bit[15:0]> foo_list1;

 exec init_up {
 foo_map1 = {"a":1,"b":2,"c":3,"d":4}; // Map initialization
 // with key/value literal
 foo_map2["a"] = 1;
 foo_map2["b"] = 4;
 foo_list1 = foo_map1.values();
 foreach (foo_map2[i]) foo_list1.push_back(foo_map2[i]);
 }

 action A{}
 action B{}
 action C{}

 action traverse_map_a {
 rand int lower_size;
 map <string, bit[15:0]> foo_map3;
 set <string> foo_set1;

 exec pre_solve {
 foo_map3 = pss_top.foo_map1; // foo_map3 = {"a":1,"b":2,"c":3,"d":4}
 foo_map3.insert("z",0); // foo_map3 = {"a":1,"b":2,"c":3,"d":4,"z":0}
 foo_map3.insert("d",5); // foo_map3 = {"a":1,"b":2,"c":3,"d":5,"z":0}
 foo_map3.delete(“d”); // foo_map3 = {"a":1,"b":2,"c":3,"z":0}
 foo_set1 = foo_map3.keys();
 }
 constraint lower_size < comp.foo_map3.size() + comp.foo_list1.size();
 activity {
 if (comp.foo_map1 == comp.foo_map2) // Use of == operator on maps
 do A;
 else foreach (foo_map3.values()[i]) // Use of "foreach" on a map
 // converted to a list of values
 if (comp.foo_map2["a"] > 3) // Usage of operator[] on a map
 do A;
 else if ("b" in comp.foo_map1.keys()) // Check whether a key
 // is in the map
 do B;
 else
 do C;
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
76

Portable Test and Stimulus Standard 2.1 — October 2023

A set declaration consists of the keyword set, followed by the data type of the set elements between angle
brackets, followed by the name(s) of the set(s). Sets are non-randomizable.

Example 19—Declaring a set in a struct

7.9.5.1 Set operators

The following operators are defined for sets:

Assignment operator =

Creates a copy of the set-type expression on the RHS and assigns it to the set on the LHS. The same value
may appear more than once in the expression on the RHS, but it will appear only once in the set. See 8.3 for
more information on the assignment operator.

Equality operator ==

Evaluates to true if the two sets have exactly the same elements. Note that sets are unordered. Two sets of
different element types are incomparable. See 8.5.3 for more information on the equality operator.

Inequality operator !=

Evaluates to true if the two sets do not have exactly the same elements. Two sets of different element types
are incomparable. See 8.5.3 for more information on the inequality operator.

Set membership operator in

The set membership operator can be applied to a set to check whether a specific element is currently within
the set. It evaluates to true if the element specified on the left of the operator exists in the set collection on
the right of the operator. The type of the element shall be the same as the set’s element data type. See 8.5.9
for more information on the set membership operator.

foreach statement

The foreach statement can be applied to a set to iterate over the set elements within an activity, a constraint
or native exec code. When applied to a set, the foreach statement shall specify an iterator variable and shall
not specify an index variable. See 12.4.3, 16.1.7, and 21.7.8, respectively, for more information on the
foreach statements in these contexts.

7.9.5.2 Set methods

The following methods are defined for sets:

function int size();

Returns the number of elements in the set.

function void clear();

Removes all elements from the set.

struct my_s {
 set<int> my_set;
}

Copyright © 2023 Accellera. All rights reserved.
77

Portable Test and Stimulus Standard 2.1 — October 2023

function void delete(data_type element);

Removes the specified element from the set. The element argument data type shall be the same as the data
type of the set elements. If the element does not exist in the set, the operation is illegal.

function void insert(data_type element);

Adds the specified element to the set. The inserted element’s data type shall be the same as the data type of
the set elements. If the element already exists in the set, the method shall have no effect.

function list<data_type> to_list();

Returns a list containing the elements of the set in an arbitrary order. The list’s element data type is the same
as the data type of the set elements.

7.9.5.3 Examples

The following example shows use of set operators and methods. In this example, A is traversed two times
and B is traversed three times: foo_set1 is not equal to foo_set2, there are five elements in
foo_set3, two of the foo_set3 elements are in foo_set2, and "b" is in foo_set1.

Copyright © 2023 Accellera. All rights reserved.
78

Portable Test and Stimulus Standard 2.1 — October 2023

Example 20—Set operators and methods

7.10 Reference types

PSS supports a limited form of reference types for actions, components, and flow/resource objects, but does
not support references to plain-data types. References in PSS are similar in their semantics to class variables
in such languages as Java and SystemVerilog. Variables of reference types can be assigned and compared
(see more in 8.3 and 8.5.3).

component pss_top {
 set <string> foo_set1, foo_set2;
 list<string> foo_list1;

 exec init_up {
 foo_set1 = {"a","b","c","d"}; // Set initialization with aggregate literal
 foo_set2.insert("a");
 foo_set2.insert("b");
 foo_list1 = foo_set1.to_list();
 foreach (e:foo_set2) foo_list1.push_back(e);
 }

 action A{}
 action B{}
 action C{rand string character;}

 action traverse_set_a {
 rand int lower_size;
 set <string> foo_set3;
 list<string> foo_list2;

 exec pre_solve {
 foo_set3 = pss_top.foo_set1;
 foo_set3.insert("z");
 foo_set3.insert("e");
 foo_set3.delete("d");
 foo_list2 = foo_set3.to_list();
 }

 constraint lower_size < foo_set3.size() + comp.foo_list1.size();

 activity {
 if (comp.foo_set1 == comp.foo_set2) // Use == operator on sets
 do A;
 else foreach (e:foo_set3) // Use "foreach" on set
 if (e in comp.foo_set2) // Use [] operator on set
 do A;
 else if ("b" in comp.foo_set1) // Use "in" operator on set
 do B;
 else
 replicate (j:foo_list2.size())
 do C with {character == foo_list2[j];};
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
79

Portable Test and Stimulus Standard 2.1 — October 2023

7.10.1 Syntax

Syntax 16—ref declaration

The following also apply:
a) The ref modifier can be used in the declaration of local variables, fields of components, function

parameters, and function return values. The ref modifier shall not be used in the declaration of fields
in the scope of actions, flow/resource objects, and structs. Nor shall it be used to declare static con-
stants or the key or element type in collections.

b) Fields and instance functions can be accessed through a reference expression in the same way as
through an instance path, using the dot (‘.’) operator.

c) An expression of reference type may evaluate to the special value null, indicating that it does not
reference any entity. It shall be an error to access members of an entity through a null reference. See
also 8.3 and 8.5.3.

d) When not initialized, the default value of a reference variable is null.

Note that PSS supports special reference fields that are automatically resolved as part of the solving process.
They are:

— The context component reference comp (see 9.5)
— Action handles to sub-actions within compound actions (see 12.3.1.1)
— The previous state reference prev (see 13.3.1)
— Input and output reference fields of actions (see 13.4)
— Resource claim reference fields (see 14.2)

reference_type ::= ref entity_type_identifier
entity_type_identifier ::=
 action_type_identifier
 | component_type_identifier
 | flow_object_type
 | resource_object_type
null_ref ::= null

Copyright © 2023 Accellera. All rights reserved.
80

Portable Test and Stimulus Standard 2.1 — October 2023

7.10.2 Examples

Example 21 demonstrates the use of a reference as a local variable and as a return type of a function. In the
body of action call_foo, a reference to A is stored in a local variable, and then used to call function
foo(). In addition, a reference to A is returned from function choose_A(), and it is used in turn to call
foo() on the chosen instance of A.

Example 21—Use of reference as local variable and function return value

In Example 22, a reference field is declared under component my_comp. After the construction of the
component instance tree, the attribute sibling_size of c2 is equal to 10, having been assigned in the
init_down block through the sibling reference field. However, the attribute sibling_size of c1 is
still equal to its default value 0, because for c1, reference field sibling was not initialized, and therefore
c1.sibling is equal to null.

Example 22—Use of reference field and null value

component A {
 function void foo();
};

component B {
 A a_arr[5];

 function ref A choose_A(int code) {
 return a_arr[code % 5];
 }

 action call_foo {
 exec body {
 ref A aref = comp.a_arr[3];
 aref.foo();
 comp.choose_A(123).foo();
 }
 };
};

component my_comp {
 ref my_comp sibling;
 int size, sibling_size;

 exec init_down {
 if (sibling != null) {
 sibling_size = sibling.size;
 }
 }
};

component pss_top {
 my_comp c1, c2;
 exec init_down {
 c1.size = 10;
 c2.sibling = c1;
 }
};

Copyright © 2023 Accellera. All rights reserved.
81

Portable Test and Stimulus Standard 2.1 — October 2023

7.11 User-defined data types

The typedef statement declares a user-defined type name in terms of an existing data type, as shown in
Syntax 17.

7.11.1 Syntax

Syntax 17—User-defined type declaration

7.11.2 Examples

A typedef example is shown in Example 23.

Example 23—typedef

7.12 Data type conversion

Expressions of types int, bit, bool, enum, or floating-point type can be changed to another type in this list
by using a cast operator. In addition, an expression of a reference type can be changed to a compatible
reference type.

7.12.1 Syntax

Syntax 18 defines the cast operator.

Syntax 18—cast operation

In a cast_expression, the expression to be cast shall be preceded by the casting data type enclosed in
parentheses. The cast shall return the value of the expression represented as the casting_type. A
type_identifier specified as a casting_type shall refer to a numeric, Boolean, enumeration, or reference type.

The following also apply:
a) A numeric, Boolean, or enumeration value can only be cast to another numeric, Boolean or enumer-

ation type. A reference value can only be cast to a compatible reference type.

typedef_declaration ::= typedef data_type identifier ;

typedef bit[31:0] uint32_t;

cast_expression ::= (casting_type) expression
casting_type ::=
 integer_type
 | bool_type
 | enum_type
 | float_type
 | reference_type
 | type_identifier

Copyright © 2023 Accellera. All rights reserved.
82

Portable Test and Stimulus Standard 2.1 — October 2023

b) Any non-zero value cast to a bool type shall evaluate to true. A zero value cast to a bool type shall
evaluate to false. When casting a bool type to another type, false evaluates to 0 and true evaluates to
1.

c) When casting a value to a bit type, the casting_type shall include the width specification of the
resulting bit vector. The expression shall be converted to a bit vector of sufficient width to hold the
value of the expression, and then truncated or left-zero-padded as necessary to match the
casting_type.

d) When casting a value to a user-defined enum type, the value shall correspond to the result of an
implicit cast to the resulting underlying numeric type. When used in a constraint, the domain of a
field of enum type consists of the values of the enum type.

e) All integer expressions (int and bit types) are type compatible, so an explicit cast is not required
from one to another.

f) All floating-point expressions (float32 and float64 types) are type compatible, so an explicit cast is
not required from one to another.

g) Floating-point expressions are type-compatible with integer expressions, so an explicit cast is not
required from one to another. Conversion from floating-point to integer is performed by truncating
the fractional part of the floating-point expression.

h) A reference value cast to a (direct or indirect) supertype reference or to its own reference type
(upcast) shall evaluate to the same reference. An explicit cast is not required in this case; an upcast is
implicit.

i) A reference value cast to a (direct or indirect) subtype reference (downcast) shall evaluate to the
same reference if the dynamic value of the reference belongs to the casting type, and shall evaluate
to null otherwise.

Copyright © 2023 Accellera. All rights reserved.
83

Portable Test and Stimulus Standard 2.1 — October 2023

7.12.2 Examples

Example 24 shows the overlap of possible enum values (from 7.12.1 (d)) when used in constraints.

Example 24—Overlap of possible enum values

Example 25 shows the casting of al from the align_e enum type to a 4-bit vector to pass into the
alloc_addr imported function.

Example 25—Casting of variable to a bit vector

import std_pkg::*;

enum config_modes_e {UNKNOWN, MODE_A=10, MODE_B=20};
enum foo_e {A=10, B, C};
function bit[32] get_cfg_mode() {return 30;}

 // a new cfg_mode that has not been added to the enum type yet

action my_a {
 config_modes_e top_cfg;
 rand config_modes_e cfg;
 rand foo_e foo;
 constraint cfg == (config_modes_e)11;
 // contradiction - no possible value
 constraint cfg == (config_modes_e)foo;
 // cfg==MODE_A, the only value in the
 // numeric domain of both cfg and foo
 exec pre_solve {
 config_modes_e cfg_mode = (config_modes_e)get_cfg_mode();
 match (cfg_mode) {
 [MODE_A,
 MODE_B] : top_cfg = cfg_mode;
 [UNKNOWN]: print("Unknown configuration mode\n");
 default : print("Invalid configuration mode = %d\n",
 (int)cfg_mode);
 }
 }
}

package external_fn_pkg {
 enum align_e {byte_aligned=1, short_aligned=2, word_aligned=4};
 function bit[31:0] alloc_addr(bit[31:0] size, bit[3:0] align);
 buffer mem_seg_s {
 rand bit[31:0] size;
 bit[31:0] addr;
 align_e al;
 exec post_solve {
 addr = alloc_addr(size, (bit[3:0])al);
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
84

Portable Test and Stimulus Standard 2.1 — October 2023

Example 26 shows reference type casting on the comp field of an action.

Example 26—Casting of reference type

component C {
 action A {}
}

component sub_C: C {
 int a = 17;
}

extend action C::A {
 int b;
 exec post_solve {
 if ((ref sub_C)comp != null) {
 b = ((ref sub_C)comp).a;
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
85

Portable Test and Stimulus Standard 2.1 — October 2023

8. Operators and expressions

This section describes the operators and operands available in PSS and how to use them to form expressions.

An expression is a construct that can be evaluated to determine a specific value. Expressions may be
primary expressions, consisting of a single term, or compound expressions, combining operators with sub-
expressions as their operands.

The various types of primary expressions are specified in 8.6.

8.1 Syntax

Syntax 19—Expressions and operators

8.2 Constant expressions

Some constructs require an expression to be a constant expression. The operands of a constant expression
consist of numeric and string literals, aggregate literals with constant values, named constants (e.g., static
const, template parameters), bit-selects and part-selects of named constants, enum items, and calls of pure
functions with constant arguments.

expression ::=
 primary
 | unary_operator primary
 | expression binary_operator expression
 | conditional_expression
 | in_expression
unary_operator ::= - | ! | ~ | & | | | ^
binary_operator ::= * | / | % | + | - | << | >> | == | != | < | <= | > | >= | || | && | | | ^ | & | **
assign_op ::= = | += | -= | <<= | >>= | |= | &=
primary ::=
 number
 | aggregate_literal
 | bool_literal
 | string_literal
 | null_ref
 | paren_expr
 | cast_expression
 | ref_path
 | compile_has_expr
paren_expr ::= (expression)
cast_expression ::= (casting_type) expression

Copyright © 2023 Accellera. All rights reserved.
86

Portable Test and Stimulus Standard 2.1 — October 2023

8.3 Assignment operators

The assignment operators defined by the PSS language are listed in the table below.

The assignment (=) operator is used in the context of attribute initializers and procedural statements.

The arithmetic assignment (+=, -=), shift assignment (<<=, >>=), and bitwise assignment (|=, &=)
operators are used in the context of procedural statements. These compound assignment operators are
equivalent to assigning to the left-hand operand the result of applying the leading operator to the left-hand
and right-hand operands. For example, a <<= b is equivalent to a = a << b.

While these operators may not be used as a part of an expression, they are documented here for consistency.

The type of the right-hand side of an assignment shall be assignment-compatible with the type of the left-
hand side. In an aggregate assignment, assignment is performed element by element. In an assignment of a
fixed-size array, the left-hand and right-hand sides of the assignment shall have the same size.

In assignment of struct types, the right-hand side shall be of the same type as the left-hand side or a derived
type thereof. When the left-hand side of an assignment is of struct type and the right-hand side is of a type
that inherits from the type of the left-hand side, the elements present in the left-hand type are assigned
element-by-element while elements only present in the right-hand type are ignored.

In assignment of reference types, the right-hand side shall be one of the following:
— A reference expression of the same type as the left-hand side or a derived type of it
— An instance path to a component of the same type as the left-hand side or a derived type of it
— The value null

Following the assignment of a reference, the left-hand side variable shall point to (be an alias to) the same
entity (component, action, flow/resource object) referred to by the right-hand side (or have the value null in
case the right-hand side evaluates to null).

Table 7—Assignment operators and data types

Operator token Operator name Operand data types

= Binary assignment operator Any plain-data type or reference type

+= -= Binary arithmetic assignment operators Numeric

&= |= Binary bitwise assignment operators Integer

>>= <<= Binary shift assignment operators Integer

Copyright © 2023 Accellera. All rights reserved.
87

Portable Test and Stimulus Standard 2.1 — October 2023

8.4 Expression operators

The expression operators defined by the PSS language are listed in the table below.

8.4.1 Operator precedence and associativity

Operator precedence and associativity are listed in Table 9. The highest precedence is listed first.

Table 8—Expression operators and data types

Operator token Operator name Operand data types Result data type

?: Conditional operator Any plain-data type or
reference type

(condition is Boolean)

Same as operands

- Unary arithmetic negation operator Numeric Same as operand

~ Unary bitwise negation operator Integer Same as operand

! Unary Boolean negation operator Boolean Boolean

& | ^ Unary bitwise reduction operators Integer 1-bit

+ - * / ** Binary arithmetic operators Numeric Numeric

% Binary modulus operator Integer Integer

& | ^ Binary bitwise operators Integer Integer

>> << Binary shift operators Integer Integer

&& || Binary Boolean logical operators Boolean Boolean

< <= > >= Binary relational operators Numeric Boolean

== != Binary logical equality operators Any plain-data type or
reference type

Boolean

cast Data type conversion operator Numeric, Boolean,
enum

Casting type

in Binary set membership operator Any plain-data type Boolean

[expression] Index operator Array, list, map Same as element of
collection

[expression] Bit-select operators Integer Integer

[expression:
 expression]

Part-select operator Integer Integer

Table 9—Operator precedence and associativity

Operator Associativity Precedence

() [] Left 1 (Highest)

cast Right 2

- ! ~ & | ^ (unary) 2

Copyright © 2023 Accellera. All rights reserved.
88

Portable Test and Stimulus Standard 2.1 — October 2023

Operators shown in the same row in the table shall have the same precedence. Rows are arranged in order of
decreasing precedence for the operators. For example, *, /, and % all have the same precedence, which is
higher than that of the binary + and – operators.

All operators shall associate left to right with the exception of the conditional (?:) and cast operators, which
shall associate right to left. Associativity refers to the order in which the operators having the same
precedence are evaluated. Thus, in the following example, B is added to A, and then C is subtracted from the
result of A+B.

A + B - C

When operators differ in precedence, the operators with higher precedence shall associate first. In the
following example, B is divided by C (division has higher precedence than addition), and then the result is
added to A.

A + B / C

Parentheses can be used to change the operator precedence, as shown below.

(A + B) / C // not the same as A + B / C

8.4.2 Using aggregate literals in expressions

Aggregate literals (i.e., value list, map, and structure literals, see 4.8) can be used as expression operands.
For example, aggregate literals can be used to initialize the contents of aggregate types as part of a variable
declaration, in constraint contexts, as foreign language function parameters, and as template-type value
parameters. An aggregate literal may not be the target of an assignment.

When the operands of an assignment or equality operator are a structure aggregate literal and a struct-type
variable, any elements not specified by the literal are given the default values of the data type of the element.
When the operands of an assignment or equality operator are a value list literal and an array, the number of
elements in the aggregate literal must be the same as the number of elements in the array.

** Left 3

* / % Left 4

+ - (binary) Left 5

<< >> Left 6

< <= > >= in Left 7

== != Left 8

& (binary) Left 9

^ (binary) Left 10

| (binary) Left 11

&& Left 12

|| Left 13

?: (conditional operator) Right 14 (Lowest)

Table 9—Operator precedence and associativity (Continued)

Copyright © 2023 Accellera. All rights reserved.
89

Portable Test and Stimulus Standard 2.1 — October 2023

In Example 27, a struct type is declared that has four integer fields. A non-random instance of that struct is
created where all field values are explicitly specified. A constraint compares the fields of this struct with an
aggregate literal in which only the first two struct fields are specified explicitly. Because a struct is a fixed-
size data structure, the fields that are not explicitly specified in the aggregate literal are given default values–
in this case 0. Consequently, the constraint holds.

Example 27—Using a structure literal with an equality operator

When an aggregate literal is used in the context of a variable-sized data type, the aggregate literal specifies
both size and content.

In Example 28, a set variable is compared with an aggregate literal using a constraint. The size of the set
variable is three, since there are three unique values in the initializing literal, while the size of the aggregate
literal in the constraint is two. Consequently, the constraint does not hold.

Example 28—Using an aggregate literal with a set

Values in aggregate literals may be non-constant expressions. Example 29 shows use of a repeat-loop index
variable and a function call in a value list literal.

Example 29—Using non-constant expressions in aggregate literals

struct s {
 int a, b, c, d;
};
struct t {
 s s1 = {.a=1,.b=2,.c=0,.d=0};
 constraint s1 == {.b=2,.a=1};
}

struct t {
 set<int> s = {1, 2, 0, 0};
 constraint s == {1, 2}; // False: s has 3 elements, but the literal has 2
}

function int get_val(int idx);
import solve function get_val;
struct S {
 list<array<int,2>> pair_l;

 exec pre_solve {
 repeat(i : 4) {
 array<int,2> pair = {i, get_val(i)};
 pair_l.push_back(pair);
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
90

Portable Test and Stimulus Standard 2.1 — October 2023

8.4.3 Type inference rules

The expected type of an expression shall be inferred according to the rules below. The expected type is used
in the resolution of unqualified enum_item names (see 7.5) and in the interpretation of aggregate literals (see
8.4.2).

— The type of the expression on the left-hand side of an assignment determines the expected type of
the expression on the right-hand side. This includes initialization assignments.

— The type of the formal parameter of a function determines the expected type of the respective actual
parameter expression (see 21.2). This is true also for covergroup instantiations (see 18.2).

— The return type of a function determines the expected type of the expression in its return statement
(see 21.7.5).

— An expression of a known type on the left-hand side of an equality operator (==, !=) determines the
expected type of the right-hand side (see 8.5.3).

— The expected type of a conditional_expression (?:) determines the expected type of the second and
third operands of the expression (see 8.5.8).

— The type of the expression on the left-hand side of a set membership (in) operator determines the
expected type of the expressions in the open_range_list, or the elements of the collection_expres-
sion, on the right-hand side (see 8.5.9).

— An explicit data type of a coverpoint determines the expected type of the coverpoint expression (see
18.3).

— The type (explicit or implicit) of a coverpoint determines the expected type of its bin values (see
18.3.3).

— In a cast_expression, the specified target type (casting_type) determines the expected type of the
expression to be cast (see 7.12).

For the purposes of this section, all integer types are considered to be a single type, as all integer expressions
are type compatible, and all floating-point types are considered to be a single type, as all floating-point
expressions are type compatible (see 7.12). See more on the evaluation of numeric expressions in 8.7 and
8.8.

In Example 30, contextual typing is required to interpret structure literals. Based on the type of the left
operand of an equality operator, the structure literal on the right-hand side is interpreted differently in two
different constraints within the same action.

Copyright © 2023 Accellera. All rights reserved.
91

Portable Test and Stimulus Standard 2.1 — October 2023

Example 30—Contextual typing in structure literal interpretation

Example 31 shows two cases of unqualified enum item resolution based on contextual typing—an
assignment and a function call. Note that in calling function print_num(), whose formal parameter is
declared with type int, the identifier ORANGE cannot be resolved, because the expected type is an int. The
enum_item must be qualified in this case.

Example 31—Contextual typing in enum_item resolution

8.4.4 Operator expression short-circuiting

The logical operators (&&, ||) and the conditional operator (?:) shall use short-circuit evaluation. In other
words, operand expressions that are not required to determine the final value of the operation shall not be

component my_ip_c {
 struct my_struct { rand int a; };
 action my_op {
 rand my_struct s;
 }
}

component pss_top {
 my_ip_c my_ip;
 struct your_struct { rand int a; };

 action test {
 rand your_struct s;
 constraint s == {.a = 2}; // pss_top::your_struct literal

 my_ip_c::my_op op;
 constraint op.s == {.a = 3}; // my_ip_c::my_struct literal

 activity {
 op;
 }
 }
}

enum color_e {RED, GREEN, ORANGE};

function void print_color(color_e c);
function void print_num(int n);

component pss_top {
 enum fruit_e {APPLE, ORANGE};

 exec init_down {
 color_e c = ORANGE; // OK – expected type is color_e
 print_color(RED); // OK – same as above
 print_num((int)ORANGE); // Error – 'ORANGE' unresolved -
 // no enum type expected here
 print_num((int)fruit_e::ORANGE); // OK – qualified reference
 }
}

Copyright © 2023 Accellera. All rights reserved.
92

Portable Test and Stimulus Standard 2.1 — October 2023

evaluated. All other operators shall not use short-circuit evaluation. In other words, all of their operand
expressions are always evaluated.

8.5 Operator descriptions

The following sections describe each of the operator categories. The legal operand types for each operator
are listed in Table 8.

8.5.1 Arithmetic operators

The binary arithmetic operators are given in Table 10.

Integer division shall truncate the fractional part toward zero. The modulus operator (for example, a % b)
gives the remainder when the first operand is divided by the second, and thus zero when b divides a exactly.
The result of a modulus operation shall take the sign of the first operand. Division or modulus by zero shall
be considered illegal.

If either operand of the power operator is of floating-point type, then the result type shall also be of floating-
point type. The result of the power operator is unspecified if the first operand is zero and the second operand
is negative or if the first operand is negative and the second operand is not an integer value.

The unary arithmetic negation operator (-) shall take precedence over the binary operators.

8.5.1.1 Arithmetic expressions with unsigned and signed types

bit-type variables are unsigned, while int-type variables are signed.

A value assigned to an unsigned variable shall be treated as an unsigned value. A value assigned to a signed
variable shall be treated as signed. Signed values shall use two’s-complement representation. Conversions

Table 10—Binary arithmetic operators

a + b a plus b

a - b a minus b

a * b a multiplied by b (or a times b)

a / b a divided by b

a % b a modulo b

a ** b a to the power of b

Table 11—Power operator rules for integers

op1 is < -1 op1 is -1 op1 is 0 op1 is 1 op1 is > 1

op2 is positive op1 ** op2 op2 is odd -> -1
op2 is even -> 1 0 1 op1 ** op2

op2 is zero 1 1 1 1 1

op2 is negative 0 op2 is odd -> -1
op2 is even -> 1 undefined 1 0

Copyright © 2023 Accellera. All rights reserved.
93

Portable Test and Stimulus Standard 2.1 — October 2023

between signed and unsigned values shall keep the same bit representation. Only the bit interpretation
changes.

8.5.2 Relational operators

Table 12 lists and defines the relational operators. Relational operators may be applied only to numeric
operands.

An expression using these relational operators shall yield the Boolean value true if the specified relation
holds, or the Boolean value false if the specified relation does not hold.

When one or both operands of a relational expression are unsigned, the expression shall be interpreted as a
comparison between unsigned values. If the operands are of unequal bit lengths, the smaller operand shall be
zero-extended to the size of the larger operand.

When both operands are signed, the expression shall be interpreted as a comparison between signed values.
If the operands are of unequal bit lengths, the smaller operand shall be sign-extended to the size of the larger
operand.

All the relational operators have the same precedence, and have lower precedence than arithmetic operators.

8.5.3 Equality operators

The equality operators rank lower in precedence than the relational operators. Table 13 defines the equality
operators.

Both equality operators have the same precedence. When the operands are numeric, these operators compare
operands bit for bit. As with the relational operators, the result shall be false if the comparison fails and true
if it succeeds.

When one or both operands are unsigned, the expression shall be interpreted as a comparison between
unsigned values. If the operands are of unequal bit lengths, the smaller operand shall be zero-extended to the
size of the larger operand.

When both operands are signed, the expression shall be interpreted as a comparison between signed values.
If the operands are of unequal bit lengths, the smaller operand shall be sign-extended to the size of the larger
operand.

Table 12—Relational operators

a < b a less than b

a > b a greater than b

a <= b a less than or equal to b

a >= b a greater than or equal to b

Table 13—Equality operators

a == b a equal to b

a != b a not equal to b

Copyright © 2023 Accellera. All rights reserved.
94

Portable Test and Stimulus Standard 2.1 — October 2023

When the operands of an equality operator are of string type, both the sizes and the values of the string
operands are compared.

Aggregate data (structs and collections) may be compared using equality operators. When the equality
operators are applied to aggregate data, both operands shall be of the same type. Aggregate operands are
compared element-by-element to assess equality.

The following rules apply to comparison of collections:
— It shall be illegal to compare two fixed-size arrays of different sizes. Variable-sized collections of

the same type may be compared, but they shall be considered not equal if they have different sizes.
— Two fixed-size arrays are considered equal if they have the same elements in the same order.
— Two lists are considered equal if they have the same size and they have the same elements in the

same order.
— Two maps are considered equal if they have the same size and the same key-value pairs, regardless

of order (maps are unordered).
— Two sets are considered equal if they have the same size and the same elements, regardless of order

(sets are unordered).

The right-hand side of an equality operator may be an aggregate literal of the same type as the left-hand side.
The left-hand side of an equality operator may not be an aggregate literal. See more details about collections
in 7.9 and about aggregate literals in 4.8 and 8.4.2.

References can be compared with equality operators. The operands may be one of the following:
— Two expressions of the same reference type, or one expression of a reference to a derived type of the

other
— One expression of a component reference type, and the other an instance path to a component of the

same type, or a derived type of it
— An expression of a reference type and the value null

The expression evaluates to true if both operands refer to the same entity (component, action, flow/resource
object) or if both evaluate to null. Otherwise it evaluates to false. Note that these rules apply to variables
declared with the ref modifier, the built-in comp reference, and other reference fields (see 7.10).

8.5.4 Logical operators

The binary operators logical AND (&&) and logical OR (||) are logical connective operators and have a
Boolean result. The precedence of && is greater than that of ||, and both have a lower precedence than the
relational and equality operators.

The unary logical negation operator (!) converts a true operand to false and a false operand to true.

In procedural contexts, the && and || operators shall use short-circuit evaluation as follows:
— The first operand expression shall always be evaluated.
— For &&, if the first operand evaluates to false, then the second operand shall not be evaluated.
— For ||, if the first operand evaluates to true, then the second operand shall not be evaluated.

Copyright © 2023 Accellera. All rights reserved.
95

Portable Test and Stimulus Standard 2.1 — October 2023

8.5.5 Bitwise operators

The bitwise operators perform bitwise manipulations on the operands. Specifically, the binary bitwise
operators combine a bit in one operand with the corresponding bit in the other operand to calculate one bit
for the result. The following truth tables show the result for each operator and input operands.

The bitwise unary negation operator (~) negates each bit of a single operand.

These operators may be applied only to integer operands.

Table 14—Bitwise binary AND operator

& 0 1

0 0 0

1 0 1

Table 15—Bitwise binary OR operator

| 0 1

0 0 1

1 1 1

Table 16—Bitwise binary XOR operator

^ 0 1

0 0 1

1 1 0

Table 17—Bitwise unary negation operator

~

0 1

1 0

Copyright © 2023 Accellera. All rights reserved.
96

Portable Test and Stimulus Standard 2.1 — October 2023

8.5.6 Reduction operators

The unary reduction operators perform bitwise operations on a single operand to produce a single-bit result.

The unary AND operator (&) returns 1’b1 if all the bits of the operand are 1, and returns 1’b0 otherwise.
The unary OR operator (|) returns 1’b1 if any bit of the operand is 1, and returns 1’b0 otherwise. The
unary XOR operator (^) returns 1’b1 if an odd number of bits of the operand are 1, and returns 1’b0
otherwise.

These operators may be applied only to integer operands.The table below shows the results of applying the
three reduction operators to four example bit patterns.

8.5.7 Shift operators

PSS provides two bitwise shift operators: shift-left (<<) and shift-right (>>). The left shift operator shifts
the left operand to the left by the number of bit positions given by the right operand. The vacated bit
positions shall be filled with zeros. The right shift operator shifts the left operand to the right by the number
of bit positions given by the right operand. If the left operand is unsigned or if the left operand has a non-
negative value, the vacated bit positions shall be filled with zeros. If the left operand is signed and has a
negative value, the vacated bit positions shall be filled with ones. The right operand shall be a non-negative
number. These operators may be applied only to integer operands.

8.5.8 Conditional operator

The conditional operator (?:) is right-associative and is composed of three operands separated by two
operators as shown in Syntax 20. The first operand (the cond_predicate) shall be of Boolean type. The
second and third operands shall be of the same type, and may be of any plain-data or reference type.

Syntax 20—Conditional operator

If cond_predicate is true, then the operator evaluates to the first expression without evaluating the second
expression. If false, then the operator evaluates to the second expression without evaluating the first
expression.

Table 18—Results of unary reduction operations

Operand & | ^ Comments

4'b0000 0 0 0 No bits set

4'b1111 1 1 0 All bits set

4'b0110 0 1 0 Even number of bits set

4'b1000 0 1 1 Odd number of bits set

conditional_expression ::= cond_predicate ? expression : expression
cond_predicate ::= expression

Copyright © 2023 Accellera. All rights reserved.
97

Portable Test and Stimulus Standard 2.1 — October 2023

8.5.9 Set membership operator

PSS supports the set membership operator in, as applied to value sets and collection data types. Syntax 21
shows the syntax for the set membership operator.

8.5.9.1 Syntax

Syntax 21—Set membership operator

The set membership operator returns true if the value of the expression on the left-hand side of the in
operator is found in the open_range_list or collection_expression on the right-hand side of the operator, and
false otherwise.

The expression on the left-hand side shall have a self-determined type; in particular, the left-hand side shall
not be an unqualified enum_item (see 7.5) or an aggregate literal (see 4.8). The elements of the right-hand
side of the in operator shall have a type compatible with the expression on the left-hand side.

If the expression on the left-hand side is of a scalar type, the right-hand side may be an open_range_list or a
collection_expression. If the expression on the left-hand side is of a collection type, the right-hand side shall
be a collection_expression.

An open_range_list on the right-hand side of the in operator shall be a comma-separated list of scalar value
expressions or ranges. When specifying a range, the expressions shall be of a numeric or enumeration type.
If the left-hand bound of the range is greater than the right-hand bound of the range, the range is considered
empty. Values can be repeated; therefore, values and value ranges can overlap. The evaluation order of the
expressions and ranges within the open_range_list is nondeterministic.

A collection_expression on the right-hand side of the in operator shall evaluate to an array, list, or set type
that contains elements whose type is compatible with the type of the expression on the left-hand side. For
example, the collection_expression may be a value_list_literal or a hierarchical reference to a set. The
collection_expression may also be an array of action handles, components, or flow and resource object
references. In this case, the expression on the left-hand side shall be a corresponding ref type.

8.5.9.2 Examples

Example 32 constrains the addr attribute field to the range 0x0000 to 0xFFFF.

Example 32—Value range constraint

in_expression ::=
 expression in [open_range_list]
 | expression in collection_expression
open_range_list ::= open_range_value { , open_range_value }
open_range_value ::= expression [.. expression]
collection_expression ::= expression

constraint addr_c {
 addr in [0x0000..0xFFFF];
}

Copyright © 2023 Accellera. All rights reserved.
98

Portable Test and Stimulus Standard 2.1 — October 2023

In the example below, v is constrained to be in the combined value set of values and the values specified
directly in the open_range_list 1, 2. In other words, the value of v will be in [1,2,3,4,5]. The variable
values of type list may not be referenced in an open_range_list.

Example 33—Set membership in collection

In the example below, v is constrained to be in the range 1, 2, and between a and b. The range a..b may
overlap with the values 1 and 2.

Example 34—Set membership in variable range

8.6 Primary expressions

There are several types of primary expressions (or simple operands).

The simplest type of primary expression is a reference (simple or hierarchical) to a variable, constant, or
template parameter.

In order to select a single bit of an integer variable or integer named constant (e.g., static const or template
parameter), a bit-select shall be used. In order to select a bit range of a integer variable or integer named
constant, a part-select shall be used.

A collection variable of plain-data type can be referenced as a primary expression. In order to select an
element within a collection, an index operator shall be used.

A struct variable can be referenced as a primary expression.

A function call is a primary expression.

There are additional types of primary expressions. Formally, an expression is a primary expression if it is a
primary as defined in B.17 and unparenthesized.

8.6.1 Bit-selects and part-selects

Bit-selects select a particular bit from a named integer variable or constant using the syntax

identifier [expression]

The index may be any integer expression and may be non-constant.

Part-selects select a fixed range of contiguous bits using the syntax

struct s {
 list<int> values = {3, 4, 5};
 rand int v;
 constraint v in [1,2] || v in values;
}

struct s {
 rand int v, a, b;
 constraint a < b;
 constraint v in [1,2,a..b];
}

Copyright © 2023 Accellera. All rights reserved.
99

Portable Test and Stimulus Standard 2.1 — October 2023

identifier [constant_expression : constant_expression]

The value of the first constant_expression shall be greater than or equal to the value of the second
constant_expression.

Bit-selects and part-selects may be used as operands of other operators and as targets of assignments. It shall
be illegal for a bit-select or a part-select to access an out-of-bounds bit index.

8.6.2 Selecting an element from a collection (indexing)

The index operator [] is applied to an array, list, or map collection to select a single element. In the case of
an array or a list, the index shall be an integer expression whose value is between 0 and the size of the
array/list - 1. In the case of a map, the index shall be of the same type as that of the key in the map
declaration.

An indexed collection may be used as an operand of other operators and as a target of assignments.

In the case of an array or a list, it shall be illegal to access an out-of-bounds index. In the case of a map, it
shall be illegal to read an element whose key does not appear in the map. An assignment to a map element
whose key does not currently appear in the map shall add that key and value pair to the map.

8.7 Bit sizes for numeric expressions

The size, in bits, of a numeric expression is determined by the operands involved in the expression and the
context in which the expression appears. Casting can be used to set the size context of an intermediate value
(see 7.12).

8.7.1 Rules for expression bit sizes

A self-determined expression is one where the size of the expression is solely determined by the expression
itself. A context-determined expression is one where the size of the expression is determined both by the
expression itself and by the fact that it is part of another expression. For example, the size of the right-hand
expression of an assignment depends on itself and the size of the left-hand side.

Table 19 shows how the form of an expression determines the sizes of the results of the expression. In
Table 19, i, j, and k represent operands of an expression, and L(i) represents the size of the operand
represented by i.

Table 19—Bit sizes resulting from self-determined expressions

Expression Bit size Comments

Unsized constant number At least 32

Sized constant number As specified

i op j, where op is:
+ - * / % & | ^

max(L(i),L(j))

op i, where op is: + - ~ L(i)

op i, where op is: & | ^ 1

i op j, where op is: >> << ** L(i) j is self-determined

Copyright © 2023 Accellera. All rights reserved.
100

Portable Test and Stimulus Standard 2.1 — October 2023

8.8 Evaluation rules for numeric expressions

8.8.1 Rules for expression signedness

The following apply when determining the signedness of an expression:
a) Expression signedness depends only on the operands. In an assignment, the signedness does not

depend on the left-hand side.
b) Unsized unbased decimal and octal numbers are signed. Unsized unbased hexadecimal numbers are

unsighed.
c) Based numbers are unsigned, except when they are designated as signed with the 's notation (e.g.,

4'sd12).
d) Bit-select results are unsigned, regardless of the operands.
e) Part-select results are unsigned, regardless of the operands, even if the part-select specifies the entire

width.
f) Floating-point numbers are signed when converted to integers.
g) The signedness and size of a self-determined operand are determined by the operand itself, indepen-

dent of the remainder of the expression.
h) If any context-determined operand of an expression is of floating-point type, the result is of floating-

point type.
i) If any context-determined operand of an expression is unsigned, the result is unsigned regardless of

the operators.
j) If all context-determined operands of an expression are signed, the result is signed regardless of the

operators, unless specified otherwise.

8.8.2 Steps for evaluating a numeric expression

The following are the steps for evaluating a numeric expression:
a) Determine the expression size based on the expression size rules (see 8.7.1).
b) Determine the signedness of the expression using the rules described above.
c) Propagate the signedness and size of the expression to the context-determined operands of the

expression. In general, context-determined operands of an operator shall have the same signedness
and size as the result of the operator. However, there is one exception:
1) If the result type of the operator is floating-point and if it has a context-determined operand that

is not floating-point, that operand shall be treated as if it were self-determined and then
converted to floating-point just before the operator is applied.

d) When propagation reaches a simple operand (see 8.6), that operand shall be converted to the
propagated signedness and size. If the operand must be size-extended, it shall be sign-extended if the
propagated type is signed and zero-extended if the propagated type is unsigned.

i ? j : k max(L(j),L(k)) i must be Boolean

cast, where casting_type is an integer type L(casting_type)

Table 19—Bit sizes resulting from self-determined expressions (Continued)

Expression Bit size Comments

Copyright © 2023 Accellera. All rights reserved.
101

Portable Test and Stimulus Standard 2.1 — October 2023

8.8.3 Steps for evaluating an assignment

The following are the steps for evaluating an assignment when the operands are of numeric type:
a) Determine the size of the right-hand side of the assignment using the size determination rules

described in 8.7.1.
b) If required, extend the size of the right-hand side, using sign extension if the type of the right-hand

side is signed and zero-extension if the type of the right-hand side is unsigned.

Copyright © 2023 Accellera. All rights reserved.
102

Portable Test and Stimulus Standard 2.1 — October 2023

9. Components

Components serve as a mechanism to encapsulate and reuse elements of functionality in a portable stimulus
model. Typically, a model is broken down into parts that correspond to roles played by different actors
during test execution. Components often align with certain structural elements of the system and execution
environment, such as hardware engines, software packages, or testbench agents.

Components are structural entities, defined per type and instantiated under other components (see
Syntax 22). Component instances constitute a hierarchy (tree structure), beginning with the top or root
component, called pss_top by default, which is implicitly instantiated. Each component instance has a
unique hierarchical path name, and may also contain data attributes, but not constraints. Components may
also encapsulate function declarations (see 21.2.1) and imported class instances (see 21.4.2). In addition,
components may be derived from other components via inheritance, or a component may be extended to add
elements to the component type (see Clause 19).

9.1 Syntax

Syntax 22—component declaration

component_declaration ::= [pure] component component_identifier [template_param_decl_list]
 [component_super_spec] { { component_body_item } }
component_super_spec ::= : type_identifier
component_body_item ::=
 override_declaration
 | component_data_declaration
 | component_pool_declaration
 | action_declaration
 | abstract_action_declaration
 | object_bind_stmt
 | exec_block
 | struct_declaration
 | enum_declaration
 | covergroup_declaration
 | function_decl
 | import_class_decl
 | procedural_function
 | import_function
 | target_template_function
 | export_action
 | typedef_declaration
 | import_stmt
 | extend_stmt
 | compile_assert_stmt
 | attr_group
 | component_body_compile_if
 | stmt_terminator

Copyright © 2023 Accellera. All rights reserved.
103

Portable Test and Stimulus Standard 2.1 — October 2023

9.2 Examples

For an example of how to declare a component, see Example 35.

Example 35—Component

9.3 Components as namespaces

Component types serve as namespaces for their nested types, e.g., action and struct types defined under
them. The fully-qualified name of nested types is of the form 'package-namespace::component-
type::nested-type'. References to nested types in a component shall follow the name resolution
rules defined in 20.3.

For an example of how to use a component as a namespace, see Example 36.

Example 36—Namespace

In Example 37 below, a component C1 is declared in a package. That component is instantiated in
component pss_top, and an action within component C1 is traversed in action pss_top::entry. In
the traversal of action P::C1::A, the qualified name elements are the following:

— package-namespace: P
— component-type: C1
— class-type: A

component uart_c { ... };

component usb_c {
 action write {...}
}
component uart_c {
 action write {...}
}
component pss_top {
 uart_c s1;
 usb_c s2;
 action entry {
 uart_c::write wr; //refers to the write action in uart_c
 ...
 }
}

Copyright © 2023 Accellera. All rights reserved.
104

Portable Test and Stimulus Standard 2.1 — October 2023

Example 37—Component declared in package

9.4 Component instantiation

Components are instantiated under other components as their fields, much like data fields of structs, and
may be arrays thereof.

9.4.1 Semantics

a) Component fields are non-random; therefore, the rand modifier shall not be used. Component data
fields represent configuration data that is accessed by actions declared in the component. To avoid
infinite component instantiation recursion, a component type and all template specializations thereof
shall not be instantiated under its own sub-tree.

b) In any model, the component instance tree has a predefined root component, called pss_top by
default, but this may be user-defined. There can only be one root component in any valid scenario.

c) Other components are instantiated (directly or indirectly) under the root component. See also
Example 38.

d) Plain-data fields may be initialized using a constant expression in their declaration. Data fields may
also be initialized via an exec init_down or init_up block (see 21.1.2), which overrides the value set
by an initialization assignment. The component tree is elaborated to instantiate each component and
then the exec init_down and init_up blocks are evaluated hierarchically. See also Example 219 and
Example 220 in 21.1.3.

e) Component data fields are considered immutable once construction of the component tree is com-
plete. Actions can read the value of these fields, but cannot modify their value. Component data
fields are accessed from actions relative to the comp field, which is a handle to the component con-
text in which the action is executing. See also Example 221 (and 21.1).

f) It shall be illegal to access static component members using the comp handle.
g) It shall be illegal to reference non-static context component members from struct types declared

within the component.
h) Any non-static component member may be referred to with a full hierarchical path starting with the

root component.

package P {
 component C1 {
 action A {}
 }
}

component pss_top {
 P::C1 c1;

 action entry {
 activity {
 do P::C1::A;
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
105

Portable Test and Stimulus Standard 2.1 — October 2023

9.4.2 Examples

Example 38 depicts a component tree definition. In total, there is one instance of multimedia_ss_c
(instantiated in pss_top), four instances of codec_c (from the array declared in multimedia_ss_c),
and eight instances of vid_pipe_c (two in each element of the codec_c array).

Example 38—Component instantiation

Example 39 shows some legal and illegal accesses to component functions and attributes.

component vid_pipe_c { ... };

component codec_c {
 vid_pipe_c pipeA, pipeB;
 action decode { ... };
};

component multimedia_ss_c {
 codec_c codecs[4];
};

component pss_top {
 multimedia_ss_c multimedia_ss;
};

Copyright © 2023 Accellera. All rights reserved.
106

Portable Test and Stimulus Standard 2.1 — October 2023

Example 39—Component attribute and function access

9.5 Component references

Each action instance is associated with a specific component instance of its containing component type, the
component-type scope where the action is defined. The component instance is the “actor” or “agent” that
performs the action. Only actions defined in the scope of instantiated components can legally participate in a
scenario.

The component instance with which an action is associated is referenced via the built-in field comp. The
value of the comp field can be used for comparisons of references (see 8.5.3). Unlike user-defined reference
variables, the comp field is assigned automatically as part of the solving process (see 16.4.5) and may not be
assigned by the user. The static type of the comp field is the ref type of the action’s context component.
Consequently, attributes and sub-components of the containing component may be referenced via the comp
field using relative paths.

9.5.1 Semantics

A compound action can only instantiate sub-actions that are defined in its containing component or defined
in component types that are instantiated in its containing component's instance sub-tree. In other words,
compound actions cannot instantiate actions that are defined in components outside their context component
hierarchy. This maximizes the reusability of components in other contexts.

component my_comp_c {
 int f;
 struct S {
 rand int g;
 exec post_solve {
 g = f; // ILLEGAL: S may not refer to instance-specific field of
 // my_comp_c. NOTE: 'g = my_comp_c::f;' would be legal if
 // f were 'static const int f'
 };
 };
 function void print_f() {
 print ("%d", f);
 }
 action A_a {
 rand S s;
 exec post_solve {
 comp.print_f(); // comp handle required to access 'print_f'
 }
 };
}

component pss_top {
 my_comp_c comp1, comp2, comp3;
 exec init {
 comp1.f = 6; comp2.f = 7; comp3.f = 8;
 };
 action entry_a {
 activity {
 do my_comp_c::A_a;
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
107

Portable Test and Stimulus Standard 2.1 — October 2023

9.5.2 Examples

Example 40 illustrates the need to define a sub-action in a containing component or its sub-tree. In action
graphics::gr_a, the traversal of bus_c::write is illegal since the component bus_c is not
instantiated in the action's containing component (graphics).

Example 40—Illegal traversal of an action outside of the containing component hierarchy

Example 41 demonstrates the use of the comp reference. The constraint within the decode action forces
the value of the action’s mode bit to be 0 for the codecs[0] instance, while the value of mode is
randomly selected for the other instances. The sub-action type program is available on both sub-
component instances, pipeA and pipeB, but in this case is assigned specifically to pipeA using the comp
reference.

See also 16.1.3.

component bus_c {
 import bar_pkg::*;
 action write{input bar_s b;...} // bar_s is a stream
}

component graphics {
 import bar_pkg::*;
 action foo {output bar_s b;...}
 action gr_a {
 activity {
 parallel {
 do bus_c::write; // illegal
 do foo;
 }
 }
 }
}

component pss_top {
 import bar_pkg::*;
 bus_c a0;
 graphics g;
 pool bar_s bar_p;
 bind bar_p *;
}

Copyright © 2023 Accellera. All rights reserved.
108

Portable Test and Stimulus Standard 2.1 — October 2023

Example 41—Using the comp attribute in constraints

9.6 Pure components

Pure components are restricted types of components that provide PSS implementations with opportunities
for significant optimization of storage and initialization. Pure components are used to encapsulate
realization-level functionality and cannot contain scenario model features. Register structures are one
possible application for pure components (see 23.10).

The following rules apply to pure components, that is, component types declared with the pure modifier:
a) In the scope of a pure component, it shall be an error to declare action types, pool instances, pool-

binding directives, non-static data attributes, instances of non-pure component types, or exec
blocks.

b) A pure component may be instantiated under a non-pure component. However, a non-pure com-
ponent may not be instantiated under a pure component.

c) A pure component may not be derived from a non-pure component. However, both a pure compo-
nent and a non-pure component may be derived from a pure component.

component vid_pipe_c { ... };
component codec_c {
 vid_pipe_c pipeA, pipeB;
 bit mode1_enable;
 action decode {
 rand bit mode;
 constraint set_mode {
 comp.mode1_enable==0 -> mode == 0;
 }
 activity {
 do vid_pipe_c::program with { comp == this.comp.pipeA; };
 }
 };
};
component multimedia_ss_c {
 codec_c codecs[2];
 exec init_up {
 codecs[0].mode1_enable = 0;
 codecs[1].mode1_enable = 1;
 }
};

Copyright © 2023 Accellera. All rights reserved.
109

Portable Test and Stimulus Standard 2.1 — October 2023

An example of the use of pure components is shown in Example 42.

Example 42—Pure components

pure component my_register {
 function bit[32] read();
 function void write(bit[32] val);
};

pure component my_register_group {
 my_register regs[10];
};

component my_ip {
 my_register_group reg_groups[100]; // sparsely-used large structure
};

Copyright © 2023 Accellera. All rights reserved.
110

Portable Test and Stimulus Standard 2.1 — October 2023

10. Actions

Actions are a key abstraction unit in PSS. Actions serve to decompose scenarios into elements whose
definitions can be reused in many different contexts. Along with their intrinsic properties, actions also
encapsulate the rules for their interaction with other actions and the ways to combine them in legal
scenarios. Atomic actions may be composed into higher-level actions, and, ultimately, to top-level test
actions, using activities (see Clause 12). The activity of a compound action specifies the intended schedule
of its sub-actions, their object binding, and any constraints. Activities are a partial specification of a
scenario: determining their abstract intent and leaving other details open.

Actions prescribe their possible interactions with other actions indirectly, by using flow (see Clause 13) and
resource (see Clause 14) objects. Flow object references specify the action’s inputs and outputs and
resource object references specify the action’s resource claims.

By declaring a reference to an object, an action determines its relation to other actions that reference the very
same object without presupposing anything specific about them. For example, one action may reference a
data flow object of some type as its input, which another action references as its output. By referencing the
same object, the two actions necessarily agree on its properties without having to know about each other.
Each action may constrain the attributes of the object. In any consistent scenario, all constraints shall hold;
thus, the requirements of both actions are satisfied, as well as any constraints declared in the object itself.

Actions may be atomic, in which case their implementation is supplied via one or more exec body blocks
(see 21.1.2), or they may be compound, in which case they contain one or more activity statements (see
Clause 12) that instantiate and schedule other actions. A single action can have multiple implementations in
different packages, so the actual implementation of the action is determined by which package is used.

An action is declared using the action keyword and an action_identifier, as shown in Syntax 23.

Copyright © 2023 Accellera. All rights reserved.
111

Portable Test and Stimulus Standard 2.1 — October 2023

10.1 Syntax

Syntax 23—action declaration

An action declaration optionally specifies an action_super_spec, a previously defined action type from
which the new type inherits its members.

The following also apply:
a) The activity_declaration and body exec_block_stmt (see 21.1.2) action body items are mutually

exclusive. An atomic action may specify body exec_block_stmt items; it shall not specify activity_-
declaration items. A compound action, which contains instances of other actions and activity_decla-
ration items, shall not specify body exec_block_stmt items.

b) An abstract action may be declared as a template that defines a base set of field attributes and
behavior from which other actions may inherit. Non-abstract derived actions may be instantiated
like any other action. Abstract actions shall not be instantiated directly.

c) An abstract action may be derived from another abstract action, but not from a non-abstract action.
d) Abstract actions may be extended, but the action remains abstract and may not be instantiated

directly.

action_declaration ::= action action_identifier [template_param_decl_list] [action_super_spec]
 { { action_body_item } }
abstract_action_declaration ::= abstract action_declaration
action_super_spec ::= : type_identifier
action_body_item ::=
 activity_declaration
 | override_declaration
 | constraint_declaration
 | action_field_declaration
 | symbol_declaration
 | covergroup_declaration
 | exec_block_stmt
 | activity_scheduling_constraint
 | attr_group
 | compile_assert_stmt
 | covergroup_instantiation
 | action_body_compile_if
 | stmt_terminator

Copyright © 2023 Accellera. All rights reserved.
112

Portable Test and Stimulus Standard 2.1 — October 2023

10.2 Examples

10.2.1 Atomic actions

Examples of an atomic action declaration are shown in Example 43.

Example 43—atomic action

10.2.2 Compound actions

Compound actions instantiate other actions within them and use activity statements (see Clause 12) to
define the relative scheduling of these sub-actions.

Examples of compound action usage are shown in Example 44.

Example 44—compound action

action write {
 output data_buf data;
 rand int size;
 //implementation details
 ...
};

action sub_a {...};

action compound_a {
 sub_a a1, a2;
 activity {
 a1;
 a2;
 }
}

Copyright © 2023 Accellera. All rights reserved.
113

Portable Test and Stimulus Standard 2.1 — October 2023

10.2.3 Abstract actions

Abstract action types are used to capture common features of different actions, including actions of different
components. Abstract actions may not be traversed directly. Rather, they are used through inheritance, as
base types for non-abstract action types. Abstract action types may be declared outside the scope of a
component, unlike non-abstract actions, which may only be declared in a component scope.

An example of abstract action usage is shown in Example 45. In this example, abstract action base is
declared outside a component scope, in package mypkg, and subsequently extended in the same package.
Action derived is declared as a non-abstract subtype of action base.

Example 45—abstract action

package mypkg {
 abstract action base {
 rand int i;
 constraint i>5 && i<10;
 }

// action base remains abstract
 extend action base {
 rand int j;
 }
}

component pss_top {
 import mypkg::*;

 action derived : base {
 constraint i>6;
 constraint j>9;
 }
}

Copyright © 2023 Accellera. All rights reserved.
114

Portable Test and Stimulus Standard 2.1 — October 2023

11. Template types

11.1 General

Template types in PSS provide a way to define generic parameterized types.

In many cases, it is useful to define a generic parameterizable type (struct/flow object/resource object/action/
component) that can be instantiated with different parameter values (e.g., array sizes or data types).
Template types maximize reuse, avoid writing similar code for each parameter value (value or data type)
combination, and allow a single specification to be used in multiple places.

Template types must be explicitly instantiated by the user, and only an explicit instantiation of a template
type represents an actual type.

The following sections describe how to define, use, and extend a template type when using the PSS input.

11.2 Template type declarations

A template type (struct, action, component, etc.) declaration specifies a list of formal type or value
template parameter declarations. The parameters are provided as a comma-separated list enclosed in angle
brackets (<>) following the name of the template type.

A template type may inherit from another template or non-template data type. A non-template type may
inherit from a template type instance. In both cases, the same inheritance rules and restrictions as for the
corresponding non-template type of the same type category are applied (e.g., a template struct may inherit
from a struct, or from a template struct).

The syntax specified in the corresponding struct/action/component sections contains the
template_param_decl_list nonterminal marked as optional. When the parameter declaration list enclosed in
angle brackets is provided on a struct/action/component declaration, it denotes that the struct/action/
component type is a template generic type.

11.2.1 Syntax

Syntax 24—Template type declaration

struct_declaration ::= struct_kind identifier [template_param_decl_list]
 [struct_super_spec] { { struct_body_item } }
component_declaration ::= component component_identifier [template_param_decl_list]
 [component_super_spec] { { component_body_item } }
action_declaration ::= action action_identifier [template_param_decl_list]
 [action_super_spec] { { action_body_item } }
template_param_decl_list ::= < template_param_decl { , template_param_decl } >
template_param_decl ::= type_param_decl | value_param_decl

Copyright © 2023 Accellera. All rights reserved.
115

Portable Test and Stimulus Standard 2.1 — October 2023

11.2.2 Examples

Generic template-type declaration for various type categories are shown in Example 46.

Example 46—Template type declarations

11.3 Template parameter declarations

A template parameter is declared as either a type or a value parameter. All template parameters have a name
and an optional default value. All parameters subsequent to the first one that is given a default value shall
also be given default values. Therefore, the parameters with defaults shall appear at the end of the parameter
list. Specifying a parameter with a default value followed by a parameter without a default value shall be
reported as an error.

A template parameter can be referenced using its name inside the body and the supertype specification of the
template type and all subsequent generic template type extensions, including the template type instance
extensions. A template parameter may not be referenced from within subtypes that inherit from the template
type that originally defined the parameter.

11.3.1 Template value parameter declarations

Value parameters are given a data type and optionally a default value, as shown below.

11.3.1.1 Syntax

Syntax 25—Template value parameter declaration

The following also apply:
a) A value parameter can be referenced using its name anywhere a constant expression is allowed or

expected inside the body and the supertype specification of the template type.
b) Valid data types for a value_param_decl are the scalar types, except chandle.
c) The default value, if provided, may also reference one or more of the previously defined parameters.
d) To avoid parsing ambiguity, a Boolean greater-than (>) or less-than (<) expression provided as a

default value shall be enclosed in parentheses.

struct my_template_s <type T> {
 T t_attr;
}

buffer my_buff_s <type T> {
 T t_attr;
}

abstract action my_consumer_action <int width, bool is_wide> {
 compile assert (width > 0);
}

component eth_controller_c <struct ifg_config_s, bool full_duplex = true> {
}

value_param_decl ::= data_type identifier [= constant_expression]

Copyright © 2023 Accellera. All rights reserved.
116

Portable Test and Stimulus Standard 2.1 — October 2023

11.3.1.2 Examples

An example of declaring an action type that consumes a varying number of resources is shown in
Example 47.

Example 47—Template value parameter declaration

Example 48 contains a Boolean greater-than expression that must be enclosed in parentheses and depends
on a previous parameter:

Example 48—Another template value parameter declaration

11.3.2 Template type parameter declarations

Type parameters are prefixed with either the type keyword or a type-category keyword in order to identify
them as type parameters.

When the type keyword is used, the parameter is fully generic. In other words, it can take on any type.

Specifying category type parameters provides more information to users of a template type on acceptable
usage and allows tools to flag usage errors earlier. A category type parameter enforces that a template
instance parameter value must be of a certain category/class of type (e.g., struct, action, etc.). A category
type parameter can be further restricted such that the specializing type (the parameter value provided on
instantiation) must be related via inheritance to a specified base type.

The syntax for declaring a type parameter is shown below.

11.3.2.1 Syntax

Syntax 26—Template type parameter declaration

action my_consumer_action <int n_locks = 4> {
 compile assert (n_locks in [1..16]);
 lock my_resource res[n_locks];
}

action my_consumer_action <int width, bool is_wide = (width > 10) > {
 compile assert (width > 0);
}

type_param_decl ::= generic_type_param_decl | category_type_param_decl
generic_type_param_decl ::= type identifier [= type_identifier]
category_type_param_decl ::= type_category identifier [type_restriction] [= type_identifier]
type_restriction ::= : type_identifier
type_category ::=
 action
 | component
 | struct_kind

Copyright © 2023 Accellera. All rights reserved.
117

Portable Test and Stimulus Standard 2.1 — October 2023

The following also apply:
a) A type parameter can be referenced using its name anywhere inside the body of the template type

where a type is allowed or expected.
b) The default value, if provided, may also reference one or more of the previously defined parameters.

11.3.2.2 Examples

Examples of a generic type and a category type parameter are shown in Example 49.

Example 49—Template generic type and category type parameters

In the example above, the template parameter T of my_container_s must be of struct type, while in the
case of my_template_s, the template parameter T may take on any type.

An example of how to use type restrictions in the case of a type-category parameter is shown in Example 50.

Example 50—Template parameter type restriction

In the example above, the template parameter T of my_container_s must be of type base_t or one of
its struct subtypes (my_sub1_t or my_sub2_t, but not b1 or b2). This allows my_container_s to
reasonably assume that T contains an attribute named ‘core’, and communicates this requirement to users
of this type and to the PSS processing tool. The template parameter B of my_action_a must be of one of
the buffer subtypes of base_t (b1 or b2).

struct my_container_s <struct T> {
 T t_attr;
}

struct my_template_s <type T> {
 T t_attr;
}

struct base_t {
 rand bit[3:0] core;
}

struct my_sub1_t : base_t {
 rand bit[3:0] add1;
}

struct my_sub2_t : base_t {
 rand bit[3:0] add2;
}

buffer b1 : base_t { }
buffer b2 : base_t { }

abstract action my_action_a <buffer B : base_t> {
}

struct my_container_s <struct T : base_t = my_sub1_t> {
 T t_attr;
 constraint t_attr.core >= 1;
}

Copyright © 2023 Accellera. All rights reserved.
118

Portable Test and Stimulus Standard 2.1 — October 2023

The base type of the template type may also be a type parameter. In this way, the inheritance can be
controlled when the template type is instantiated.

In Example 51, the my_container_s template struct inherits from the struct type template type
parameter.

Example 51—Template parameter used as base type

11.4 Template type instantiation

A template type is instantiated using the name of the template type followed by the parameter value list
(specialization) enclosed in angle brackets (<>). Template parameter values are specified positionally.

The explicit instantiation of a template type represents an actual type. All explicit instantiations provided
with the same set of parameter values are the same actual type.

11.4.1 Syntax

Syntax 27—Template type instantiation

The following also apply:
a) Parameter values must be specified for all parameters that were not given a default value.
b) An instance of a template type must always specify the angle brackets (<>), even if no parameter

value overrides are provided for the defaults.
c) The specified parameter values must comply with parameter categories and parameter type restric-

tions specified for each parameter in the original template declaration, or an error shall be generated.
d) To avoid parsing ambiguity, a Boolean greater-than (>) or less-than (<) expression provided as a

parameter value must be enclosed in parentheses.

struct my_base1_t {
 rand int attr1;
}

struct my_base2_t {
 rand int attr2;
}

struct my_container_s <struct T> : T {
}

struct top_s {
 rand my_container_s <my_base1_t> cont1;
 rand my_container_s <my_base2_t> cont2;
 constraint cont1.attr1 == cont2.attr2;
}

type_identifier ::= [::] type_identifer_elem { :: type_identifer_elem }
type_identifier_elem ::= identifier [template_param_value_list]
template_param_value_list ::= < [template_param_value { , template_param_value }] >
template_param_value ::= constant_expression | data_type

Copyright © 2023 Accellera. All rights reserved.
119

Portable Test and Stimulus Standard 2.1 — October 2023

11.4.2 Examples

Example 52—Template type instantiation

In Example 52 above, two attributes of my_container_s type are created. The first uses the default
parameter value. The second specifies the my_sub2_t type as the value for the T parameter.

Type qualification for an action declared in a template component is shown in Example 53 below.

Example 53—Template type qualification

struct base_t {
 rand bit[3:0] core;
}

struct my_sub1_t : base_t {
 rand bit[3:0] add1;
}

struct my_sub2_t : base_t {
 rand bit[3:0] add2;
}

struct my_container_s <struct T : base_t = my_sub1_t> {
 T t_attr;
 constraint t_attr.core >= 1;
}

struct top_s {
 my_container_s<> my_sub1_container_attr;
 my_container_s<my_sub2_t> my_sub2_container_attr;
}

component my_comp1_c <int bus_width = 32> {
 action my_action1_a { }
 action my_action2_a <int nof_iter = 4> { }
}

component pss_top {
 my_comp1_c<64> comp1;
 my_comp1_c<32> comp2;

 action test {
 activity {
 do my_comp1_c<64>::my_action1_a;
 do my_comp1_c<64>::my_action2_a<>;
 do my_comp1_c::my_action1_a; // Error - my_comp1_c must be specialized
 do my_comp1_c<>::my_action1_a;
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
120

Portable Test and Stimulus Standard 2.1 — October 2023

Example 54 depicts various ways of overriding the default values. In the example below, the
my_struct_t<2> instance overrides the parameter A with 2, and preserves the default values for
parameters B and C. The my_struct_t<2, 8> instance overrides the parameter A with 2, parameter B
with 8, and preserves the default value for C.

Example 54—Overriding the default values

11.5 Template type user restrictions

A generic template type may not be used in the following contexts:
— As a root component
— As a root action
— As an inferred action to complete a partially specified scenario

Template types are explicitly instantiated by the user, and only an explicit instantiation of a template type
represents an actual type. Only action actual types can be inferred to complete a partially specified scenario.
The root component and the root action must be actual types.

Template types may not be used as parameter types or return types of imported functions.

struct my_s_1 { }
struct my_s_2 { }

struct my_struct_t <int A = 4, int B = 7, int C = 3> { }

struct container_t {
 my_struct_t<2> a; // instantiated with <2, 7, 3>
 my_struct_t<2,8> b; // instantiated with <2, 8, 3>
}

Copyright © 2023 Accellera. All rights reserved.
121

Portable Test and Stimulus Standard 2.1 — October 2023

12. Activities

When a compound action includes multiple operations, these behaviors are described within the action
using one or more activity statements. An activity specifies the set of actions to be executed and the
scheduling relationship(s) between them. If more than one activity is specified in an action, the execution
semantics are the same as if the activity statements were combined in a schedule statement (see 12.3.5 and
12.6). A reference to an action within an activity is via an action handle, and the resulting action traversal
causes the referenced action to be evaluated and randomized (see 12.3.1).

An activity, on its own, does not introduce any scheduling dependencies for its containing action. However,
flow object or resource scheduling constraints of the sub-actions may introduce scheduling dependencies for
the containing action relative to other actions in the system.

12.1 Activity declarations

Because activities are explicitly specified as part of an action, activities themselves do not have a separate
name. Relative to the sub-actions referred to in the activity, the action that contains the activity is referred to
as the context action.

12.2 Activity constructs

Each node of an activity represents an action, with the activity specifying the temporal, control, and/or data
flow between them. These relationships are described via activity rules, which are explained herein. See also
Syntax 28.

Copyright © 2023 Accellera. All rights reserved.
122

Portable Test and Stimulus Standard 2.1 — October 2023

12.2.1 Syntax

Syntax 28—activity statement

12.3 Action scheduling statements

By default, statements in an activity specify sequential behaviors, subject to data flow constraints. In
addition, there are several statements that allow additional scheduling semantics to be specified. Statements
within an activity may be nested, so each element within an activity statement is referred to as a sub-activity.

12.3.1 Action traversal statement

An action traversal statement designates the point in the execution of an activity where an action is
randomized and evaluated (see Syntax 29). The action being traversed may be specified via an action handle
referring to an action field or local variable that was previously declared. Alternatively, the action being
traversed may be specified by type, in which case a label, if specified, serves as an action handle. In the
absence of a label, the action instance is anonymous.

activity_declaration ::= activity { { activity_stmt } }
activity_stmt ::=
 [label_identifier :] labeled_activity_stmt
 | activity_action_traversal_stmt
 | activity_data_field
 | activity_bind_stmt
 | action_handle_declaration
 | activity_constraint_stmt
 | activity_scheduling_constraint
 | stmt_terminator
labeled_activity_stmt ::=
 activity_sequence_block_stmt
 | activity_parallel_stmt
 | activity_schedule_stmt
 | activity_repeat_stmt
 | activity_foreach_stmt
 | activity_select_stmt
 | activity_if_else_stmt
 | activity_match_stmt
 | activity_replicate_stmt
 | activity_super_stmt
 | activity_atomic_block_stmt
 | symbol_call

Copyright © 2023 Accellera. All rights reserved.
123

Portable Test and Stimulus Standard 2.1 — October 2023

12.3.1.1 Syntax

Syntax 29—Action traversal statement

identifier names a unique action handle or variable in the context of the containing action type or activity
scope. If identifier refers to an action handle array (see 12.3.2), then a specific array element may be
specified with the optional array subscript. The alternative forms are specified by the keyword do, followed
by an action-type specifier. Given a label_identifier, the action instance can be referenced using the label. In
the absence of a label_identifier, the action instance is anonymous. Either form of the action traversal
statement my include an optional in-line constraint.

The following also apply:
a) The action variable is randomized and evaluated at the point in the flow where the statement occurs.

The variable may be of an action type or a data type declared in the context action with the action
modifier. In the latter case, it is randomized, but has no observed execution or duration (see
Example 144).
1) An action handle is considered uninitialized until it is first traversed. The fields within the

action cannot be referenced in an exec block or conditional activity statement until after the
action is first traversed. The steps that occur as part of the action traversal are as follows:
i) The pre_solve block (if present) is executed.
ii) Random values are selected for rand fields.
iii) The post_solve block (if present) is executed.
iv) The body exec block (if present) is executed.
v) The activity block (if present) is evaluated.
vi) The validity of the constraint system is confirmed, given any changes by the post_solve or

body exec blocks.
2) Upon entry to an activity scope, all action handles traversed in that scope are reset to an unini-

tialized state.
b) The labeled traversal statement is semantically equivalent to a traversal statement with an explicitly

declared action variable. With this form, the label_identifier serves as an action handle, equivalent
to an explicitly declared variable of the specified action type in the enclosing activity scope.

c) The anonymous action traversal statement is semantically equivalent to the other two forms with the
exception that it does not create an action handle that may be referenced from elsewhere in the stim-
ulus model.

d) A named action handle may only be traversed once in the following scopes and nested scopes
thereof:
1) sequential activity scope (e.g., sequence or repeat)
2) parallel
3) schedule

activity_action_traversal_stmt ::=
 identifier [[expression]] inline_constraints_or_empty
 | [label_identifier :] do type_identifier inline_constraints_or_empty
inline_constraints_or_empty ::=
 with constraint_set
 | ;

Copyright © 2023 Accellera. All rights reserved.
124

Portable Test and Stimulus Standard 2.1 — October 2023

e) Formally, a traversal statement is equivalent to the sub-activity of the specified action type, with the
optional addition of in-line constraints. The sub-activity is scheduled in accordance with the
scheduling semantics of the containing activity or sub-activity.

f) Other aspects that impact action-evaluation scheduling, are covered via binding inputs or outputs
(see 13.4), resource claims (see 14.2), or attribute value assignment.

12.3.1.2 Examples

Example 55 shows an example of traversing an action handle. Action A is an atomic action that contains a 4-
bit random field f1. Action B is a compound action encapsulating an activity involving two invocations of
action A. The default constraints for A apply to the evaluation of a1. An additional constraint is applied to
a2, specifying that f1 shall be less than 10. Execution of action B results in two sequential evaluations of
action A.

Example 55—Action traversal

Example 56 shows an example of anonymous action traversal, including in-line constraints.

Example 56—Anonymous action traversal

Example 57 shows the use of a label of an action traversal statement to constrain a sub-action instance from
a higher activity context.

action A {
 rand bit[3:0] f1;
 ...
}

action B {
 A a1, a2;

 activity {
 a1;
 a2 with {
 f1 < 10;
 };
 }
}

action A {
 rand bit[3:0] f1;
 ...
}

action B {
 activity {
 do A;
 do A with {f1 < 10;};
 }
}

Copyright © 2023 Accellera. All rights reserved.
125

Portable Test and Stimulus Standard 2.1 — October 2023

Example 57—Labeled action traversal

Example 58 shows an example of traversing a compound action as well as a random action variable field.
The activity for action C traverses the random action variable field max, then traverses the action-type field
b1. Evaluating this activity results in a random value being selected for max, then the sub-activity of b1
being evaluated, with a1.f1 constrained to be less than or equal to max.

Example 58—Compound action traversal

 action mem2mem_chain {
 activity {
 do mem_c::load_buff;
 repeat (10) {
 select {
 xfer: do dma_c::mem2mem_xfer;
 cpy: do cpu_c::memcpy;
 }
 }
 }
 }

 action my_test {
 activity {
 do mem2mem_chain with { xfer.size > 10; };
 }
 }

action A {
 rand bit[3:0] f1;
 ...
}

action B {
 A a1, a2;

 activity {
 a1;
 a2 with {
 f1 < 10;
 };
 }
}

action C {
 action bit[3:0] max;
 B b1;

 activity {
 max;
 b1 with {
 a1.f1 <= max;
 };
 }
}

Copyright © 2023 Accellera. All rights reserved.
126

Portable Test and Stimulus Standard 2.1 — October 2023

12.3.2 Action handle array traversal

Arrays of action handles may be declared within an action. These action handle arrays may be traversed as
a whole or traversed as individual elements.

The semantics of traversing individual action handle array elements are the same as those of traversing
individually-declared action handles.

Example 59 below shows traversing an individual action handle array element and one action handle. The
semantics of both action traversal statements are the same.

Example 59—Individual action handle array element traversal

When an action handle array is traversed as a whole, each array element is traversed independently
according to the semantics of the containing scope.

Example 60 below shows an action that traverses the elements of the a_arr action handle array in two
ways, depending on the value of a rand action attribute. Both ways of traversing the elements of a_arr
have identical semantics.

Example 60—Action handle array traversal

The contexts in which action handle arrays may be traversed, and the resulting semantics, are described in
the table below.

component pss_top {
 action A { }
 action entry {
 A a_arr[4];
 A a1, a2, a3, a4;
 activity {
 a_arr[0];
 a1;
 }
 }
}

component pss_top {
 action A { }
 action entry {
 rand bool traverse_arr;
 A a_arr[2];
 activity {
 if (traverse_arr) {
 a_arr;
 } else {
 a_arr[0];
 a_arr[1];
 }
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
127

Portable Test and Stimulus Standard 2.1 — October 2023

12.3.3 Sequential block

An activity sequence block statement specifies sequential scheduling between sub-activities (see Syntax 30).

12.3.3.1 Syntax

Syntax 30—Activity sequence block

The following also apply:
a) Statements in a sequential block execute in order so that one sub-activity completes before the next

one starts.
b) Formally, a sequential block specifies sequential scheduling between the sets of action executions

per the evaluation of activity_stmt1 .. activity_stmtn, keeping all scheduling dependencies within the
sets and introducing additional dependencies between them to obtain sequential scheduling (see
6.3.2).

c) Sequential scheduling does not rule out other inferred dependencies affecting the nodes in the
sequence block. In particular, there may be cases where additional action executions must be sched-
uled in between sub-activities of subsequent statements.

12.3.3.2 Examples

Assume A and B are action types that have no rules or nested activity (see Example 61).

Action my_test specifies one execution of action A and one of action B with the scheduling dependency
(A) -> (B); the corresponding observed behavior is {start A, end A, start B, end B}.

Now assume action B has a state precondition which only action C can establish. C may execute before,
concurrently to, or after A, but it shall execute before B. In this case the scheduling dependency relation
would include (A) -> (B) and (C) -> (B) and multiple behaviors are possible, such as {start C,
start A, end A, end C, start B, end B}.

Table 20—Action handle array traversal contexts and semantics

Context Semantics

parallel All array elements are scheduled for traversal in parallel.

schedule All array elements are scheduled for traversal independently.

select One array element is randomly selected and traversed.

sequence All array elements are scheduled for traversal in sequence from 0 to N-1.

activity_sequence_block_stmt ::= [sequence] { { activity_stmt } }

Copyright © 2023 Accellera. All rights reserved.
128

Portable Test and Stimulus Standard 2.1 — October 2023

Finally, assume also C has a state precondition which only A can establish. Dependencies in this case are
(A) -> (B), (A) -> (C) and (C) -> (B) (note that the first pair can be reduced) and, consequently, the
only possible behavior is {start A, end A, start C, end C, start B, end B}.

Example 61—Sequential block

Example 62 shows all variants of specifying sequential behaviors in an activity. By default, statements in an
activity execute sequentially. The sequence keyword is optional, so placing sub-activities inside braces ({})
is the same as an explicit sequence statement, which includes sub-activities inside braces. The examples
show a total of six sequential actions: A, B, A, B, A, B.

Example 62—Variants of specifying sequential execution in activity

12.3.4 parallel

The parallel statement specifies sub-activities that execute concurrently (see Syntax 31).

12.3.4.1 Syntax

Syntax 31—Parallel statement

The following also apply:
a) Parallel activities are invoked in a synchronized way and then proceed without further synchroniza-

tion until their completion. Parallel scheduling guarantees that the invocation of an action in one
sub-activity branch does not wait for the completion of any action in another.

b) Formally, the parallel statement specifies parallel scheduling between the sets of action executions
per the evaluation of activity_stmt1 .. activity_stmtn, keeping all scheduling dependencies within the
sets, ruling out scheduling dependencies across the sets, and introducing additional scheduling

action my_test {
 A a;
 B b;
 activity {
 a;
 b;
 }
};

action my_test {
 A a1, a2, a3;
 B b1, b2, b3;
 activity {
 a1;
 b1;
 {a2; b2;};
 sequence{a3; b3;};
 }
};

activity_parallel_stmt ::= parallel [activity_join_spec] { { activity_stmt } }

Copyright © 2023 Accellera. All rights reserved.
129

Portable Test and Stimulus Standard 2.1 — October 2023

dependencies to initial action executions in each of the sets in order to obtain a synchronized start
(see 6.3.2).

c) In the absence of an activity_join_spec (see 12.3.6), execution of the activity statement following the
parallel block is scheduled to begin after all parallel branches have completed. When an
activity_join_spec is specified, execution of the activity statement following the parallel block is
scheduled based on the join specification.

12.3.4.2 Examples

Assume A, B, and C are action types that have no rules or nested activity (see Example 63).

The activity in action my_test specifies two dependencies (a) -> (b) and (a) -> (c). Since the
executions of both b and c have the exact same scheduling dependencies, their invocation is synchronized.

Now assume action type C inputs a buffer object and action type B outputs the same buffer object type, and
the input of c is bound to the output of b. According to buffer object exchange rules, the inputting action
shall be scheduled after the outputting action. But this cannot satisfy the requirement of parallel scheduling,
according to which an action in one branch cannot wait for an action in another. Thus, in the presence of a
separate scheduling dependency between b and c, this activity shall be illegal.

Example 63—Parallel statement

In Example 64, the semantics of the parallel construct require the sequences {A,B} and {C,D} to start
execution at the same time. The semantics of the sequential block require that the execution of B follows A
and D follows C. It is illegal to have any scheduling dependencies between sub-activities in a parallel
statement, so neither A nor B may have any scheduling dependencies relative to either C or D.

Even though actions A and D lock the same resource type from the same pool, the pool contains a sufficient
number of resource instances such that there are no scheduling dependencies between the actions. If
pool_R contained only a single instance, there would be a scheduling dependency in that A and D could not
overlap, which would violate the rules of the parallel statement.

action my_test {
 A a;
 B b;
 C c;
 activity {
 a;
 parallel {
 b;
 c;
 }
 }
};

Copyright © 2023 Accellera. All rights reserved.
130

Portable Test and Stimulus Standard 2.1 — October 2023

Example 64—Another parallel statement

12.3.5 schedule

The schedule statement specifies that the PSS processing tool shall select a legal order in which to evaluate
the sub-activities, provided that one exists. See Syntax 32.

12.3.5.1 Syntax

Syntax 32—Schedule statement

The following also apply:
a) All activities inside the schedule block shall execute, but the PSS processing tool is free to execute

them in any order that satisfies their other scheduling requirements.
b) Formally, the schedule statement specifies that any scheduling of the combined sets of action execu-

tions per the evaluation of activity_stmt1 .. activity_stmtn is permissible, as long as it keeps all sched-
uling dependencies within the sets and introduces (at least) the necessary scheduling dependencies
across the sets in order to comply with the rules of input-output binding of actions and resource
assignments.

c) In the absence of an activity_join_spec (see 12.3.6), execution of the activity statement following the
schedule block is scheduled to begin after all statements within the block have completed. When an
activity_join_spec is specified, execution of the activity statement following the schedule block is
scheduled based on the join specification.

12.3.5.2 Examples

Consider the code in Example 65, which is similar to Example 63, but uses a schedule block instead of a
parallel block. In this case, the following executions are valid:

a) The sequence of action nodes a, b, c.
b) The sequence of action nodes a, c, b.
c) The sequence of action node a, followed by b and c run in any order, subject to other scheduling

constraints.

resource R{...}
pool [4] R R_pool;
bind R_pool *;
action A { lock R r; }
action B {}
action C {}
action D { lock R r; }

action my_test {
activity {

parallel {
{do A; do B;}
{do C; do D;}

}
}

}

activity_schedule_stmt ::= schedule [activity_join_spec] { { activity_stmt } }

Copyright © 2023 Accellera. All rights reserved.
131

Portable Test and Stimulus Standard 2.1 — October 2023

Example 65—Schedule statement

Note that neither b nor c may start execution until after the completion of a, and the start of execution for
either may be subject to additional scheduling constraints. In contrast to b and c executing in parallel, as in
Example 63, there may be scheduling dependencies between b and c in the schedule block. The scheduling
graph for the activity is shown here:

Figure 6—Scheduling graph of activity with schedule block

action my_test {
 A a;
 B b;
 C c;
 activity {
 a;
 schedule {
 b;
 c;
 }
 }
};

Copyright © 2023 Accellera. All rights reserved.
132

Portable Test and Stimulus Standard 2.1 — October 2023

For the case where b and c overlap, the runtime behaviors will execute as shown here:

Figure 7—Runtime behavior of activity with schedule block

In contrast, consider the code in Example 66. In this case, any execution order in which both B comes after A
and D comes after C is valid.

If both A and D wrote to the same state variable, they would have to execute sequentially. This is in addition
to the sequencing of A and B and of C and D. In the case where D writes before A, the sequence would be {C,
D, A, B}. In the case where A writes before D, the runtime behavior would be as shown in Figure 8.

Example 66—Scheduling block with sequential sub-blocks

action A {}
action B {}
action C {}
action D {}

action my_test {
activity {

schedule {
{do A; do B;}
{do C; do D;}

}
}

}

Copyright © 2023 Accellera. All rights reserved.
133

Portable Test and Stimulus Standard 2.1 — October 2023

Figure 8—Runtime behavior of scheduling block with sequential sub-blocks

12.3.6 Fine-grained scheduling specifiers

Fine-grained scheduling specifiers modify the termination semantics for parallel and schedule blocks (see
Syntax 31, Syntax 32, and Syntax 33). The semantics of fine-grained scheduling are defined strictly at the
activity scheduling level. The semantics do not assume that any runtime execution information is
incorporated by the PSS processing tool in the scheduling process. Activity scheduling in the presence of a
fine-grained scheduling specifier is still subject to all other scheduling rules.

12.3.6.1 Syntax

Syntax 33—Activity join specification

The following also apply:
a) join_branch accepts a list of labels referring to labeled activity statements. The activity statement

following the fine-grained scheduling block is scheduled after all the listed activity statements have
completed.
1) The label_identifier used in the join_branch specification must be the label of a top-level

branch within the parallel or schedule block to which the join_branch specification is
applied.

activity_join_spec ::=
 activity_join_branch
 | activity_join_select
 | activity_join_none
 | activity_join_first
activity_join_branch ::= join_branch (label_identifier { , label_identifier })
activity_join_select ::= join_select (expression)
activity_join_none ::= join_none
activity_join_first ::= join_first (expression)

Copyright © 2023 Accellera. All rights reserved.
134

Portable Test and Stimulus Standard 2.1 — October 2023

2) When the label_identifier used in the join_branch specification applies to traversal of an array,
the activity statement following the fine-grained scheduling block is scheduled after all actions
in the array have completed.

b) join_select accepts an expression specifying the number of top-level activity statements within the
fine-grained scheduling block on which to condition execution of the activity statement following
the fine-grained scheduling block. The specific activity statements shall be selected randomly. Exe-
cution of the activity statement following the fine-grained scheduling block is scheduled after the
selected activity statements.
1) The expression shall be of an integer type. The value of the expression must be determinable at

solve time. If the value is 0, the join_select is equivalent to join_none.
2) When an action array is traversed, each element of the array is considered a separate action that

may be selected independently.
c) join_none specifies that the activity statement following the fine-grained scheduling block has no

scheduling dependency on activity statements within the block.
d) join_first specifies that the activity statement following the fine-grained scheduling block has a run-

time execution dependency on the first N activity statements within the fine-grained scheduling
block to complete execution. The activity statement following the fine-grained scheduling block has
no scheduling dependency on activity statements within the block, only a runtime dependency.
1) The expression shall be of an integer type. The value of the expression must be determinable at

solve time. If the value is 0, the join_first is equivalent to join_none.
2) When an action array is traversed, each element of the array is considered a separate action that

may be selected independently.

The application scope of a fine-grained scheduling block is bounded by the sequential block that contains it.
In other words, all activity statements that start within the fine-grained scheduling block must complete
before the statement following the containing sequential block begins. Activities started, but not joined,
within a fine-grained scheduling block are not implicitly waited for by any containing parallel or schedule
blocks. Only the containing sequential block causes a join on activities started within it.

12.3.6.2 Examples

In Example 67, the innermost parallel block (L4) starts two activities (L5 and L6), while only waiting for
one (L5) to complete before continuing. Since L5 traverses the action array b, all elements of b must
complete before continuing. The next level of parallel block (L2) waits for its two branches to complete (L3
and L4), but does not wait for L6 to complete. The outermost parallel block (L1) waits for one of its
branches (L2) to complete before proceeding. This means that both L7 and L6 may be in-flight when L8 is
traversed.

Copyright © 2023 Accellera. All rights reserved.
135

Portable Test and Stimulus Standard 2.1 — October 2023

Example 67—join_branch

The scheduling graph of the activity is shown in Figure 9.

Figure 9—join_branch scheduling graph

B b[2];
activity {
 L1: parallel join_branch(L2) {
 L2: parallel {
 L3: do A;
 L4: parallel join_branch (L5) {
 L5: b;
 L6: do C;
 }
 }
 L7: do D;
 }
 L8: do F;
}

Copyright © 2023 Accellera. All rights reserved.
136

Portable Test and Stimulus Standard 2.1 — October 2023

The runtime behavior is shown in Figure 10.

Figure 10—join_branch runtime behavior

Activity scheduling in the presence of a fine-grained scheduling block is still subject to all other scheduling
rules. For example, if both L6 and L8 in the example above contend for the same single resource, they must
be scheduled sequentially in order to avoid a resource conflict.

For the following four examples, assume that each of the three actions in the activity locks a resource from
the same pool.

In Example 68, the parallel block causes traversal of branches L1 and L2 to be scheduled in parallel. The
join_branch specifier causes traversal of action C to be scheduled with a sequential dependency on the
activity statement labeled L2. Traversal of action C may not begin until the activity statement labeled L2 has
completed. To avoid adding additional scheduling dependencies, the resource pool would need a minimum
of two resource instances. Actions A and B would each lock a resource instance, and C, since it is guaranteed
not to start until A completes, would lock the same resource instance as that assigned to A. Note that this
allocation is handled at solve-time, and is independent of whether B completes before or after A completes.

Example 68—join_branch with scheduling dependency

activity {
 L1 : parallel join_branch(L2) {
 L2: do A;
 L3: do B;
 }
 L4: do C;
}

Copyright © 2023 Accellera. All rights reserved.
137

Portable Test and Stimulus Standard 2.1 — October 2023

The scheduling graph of the activity is shown in Figure 11.

Figure 11—Scheduling graph of join_branch with scheduling dependency

The runtime behavior is shown in Figure 12.

Figure 12—Runtime behavior of join_branch with scheduling dependency

In Example 69, the parallel block causes traversal of the branches labeled L2 and L3 to be scheduled in
parallel. The join_select specifier causes traversal of action C to be scheduled with a sequential dependency
on a random selection of either the branch labeled L2 or L3. This means that traversal of C may not begin
until after the selected target activity statement has completed. The tool randomly selects N (in this case, 1)
target branch(es) from the candidate branches on which to make traversal of the following activity statement
dependent.

In this example, the resource pool would need a minimum of two resource instances. Because the tool may
not know which of A or B will complete first, it must choose one and assign the same resource instance to
action C. If the tool selected L2 as the branch on which C depends, the behavior would be identical to the
previous example.

Copyright © 2023 Accellera. All rights reserved.
138

Portable Test and Stimulus Standard 2.1 — October 2023

Example 69—join_select

In Example 70, the join_none specifier causes traversal of action C to be scheduled with no dependencies.
To avoid additional scheduling dependencies, the minimum size of the resource pool must be three, since
each action traversed in the activity must have a unique resource instance.

Actions A and B are scheduled in parallel, and action C is scheduled concurrently with both of them. This
means that C could start at the same time as A and B, but it may not. While the parallel statement precludes
any dependencies between A and B, the join_none qualifier allows action C to be scheduled concurrently,
but there may be additional dependencies between action C and action A and/or B.

Example 70—join_none

The scheduling graph of the activity is shown in Figure 13.

Figure 13—join_none scheduling graph

In Example 71, the join_first specifier causes the PSS processing tool to condition execution of action C on
runtime execution completion of the first of either action A or B. Since the scheduling tool may not know
which action will complete first, there must be a minimum of three resource instances in the pool in order to
guarantee that C may execute immediately after whichever of A or B completes first. If there are two
instances in the pool, the tool may assign either resource instance to C at solve-time. If the other action

activity {
 L1 : parallel join_select(1) {
 L2: do A;
 L3: do B;
 }
 L4: do C;
}

activity {
 L1 : parallel join_none {
 L2: do A;
 L3: do B;
 }
 L4: do C;
}

Copyright © 2023 Accellera. All rights reserved.
139

Portable Test and Stimulus Standard 2.1 — October 2023

assigned the same resource instance completes last, then action C, because it starts execution after the
previous action completes, will also start its execution after the completion of the first action.

Example 71—join_first

The runtime behavior is shown in Figure 14.

Figure 14—join_first runtime behavior

Example 72 illustrates how a sequence block bounds the impact of the fine-grained scheduling specifier.
The execution of L5 is scheduled in sequence with L3. L4 and L5 may be scheduled concurrently. L6 is
scheduled strictly sequentially to all statements inside L1, the sequence block.

Example 72—Scope of join inside sequence block

activity {
 L1 : parallel join_first(1) {
 L2: do A;
 L3: do B;
 }
 L4: do C;
}

activity {
 L1: sequence {
 L2: parallel join_branch(L3) {
 L3: do A;
 L4: do B;
 }
 L5: do C;
 }
 L6: do D;
}

Copyright © 2023 Accellera. All rights reserved.
140

Portable Test and Stimulus Standard 2.1 — October 2023

The scheduling graph is shown in Example 15.

Figure 15—Scheduling graph of join inside sequence block

The runtime behavior is shown in Figure 16.

Figure 16—Runtime behavior of join inside sequence block

Copyright © 2023 Accellera. All rights reserved.
141

Portable Test and Stimulus Standard 2.1 — October 2023

Example 73 shows how the join specification may also be used with the schedule block.

Example 73—join with schedule block

Assuming there are no scheduling dependencies between actions A and B, the scheduling graph of schedule
block L1 is shown in Figure 17.

In all cases, action C is scheduled subsequent to action A. If A is scheduled before B, then B and C may–or
may not–be scheduled concurrently, although there may be additional dependencies between them. If B is
scheduled before A, the actions are executed in the order B, A, C. If A and B are scheduled concurrently, then
C is still scheduled after A, but again may be concurrent with B, subject to any dependencies between B and
C.

Figure 17—Scheduling graph join with schedule block

12.3.7 Atomic block specifier

Within an activity block, the atomic block specifier is used to preserve intended scheduling structure of its
sub-activity, by preventing potential interference from other actions in the larger scenario. Example 74 and
Example 75 in 12.3.7.2 demonstrate two typical causes for such interference: action inference and
scheduling issues due to resource allocation. The atomic block specifier restricts the legal solution space by

activity {
 L1 : schedule join_branch(L2) {
 L2: do A;
 L3: do B;
 }
 L4: do C;
}

Copyright © 2023 Accellera. All rights reserved.
142

Portable Test and Stimulus Standard 2.1 — October 2023

ruling out “unintended” (but otherwise legal) scheduling dependencies between actions within an atomic
block and the rest of the scenario. The following section defines which scheduling dependencies are ruled
out and which remain legal.

An atomic block is analogous to an atomic action from a scheduling point of view, meaning that it can be
substituted by an atomic action without change to the outside scheduling relations. All actions explicitly
traversed in an atomic block are part of a single scheduling “cluster” (a nested subgraph of the scheduling
dependency graph). In a transitive-reduced scheduling graph, the atomic block would have exactly one
incoming edge and one outgoing edge. The incoming edge would represent “upward” dependencies,
scheduling dependencies of an action traversed in the atomic block on outside actions. These outside actions
become scheduling dependencies of the block as a whole (i.e., of all other actions in the cluster). The
outgoing edge would represent “downward” dependencies, scheduling dependencies of an action within the
cluster to an action outside the cluster. The outside action has a scheduling dependency on the block as a
whole (i.e., on all other actions within the cluster).

12.3.7.1 Syntax

Syntax 34—Atomic block

An atomic set is the set of all action executions corresponding to action traversal statements under the scope
of an atomic block.

— This recursively includes all sub-actions of a compound action traversed in the atomic block.
— One atomic set can be a subset of another, but two atomic sets cannot have a non-empty intersection

unless one is a subset of the other (this is guaranteed by the structure of activities).
— Inferred actions are never within an atomic set.

The following applies:
— If AS is an atomic set, a1 AS, and a2 AS, then:

1) If a1 → a2, then for every a3 AS, a3 → a2; that is, if an action outside the atomic set has a
scheduling dependency on an action inside the atomic set, then the outside action has a sched-
ule dependency on all actions in the atomic set.

2) If a2 → a1 then for every a3 AS, a2 → a3; that is, if an action inside the atomic set has a
scheduling dependency on an action outside the atomic set, then all actions in the atomic set
have a scheduling dependency on the outside action.

12.3.7.2 Examples

Consider the code in Example 74. It demonstrates how the atomic specifier prevents the PSS solver from
generating an unintended scenario scheduling due to the action inference process.

The atomic block specifier is used to ensure that B_a starts immediately after A_a completes. B_a may
only start after configX_a completes. configX_a could require a meaningful amount of time to
complete. configX_a needs to be inferred. Without the atomic specifier, configX_a could be inferred
to execute after A_a_and before B_a. With the atomic specifier, we are guaranteed a stress scenario where
B_a is executed immediately after A_a completes.

activity_atomic_block_stmt ::= atomic { { activity_stmt } }

Copyright © 2023 Accellera. All rights reserved.
143

Portable Test and Stimulus Standard 2.1 — October 2023

Example 74—Atomic block to avoid action interference

Figure 18 illustrates undesired scheduling of the configX_a action when inferred, which can occur if the
atomic specifier is not used.

Figure 18—Scheduling graph of action interference

action bringup_a {}

state config_s {
 rand mode_e mode;
}

action configX_a {
 output config_s out_cfg;
 constraint out_cfg.mode == X;
}

action A_a {}

action B_a {
 input config_s cfg;
 constraint cfg.mode == X;
}

action my_stress_seq_a {
 activity {
 do bringup_a;
 atomic {
 do A_a;
 do B_a;
 }
 }
}

bringup_a

A_a

configX_a

B_a

mode X

In reality, B_a may start
long after A_a. Stress is not
achieved because relevant
behavior is spaced apart or
diluted.

bringup_a

A_aconfigX_a

B_a

mode X

Copyright © 2023 Accellera. All rights reserved.
144

Portable Test and Stimulus Standard 2.1 — October 2023

Figure 19 illustrates the cluster of actions in an atomic block (i.e., A_a and B_a) and how the configX_a
action is an “upward” scheduling dependency of the atomic block. The figure shows two examples where
configX_a is scheduled: a) after the bring-up and before the atomic block; b) in parallel with the bring-up
and before the atomic block.

Figure 19—Scheduling graph of atomic block avoiding interference

Consider the code in Example 75. It demonstrates how the atomic specifier prevents the PSS solver from
generating an unintended scenario scheduling due to a possible outcome of the resource allocation process.

Test intent of my_stress_seq is that B follows A as soon as possible. Figure 20 shows a scheduling
solution that would violate this intent within the my_test scenario. C could be scheduled in parallel with A
when both B and C happen to be assigned same resource slot, causing B to wait for completion of C which
may take longer than A.

bringup_aconfigX_a

mode X

bringup_a

A_a

configX_a

B_a

mode X

Inferred action is scheduled
prior to the atomic block.

A_a

B_a

Atomic block does not start
until all its dependencies are
met.

Copyright © 2023 Accellera. All rights reserved.
145

Portable Test and Stimulus Standard 2.1 — October 2023

Example 75—Atomic block to avoid resource allocation issues

Figure 20—Scheduling graph of resource allocation issues

resource core_r {}
pool [4] core_r core_pool;

action A {}

action B {
 lock core_r core;
}

action C {
 lock core_r core;
}

action my_stress_seq {
 activity {
 atomic {
 do A;
 do B;
 }
 }
}

action my_test {
 activity {
 schedule {
 do my_stress_seq;
 do C;
 }
 }
}

AC

id 0

B

In reality, B may start long
after A completes.

Resource assignment
randomized to be the
same.

Copyright © 2023 Accellera. All rights reserved.
146

Portable Test and Stimulus Standard 2.1 — October 2023

12.4 Activity control flow constructs

In addition to defining sequential and parallel blocks of action execution, repetition and branching
statements can be used inside the activity clause.

12.4.1 repeat (count)

The repeat statement allows the specification of a loop consisting of one or more actions inside an activity.
This section describes the count-expression variant (see Syntax 35) and 12.4.2 describes the while-
expression variant.

12.4.1.1 Syntax

Syntax 35—repeat-count statement

The following also apply:
a) expression shall be a non-negative integer expression (int or bit).
b) Intuitively, the activity_stmt is iterated the number of times specified in the expression. An optional

index-variable identifier can be specified that ranges between 0 and one less than the iteration count.
If the expression evaluates to 0, the activity_stmt is not evaluated at all.

c) Formally, the repeat-count statement specifies sequential scheduling between N sets of action exe-
cutions per the evaluation of activity_stmt N times, where N is the number to which expression eval-
uates (see 6.3.2).

d) The choice of values to rand attributes figuring in the expression shall be such that it yields legal
execution scheduling.

12.4.1.2 Examples

In Example 76, the resulting execution is six sequential action executions, alternating A’s and B’s, with five
scheduling dependencies: (A0) -> (B0), (B0) -> (A1), (A1) -> (B1), (B1) -> (A2), (A2) -> (B2).

Example 76—repeat statement

activity_repeat_stmt ::=
 repeat ([index_identifier :] expression) activity_stmt
 | . . .

action my_test {
 A a;
 B b;
 activity {
 repeat (3) {
 a;
 b;
 }
 }
};

Copyright © 2023 Accellera. All rights reserved.
147

Portable Test and Stimulus Standard 2.1 — October 2023

Example 77 shows an additional example of using repeat-count.

Example 77—Another repeat statement

12.4.2 repeat-while

The repeat statement allows the specification of a loop consisting of one or more actions inside an activity.
This section describes the while-expression variant (see Syntax 36).

12.4.2.1 Syntax

Syntax 36—repeat-while statement

The following also apply:
a) expression shall be of type bool.
b) Intuitively, the activity_stmt is iterated so long as the expression condition is true, as sampled after

the activity_stmt.
c) Formally, the repeat-while statement specifies sequential scheduling between multiple sets of

action executions per the iterative evaluation of activity_stmt. The evaluation of activity_stmt con-
tinues repeatedly so long as expression evaluates to true. expression is evaluated after the execution
of each set in the repeat-while block.

action my_test {
 my_action1 action1;
 my_action2 action2;
 activity {
 repeat (i : 10) {
 if ((i % 4) == 0) {
 action1;
 } else {
 action2;
 }
 }
 }
};

activity_repeat_stmt ::=
 . . .
 | repeat activity_stmt while (expression) ;

Copyright © 2023 Accellera. All rights reserved.
148

Portable Test and Stimulus Standard 2.1 — October 2023

12.4.2.2 Examples

Example 78—repeat-while statement

12.4.3 foreach

The foreach construct iterates over the elements of a collection (see Syntax 37). See also Example 79.

12.4.3.1 Syntax

Syntax 37—foreach statement

The following also apply:
a) expression shall be of a collection type (i.e., array, list, map or set), including fixed-sized arrays of

action handles, components, and flow and resource object references.
b) The body of the foreach statement is a sequential block in which activity_stmt is evaluated once for

each element in the collection.
c) iterator_identifier specifies the name of an iterator variable of the collection element type. Within

activity_stmt, the iterator variable, when specified, is an alias to the collection element of the current
iteration.

d) index_identifier specifies the name of an index variable. Within activity_stmt, the index variable,
when specified, corresponds to the element index of the current iteration.

component top {

function bit is_last_one();

action do_something {
bit last_one;

exec post_solve {
last_one = comp.is_last_one();

}

exec body C = """
printf("Do Something\n");

""";
}

action entry {
do_something s1;

activity {
repeat {

s1;
} while (s1.last_one !=0);

}
}

}

activity_foreach_stmt ::=
 foreach ([iterator_identifier :] expression [[index_identifier]]) activity_stmt

Copyright © 2023 Accellera. All rights reserved.
149

Portable Test and Stimulus Standard 2.1 — October 2023

1) For arrays and lists, the index variable shall be a variable of type int, ranging from 0 to one
less than the size of the collection variable, in that order.

2) For maps, the index variable shall be a variable of the same type as the map keys, and range
over the values of the keys. The order of key traversal is undetermined.

3) For sets, an index variable shall not be specified.
e) Both the index and iterator variables, if specified, are implicitly declared within the foreach scope

and limited to that scope. Regular name resolution rules apply when the implicitly declared variables
are used within the foreach body. For example, if there is a variable in an outer scope with the same
name as the index variable, that variable is shadowed (masked) by the index variable within the
foreach body. The index and iterator variables are not visible outside the foreach scope.

f) Either an index variable or an iterator variable or both shall be specified. For a set, an iterator vari-
able shall be specified, but not an index variable.

12.4.3.2 Examples

Example 79—foreach statement

12.4.4 select

The select statement specifies a branch point in the traversal of the activity (see Syntax 38).

12.4.4.1 Syntax

Syntax 38—select statement

The following also apply:
a) Intuitively, a select statement executes one out of a number of possible activities.
b) One or more of the activity_stmts may optionally have a guard condition specified in parentheses

(()). Guard condition expressions shall be of Boolean type. When the select statement is evaluated,
only those activity_stmts whose guard condition evaluates to true or that do not have a guard condi-
tion are considered enabled.

action my_action1 {
 rand bit[4] val;
 // ...
}

action my_test {
 rand bit[4] in [0..7] a[16];
 my_action1 action1;

 activity {
 foreach (a[j]) {
 action1 with {val <= a[j];};
 }
 }
};

activity_select_stmt ::= select { select_branch select_branch { select_branch } }
select_branch ::= [[(expression)] [[expression]] :] activity_stmt

Copyright © 2023 Accellera. All rights reserved.
150

Portable Test and Stimulus Standard 2.1 — October 2023

c) Formally, each evaluation of a select statement corresponds to the evaluation of just one of the
select_branch statements. All scheduling requirements shall hold for the selected activity statement.

d) Optionally, all activity_stmts may include a weight expression, which is a numeric expression that
evaluates to a non-negative integer value. The probability of choosing an enabled activity_stmt is the
weight of the given statement divided by the sum of the weights of all enabled statements. If the
activity_stmt is an array of action handles, then the weight expression is assigned to each element of
the array, from which one element is selected and traversed.

e) If any activity_stmt has a weight expression, then any statement without an explicit weight expres-
sion associated with it shall have a weight of 1.

f) It shall be illegal if no activity statement is valid according to the active constraint and scheduling
requirements and the evaluation of the guard conditions.

12.4.4.2 Examples

In Example 80, the select statement causes the activity to select action1 or action2 during each
execution of the activity.

Example 80—Select statement

In Example 81, the branch selected shall depend on the value of a when the select statement is evaluated.

a) a==0 means that all three branches could be chosen, according to their weights.
1) action1 is chosen with a probability of 20%.
2) action2 is chosen with a probability of 30%.
3) action3 is chosen with a probability of 50%.

b) a in [1..3] means that action2 or action3 is traversed according to their weights.
1) action2 is chosen with a probability of 37.5%.
2) action3 is chosen with a probability of 62.5%.

c) a==4 means that only action3 is traversed.

action my_test {
 my_action1 action1;
 my_action2 action2;
 activity {
 select {
 action1;
 action2;
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
151

Portable Test and Stimulus Standard 2.1 — October 2023

Example 81—Select statement with guard conditions and weights

In Example 82, the select statement causes the activity to select action1 or one element of action2
during the execution of the activity. Since the weight expression of 2 is applied to each element of the
action2 array, there is a 40% chance that either element of that array is chosen, and a 20% (weight of 1)
chance of choosing action1.

Example 82—Select statement with array of action handles

12.4.5 if-else

The if-else statement introduces a branch point in the traversal of the activity (see Syntax 39).

12.4.5.1 Syntax

Syntax 39—if-else statement

The following also apply:
a) expression shall be of type bool.
b) Intuitively, an if-else statement executes some activity if a condition holds, and, otherwise (if speci-

fied), the alternative activity.
c) Formally, the if-else statement specifies the scheduling of the set of action executions per the evalu-

ation of the first activity_stmt if expression evaluates to true or the second activity_stmt (following
else) if present and expression evaluates to false.

action my_test {
 my_action1 action1;
 my_action2 action2;
 my_action3 action3;
 rand int in [0..4] a;
 activity {
 select {
 (a == 0)[20]: action1;
 (a in [0..3])[30]: action2;
 [50]: action3;
 }
 }
}

action my_test {
 my_action1 action1;
 my_action2 action2[2];

 activity {
 select {
 action1;
 [2]: action2;
 }
 }
}

activity_if_else_stmt ::= if (expression) activity_stmt [else activity_stmt]

Copyright © 2023 Accellera. All rights reserved.
152

Portable Test and Stimulus Standard 2.1 — October 2023

d) The scheduling relationships need only be met for one branch for each evaluation of the activity.
e) The choice of values to rand attributes figuring in the expression shall be such that it yields legal

execution scheduling.

12.4.5.2 Examples

If the scheduling requirements for Example 83 required selection of the b branch, then the value selected for
x must be <= 5.

Example 83—if-else statement

12.4.6 match

The match statement specifies a multi-way decision point in the traversal of the activity that tests whether
an expression matches any of a number of other expressions and traverses one of the matching branches
accordingly (see Syntax 40).

12.4.6.1 Syntax

Syntax 40—match statement

The following also apply:
a) When the match statement is executed, the match_expression is evaluated.
b) After the match_expression is evaluated, the open_range_list of each match_choice shall be com-

pared to the match_expression. open_range_lists are described in 8.5.9.1.
c) If there is exactly one match, then the corresponding branch shall be traversed.
d) If there is more than one match, then one of the matching match_choices shall be randomly tra-

versed.
e) If there are no matches, then the default branch, if provided, shall be traversed.
f) The default branch is optional. There may be at most one default branch in the match statement.

action my_test {
 rand int in [1..10] x;
 A a;
 B b;
 activity {
 if (x > 5)
 a;
 else
 b;
 }
};

activity_match_stmt ::= match (match_expression) { match_choice { match_choice } }
match_expression ::= expression
match_choice ::=
 [open_range_list] : activity_stmt
 | default : activity_stmt

Copyright © 2023 Accellera. All rights reserved.
153

Portable Test and Stimulus Standard 2.1 — October 2023

g) As with a select statement, it shall be an error if no match_choice is valid according to the active
constraint and scheduling requirements and the evaluation of the match_expression against the
match_choice open_range_lists.

12.4.6.2 Examples

In Example 84, the match statement causes the activity to evaluate the data field
in_security_data.val and select a branch according to its value at each execution of the activity. If
the data field is equal to LEVEL2, action1 is traversed. If the data field is equal to LEVEL5, action2 is
traversed. If the data field is equal to LEVEL3 or LEVEL4, then either action1 or action2 is traversed
at random. For any other value of the data field, action3 is traversed.

Example 84—match statement

12.5 Activity construction statements

12.5.1 replicate

The replicate statement is a generative activity statement interpreted as an in-place expansion of a specified
statement multiple times. The replicate statement does not introduce an additional layer of scheduling or
control flow. The execution semantics applied to the expanded statements depend on the context. In
particular, replicating a statement N times under a parallel statement executes the same statement N times in
parallel. Unlike a repeat statement, replicate provides a way to reference specific expansion instances from
above using a label array.

12.5.1.1 Syntax

Syntax 41—replicate statement

The following also apply:
a) expression shall be a positive integer expression (int or bit).

action my_test {
 rand security_data in_security_data;
 my_action1 action1;
 my_action2 action2;
 my_action3 action3;
 activity {
 match (in_security_data.val) {
 [LEVEL2..LEVEL4]:
 action1;
 [LEVEL3..LEVEL5]:
 action2;
 default:
 action3;
 }
}

activity_replicate_stmt ::=
 replicate ([index_identifier :] expression) [label_identifier [] :] labeled_activity_stmt

Copyright © 2023 Accellera. All rights reserved.
154

Portable Test and Stimulus Standard 2.1 — October 2023

b) The replicate statement expands in-place to labeled_activity_stmt replicated the number of times
specified in the expression. An optional index variable index_identifier may be specified that ranges
between 0 and one less than the iteration count.

c) The execution semantics of a replicate statement where expression evaluates to N are equivalent to
the execution semantics of N occurrences of labeled_activity_stmt directly traversed in its enclosing
activity scope.

d) The number of replications must be known as part of the solve process. In other words, expression
may not contain an attribute that is assigned in the context of a runtime exec block (body/run_start/
run_end).

e) A label_identifier may optionally be used to label the replicated statement in the form of a label
array. If used, each expanded occurrence of labeled_activity_stmt becomes a named sub-activity
with the label label_identifier[0] … label_identifier[N-1] respectively, where N is the number of
expanded occurrences. Reference can be made to labels and action handles declared under the repli-
cate and its nested scopes using array indexing on the label. (See more on hierarchical activity refer-
ences in 12.8).

f) Labels may be used to name sub-activities inside the scope of a replicate statement only if the
label_identifier is specified. A label under a replicate statement without a named label array leads to
name conflict between the replicated sub-activities (see scoping rules for named sub-activities in
12.8.2).

g) Traversing a named action handle within a replicate scope that is declared outside the replicate
scope shall not result in multiple traversal when the replicate statement is expanded (see
12.3.1.1(d)). Both anonymous action traversal and action traversal of an action handle declared
locally inside the replicate scope are allowed.

12.5.1.2 Examples

In Example 85, the resulting execution is either two, three, or four parallel executions of the sequence A ->
B.

Example 85—replicate statement

action my_test {
 rand int in [2..4] count;
 activity {
 parallel {
 replicate (count) {
 do A;
 do B;
 }
 }
 }
};

Copyright © 2023 Accellera. All rights reserved.
155

Portable Test and Stimulus Standard 2.1 — October 2023

In Example 86, the execution of action my_test results in one execution of A as well as four executions of
B, all in the scope of the schedule statement, that is, invoked in any order that satisfies the scheduling rules.

Example 86—replicate statement with index variable

Example 86 can be rewritten in the following equivalent way to eliminate the replicate statement:

Example 87—Rewriting previous example without replicate statement

action my_test {
 activity {
 schedule {
 do A;
 replicate (i: 4) do B with { size == i*10; };
 }
 }
};

action my_test {
 activity {
 schedule {
 do A;
 do B with { size == 0*10; };
 do B with { size == 1*10; };
 do B with { size == 2*10; };
 do B with { size == 3*10; };
 }
 }
};

Copyright © 2023 Accellera. All rights reserved.
156

Portable Test and Stimulus Standard 2.1 — October 2023

Example 88 illustrates the use of a replicate label array for unique hierarchical paths to specific expansion
instances. References are made to action handles declared and traversed in specific expansion instances of a
replicate statement from outside its scope.

Example 88—replicate statement with label array

In Example 89 a number of error situations are demonstrated. Note that label L in this example causes a
name conflict between the named sub-activities in the expansion of the replicate statement (see also 12.8.2).

Example 89—replicate statement error situations

action my_compound {
 rand int in [2..4] count;
 activity {
 parallel {
 replicate (count) RL[]: {
 A a;
 B b;
 a;
 b;
 }
 }
 if (RL[count-1].a.x ==0) { // 'a' of the last replicate expansion
 do C;
 }
 }
};

action my_test {
 activity {
 do my_compound with {
 RL[0].a.x == 10; // 'a' of the first replicate expansion
 };
 }
};

action my_test {
 A a;
 C c_arr[4];
 activity {
 schedule {
 replicate (i:4) {
 B b;
 a; // Error - traversal of action handle
 // declared outside the replicate scope
 b; // OK – action handle declared inside replicate scope
 c_arr[i]; // OK - each element of the action handle array is a
 // unique action handle, so does not cause the same
 // handle to be traversed multiple times
 L: select { // Error – label causes name conflict in expansion
 do A;
 do B;
 }
 }
 }
 }
};

Copyright © 2023 Accellera. All rights reserved.
157

Portable Test and Stimulus Standard 2.1 — October 2023

12.6 Activity evaluation with extension and inheritance

Compound actions support both type inheritance and type extension (see Clause 19). When type extension is
used to contribute one or more activities to an action type, the execution semantics are the same as if all the
contributed activities were scheduled along with all the activities from the initial definition.

In Example 90, action type entry traverses action type A. Extensions to action type entry include
activities that traverse action types B and C.

Example 90—Extended action traversal

The semantics of activity in the presence of type extension state that all three activity blocks will be
traversed in an implied schedule block. In other words, Example 90 is equivalent to the hand-coded
example shown in Example 91.

component pss_top {
 action A { };
 action B { };
 action C { };

 action entry {
 activity {
 do A;
 }
 }

 extend action entry {
 activity {
 do B;
 }
 }

 extend action entry {
 activity {
 do C;
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
158

Portable Test and Stimulus Standard 2.1 — October 2023

Example 91—Hand-coded action traversal

When a compound action inherits from another compound action, any activities declared in the inheriting
action shadow (mask) the activity (or activities) declared in the base action. The “super;” statement can be
used to traverse the activity (or activities) declared in the base action.

In Example 92, action base declares an activity that traverses action type A. Action ext1 inherits from
base and replaces the activity declared in base with an activity that traverses action type B. Action ext2
inherits from base and replaces the activity declared in base with an activity that first traverses the
activity declared in base, then traverses action type C.

Example 92—Inheritance and traversal

component pss_top {
 action A { };
 action B { };
 action C { };

 action entry {
 activity {
 schedule {
 do A;
 do B;
 do C;
 }
 }
 }
}

component pss_top {
 action A { }
 action B { }
 action C { }

 action base {
 activity {
 do A;
 }
 }

 action ext1 : base {
 activity {
 do B;
 }
 }

 action ext2 : base {
 activity {
 super;
 do C;
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
159

Portable Test and Stimulus Standard 2.1 — October 2023

12.7 Symbols

To assist in reuse and simplify the specification of repetitive behaviors in a single activity, a symbol may be
declared to represent a subset of activity functionality (see Syntax 42). The symbol may be used as a node in
the activity.

A symbol may activate another symbol, but symbols are not recursive and may not activate themselves.

12.7.1 Syntax

Syntax 42—symbol declaration

12.7.2 Examples

Example 93 depicts using a symbol. In this case, the desired activity is a sequence of choices between aN
and bN, followed by a sequence of cN actions. This statement could be specified in-line, but for brevity of
the top-level activity description, a symbol is declared for the sequence of aN and bN selections. The symbol
is then referenced in the top-level activity, which has the same effect as specifying the aN/bN sequence of
selects in-line.

Example 93—Using a symbol

symbol_declaration ::= symbol symbol_identifier [(symbol_paramlist)] { { activity_stmt } }
symbol_paramlist ::= [symbol_param { , symbol_param }]
symbol_param ::= data_type identifier

component entity {
action a { }
action b { }
action c { }

action top {
 a a1, a2, a3;
 b b1, b2, b3;
 c c1, c2, c3;

 symbol a_or_b {
 select {a1; b1; }
 select {a2; b2; }
 select {a3; b3; }
 }

 activity {

a_or_b;
 c1;
 c2;
 c3;
 }

}
}

Copyright © 2023 Accellera. All rights reserved.
160

Portable Test and Stimulus Standard 2.1 — October 2023

Example 94 depicts using a parameterized symbol.

Example 94—Using a parameterized symbol

12.8 Named sub-activities

Sub-activities are structured elements of an activity. Naming sub-activities is a way to specify a logical tree
structure of sub-activities within an activity. This tree serves for making hierarchical references, both to
action-handle variables declared in-line, as well as to the activity statements themselves. The hierarchical
paths thus exposed abstract from the concrete syntactic structure of the activity, since only explicitly labeled
statements constitute a new hierarchy level.

12.8.1 Syntax

A named sub-activity is declared by labeling an activity statement, see Syntax 28.

12.8.2 Scoping rules for named sub-activities

Activity statement labels shall be unique in the context of the containing named sub-activity—the nearest
lexically-containing statement which is labeled. Activity statement labels shall not conflict with local
variable names, including named action handles. Unlabeled activity statements do not constitute a separate
naming scope for sub-activities.

Note that labeling activity statements inside the scope of a replicate statement leads to name conflicts
between the expanded sub-activities, unless a label array is specified (see 12.5.1.1). With a replicate label
array, each expanded named sub-activity has a unique hierarchical path.

In Example 95, some activity statements are labeled while others are not. The second occurrence of label L2
is conflicting with the first because the if statement under which the first occurs is not labeled and hence is
not a separate naming scope for sub-activities.

component entity {
 action a { }
 action b { }
 action c { }
 action top {
 a a1, a2, a3;
 b b1, b2, b3;
 c c1, c2, c3;
 symbol ab_or_ba (a aa, b bb) {
 select {
 { aa; bb; }
 { bb; aa; }
 }
 }
 activity {
 ab_or_ba(a1,b1);
 ab_or_ba(a2,b2);
 ab_or_ba(a3,b3);
 c1;
 c2;
 c3;
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
161

Portable Test and Stimulus Standard 2.1 — October 2023

Example 95—Scoping and named sub-activities

Example 96 below demonstrates a name conflict between a local action-handle variable and a label of an
activity statement in the same named sub-activity. This is not allowed, as it would render the hierarchical
path L.a from action A’s scope ambiguous.

Example 96—Activity statement label name conflict

12.8.3 Hierarchical references using named sub-activity

Named sub-activities, introduced through labels, allow referencing action-handle variables using
hierarchical paths. References can be made to a variable from within the same activity, from the compound
action top-level scope, and from outside the action scope.

action A {};

action B {
 int x;
 activity {
 L1: parallel { // 'L1' is 1st level named sub-activity
 if (x > 10) {
 L2: { // 'L2' is 2nd level named sub-activity
 A a;
 a;
 }
 {
 A a; // OK - this is a separate naming scope for variables
 a;
 }
 }
 L2: { // Error - this 'L2' conflicts with 'L2' above
 A a;
 a;
 }
 }
 }
};

action A {
 activity {
 L: schedule {
 A a;
 B b;
 a: { // illegal label!
 do C;
 do D;
 }
 }
 }
 constraint parallel {L.a, L.b};
}

Copyright © 2023 Accellera. All rights reserved.
162

Portable Test and Stimulus Standard 2.1 — October 2023

A hierarchical activity path uses labels in a way similar to variables of struct and array types. The dot
operator (.) in the case of simple labels, or the indexing operator ([]) and other array operators in the case of
label arrays (introduced by replicate statements), may be used to reference named sub-activity blocks.

Only action handles declared directly under a labeled activity statement can be accessed outside their direct
lexical scope. Action handles declared in an unnamed activity scope cannot be accessed from outside that
scope.

Note that the top activity scope is unnamed. For an action handle to be directly accessible in the top-level
action scope, or from outside the current scope, it shall be declared at the top-level action scope.

In Example 97, action B declares action-handle variables in labeled activity statement scopes, thus making
them accessible from outside by using hierarchical paths. action C uses hierarchical paths to constrain the
sub-actions of its sub-actions b1 and b2.

Example 97—Hierarchical references and named sub-activities

action A { rand int x; };

action B {
 A a;
 activity {
 a;
 my_seq: sequence {
 A a;
 a;
 parallel {
 my_rep: repeat (3) {
 A a;
 a;
 };
 sequence {
 A a; // this 'a' is declared in unnamed scope
 a; // can't be accessed from outside
 };
 };
 };
 };
};

action C {
 B b1, b2;
 constraint b1.a.x == 1;
 constraint b1.my_seq.a.x == 2;
 constraint b1.my_seq.my_rep.a.x == 3; // applies to all three iterations
 // of the loop
 activity {
 b1;
 b2 with { my_seq.my_rep.a.x == 4; }; // likewise
 }
};

Copyright © 2023 Accellera. All rights reserved.
163

Portable Test and Stimulus Standard 2.1 — October 2023

12.9 Explicitly binding flow objects

Input and output fields of actions may be explicitly connected to actions using the bind statement (see
Syntax 43). It states that the fields of the respective actions reference the same object—the output of one
action is the input of another.

12.9.1 Syntax

Syntax 43—bind statement

The following also apply:
a) Reference fields that are bound shall be of the same object type.
b) Explicit binding shall conform to the scheduling and connectivity rules of the respective flow object

kind defined in 13.4.
c) Explicit binding can only associate reference fields that are statically bound to the same pool

instance (see 15.3).
d) The order in which the fields are listed does not matter.

activity_bind_stmt ::= bind hierarchical_id activity_bind_item_or_list ;
activity_bind_item_or_list ::=
 hierarchical_id
 | { hierarchical_id_list }

Copyright © 2023 Accellera. All rights reserved.
164

Portable Test and Stimulus Standard 2.1 — October 2023

12.9.2 Examples

Examples of binding are shown in Example 98.

Example 98—bind statement

12.10 Hierarchical flow object binding

As discussed in 13.4, actions, including compound actions, may declare inputs and/or outputs of a given
flow object type. When a compound action has inputs and/or outputs of the same type and direction as its
sub-action and which are statically bound to the same pool (see 15.3), the bind statement may be used to
associate the compound action’s input/output with the desired sub-action input/output. The compound
action’s input/output shall be the first argument to the bind statement.

The outermost compound action that declares the input/output determines its scheduling implications, even
if it binds the input/output to that of a sub-action. The binding to a corresponding input/output of a sub-
action simply delegates the object reference to the sub-action.

In the case of a buffer object input to the compound action, the action that produces the buffer object must
complete before the activity of the compound action begins, regardless of where within the activity the sub-
action to which the input buffer is bound begins. Similarly, the compound action’s activity shall complete
before the compound action’s output buffer is available, regardless of where in the compound action’s
activity the sub-action that produces the buffer object executes. The corollary to this statement is that no
other sub-action in the compound action’s activity may have an input explicitly hierarchically bound to the
compound action’s buffer output object. Similarly, no sub-action in the compound action’s activity may
have an output that is explicitly hierarchically bound to the compound action’s input object. Consider
Example 99.

component top{
 buffer B {rand int a;};
 action P1 {
 output B out;
 };
 action P2 {
 output B out;
 };
 action C {
 input B inp;
 };

 pool B B_p;
 bind B_p {*};

 action T {
 P1 p1;
 P2 p2;
 C c;
 activity {
 p1;
 p2;
 c;
 bind p1.out c.inp; // c.inp.a == p1.out.a
 };
 }
};

Copyright © 2023 Accellera. All rights reserved.
165

Portable Test and Stimulus Standard 2.1 — October 2023

Example 99—Hierarchical flow binding for buffer objects

For stream objects, the compound action’s activity shall execute in parallel with the action that produces the
input stream object to the compound action or consumes the stream object output by the compound action. A
sub-action within the activity of a compound action that is bound to a stream input/output of the compound
action shall be an initial action in the activity of the compound action. Consider Example 100.

Example 100—Hierarchical flow binding for stream objects

For state object outputs of the compound action, the activity shall complete before any other action may
write to or read from the state object, regardless of where in the activity the sub-action executes within the
activity. Only one sub-action may be bound to the compound action’s state object output. Any number of
sub-actions may have input state objects bound to the compound action’s state object input.

action sub_a {
 input data_buf din;
 output data_buf dout;
}

action compound_a {
 input data_buf data_in;
 output data_buf data_out;
 sub_a a1, a2;
 activity {
 a1;
 a2;
 bind a1.dout a2.din;
 bind data_in a1.din; // hierarchical bind
 bind data_out a2.dout; // hierarchical bind
// The following bind statements would be illegal
// bind data_in a1.dout; // sub-action output may not be bound to
// // compound action’s input
// bind data_out a2.din; // sub-action input may not be bound to
// // compound action’s output
 }
}

action sub_a {
 input data_str din;
 output data_buf dout;
}

action compound_a {
 input data_str data_in;
 output data_buf data_out;
 sub_a a1, a2;
 activity {
 a1;
 a2;
 bind data_in a1.din; // hierarchical bind
// The following bind statement would be illegal
// bind data_in a2.din; // a2 is not scheduled in parallel with compound_a
 }
}

Copyright © 2023 Accellera. All rights reserved.
166

Portable Test and Stimulus Standard 2.1 — October 2023

12.11 Hierarchical resource object binding

As discussed in 14.2, actions, including compound actions, may claim a resource object of a given type.
When a compound action claims a resource of the same type as its sub-action(s) and where the compound
action and the sub-action are bound to the same pool, the bind statement may be used to associate the
compound action’s resource with the desired sub-action resource. The compound action’s resource shall be
the first argument to the bind statement.

The outermost compound action that claims the resource determines its scheduling implications. The
binding to a corresponding resource of a sub-action simply delegates the resource reference to the sub-
action.

The compound action’s claim on the resource determines the scheduling of the compound action relative to
other actions and that claim is valid for the duration of the activity. The sub-actions’ resource claim
determines the relative scheduling of the sub-actions in the context of the activity. In the absence of the
explicit resource binding, the compound action and its sub-action(s) claim resources from the pool to which
they are bound. Thus, it shall be illegal for a sub-action to lock the same resource instance that is locked by
the compound action.

A resource locked by the compound action may be bound to any resource(s) in the sub-action(s). Thus, only
one sub-action that locks the resource reference may execute in the activity at any given time and no sharing
sub-actions may execute at the same time. If the resource that is locked by the compound action is bound to
a shared resource(s) in the sub-action(s), there is no further scheduling dependency.

A resource shared by the compound action may only be bound to a shared resource(s) in the sub-action(s).
Since the compound action’s shared resource may also be claimed by another action, there is no way to
guarantee exclusive access to the resource by any sub-action; so, it shall be illegal to bind a shared resource
to a locking sub-action resource.

In Example 101, the compound action locks resources crlkA and crlkB, so no other actions outside of
compound_a may lock either resource for the duration of the activity.

Example 101—Hierarchical resource binding

action sub_a {
 lock res_r rlkA, rlkB;
 share res_r rshA, rshB;
}

action compound_a {
 lock res_r crlkA, crlkB;
 share res_r crshA, crshB;
 sub_a a1, a2;
 activity {
 schedule {
 a1;
 a2;
 }
 bind crlkA {a1.rlkA, a2.rlkA};
 bind crshA {a1.rshA, a2.rshA};
 bind crlkB {a1.rlkB, a2.rshB};
 bind crshB {a1.rshB, a2.rlkB}; //illegal
 }
}

Copyright © 2023 Accellera. All rights reserved.
167

Portable Test and Stimulus Standard 2.1 — October 2023

13. Flow objects

A flow object represents incoming or outgoing data/control flow for actions, or their pre-condition and post-
condition. A flow object can have two modes of reference by actions: input and output.

13.1 Buffer objects

Buffer objects represent data items in some persistent storage that can be written and read. Once their
writing is completed, they can be read as needed. Typically, buffer objects represent data or control buffers
in internal or external memories. See Syntax 44.

13.1.1 Syntax

Syntax 44—buffer declaration

The following also apply:
a) Note that the buffer type does not imply any specific layout in memory for the specific data being

stored.
b) Buffer types can inherit from previously defined structs or buffers.
c) Buffer object reference fields can be declared under actions using the input or output modifier (see

13.4). Instance fields of buffer type (taken as a plain-data type) can only be declared under higher-
level buffer types, as their data attribute.

d) A buffer object shall be the output of exactly one action. A buffer object may be the input of any
number (zero or more) of actions.

e) Execution of a consuming action that inputs a buffer shall not begin until after the execution of the
producing action completes (see Figure 2).

f) An action may not have the same buffer object declared as both an input and an output.

13.1.2 Examples

Examples of buffer objects are show in Example 102.

Example 102—buffer object

13.2 Stream objects

Stream objects represent transient data or control exchanged between actions during concurrent activity,
e.g., over a bus or network, or across interfaces. They represent data item flow or message/notification
exchange. See Syntax 45.

buffer identifier [template_param_decl_list] [struct_super_spec] { { struct_body_item } }

struct mem_segment_s {...};
buffer data_buff_s {

rand mem_segment_s seg;
};

Copyright © 2023 Accellera. All rights reserved.
168

Portable Test and Stimulus Standard 2.1 — October 2023

13.2.1 Syntax

Syntax 45—stream declaration

The following also apply:
a) Stream types can inherit from previously defined structs or streams.
b) Stream object reference fields can be declared under actions using the input or output modifier (see

13.4). Instance fields of stream type (taken as a plain-data type) can only be declared under higher-
level stream types, as their data attribute.

c) A stream object shall be the output of exactly one action and the input of exactly one action.
d) The outputting and inputting actions shall begin their execution at the same time, after the same pre-

ceding action(s) completes. The outputting and inputting actions are said to run in parallel. The
semantics of parallel execution are discussed further in 12.3.4.

13.2.2 Examples

Examples of stream objects are show in Example 103.

Example 103—stream object

13.3 State objects

State objects represent the state of some entity in the execution environment at a given time. See Syntax 46.

13.3.1 Syntax

Syntax 46—state declaration

The following also apply:
a) The writing and reading of states in a scenario is deterministic. With respect to a pool of state

objects, writing shall not take place concurrently to either writing or reading.
b) The initial state of a given type is represented by the built-in Boolean initial attribute. See 15.5

for more on state pools (and initial).
c) State object reference fields can be declared under actions using the input or output modifier (see

13.4). Instance fields of state type (taken as a plain-data type) can only be declared under higher-
level state types, as their data attribute. It shall be illegal to access the built-in attributes initial
and prev on an instance field.

d) State types can inherit from previously defined structs or states.

stream identifier [template_param_decl_list] [struct_super_spec] { { struct_body_item } }

struct mem_segment_s {...};
stream data_stream_s {

rand mem_segment_s seg;
};

state identifier [template_param_decl_list] [struct_super_spec] { { struct_body_item } }

Copyright © 2023 Accellera. All rights reserved.
169

Portable Test and Stimulus Standard 2.1 — October 2023

e) An action that has an input or output of state object type operates on a pool of the corresponding
state object type to which its field is bound. Static pool bind directives are used to associate the
action with the appropriate state object pool (see 15.3).

f) At any given time, a pool of state object type contains a single state object. This object reflects the
last state specified by the output of an action bound to the pool. Prior to execution of the first action
that outputs to the pool, the object reflects the initial state specified by constraints involving the
initial built-in field of state object types.

g) The built-in variable prev is a reference from this state object to the previous one in the pool. prev
has the same type as this state object. The value of prev is unresolved in the context of the initial
state object. In the context of an action, prev may only be referenced relative to a state object out-
put. In all cases, only a single level of prev reference is supported, i.e.,
out_s.prev.prev.prev shall be illegal.

h) An action that inputs a state object reads the current state object from the state object pool to which
it is bound.

i) An action that outputs a state object writes to the state object pool to which it is bound, updating the
state object in the pool.

j) Execution of an action that outputs a state object shall complete at any time before the execution of
any inputting action begins.

k) Execution of an action that outputs a state object to a pool shall not be concurrent with the execution
of any other action that either outputs or inputs a state object from that pool.

l) Execution of an action that inputs a state object from a pool may be concurrent with the execution of
any other action(s) that input a state object from the same pool, but shall not be concurrent with the
execution of any other action that outputs a state object to the same pool.

13.3.2 Examples

Examples of state objects are shown in Example 104.

Example 104—state object

enum mode_e {...};
state config_s {

rand mode_e mode;
...

};

Copyright © 2023 Accellera. All rights reserved.
170

Portable Test and Stimulus Standard 2.1 — October 2023

13.4 Using flow objects

Flow object references are specified by actions as inputs or outputs. These references are used to specify
rules for combining actions in legal scenarios. An action that outputs a flow object is said to produce that
object and an action that inputs a flow object is said to consume the object. See Syntax 47.

A consumer may consume flow objects that are produced by multiple producers, and vice versa.

An action can produce or consume a fixed-size array of flow objects. Declaring such an array is equivalent
to declaring multiple distinct object reference fields of the same type.

13.4.1 Syntax

Syntax 47—Flow object reference

The following apply for arrays of flow object references:
a) Individual elements in the array may be referenced by using the array name and the element index in

square brackets.
b) A flow object array is specified as entirely input or entirely output. The mode cannot be specified

separately for an individual element of the array.
c) The different elements in an array may be bound to different pools. Explicit binding must be used

for array elements associated with different pools. Default (type-based) pool binding applies to all
elements of an object-reference array, and therefore cannot be used for this purpose (see 15.3 for
more details).

d) For an array of state object references, each object reference must be bound to a different state pool,
since a state pool can store only one state object at a time (see 13.3.1 and Example 115).

action_field_declaration ::=
 attr_field
 | activity_data_field
 | action_handle_declaration
 | object_ref_field_declaration
object_ref_field_declaration ::=
 flow_ref_field_declaration
 | resource_ref_field_declaration
flow_ref_field_declaration ::=
 (input | output) flow_object_type object_ref_field { , object_ref_field } ;
flow_object_type ::=
 buffer_type_identifier
 | state_type_identifier
 | stream_type_identifier
object_ref_field ::= identifier [array_dim]
array_dim ::= [constant_expression]

Copyright © 2023 Accellera. All rights reserved.
171

Portable Test and Stimulus Standard 2.1 — October 2023

13.4.2 Examples

Examples of using buffer flow objects are shown in Example 105.

Example 105—buffer flow object

For a timing diagram showing the relative execution of two actions sharing a buffer object, see Figure 2.

Examples of using stream flow objects are shown in Example 106.

Example 106—stream flow object

For a timing diagram showing the relative execution of two actions sharing a stream object, see Figure 3.

In Example 107, four buffer objects are produced, one by action prod_1b and three by action prod_3b,
and five buffer objects are consumed, one by cons_1b, two by cons_2b_0, and two by cons_2b_1.
All the buffer objects are produced and consumed from the same pool, buff_p. All the buffer objects
have a random integer attribute, int_attr. Consumer objects in cons_2b_0 constrain their int_attr
attribute to 3, while in cons_2b_1, the first consumer object’s int_attr attribute is constrained to be
greater than or equal to 2, and the second is constrained to be less than 3. prod_3b’s producer objects
int_attr attributes are all constrained to 3.

There is an explicit bind to bind the second consumer object in cons_2b_1 with the first producer object
in prod_3b, The explicit bind constraint will fail because int_attr in the consumer object is
constrained to be less than 3, while int_attr in the producer object is constrained to 3. If we remove the
explicit bind, then that same consumer object will bind to the producer prod_1b’s output object because
its int_attr is constrained to be less than 3.

struct mem_segment_s {...};
buffer data_buff_s {

rand mem_segment_s seg;
};
action cons_mem_a {

input data_buff_s in_data;
};
action prod_mem_a {

output data_buff_s out_data;
};

struct mem_segment_s {...};
stream data_stream_s {
 rand mem_segment_s seg;
};
action cons_mem_a {
 input data_stream_s in_data;
};
action prod_mem_a {
 output data_stream_s out_data;
};

Copyright © 2023 Accellera. All rights reserved.
172

Portable Test and Stimulus Standard 2.1 — October 2023

.

Example 107—Multiple producers/consumers using the same buffer pool

An example of use of an array of state object references can be seen in Example 115.

buffer data_buff {
 rand int int_attr;
};

component flow_object_array_c {
 pool data_buff buff_p;
 bind buff_p *;

 action prod_buff_a {
 output data_buff out_1_buff;
 };

 action prod_3_buff_a {
 output data_buff out_3_buff [3];
 };

 action cons_buff_a {
 input data_buff in_1_buff;
 };

 action cons_2_buff_a {
 input data_buff in_2_buff [2];
 };

 action activity_a {
 prod_buff_a prod_1b;
 prod_3_buff_a prod_3b;

 cons_buff_a cons_1b;
 cons_2_buff_a cons_2b_0;
 cons_2_buff_a cons_2b_1;

 activity {
 prod_1b with {out_1_buff.int_attr == 1;};
 prod_3b with {
 foreach (b:out_3_buff) { b.int_attr == 3;};
 };

 cons_1b with { in_1_buff.int_attr == 3;};

 cons_2b_0;
 constraint { foreach (b: cons_2b_0.in_2_buff) {
 b.int_attr == 3;
 };};

 cons_2b_1 with {
 in_2_buff[0].int_attr >= 2 && in_2_buff[1].int_attr < 3;};
 bind cons_2b_1.in_2_buff[1] prod_3b.out_3_buff[0]; // conflict
 };
 };
};

Copyright © 2023 Accellera. All rights reserved.
173

Portable Test and Stimulus Standard 2.1 — October 2023

14. Resource objects

Resource objects represent computational resources available in the execution environment that may be
assigned to actions for the duration of their execution.

14.1 Declaring resource objects

Resource types can inherit from previously defined structs or resources. See Syntax 48. Resources reside in
pools (see Clause 15) and may be claimed by specific actions.

14.1.1 Syntax

Syntax 48—resource declaration

The following also apply:
a) Resources have a built-in non-negative integer attribute called instance_id. This attribute rep-

resents the relative index of the resource instance in the pool. The value of instance_id ranges
from 0 to pool_size - 1. See also 15.4.

b) There can only be one resource object per instance_id value for a given pool. Thus, actions ref-
erencing a resource object of some type with the same instance_id are necessarily referencing
the very same object and agreeing on all its properties.

c) Resource object reference fields can be declared under actions using the lock or share modifier (see
14.2). Instance fields of resource type (taken as a plain-data type) can only be declared under higher-
level resource types, as their data attribute.

14.1.2 Examples

For examples of how to declare a resource, see Example 108.

Example 108—Declaring a resource

14.2 Claiming resource objects

Resource objects may be locked or shared by actions. This is expressed by declaring the resource reference
field of an action. See Syntax 49.

An action can claim a fixed-size array of resource objects. Declaring such an array is equivalent to declaring
multiple distinct object reference fields of the same type.

resource identifier [template_param_decl_list] [struct_super_spec] { { struct_body_item } }

resource DMA_channel_s {
 rand bit[3:0] priority;
};

Copyright © 2023 Accellera. All rights reserved.
174

Portable Test and Stimulus Standard 2.1 — October 2023

14.2.1 Syntax

Syntax 49—Resource object reference

lock and share are modes of resource use by an action. They serve to declare resource requirements of the
action and restrict legal scheduling relative to other actions. Locking excludes the use of the resource
instance by another action throughout the execution of the locking action and sharing guarantees that the
resource is not locked by another action during its execution.

In a PSS-generated test scenario, no two actions may be assigned the same resource instance if they overlap
in execution time and at least one is locking the resource. In other words, there is a strict scheduling
dependency between an action referencing a resource object in lock mode and all other actions referencing
the same resource object instance.

The following apply for arrays of resource object references:
a) Individual elements in the array may be referenced by using the array name and the element index in

square brackets.
b) A resource object array is specified as entirely locked or entirely shared. The mode cannot be speci-

fied separately for an individual element of the array.
c) All elements of a resource object array must be bound to the same pool.
d) When claiming an array of resource objects, the pool size must be at least as large as the array, in

order to accommodate all distinct resource claims.

14.2.2 Examples

Example 109 demonstrates resource claims in lock and share mode. Action two_chan_transfer claims
exclusive access to two different DMA_channel_s instances. It also claims one CPU_core_s instance in
non-exclusive share mode. While two_chan_transfer executes, no other action may claim either
instance of the DMA_channel_s resource, nor may any other action lock the CPU_core_s resource
instance.

action_field_declaration ::=
 attr_field
 | activity_data_field
 | action_handle_declaration
 | object_ref_field_declaration
object_ref_field_declaration ::=
 flow_ref_field_declaration
 | resource_ref_field_declaration
resource_ref_field_declaration ::=
 (lock | share) resource_object_type object_ref_field { , object_ref_field } ;
resource_object_type ::= resource_type_identifier
object_ref_field ::= identifier [array_dim]
array_dim ::= [constant_expression]

Copyright © 2023 Accellera. All rights reserved.
175

Portable Test and Stimulus Standard 2.1 — October 2023

Example 109—Resource object

In Example 110, there is a pool of 16 resource objects of type config. The action baz_lock_a claims a
lock for 8 resource objects. The action baz_share_a claims to share 16 resource objects. The action
entry_a can legally traverse two baz_share_a actions in parallel, as the same resource object can be
shared between concurrent activities. It can also legally traverse two baz_lock_a actions in parallel
because overall there are 16 resource objects and each action instance consumes only 8.

Example 110—Locking and sharing arrays of resource objects

resource DMA_channel_s {
 rand bit[3:0] priority;
};
resource CPU_core_s {...};
action two_chan_transfer {
 lock DMA_channel_s chan_A;
 lock DMA_channel_s chan_B;
 share CPU_core_s ctrl_core;
...
};

resource config {}

component foo_c {
 pool[16] config config_p;
 bind config_p *;

 action baz_lock_a {
 lock config config_object[8];
 }

 action baz_share_a {
 share config config_object[16];
 }

 action entry_a {
 activity {
 parallel {
 do baz_share_a;
 do baz_share_a;
 }
 parallel {
 do baz_lock_a;
 do baz_lock_a;
 }
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
176

Portable Test and Stimulus Standard 2.1 — October 2023

15. Pools

Pools are used to determine possible assignment of objects to actions, and thus shape the space of legal test
scenarios. Pools represent collections of resources, state variables, and connectivity for data flow purposes.
Flow object exchange is always mediated by a pool. One action outputs an object to a pool and another
action inputs it from that same pool. Similarly, actions lock or share a resource object within some pool.

Pools are structural entities instantiated under components. They are used to determine the accessibility that
actions (see Clause 10) have to flow and resource objects. This is done by binding object reference fields of
action types to pools of the respective object types. Bind directives in the component scope associate
resource references with a specific resource pool, state references with a specific state pool (or state
variable), and buffer/stream object references with a specific data flow object pool (see 15.3).

15.1 Syntax

Syntax 50—Pool instantiation

In Syntax 50, type_identifier refers to a flow/resource object type, i.e., a buffer, stream, state, or resource
struct type.

The expression applies only to pools of resource type; it specifies the number of resource instances in the
pool. If omitted, the size of the resource pool defaults to 1.

The following also apply:
a) The execution semantics of a pool are determined by its object type.
b) A pool of state type can hold one object at any given time, a pool of resource type can hold up to

the given maximum number of unique resource objects throughout a scenario, and a pool of buffer
or stream type is not restricted in the number of objects at a given time or throughout the scenario.

15.2 Examples

Example 111 demonstrates how to declare a pool.

Example 111—Pool declaration

component_pool_declaration ::= pool [[expression]] type_identifier identifier ;

buffer data_buff_s {
 rand mem_segment_s seg;
};
resource channel_s {...};
component dmac_c {
 pool data_buff_s buff_p;
 ...
 pool [4] channel_s chan_p;
}

Copyright © 2023 Accellera. All rights reserved.
177

Portable Test and Stimulus Standard 2.1 — October 2023

15.3 Static pool binding directive

Every action executes in the context of a single component instance, and every object resides in some pool.
Multiple actions may execute concurrently, or over time, in the context of the same component instance, and
multiple objects may reside concurrently, or over time, in the same pool. Actions of a specific component
instance output objects to or input objects from a specific pool. Actions of a specific component instance can
only be assigned a resource of a certain pool.

Static bind directives determine which pools are accessible to the actions’ object references under which
component instances (see Syntax 51). Binding is done relative to the component sub-tree of the component
type in which the bind directive is applied. See also 19.1.

15.3.1 Syntax

Syntax 51—Static bind directives

Pool binding can take one of two forms:
— Explicit binding: associating a pool with a specific object reference field (input/output/resource-

claim) of an action type under a component instance or one or more elements of a component
instance array.

— Default binding: associating a pool generally with a component instance sub-tree, or array of com-
ponent instances, by object type.

The following also apply:
a) Components (and arrays thereof) and pools are identified with a relative instance path expression. A

specific object reference field is identified with the component instance path expression, followed
by an action-type name and field name, separated by dots (.).

b) Default binding can be specified for an entire sub-tree by using a wildcard instead of specific paths.
When referring to an entire array, the array may be referred to by name, without needing to specify
the range of elements in brackets (“[]”).

c) Explicit binding always takes precedence over default bindings.
d) Conflicting explicit bindings for the same object reference field shall be illegal.
e) If multiple bindings apply to the same object reference field, the bind directive in the context of the

top-most component instance takes precedence (i.e., the order of default binding resolution is top-
down).

f) Applying multiple default bindings to the same object reference field(s) from the same component
shall be illegal.

object_bind_stmt ::= bind hierarchical_id object_bind_item_or_list ;
object_bind_item_or_list ::=
 object_bind_item_path
 | { object_bind_item_path { , object_bind_item_path } }
object_bind_item_path ::= { component_path_elem . } object_bind_item
component_path_elem ::= component_identifier [[domain_open_range_list]]
object_bind_item ::=
 action_type_identifier . identifier [[domain_open_range_list]]
 | *

Copyright © 2023 Accellera. All rights reserved.
178

Portable Test and Stimulus Standard 2.1 — October 2023

g) When binding object reference fields to a pool, the object and the pool must be of the exact same
type. Thus, it shall be illegal to bind an object of a derived type to a pool of its base type, or vice
versa.

15.3.2 Examples

Example 112 illustrates default binding pools.

In these examples, the buff_p pool of data_buff_s objects is bound using the wildcard specifier
({*}). Because the bind statement is applied in the context of component dma_c, the buff_p pool is
bound to all component instances and actions defined in dma_c (i.e., component instances dmas1 and
dmas2, and action mem2mem_a). Thus, the in_data input and out_data output of the mem2mem_a
action share the same buff_p pool. The chan_p pool of channel_s resources is bound to the two
instances.

Example 112—Static binding

Example 113 illustrates the binding of pools to arrays of components. Each declared pool is of a different
type, each of which will be bound to a different subset of the array of mem_c components.

struct mem_segment_s {...};
buffer data_buff_s {
 rand mem_segment_s seg;
};
resource channel_s {...};
component dma_sub_c {
 ...
};
component dma_c {
 dma_sub_c dmas1, dmas2;
 pool data_buff_s buff_p;
 bind buff_p {*};
 pool [4] channel_s chan_p;
 bind chan_p {dmas1.*, dmas2.*};
 action mem2mem_a {
 input data_buff_s in_data;
 output data_buff_s out_data;
 ...
 };
};

Copyright © 2023 Accellera. All rights reserved.
179

Portable Test and Stimulus Standard 2.1 — October 2023

Example 113—Binding of pools to array of components

Example 114 illustrates the two forms of binding:, explicit and default. Action power_transition_a’s
input and output are both associated with the context component’s (graphics_c) state object pool.
However, action observe_same_power_state_a has two inputs, each of which is explicitly
associated with a different state object pool, the respective sub-component state variable. The channel_s
resource pool is instantiated under the multimedia subsystem and is shared between the two engines.

component mem_c {...}

component top_c {
 mem_c mem[4];

 pool mbuf mbuf_p;
 pool mbuf2 mbufA_p;
 pool mbuf3 mbufB_p
 pool mbuf4 mbufC_p;

 bind mbuf_p mem.*; // All elements of the array
 bind mbufA_p mem[0..2].*; // Explicit range
 bind mbufB_p mem[1..].*; // Up to the top element of the array
 bind mbufC_p mem[2,3].*; // Explicit array element(s)
 ...
}

Copyright © 2023 Accellera. All rights reserved.
180

Portable Test and Stimulus Standard 2.1 — October 2023

Example 114—Pool binding

state power_state_s { rand int in [0..4] level; }
resource channel_s {}
component graphics_c {
 pool power_state_s power_state_var;
 bind power_state_var *; // accessible to all actions under this
 // component (specifically power_transition's
 // input/output)
 action power_transition_a {
 input power_state_s curr; //current state
 output power_state_s next; //next state
 lock channel_s chan;
 }
}
component my_multimedia_ss_c {
 graphics_c gfx0;
 graphics_c gfx1;
 pool [4] channel_s channels;
 bind channels {gfx0.*,gfx1.*};// accessible by default to all actions
 // under these component sub-trees
 // (specifically power_transition's chan)
 action observe_same_power_state_a {
 input power_state_s gfx0_state;
 input power_state_s gfx1_state;
 constraint gfx0_state.level == gfx1_state.level;
 }
 // explicit binding of the two power state variables to the
 // respective inputs of action observe_same_power_state_a
 bind gfx0.power_state_var observe_same_power_state_a.gfx0_state;
 bind gfx1.power_state_var observe_same_power_state_a.gfx1_state;
}

Copyright © 2023 Accellera. All rights reserved.
181

Portable Test and Stimulus Standard 2.1 — October 2023

In Example 115, there is a observe_same_power_state_a action type with an array of 2 input state
objects. Action power_transition_a will cause at least one inferred instance to bind with the
respective observe_same_power_state_a action’s object for each one of the graphics_c
component instances. Using explicit pool bind statements, each element in the object array of
observe_same_power_state_a is bound to a different pool.

Example 115—Multiple state pools of the same state type

state power_state_s {
 rand int in [0..4] level;
 constraint initial -> level == 0;
}

// graphics component with power state
component graphics_c {
 pool power_state_s power_state_var;
 bind power_state_var *; // accessible to all actions under this
 // component (specifically power_transition's
 // input/output)
 action power_transition_a {
 input power_state_s curr; //current state
 output power_state_s next; //next state
 }
}

component my_multimedia_ss_c {
 graphics_c gfx[2];

 action observe_same_power_state_a {
 rand int in [1..4] observed_level;

 input power_state_s gfx_state[2];
 constraint { foreach (s: gfx_state) {
 s.level == observed_level;
 }}
 }
 // explicit binding of the two power state variables to the
 // respective inputs of action observe_same_power_state_a
 bind gfx[0].power_state_var observe_same_power_state_a.gfx_state[0];
 bind gfx[1].power_state_var observe_same_power_state_a.gfx_state[1];
}

Copyright © 2023 Accellera. All rights reserved.
182

Portable Test and Stimulus Standard 2.1 — October 2023

15.4 Resource pools and the instance_id attribute

Each object in a resource pool has a unique instance_id value, ranging from 0 to the pool’s size - 1.
Two actions that reference a resource object with the same instance_id value in the same pool are
referencing the same resource object. See also 16.1.

For example, in Example 116, action transfer is locking two kinds of resources: channel_s and
cpu_core_s. Because channel_s is defined under component dma_c, each dma_c instance has its
own pool of two channel objects. Within action par_dma_xfers, the two transfer actions can be assigned
the same channel instance_id because they are associated with different dma_c instances. However,
these same two actions must be assigned a different cpu_core_s object, with a different instance_id,
because both dma_c instances are bound to the same resource pool of cpu_core_s objects defined under
pss_top and they are scheduled in parallel. The bind directive designates the pool of cpu_core_s
resources is to be utilized by both instances of the dma_c component.

Example 116—Resource object assignment

resource cpu_core_s {}
component dma_c {
 resource channel_s {}
 pool[2] channel_s channels;
 bind channels {*}; // accessible to all actions
 // under this component (and its sub-tree)
 action transfer {
 lock channel_s chan;
 lock cpu_core_s core;
 }
}
component pss_top {
 dma_c dma0,dma1;
 pool[4] cpu_core_s cpu;
 bind cpu {dma0.*, dma1.*};// accessible to all actions
 // under the two sub-components
 action par_dma_xfers {
 dma_c::transfer xfer_a;
 dma_c::transfer xfer_b;

 constraint xfer_a.comp != xfer_b.comp;
 constraint xfer_a.chan.instance_id==xfer_b.chan.instance_id; //OK
 constraint xfer_a.core.instance_id==xfer_b.core.instance_id; //conflict!
 activity {
 parallel {
 xfer_a;
 xfer_b;
 }
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
183

Portable Test and Stimulus Standard 2.1 — October 2023

15.5 Pool of states and the initial attribute

Each pool of a state type contains exactly one state object at any given point in time throughout the
execution of the scenario. A state pool serves as a state variable instantiated on the context component.
Actions outputting to a state pool can be viewed as transitions in a finite state machine. See also 16.1.

Prior to execution of an action that outputs a state object to the pool, the pool contains the initial object. The
initial flag is true for the initial object and false for all other objects subsequently residing in the pool.
The initial state object is overwritten by the first state object (if any) which is output to the pool. The initial
object is only input by actions that are scheduled before any action that outputs a state object to the same
pool.

Consider, for example, the code in Example 117. The action codec_c::configure has an UNKNOWN
mode as its configuration state precondition, due to the constraint on its input prev_conf. Because it
outputs a new state object with a different mode value, there can only be one such action per codec
component instance (unless another action, not shown here, sets the mode back to UNKNOWN).

Example 117—State object binding

enum codec_config_mode_e {UNKNOWN, A, B}
component codec_c {
 state configuration_s {
 rand codec_config_mode_e mode;
 constraint initial -> mode == UNKNOWN;
 }
 pool configuration_s config_var;
 bind config_var *;
 action configure {
 input configuration_s prev_conf;
 output configuration_s next_conf;
 constraint prev_conf.mode == UNKNOWN && next_conf.mode in [A, B];
 }
}

Copyright © 2023 Accellera. All rights reserved.
184

Portable Test and Stimulus Standard 2.1 — October 2023

16. Randomization specification constructs

Scenario properties can be expressed in PSS declaratively, as algebraic constraints over attributes of
scenario entities.

a) There are several categories of struct and action fields.
1) Random attribute field - a field of a plain-data type (e.g., bit) that is qualified with the rand

keyword.
2) Non-random attribute field - a field of a plain-data type (e.g., int) that is not qualified with the

rand keyword.
3) Sub-action field - a field of an action type or a plain-data type that is qualified with the action

keyword.
4) Input/output flow object reference field - a field of a flow object type that is qualified with the

input or output keyword.
5) Resource claim reference field - a field of a resource object type that is qualified with the lock

or share keyword.
b) Constraints may shape every aspect of the scenario space. In particular:

1) Constraints are used to determine the legal value space within the type domain for attribute
fields of actions.

2) Constraints affect the legal assignment of resources to actions and, consequently, the schedul-
ing of actions.

3) Constraints may restrict the possible binding of action inputs to action outputs, and, thus, possi-
ble action inferences from partially specified scenarios.

4) Constraints determine the association of actions with context component instances.
5) Constraints may be used to specify all of the above properties in a specific context of a higher

level activity encapsulated via a compound action.
6) Constraints may also be applied also to the operands of control flow statements—determining

loop count and conditional branch selection.

Constraints are typically satisfied by more than just one specific assignment. There is often room for
randomness or the application of other considerations in selecting values. The process of selecting values for
scenario variables is called constrained randomization or simply randomization.

Randomized values of variables become available in the order in which they are used in the execution of a
scenario, as specified in activities. This provides a natural way to express and reason about the
randomization process. It also guarantees values sampled from the environment and fed back into the PSS
domain during the generation and/or execution have clear implications on subsequent evaluation. However,
this notion of ordering in variable randomization does not introduce ordering into the constraint system—the
solver is required to look ahead and accommodate for subsequent constraints.

16.1 Algebraic constraints

16.1.1 Member constraints

PSS supports two types of constraint blocks (see Syntax 52) as action/struct members: static constraints
that always hold and dynamic constraints that only hold when they are referenced by the user by traversing
them in an activity (see 16.4.11) or referencing them inside a constraint. Dynamic constraints associate a
name with a constraint that would typically be specified as an in-line constraint.

Copyright © 2023 Accellera. All rights reserved.
185

Portable Test and Stimulus Standard 2.1 — October 2023

16.1.1.1 Syntax

Syntax 52—Member constraint declaration

16.1.1.2 Examples

Example 118 declares a static constraint block, while Example 119 declares a dynamic constraint block. In
the case of the static constraint, the name is optional.

Example 118—Declaring a static constraint

constraint_declaration ::=
 constraint constraint_set
 | [dynamic] constraint identifier constraint_block
constraint_set ::=
 constraint_body_item
 | constraint_block
constraint_block ::= { { constraint_body_item } }
constraint_body_item ::=
 expression_constraint_item
 | foreach_constraint_item
 | forall_constraint_item
 | if_constraint_item
 | implication_constraint_item
 | unique_constraint_item
 | default hierarchical_id == constant_expression ;
 | default disable hierarchical_id ;
 | dist_directive
 | constraint_body_compile_if
 | stmt_terminator

action A {
 rand bit[31:0] addr;

 constraint addr_c {
 addr == 0x1000;
 }
}

Copyright © 2023 Accellera. All rights reserved.
186

Portable Test and Stimulus Standard 2.1 — October 2023

Example 119—Declaring a dynamic constraint

Example 120 shows a dynamic constraint inside a static constraint. In the examples, the send_pkt action
sends a packet of a random size. The static constraint pkt_sz_c ensures the packet is of a legal size and
the two dynamic constraints, small_pkt_c and jumbo_pkt_c, specialize the packet size to be small or
large, respectively. The static constraint interesting_sz_c restricts the size to be either <=100 for
small_pkt_c or >1500 for jumbo_pkt_c.

Example 120—Referencing a dynamic constraint inside a static constraint

16.1.2 Constraint inheritance

As discussed in 19.1, an action/struct subtype has all of the constraints that are declared in the context of its
supertype or that are inherited by the supertype. Unnamed static constraints in a subtype are added to all
other constraints. A named static or dynamic constraint in a subtype shadows (masks) a constraint of the
same name from the supertype. Constraint inheritance applies in the same way to static constraints and
dynamic constraints.

Example 121 illustrates a simple case of constraint inheritance and shadowing. Instances of struct
corrupt_data_buff satisfy the unnamed constraint of data_buff based on which size is in the

action B {
 action bit[31:0] addr;

 dynamic constraint dyn_addr1_c {
 addr in [0x1000..0x1FFF];
 }

 dynamic constraint dyn_addr2_c {
 addr in [0x2000..0x2FFF];
 }
}

 action send_pkt {
 rand bit[16] pkt_sz;

 constraint pkt_sz_c {pkt_sz > 0;}

 constraint interesting_sz_c {small_pkt_c || jumbo_pkt_c;}

 dynamic constraint small_pkt_c {pkt_sz <= 100;}
 dynamic constraint jumbo_pkt_c {pkt_sz > 1500;}
 }

 action scenario {
 activity {
 // Send a packet with size in [1..100, 1501..65535]
 do send_pkt;
 // Send a small packet with a directly-specified in-line constraint
 do send_pkt with {pkt_sz <= 100;};
 // Send a small packet by referencing a dynamic constraint
 do send_pkt with {small_pkt_c;};
 }
 }

Copyright © 2023 Accellera. All rights reserved.
187

Portable Test and Stimulus Standard 2.1 — October 2023

range 1 to 1024. Additionally, size is greater than 256, as specified in the subtype. Finally, per constraint
size_align as specified in the subtype, size divided by 4 has a reminder of 1.

Example 121—Inheriting and shadowing constraints

16.1.3 Action traversal in-line constraints

Constraints on sub-action data attributes can be in-lined directly in the context of an action traversal
statement in the activity clause (for syntax and other details, see 12.3.1).

In the context of in-line constraints, attribute field paths of the traversed sub-action can be accessed without
the sub-action field qualification. Fields of the traversed sub-action take precedence over fields of the
containing action. Other attribute field paths are evaluated in the context of the containing action. In cases
where the containing-action fields are shadowed (masked) by fields of the traversed sub-action, they can be
explicitly accessed using the built-in variable this. In particular, fields of the context component of the
containing action shall be accessed using the prefix path this.comp (see also Example 123).

If a sub-action field is traversed uniquely by a single traversal statement in the activity clause, in-lining a
constraint has the same effect as declaring the same member constraint on the sub-action field of the
containing action. In cases where the same sub-action field is traversed multiple times, in-line constraints
apply only to the specific traversal in which they occur.

Unlike member constraints, in-line constraints are evaluated in the specific scheduling context of the action
traversal statement. If attribute fields of sub-actions other than the one being traversed occur in the
constraint, these sub-action fields shall have already been traversed in the activity. In cases where a sub-
action field has been traversed multiple times, the most recently selected values are considered.

Example 122 illustrates the use of in-line constraints. The traversal of a3 is illegal, because the path a4.f
occurs in the in-line constraint, but a4 has not yet been traversed at that point. Constraint c2, in contrast,
equates a1.f with a4.f without having a specific scheduling context, and is, therefore, legal and enforced.

buffer data_buff {
rand int size;
constraint size in [1..1024];
constraint size_align { size%4 == 0; } // 4-byte aligned

}

buffer corrupt_data_buff : data_buff {
constraint size_align { size%4 == 1; } // alignment 1 byte off
constraint corrupt_data_size { size > 256; } // additional constraint

}

Copyright © 2023 Accellera. All rights reserved.
188

Portable Test and Stimulus Standard 2.1 — October 2023

Example 122—Action traversal in-line constraint

Example 123 illustrates different name resolutions within an in-line with clause.

Example 123—Name resolution inside with constraint block

action A {
 rand bit[3:0] f;
};

action B {
 A a1, a2, a3, a4;

 constraint c1 { a1.f in [8..15]; };
 constraint c2 { a1.f == a4.f; };

 activity {
 a1;
 a2 with {
 f in [8..15]; // same effect as constraint c1 has on a1
 };
 a3 with {
 f == a4.f; // illegal: a4.f unresolved at this point
 };
 a4;
 }
};

component subc {
action A {

rand int f;
rand int g;

}
}

component top {
subc sub1, sub2;
action B {

rand int f;
rand int h;
subc::A a;

activity {
a with {

f < h; // sub-action's f and containing action's h
g == this.f; // sub-action's g and containing action's f
comp == this.comp.sub1;

// sub-action's component is sub-component
// 'sub1' of the parent action's component

};
}

}
}

Copyright © 2023 Accellera. All rights reserved.
189

Portable Test and Stimulus Standard 2.1 — October 2023

16.1.4 Logical expression constraints

A logical (Boolean) constraint can be used to specify a constraint. Syntax 53 shows the syntax for an
expression constraint.

16.1.4.1 Syntax

Syntax 53—Expression constraint

expression may be any logical expression. The constraint is satisfied if the expression evaluates to true.

16.1.5 Implication constraints

Conditional constraints can be specified using the implication operator (->). Syntax 54 shows the syntax for
an implication constraint.

16.1.5.1 Syntax

Syntax 54—Implication constraint

expression may be any logical expression. constraint_set represents any valid constraint or an unnamed
constraint set.

The following also apply:
a) The Boolean equivalent of the implication operator a -> b is (!a || b). This states that if the

expression is true, all of the constraints in constraint_set shall be satisfied. In other words, if the
expression is true, then the random values generated are constrained by the constraint set. Other-
wise, the random values generated are unconstrained.

b) The implication constraint is bidirectional.

16.1.5.2 Examples

Consider Example 124. Here, b is forced to have the value 1 whenever the value of the variable a is greater
than 5. However, since the constraint is bidirectional, if b has the value 1, then the evaluation expression
(!(a>5) || (b==1)) is true, so the value of a is unconstrained. Similarly, if b has a value other than
1, a is <= 5.

Example 124—Implication constraint

expression_constraint_item ::= expression ;

implication_constraint_item ::= expression -> constraint_set

struct impl_s {
 rand bit[7:0] a, b;

 constraint ab_c {
 (a > 5) -> b == 1;
 }
}

Copyright © 2023 Accellera. All rights reserved.
190

Portable Test and Stimulus Standard 2.1 — October 2023

16.1.6 if-else constraints

Conditional constraints can be specified using the if and if-else constraint statements.

Syntax 55 shows the syntax for an if-else constraint.

16.1.6.1 Syntax

Syntax 55—Conditional constraint

expression may be any logical expression. constraint_set represents any valid constraint or an unnamed
constraint set.

The following also apply:
a) If the expression is true, all of the constraints in the first constraint_set shall be satisfied; otherwise,

all the constraints in the optional else constraint_set shall be satisfied.
b) Constraint sets may be used to group multiple constraints.
c) Just like implication (see 16.1.5), if-else style constraints are bidirectional.

16.1.6.2 Examples

In Example 125, the value of a constrains the value of b and the value of b constrains the value of a.

Attribute a cannot take the value 0 because both alternatives of the if-else constraint preclude it. The
maximum value for attribute b is 4, since in the if alternative it is 1 and in the else alternative it is less
than a, which itself is <= 5.

In evaluating the constraint, the if-clause evaluates to !(a>5) || (b==1). If a is in the range
{1,2,3,4,5}, then the !(a>5) expression is true, so the (b==1) constraint is ignored. The else-
clause evaluates to !(a<=5), which is false, so the constraint expression (b<a) is true. Thus, b is in the
range {0..(a-1)}. If a is 2, then b is in the range {0,1}. If a > 5, then b is 1.

However, if b is 1, the (b==1) expression is true, so the !(a>5) expression is ignored. At this point,
either !(a<=5) or a > 1, which means that a is in the range {2,3, … 255}.

Example 125—if constraint

if_constraint_item ::= if (expression) constraint_set [else constraint_set]

struct if_else_s {
 rand bit[7:0] a, b;

 constraint ab_c {
 if (a > 5) {
 b == 1;
 } else {
 b < a;
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
191

Portable Test and Stimulus Standard 2.1 — October 2023

16.1.7 foreach constraints

Elements of collections can be iteratively constrained using the foreach constraint.

Syntax 56 shows the syntax for a foreach constraint.

16.1.7.1 Syntax

Syntax 56—foreach constraint

constraint_set represents any valid constraint or an unnamed constraint set.

The following also apply:
a) expression shall be of a collection type (i.e., array, list, map or set), including fixed-sized arrays of

action handles, components, and flow and resource object references.
b) All of the constraints in constraint_set shall be satisfied for each of the elements in the collection

specified by expression.
c) iterator_identifier specifies the name of an iterator variable of the collection element type. Within

constraint_set, the iterator variable, when specified, is an alias to the collection element of the cur-
rent iteration.

d) index_identifier specifies the name of an index variable. Within constraint_set, the index variable,
when specified, corresponds to the element index of the current iteration.
1) For arrays and lists, the index variable shall be a variable of type int, ranging from 0 to one

less than the size of the collection variable.
2) For maps, the index variable shall be a variable of the same type as the map keys, and range

over the values of the keys.
3) For sets, an index variable shall not be specified.

e) Both the index and iterator variables, if specified, are implicitly declared within the foreach scope
and limited to that scope. Regular name resolution rules apply when the implicitly declared variables
are used within the foreach body. For example, if there is a variable in an outer scope with the same
name as the index variable, that variable is shadowed (masked) by the index variable within the
foreach body. The index and iterator variables are not visible outside the foreach scope.

f) Either an index variable or an iterator variable or both shall be specified. For a set, an iterator vari-
able shall be specified, but not an index variable.

16.1.7.2 Examples

Example 126 shows an iterative constraint that ensures that the values of the elements of a fixed-size array
increment.

foreach_constraint_item ::=
 foreach ([iterator_identifier :] expression [[index_identifier]]) constraint_set

Copyright © 2023 Accellera. All rights reserved.
192

Portable Test and Stimulus Standard 2.1 — October 2023

Example 126—foreach iterative constraint

16.1.8 forall constraints

The forall constraint is used to apply constraints to all instances of a specific type within the instance subtree
in which the constraint is placed.

Syntax 57 shows the syntax for a forall constraint.

16.1.8.1 Syntax

Syntax 57—forall constraint

type_identifier specifies the type of the entity (action, struct, stream, buffer, state, resource) to which the
constraint applies. iterator_identifier can be used inside constraint_set as an alias to each instance, much
like the iterator_identifier in a foreach constraint is an alias to each element in the collection (see 16.1.7).
ref_path is optionally used to restrict the constraint’s scope of application to a certain instance subtree.

The following also apply:
a) All of the constraints in constraint_set shall be satisfied for every instance of the specified type in

the forall constraint’s application scope.
b) When ref_path is omitted, the application scope is the subtree of the constraint’s enclosing scope:

1) In the case of a member (type-level) non-dynamic constraint, its application scope includes all
of the context type’s fields (attributes, object references), and in the case of a compound action,
also its entire activity.

2) In the case of an in-line with constraint (see 16.1.3), its application scope is the traversed sub-
action’s fields and, if compound, also its entire activity.

3) In the case of an activity constraint statement or the activation of a named dynamic constraint,
the application scope is the activity scope immediately enclosing the activity statement.

c) When ref_path is specified, the application scope is the subtree under the entity (action, object, or
struct) designated by ref_path.

d) The forall constraint applies to sub-actions within its application scope regardless of whether they
are traversed using an action handle or anonymously.

struct foreach_s {
 rand bit[9:0] fixed_arr[10];

 constraint fill_arr_elem_c {
 foreach (fixed_arr[i]) {
 if (i > 0) {
 fixed_arr[i] > fixed_arr[i-1];
 }
 }
 }
}

forall_constraint_item ::=
 forall (iterator_identifier : type_identifier [in ref_path]) constraint_set

Copyright © 2023 Accellera. All rights reserved.
193

Portable Test and Stimulus Standard 2.1 — October 2023

16.1.8.2 Examples

Example 127 demonstrates the use of a forall constraint in a compound action, constraining sub-actions
traversed directly and indirectly under its activity (case b.1 above). Action entry places a constraint on all
instances of action A, relating attribute x to its own attribute ax_limit. The constraint does not apply to an
attribute of sub-action B by the same name.

Example 127—forall constraint

The forall constraint in Example 127 is equivalent to the corresponding constraint on each path to an action
handle of type A. Hence, action entry in Example 127 can be rewritten in the way shown in Example 128.

action A {
 rand int in [0..9] x;
};

action B {
 rand int in [0..9] x;
};

action C {
 A a;
 B b;
 activity {
 schedule {
 a; b;
 }
 }
};

action entry {
 rand int in [0..9] ax_limit;
 A a;
 C c;
 constraint {
 forall (a_it: A) {
 a_it.x <= ax_limit;
 }
 }
 activity {
 a; c;
 }
};

Copyright © 2023 Accellera. All rights reserved.
194

Portable Test and Stimulus Standard 2.1 — October 2023

Example 128—rewrite of forall constraint in terms of explicit paths

Example 129 demonstrates the use of forall constraints in two different contexts inside an activity. The first
is an in-line with constraint item (case b.2 above), applying to all instances of type A under action C that is
being traversed in this statement. The second is an activity constraint statement (case b.3 above). It applies
to all instances of type A in the immediately enclosing activity scope – in this case the parallel statement.
Hence this constraint applies to action A in the first parallel branch, and to all actions of type A under action
C in the second parallel branch.

Example 129—forall constraint in different activity scopes

Example 130 demonstrates the use of a forall constraint item in a dynamic constraint under an action. The
dynamic constraint is activated from above for one traversal of that action, and not for the other. In this case,
A’s attributes s1.x and s2.x may be randomized to the value 0xff in the first execution of B, but not in
the second.

action entry {
 rand int in [0..9] ax_limit;
 A a;
 C c;
 constraint {
 a.x <= ax_limit;
 c.a.x <= ax_limit;
 }
 activity {
 a; c;
 }
};

action entry {
 activity {
 do C with {
 forall (a_it: A) {
 a_it.x == 1;
 }
 }
 parallel {
 do A;
 do C;
 constraint forall (a_it: A) {
 a_it.x in [2, 4];
 }
 }
 }
};

Copyright © 2023 Accellera. All rights reserved.
195

Portable Test and Stimulus Standard 2.1 — October 2023

Example 130—forall constraint item in a dynamic constraint

16.1.9 Unique constraints

The unique constraint causes unique values to be selected for each element in the specified set.

Syntax 58 shows the syntax for a unique constraint.

16.1.9.1 Syntax

Syntax 58—unique constraint

16.1.9.2 Examples

Example 131 forces the solver to select unique values for the random attribute fields A, B, and C. The
unique constraint is equivalent to the following constraint statement: ((A != B) && (A != C) &&
(B != C)).

Example 131—unique constraint

struct S {
 rand bit[8] x;
};

action A {
 rand S s1, s2;
};

action B {
 dynamic constraint c1 {
 forall (it: S) { it.x != 0xff; }
 }
 activity { do A; }
};

action entry {
 activity {
 do B;
 do B with { c1; };
 }
};

unique_constraint_item ::= unique { hierarchical_id_list } ;
hierarchical_id_list ::= hierarchical_id { , hierarchical_id }

struct my_struct {
rand bit[4] in [0..12] A, B, C;
constraint unique_abc_c {

unique {A, B, C};
}

}

Copyright © 2023 Accellera. All rights reserved.
196

Portable Test and Stimulus Standard 2.1 — October 2023

16.1.10 Default value constraints

A default value constraint determines the value of an attribute, unless explicitly disabled for that specific
attribute from its direct or indirect containing type. Default value constraints may only take the form of
equality of the attribute to a constant expression. Disabling a default value is done with the default disable
constraint form.

16.1.10.1 Syntax

Syntax 59—Default constraints

The following also apply:
a) A default value constraint has the same semantics as the corresponding equality constraint, unless

explicitly disabled. The equality must hold, and conflict with other constraints shall be flagged as a
contradiction.

b) A default disable constraint is a directive to remove default constraints on the designated attribute,
if any are specified.

c) hierarchical_id for both default and default disable constraints shall be a random attribute (a field
with rand modifier). It shall be an error to apply a default constraint on a non-rand attribute.

d) Multiple default constraints and default disable constraints may be applied to the same attribute,
with the following precedence rules:
1) A constraint from a higher-level containing context overrides one from a lower-level contain-

ing context.
2) A constraint from a derived type context overrides one from a base type context.
3) A constraint overrides another in the same type context if it occurs later in the code.

e) default value constraints and default disable constraints may be applied to an attribute of an aggre-
gate data type. The semantics in this case are equivalent to applying the corresponding constraints to
all the rand scalar attributes it comprises. In particular, applying a default disable constraint to an
attribute of an aggregate data type disables default value constraints on all attributes under it.

f) default and default disable constraints may not be conditioned on non-constant expressions.
g) default and default disable constraints may not be used under dynamic constraints (constraints pre-

fixed with the dynamic modifier).

16.1.10.2 Examples

In Example 132, my_struct has two attributes, and a default value constraint on one of them. This struct
is instantiated three times under my_action.

constraint_body_item ::=
 ...
 | default hierarchical_id == constant_expression ;
 | default disable hierarchical_id ;
 | ...

Copyright © 2023 Accellera. All rights reserved.
197

Portable Test and Stimulus Standard 2.1 — October 2023

Example 132—Use of default value constraints

When randomizing my_action, s1.attr1 is resolved to 0 because of constraint (1), and s1.attr2 is
randomized in the domain 1..3 because of constraint (2). s2.attr1 is resolved to 2, because constraint
(3) overrides constraint (1), and s2.attr2 is resolved to 3 because of constraint (2). Within s3, constraint
(1) was disabled by (4), and has no effect. Due to constraints (2) and (5), s3.attr1 is randomized in the
domain 1..2 and s3.attr2 in the domain 2..3 such that s3.attr1 is less than s3.attr2.

In Example 133 below, two attributes of my_action have default value constraints. If
my_derived_action is randomized, attr1 is resolved to 0, because default constraint (1) is disabled
(3) and a different constraint is in effect (4). However, there is no consistent assignment to attr2, because
both default constraint (2) and the regular constraint (5) are in effect and conflicting.

Example 133—Contradiction with default value constraints

Example 134 below shows how default value constraints and default disable constraints apply to aggregate
data types. A default value constraint is placed on an array as a whole (1). Under my_action, for instance
s1 of the struct, the default is replaced by another for a specific element (3), while the other elements retain
their original default. Constraint (4) disables the default for all array elements under s2, and they are

struct my_struct {
 rand int in [0..3] attr1;
 constraint default attr1 == 0; // (1)

 rand int in [0..3] attr2;
 constraint attr1 < attr2; // (2)
};

action my_action {
 rand my_struct s1;

 rand my_struct s2;
 constraint default s2.attr1 == 2; // (3)

 rand my_struct s3;
 constraint default disable s3.attr1; // (4)
 constraint s3.attr1 > 0; // (5)
};

action my_action {
 rand int attr1;
 constraint default attr1 == -1; // (1)

 rand int attr2;
 constraint default attr2 == -1; // (2)
};

action my_derived_action : my_action {
 constraint {
 default disable attr1; // (3)
 attr1 == 0; // (4) OK
 }

 constraint attr2 == 0; // (5) contradiction!
};

Copyright © 2023 Accellera. All rights reserved.
198

Portable Test and Stimulus Standard 2.1 — October 2023

randomized over their full domain. Constraint (5) disables defaults of all attributes under the struct,
including the 4 arr elements and attr. A subsequent constraint determines that s3.attr randomizes to
50.

Example 134—Default value constraints on compound data types

16.1.11 Distribution directive

The distribution directive provides a value-distribution specification for a given expression to the constraint
solver within the PSS processing tool.

Syntax 60—Distribution directive

A dist directive is a standalone statement from a syntax perspective. It is used to influence the value
distribution of the target expression, but is not itself an expression.

The dist_list is a comma-separated list of integral expressions and ranges. Each term in the list can be given
a non-negative weight, specified via the := or :/ operators. If no weight is specified for a given item, the
default weight is := 1.

struct my_struct {
 rand array<int,4> arr;
 constraint default arr == {0, 10, 20, 30}; // (1)

 rand int attr;
 constraint default attr == 40; // (2)
};

action my_action {
 rand my_struct s1, s2, s3;

 constraint default s1.arr[3] == 100; // (3)

 constraint default disable s2.arr; // (4)

 constraint default disable s3; // (5)
 constraint s3.attr == 50;
};

constraint_body_item ::=
 ...
 | dist_directive
 ...
dist_directive ::= dist expression in [dist_list] ;
dist_list ::= dist_item { , dist_item }
dist_item ::= open_range_value [dist_weight]
dist_weight ::=
 := expression
 | :/ expression

Copyright © 2023 Accellera. All rights reserved.
199

Portable Test and Stimulus Standard 2.1 — October 2023

In the absence of conflicting constraints, the value of the distribution target expression must fall within the
dist_list; the probability that the distribution target expression matches any value in the dist_list is
proportional to its specified weight. Constraints take priority over the dist directive and may force the
distribution target expression to fall outside the set of values captured by the dist_list.

Value-distribution probability is only specified with respect to a single dist directive acting on an
expression. In the presence of multiple dist directives acting on common expression elements with different
distribution weights, the resulting value distribution across the common expression elements is undefined.

The := operator assigns the specified weight to the item in the case of a single-value dist_item. In the case of
a value-range dist_item, the weight is assigned to each value in the value range.

The :/ operator assigns the specified weight to the item in the case of a single-value dist_item. In the case of
a value-range dist_item, the weight is distributed across the values in the range. In other words, if there are n
values in the range, each value will have a weight of weight / n.

The following also apply:
a) The left-hand expression shall be an integer expression and contain at least one rand variable.
b) rand variables may not be used in dist weights or value ranges.
c) The total weight associated with a value is the sum of all weights applied to that value in the dist_list

using the := and :/ operators.

16.1.11.1 Examples

Example 135—Distribution directive on single variable

In the example above, x is weighted to have a value range [100..102, 200, 300]. Additionally, value
selection is weighted 1, 1, 1, 2, 5.

Example 136—Distribution directive on expression

Distribution weights may be applied to expressions as well as to individual variables. In the example above,
the expression (x+6) is weighted to have a value range [100..102, 200, 300] with weights 1, 1, 1, 2, 5. Note
that this is equivalent to applying the value ranges [94..96, 194, 294] to x.

Example 137—Distribution directive weight specification forms

struct S {
 rand bit[32] x;
 constraint dist x in [100..102 := 1, 200 := 2, 300 := 5];
}

struct S {
 rand bit[32] x;
 constraint dist (x+6) in [100..102 := 1, 200 := 2, 300 := 5];
}

struct S {
 rand bit[32] x;
 constraint dist x in [100..102 :/ 1, 200 := 2, 300 := 5];
}

Copyright © 2023 Accellera. All rights reserved.
200

Portable Test and Stimulus Standard 2.1 — October 2023

In the example above, x is weighted to have a value range [100..102, 200, 300]. Additionally, value
selection is weighted 1/3, 1/3, 1/3, 2, 5.

Example 138—Constraint priority over distribution directive

In the example above, a constraint can cause the value of x to be outside the dist directive range in some
cases. When y is set to 1, the implication constraint prevents the dist directive from biasing the distribution
of the target expression. This case does not result in a solve failure.

Example 139—Zero-valued distribution weight

In Example 139 above, x is constrained using the declared value range of [100..102, 200, 300]. However,
value 300 is given a weight of 0. Consequently, the effective value range of x will be [100..102, 200]. The
value selection is weighted 1, 1, 1, 2.

16.2 Scheduling constraints

Scheduling constraints relate two or more actions or sub-activities from a scheduling point of view.
Scheduling constraints do not themselves introduce new action traversals. Rather, they affect actions
explicitly traversed in contexts that do not already dictate specific relative scheduling. Such contexts
necessarily involve actions directly or indirectly under a schedule statement (see 12.3.5). Similarly,
scheduling constraints can be applied to named sub-activities, see Syntax 61.

16.2.1 Syntax

Syntax 61—Scheduling constraint statement

The following also apply:
a) constraint sequence schedules the related actions so that each completes before the next one starts

(equivalent to a sequential activity block, see 12.3.3).
b) constraint parallel schedules the related actions such that they are invoked in a synchronized way

and then proceed without further synchronization until their completion (equivalent to a parallel
activity statement, see 12.3.4).

struct S {
 rand bit[32] x;
 bit y;
 constraint dist x in [100..102 := 1, 200 := 2, 300 := 5];
 constraint (y==1) -> x > 300;
}

struct S {
 rand bit[32] x;
 bit[32] w; // default value is 0
 constraint dist x in [100..102 := 1, 200 := 2, 300 := w];
}

activity_scheduling_constraint ::= constraint (parallel | sequence)
 { hierarchical_id , hierarchical_id { , hierarchical_id } } ;

Copyright © 2023 Accellera. All rights reserved.
201

Portable Test and Stimulus Standard 2.1 — October 2023

c) Scheduling constraints may not be applied to action handles that are traversed multiple times. In par-
ticular, they may not be applied to actions traversed inside an iterative statement: repeat, repeat-
while, and foreach (see 12.4). However, the iterative statement itself, as a named sub-activity, can
be related in scheduling constraints.

d) Scheduling constraints involving action-handle variables that are not traversed at all, or are traversed
in branches not actually chosen from select or if statements (see 12.4), hold vacuously.

e) Scheduling constraints shall not undo or conflict with any scheduling requirements of the related
actions.

16.2.2 Example

Example 140 demonstrates the use of a scheduling constraint. In it, compound action my_sub_flow
specifies an activity in which action a is executed, followed by the group b, c, and d, with an unspecified
scheduling relation between them. Action my_top_flow schedules two executions of my_sub_flow,
relating their sub-actions using scheduling constraints.

Example 140—Scheduling constraints

action my_sub_flow {
 A a; B b; C c; D d;

 activity {
 sequence {
 a;
 schedule {
 b; c; d;
 };
 };
 };
};

action my_top_flow {
 my_sub_flow sf1, sf2;

 activity {
 schedule {
 sf1;
 sf2;
 };
 };

 constraint sequence {sf1.a, sf2.b};
 constraint parallel {sf1.b, sf2.b, sf2.d};
};

Copyright © 2023 Accellera. All rights reserved.
202

Portable Test and Stimulus Standard 2.1 — October 2023

16.3 Sequencing constraints on state objects

A pool of state type stores exactly one state object at any given time during the execution of a test scenario,
thus serving as a state variable (see 15.5). Any action that outputs a state object to a pool is considered a
state transition with respect to that state variable. Within the context of a state type, reference can be made to
attributes of the previous state, relating them in Boolean expressions to attributes values of this state. This is
done by using the built-in reference variable prev (see 13.3).

NOTE—Any constraint in which prev occurs is vacuously satisfied in the context of the initial state object.

In Example 141, the first constraint in power_state_s determines that the value of domain_B may
only decrement by 1, remain the same, or increment by 1 between consecutive states. The second constraint
determines that if a domain_C in any given state is 0, the subsequent state has a domain_C of 0 or 1 and
domain_B is 1. These rules apply equally to the output of the two actions declared under component
power_ctrl_c.

Example 141—Sequencing constraints

16.4 Randomization process

PSS supports randomization of plain-data type fields associated with scenario elements, as well as
randomization of different relations between scenario elements, such as scheduling, resource allocation, and
data flow. Moreover, the language supports specifying the order of random value selection, coupled with the
flow of execution, in a compound action’s sub-activity, the activity clause. Activity-based random value
selection is performed with specific rules to simplify activity composition and reuse and minimize
complexity for the user.

Random attribute fields of struct type are randomized as a unit. Traversal of a sub-action field triggers
randomization of random attribute fields of the action and the resolution of its flow/resource object
references. This is followed by evaluation of the action’s activity if the action is compound.

state power_state_s {
 rand int in [0..3] domain_A, domain_B, domain_C;

 constraint domain_B in { prev.domain_B - 1,
 prev.domain_B,
 prev.domain_B + 1};

 constraint prev.domain_C==0 -> domain_C in [0,1] || domain_B==0;
};
...
component power_ctrl_c {
 pool power_state_s psvar;
 bind psvar *;

 action power_trans1 {
 output power_state_s next_state;
 };

 action power_trans2 {
 output power_state_s next_state;
 constraint next_state.domain_C == 0;
 };
};
...

Copyright © 2023 Accellera. All rights reserved.
203

Portable Test and Stimulus Standard 2.1 — October 2023

16.4.1 Random attribute fields

This section describes the rules that govern whether an element is considered randomizable.

16.4.1.1 Semantics

a) Struct attribute fields qualified with the rand keyword are randomized if a field of that struct type is
also qualified with the rand keyword.

b) Action attribute fields qualified with the rand keyword are randomized at the beginning of action
execution. In the case of compound actions, rand attribute fields are randomized prior to the execu-
tion of the activity and, in all cases, prior to the execution of the action’s exec blocks (except
pre_solve, see 16.4.12).

NOTE—It is often helpful to directly traverse attribute fields within an activity. This is equivalent to creating an inter-
mediate action with a random attribute field of the plain-data type.

16.4.1.2 Examples

In Example 142, struct S1 contains two attribute fields. Attribute field a is qualified with the rand keyword,
while b is not. Struct S2 creates two attribute fields of type S1. Attribute field s1_1 is also qualified with
the rand keyword. s1_1.a will be randomized, while s1_1.b will not. Attribute field s1_2 is not
qualified with the rand keyword, so neither s1_2.a nor s1_2.b will be randomized.

Example 142—Struct rand and non-rand fields

Example 143 shows two actions, each containing a rand-qualified data field (A::a and B::b). Action B
also contains two fields of action type A (a_1 and a_2). When action B is executed, a value is assigned to
the random attribute field b. Next, the activity body is executed. This involves assigning a value to a_1.a
and subsequently to a_2.a.

Example 143—Action rand-qualified fields

struct S1 {
 rand bit[3:0] a;
 bit[3:0] b;
}

struct S2 {
 rand S1 s1_1;
 S1 s1_2;
}

action A {
 rand bit[3:0] a;
}

action B {
 A a_1, a_2;
 rand bit[3:0] b;

 activity {
 a_1;
 a_2;
 }
}

Copyright © 2023 Accellera. All rights reserved.
204

Portable Test and Stimulus Standard 2.1 — October 2023

Example 144 shows an action-qualified field in action B named a_bit. The PSS processing tool assigns a
value to a_bit when it is traversed in the activity body. The semantics are identical to assigning a
value to the rand-qualified action field A::a.

Example 144—Action-qualified fields

16.4.2 Randomization of lists

When a rand-qualified list variable is randomized, its elements are randomized and given values consistent
with any constraints on them. The size of the array is not randomized, and may not be constrained (see
7.9.3.4).

Hierarchical constraint references to list elements can be declared in locations where it is not yet known
whether the list element exists. Example 145 illustrates such a case.

Example 145—Hierarchical constraint reference to list element

Constraints on list elements must hold when the list is randomized. In this example, the list is randomized as
part of the traversal of action handle a. At this point in time, the list contains a single element, and the
constraint on this element is valid. If the referenced list element does not exist at the point of list
randomization, then the PSS processing tool shall flag an error.

action A {
 rand bit[3:0] a;
 }

 action B {
 action bit[3:0] a_bit;
 A a_1;

 activity {
 a_bit;
 a_1;
 }
 }

action sub_a {
 rand list<bit[8]> lst;
 exec pre_solve {
 lst.push_back(0);
 }
}

action parent_a {
 sub_a a;
 rand int yy;
 constraint a.lst[0] == yy;

 activity {
 a;
 }
}

Copyright © 2023 Accellera. All rights reserved.
205

Portable Test and Stimulus Standard 2.1 — October 2023

16.4.3 Randomization of flow objects

When an action is randomized, its input and output fields are assigned a reference to a flow object of the
respective type. On entry to any of the action’s exec blocks (except pre_solve, see 21.1.2), as well as its
activity clause(s), values for all rand data attributes accessible through its inputs and outputs fields are
resolved. The values accessible in these contexts satisfy all constraints. Constraints can be placed on
attribute fields from the immediate type context, from a containing struct or action at any level or via the
input/output fields of actions.

The same flow object may be referenced by an action outputting it and one or more actions inputting it. The
binding of inputs to outputs may be explicitly specified in an activity clause or may be left unspecified. In
cases where binding is left unspecified, the counterpart action of a flow object’s input/output may already be
one explicitly traversed in an activity or it may be introduced implicitly by the PSS processing tool to satisfy
the binding rules (see Clause 17). In the case where multiple actions input the same buffer object type, the
input references may be constrained to indicate that they refer to the same object. In all of these cases, value
selection for the data attributes of a flow object shall satisfy all constraints coming from the action that
outputs it and actions that input it.

Consider the model in Example 146. Assume a scenario is generated starting from action test. The
traversal of action write1 is scheduled, followed by the traversal of action read. When read is
randomized, its input in_obj must be resolved. Every buffer object shall be the output of some action. The
activity does not explicitly specify the binding of read’s input to any action’s output, but it must be
resolved regardless. Action write1 outputs a mem_obj whose dat is in the range 1 to 5, due to a
constraint in action write1. But, dat of the mem_obj instance read inputs must be in the range 8 to 12.
So read.in_obj cannot be bound to write1.out_obj without violating a constraint. The PSS
processing tool shall schedule another action of type write2 at some point prior to read, whose
mem_obj is bound to read’s input. In selecting the value of read.in_obj.dat, the PSS processing
tool shall consider the following:

— dat is an even integer, due to the constraint in mem_obj.
— dat is in the range 6 to 10, due to a constraint in write2.
— dat is in the range 8 to 12, due to a constraint in read.

This restricts the legal values of read.in_obj.dat to either 8 or 10.

Copyright © 2023 Accellera. All rights reserved.
206

Portable Test and Stimulus Standard 2.1 — October 2023

Example 146—Randomizing flow object attributes

16.4.4 Randomization of resource objects

When an action is randomized, its resource claim fields (of resource type declared with lock / share
modifiers, see 14.1) are assigned a reference to a resource object of the respective type. On entry to any of
the action’s exec blocks (except pre_solve, see 21.1.2) or its activity clause, values for all random attribute
fields accessible through its resource fields are resolved. The same resource object may be referenced by any
number of actions, given that no two concurrent actions lock it (see 14.2). Value selection for random
attribute fields of a resource object satisfy constraints coming from all actions to which it was assigned,
either in lock or share mode.

Consider the model in Example 147. Assume a scenario is generated starting from action test. In this
scenario, three actions are scheduled to execute in parallel: a1, a2, and a3, followed sequentially by a
traversal of a4. In the parallel statement, action a3 of type do_something_else shall be exclusively
assigned one of the two instances of resource type rsrc_obj, since do_something_else claims it in
lock mode. Therefore, the other two actions, of type do_something, necessarily share the other instance.
When selecting the value of attribute kind for that instance, the PSS processing tool considers the
following constraints:

— kind is an enumeration whose domain has the values A, B, C, and D.
— kind is not A, due to a constraint in do_something.
— a1.my_rsrc_inst is referencing the same rsrc_obj instance as a2.my_rsrc_inst, as

there would be a resource conflict otherwise between one of these actions and a3.
— kind is not B, due to an in-line constraint on a1.
— kind is not C, due to an in-line constraint on a2.

component top {
buffer mem_obj {
rand int dat;
constraint dat%2 == 0; // dat must be even
}

action write1 {
output mem_obj out_obj;
constraint out_obj.dat in [1..5];

}

action write2 {
output mem_obj out_obj;
constraint out_obj.dat in [6..10];

}

action read {
input mem_obj in_obj;
constraint in_obj.dat in [8..12];

}

action test {
activity {

do write1;
do read;

}
}

}

Copyright © 2023 Accellera. All rights reserved.
207

Portable Test and Stimulus Standard 2.1 — October 2023

D is the only legal value for a1.my_rsrc_inst.kind and a2.my_rsrc_inst.kind.

Since there are only two instances of rsrc_obj in rsrc_pool, and one of the instances is claimed via
the share in a1 and a2, the other instance will be locked by a3. In order to determine the value of its kind
field, we must consider the in-line constraint on the traversal of a4. Since a4.my_rsrc_inst.kind is
constrained to the value A, this must be a different instance from the one shared by a1 and a2. Therefore,
this is the same instance that is claimed by a3, and therefore a3.my_rsrc_inst.kind shall also have
the value of A.

Example 147—Randomizing resource object attributes

16.4.5 Randomization of component assignment

When an action is randomized, its association with a component instance is determined. The built-in field
comp is assigned a reference to the selected component instance. The assignment shall satisfy constraints
where comp fields occur (see 9.5). Furthermore, the assignment of an action’s comp field corresponds to
the pools in which its inputs, outputs, and resources reside. If action a is assigned resource instance r, r is
taken out the pool bound to a’s resource reference field in the context of the component instance assigned to
a. If action a outputs a flow object which action b inputs, both output and input reference fields shall be
bound to the same pool under a’s component and b’s component respectively. See Clause 15 for more on
pool binding.

component top {
enum rsrc_kind_e {A, B, C, D};

resource rsrc_obj {
rand rsrc_kind_e kind;

}

pool[2] rsrc_obj rsrc_pool;
bind rsrc_pool *;

action do_something {
share rsrc_obj my_rsrc_inst;
constraint my_rsrc_inst.kind != A;

}

action do_something_else {
lock rsrc_obj my_rsrc_inst;

}

action test {
do_something a1, a2;
do_something_else a3, a4;
activity {

parallel {
a1 { my_rsrc_inst.kind != B; };

 a2 { my_rsrc_inst.kind != C; };
 a3;

}
a4 with { my_rsrc_inst.kind == A; };

}
}

}

Copyright © 2023 Accellera. All rights reserved.
208

Portable Test and Stimulus Standard 2.1 — October 2023

16.4.6 Procedural randomization of data

Procedural constrained randomization is performed using the randomize statement shown in Syntax 88.

The randomization target is composed of one or more variables of plain-data type. The entire set of variables
is randomized together. Additional constraints may be added via the optional with block.

The set of variables and constraints involved in a procedural randomization statement is determined from the
variables and in-line constraints passed to the statement. The variables and constraints described below are
solved together.

— Randomization target variables are those that are specified as operands of the randomize statement.
Target variables are treated as random, independent of whether they are declared rand.

— If a target variable is of a struct type, sub-fields declared rand are treated as random. Those not
declared rand are treated as invariants.

— Constraints declared inside the target-variable types are applied.
— In-line constraints are applied.

Example 148—procedural randomization

In Example 148 above, A::post_solve performs procedural randomization on two variables (v1, v2):
a) v1 is of struct type S2, and has two struct-type fields of the same type S1.

1) f1 is declared random.
2) f2 is declared non-random.
3) A constraint is placed between sub-fields of f1 and f2.

b) v2 is of bit[4] type and thus has a maximum value of 15.

An in-line constraint is placed between v1.f1.a and v2. When the procedural randomization statement
executes, it considers:

a) Random variables: v1.f1.a, v1.f1.b, v2
b) Invariants: v1.f2.a, v1.f2.b
c) Invariant values:

struct S1 {
 rand bit[8] a, b;
}

struct S2 {
 rand S1 f1;
 S1 f2;
 constraint f1.a < f2.a;
}

action A {
 exec post_solve {
 S2 v1;
 bit[4] v2;

 v1.f2.a = 100;
 randomize v1, v2 with {v1.f1.a < v2;}
 }
}

Copyright © 2023 Accellera. All rights reserved.
209

Portable Test and Stimulus Standard 2.1 — October 2023

1) v1.f2.a == 100
2) v1.f2.b == 0

d) Constraints:
1) v1.f1.a < v2
2) v1.f1.a < v1.f2.a

v1.f1.a will have a value [0..14] because it is required to be less than 100 (v1.f2.a) and less than
the maximum value of v2 (15).

16.4.6.1 Support on solve and target platforms

Support for procedural randomization in target exec blocks is restricted to built-in functions (e.g.,
urandom()) and randomization of scalar integer quantities. Randomization of struct data types is
restricted to the solve platform, and may not be performed directly or indirectly from target exec blocks.

When procedural randomization is performed on the solve platform, any solve-time exec blocks within the
scope of variables that are part of a procedural randomization are evaluated as part of the randomization
process.

Example 149—Evaluation of solve-time exec blocks in procedural randomization

In Example 149 above, we would expect to see the following when procedural randomization is invoked:

Pre S2
Pre S1
Pre S1
Post S2
Post S1
Post S1

import std_pkg::*;

struct S1 {
 rand bit[8] a, b;
 exec pre_solve { print("Pre S1"); }
 exec post_solve { print("Post S1"); }
}

struct S2 {
 rand S1 f1;
 S1 f2;
 constraint f1.a < f2.a;
 exec pre_solve { print("Pre S2"); }
 exec post_solve { print("Post S2"); }
}
action A {
 exec post_solve {
 S2 v1;
 bit[4] v2;

 v1.a = 100;
 randomize v1, v2 with {v1.f1.a < v2;}
 }
}

Copyright © 2023 Accellera. All rights reserved.
210

Portable Test and Stimulus Standard 2.1 — October 2023

16.4.6.2 Random stability

When procedural randomization features are used in solve-time exec blocks (pre_solve, post_solve,
pre_body), random stability shall be ensured when the PSS description and the random seed specified to the
PSS processing tool remain the same.

When procedural randomization features are used in target exec blocks (body), random stability shall be
ensured when the PSS description, random seed specified to the runtime environment (if applicable), and
design behavior remain the same.

16.4.7 Random value selection order

A PSS processing tool conceptually assigns values to sub-action fields of the action in the order they are
encountered in the activity. On entry into an activity, the value of plain-data fields qualified with action and
rand sub-fields of action-type fields are considered to be undefined.

Example 150 shows a simple activity with three action-type fields (a, b, c). A PSS processing tool might
assign a.val=2, b.val=4, and c.val=7 on a given execution.

Example 150—Activity with random fields

16.4.8 Evaluation of expressions with action handles

Upon entry to an activity, all action handles (fields of action type) are considered uninitialized. Additionally,
action handles previously traversed in an activity are reset to their uninitialized state upon entry to an
activity block in which they are traversed again (an action handle may be traversed only once in any given
activity scope and its nested scopes (see 12.3.1.1)). This applies equally to traversals of an action handle in a
loop and to multiple occurrences of the same action handle in different activity blocks.

The value of all attributes reachable through uninitialized action handles, including direct attributes of the
sub-actions and attributes of objects referenced by them, are unresolved. Only when all action handles in an
expression are initialized, and all accessed attributes assume definite value, can the expression be evaluated.

Constraints accessing attributes through action handles are never violated. However, they are considered
vacuously satisfied so long as these action handles are uninitialized. The Boolean expressions only need to
evaluate to true at the point(s) in an activity when all action handles used in a constraint have been traversed.

action A {
 rand bit[3:0] val;
}

action my_action {
 A a, b, c;

 constraint abc_c {
 a.val < b.val;
 b.val < c.val;
 }
 activity {
 a;
 b;
 c;
 }
}

Copyright © 2023 Accellera. All rights reserved.
211

Portable Test and Stimulus Standard 2.1 — October 2023

Expressions in activity statements accessing attributes through action handles shall be illegal if they are
evaluated at a point in which any of the action handles are uninitialized. Similarly, expressions in solve-exec
(pre_solve and post_solve) statements of compound actions accessing attributes of sub-actions shall be
illegal, since these are evaluated prior to the activity (see 16.4.12), and all action handles are uninitialized at
that point. This applies equally to right-value and left-value expressions.

Example 151 shows a root action (my_action) with sub-action fields and an activity containing a loop. A
value for a.x is selected, then two sets of values for b.x and c.x are selected.

Example 151—Value selection of multiple traversals

The following breakout shows valid values that could be selected here:

Note that b.x of the second iteration does not have to be less than c.x of the first iteration since action
handle c is uninitialized on entry to the second iteration. Note also that similar behavior would be observed
if the repeat would be unrolled, i.e., if the activity contained instead two blocks of b, c in sequence.

Example 152 demonstrates two cases of illegal access of action-handle attributes. In these cases, accessing
sub-action attributes through uninitialized action handles shall be flagged as errors.

Repetition a.x b.x c.x
1 3 5 6
2 3 9 13

action A {
 rand bit[3:0] x;
}

action my_action {
 A a, b, c;
 constraint abc_c {
 a.x < b.x;
 b.x < c.x;
 }
 activity {
 a;
 repeat (2) {
 b;
 c; // at this point constraint 'abc_c' must hold non-vacuously
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
212

Portable Test and Stimulus Standard 2.1 — October 2023

Example 152—Illegal accesses to sub-action attributes

16.4.9 Relationship lookahead

Values for random fields in an activity are selected and assigned as the fields are traversed. When selecting
a value for a random field, a PSS processing tool shall take into account both the explicit constraints on the
field and the implied constraints introduced by constraints on those fields traversed during the remainder of
the activity traversal (including those introduced by inferred actions, binding, and scheduling). This rule is
illustrated by Example 153.

16.4.9.1 Example 1

Example 153 shows a simple struct with three random attribute fields and constraints between the fields.
When an instance of this struct is randomized, values for all the random attribute fields are selected at the
same time.

Example 153—Struct with random fields

action A {
 rand bit[3:0] x;
 int y;
}

action my_action {
 A a, b, c;

 exec post_solve {
 a.y = b.x; // ERROR – cannot access uninitialized action handle

attributes
 }

 activity {
 a;
 if (a.x > 0) { // OK – 'a' is resolved
 b;
 c;
 }
 {
 if (c.y == a.x) { // ERROR – cannot access attributes of
 // uninitialized action handle 'c.y'
 b;
 }
 c;
 }
 }
}

struct abc_s {
rand bit[4] in [0..12] a_val, b_val, c_val;

constraint {
a_val < b_val;
b_val < c_val;

}
}

Copyright © 2023 Accellera. All rights reserved.
213

Portable Test and Stimulus Standard 2.1 — October 2023

16.4.9.2 Example 2

Example 154 shows a root action (my_action) with three sub-action fields and an activity that traverses
these sub-action fields. It is important that the random-value selection behavior of this activity and the
struct shown in Example 153 are the same. If a value for a.val is selected without knowing the
relationship between a.val and b.val, the tool could select a.val=15. When a.val=15, there is no
legal value for b.val, since b.val must be greater than a.val.

a) When selecting a value for a.val, a PSS processing tool shall consider the following:
1) a.val is in the range 0 to 15, due to its domain.
2) b.val is in the range 0 to 15, due to its domain.
3) c.val is in the range 0 to 15, due to its domain.
4) a.val < b.val.
5) b.val < c.val.
This restricts the legal values of a.val to 0 to 13.

b) When selecting a value for b.val, a PSS processing tool shall consider the following:
1) The value selected for a.val.
2) b.val is in the range 0 to 15, due to its domain.
3) c.val is in the range 0 to 15 due to its domain.
4) a.val < b.val.
5) b.val < c.val.

Example 154—Activity with random fields

16.4.10 Lookahead and sub-actions

Lookahead shall be performed across traversal of sub-action fields and must comprehend the relationships
between action attribute fields.

Example 155 shows an action named sub that has three sub-action fields of type A, with constraint
relationships between those field values. A top-level action has a sub-action field of type A and type sub,
with a constraint between these two action-type fields. When selecting a value for the
top_action.v.val random attribute field, a PSS processing tool shall consider the following:
— top_action.s1.a.val == top_action.v.val

action A {
 rand bit[3:0] val;
}

action my_action {
 A a, b, c;

 constraint abc_c {
 a.val < b.val;
 b.val < c.val;
 }
 activity {
 a;
 b;
 c;
 }
}

Copyright © 2023 Accellera. All rights reserved.
214

Portable Test and Stimulus Standard 2.1 — October 2023

— top_action.s1.a.val < top_action.s1.b.val

This implies that top.v.val shall be less than 14 to satisfy the top_action.s1.a.val <
top_action.s1.b.val constraint.

Example 155—Sub-activity traversal

16.4.11 Lookahead and dynamic constraints

Dynamic constraints introduce traversal-dependent constraints. A PSS processing tool must account for
these additional constraints when making random attribute field value selections. A dynamic constraint shall
hold for the entire activity branch on which it is referenced, as well to the remainder of the activity.

Example 156 shows an activity with two dynamic constraints which are mutually exclusive. If the first
branch is selected, b.val <= 5 and b.val < a.val. If the second branch is selected, b.val <= 7
and b.val > a.val. A PSS processing tool shall select a value for a.val such that a legal value for
b.val also exists (presuming this is possible).

Given the dynamic constraints, legal value ranges for a.val are 1 to 15 for the first branch and 0 to 6 for
the second branch.

component top {
action A {

rand bit[3:0] val;
}

action sub {
A a, b, c;

constraint abc_c {
a.val < b.val;
b.val < c.val;

}

activity {
a;
b;
c;

}
}

action top_action {
A v;
sub s1;

constraint c {
s1.a.val == v.val;

}

activity {
v;
s1;

}
}

}

Copyright © 2023 Accellera. All rights reserved.
215

Portable Test and Stimulus Standard 2.1 — October 2023

Example 156—Activity with dynamic constraints

16.4.12 pre_solve and post_solve exec blocks

The pre_solve and post_solve exec blocks enable external code to participate in the solve process.
pre_solve and post_solve exec blocks may appear in struct and action type declarations.

Statements in pre_solve blocks are used to set non-random attribute fields that are subsequently read by the
solver during the solve process. Statements in pre_solve blocks can read the values of non-random attribute
fields and their non-random children. Statements in pre_solve blocks cannot access handle-type fields
(input/output, lock/share, action handles) or their children since these fields are null handles prior to the
completion of randomization. Accessing plain-data random fields (e.g., bit, int, struct) is permitted.
Reading the value of these fields in pre_solve blocks returns the initial value of the field. Values written to
scalar plain-data random fields in pre_solve will be overwritten by the solve process.

Statements in post_solve blocks are evaluated after the solver has resolved values for random attribute fields
and are used to set the values for non-random attribute fields based on randomly-selected values.

The execution order of pre_solve and post_solve exec blocks, respectively, corresponds to the order random
attribute fields are assigned by the solver. The ordering rules are as follows:

a) Order within a compound action is top-down—both the pre_solve and post_solve exec blocks,
respectively, of a containing action are executed before any of its sub-actions are traversed, and,
hence, before the pre_solve and post_solve, respectively, of its sub-actions.

b) Order between actions follows their relative scheduling in the scenario: if action a1 is scheduled
before a2, a1’s pre_solve and post_solve blocks, if any, are called before the corresponding block of
a2.

action A {
 rand bit[3:0] val;
}

action dyn {
 A a, b;

 dynamic constraint d1 {
 b.val < a.val;
 b.val <= 5;
 }

 dynamic constraint d2 {
 b.val > a.val;
 b.val <= 7;
 }

 activity {
 a;
 select {
 d1;
 d2;
 }
 b;
 }
}

Copyright © 2023 Accellera. All rights reserved.
216

Portable Test and Stimulus Standard 2.1 — October 2023

c) Order for flow objects (instances of struct types declared with a buffer, stream, or state modifier)
follows the order of their flow in the scenario: a flow object’s pre_solve or post_solve exec block is
called after the corresponding exec block of its outputting action and before that of its inputting
action(s).

d) A resource object’s pre_solve or post_solve exec blocks are called before the corresponding exec
block(s) of all actions referencing it, regardless of their use mode (lock or shared).

e) Order within an aggregate data type (nested struct and collection fields) is top-down—the exec
blocks of the containing instance are executed before those of the contained.

PSS does not specify the execution order in other cases. In particular, any relative order of execution for
sibling random struct attributes is legitimate and so is any order for actions scheduled in parallel where no
flow objects are exchanged between them.

See 21.1 for more information on the exec block construct.

16.4.12.1 Example 1

Example 157 shows a top-level struct S2 that has rand and non-rand scalar fields, as well as two fields of
struct type S1. When an instance of S2 is randomized, the exec block of S2 is evaluated first, but the
execution for the two S1 instances can be in any order. The following is one such possible order:

a) pre_solve in S2
b) pre_solve in S2.s1_2
c) pre_solve in S2.s1_1
d) assignment of attribute values
e) post_solve in S2
f) post_solve in S2.s1_1
g) post_solve in S2.s1_2

Copyright © 2023 Accellera. All rights reserved.
217

Portable Test and Stimulus Standard 2.1 — October 2023

Example 157—pre_solve/post_solve

16.4.12.2 Example 2

Example 158 illustrates the relative order of execution for post_solve exec blocks of a containing action
test, two sub-actions: read and write, and a buffer object exchanged between them.

The calls therein are executed as follows:
a) post_solve in test
b) post_solve in write
c) post_solve in mem_obj
d) post_solve in read

function bit[5:0] get_init_val();
function bit[5:0] get_exp_val(bit[5:0] stim_val);

struct S1 {
bit[5:0] init_val;
rand bit[5:0] rand_val;
bit[5:0] exp_val;

exec pre_solve {
init_val = get_init_val();

}

constraint rand_val_c {
rand_val <= init_val+10;

}

exec post_solve {
exp_val = get_exp_val(rand_val);

}
}

struct S2 {
bit[5:0] init_val;
rand bit[5:0] rand_val;
bit[5:0] exp_val;

rand S1 s1_1, s1_2;

exec pre_solve {
init_val = get_init_val();

}

constraint rand_val_c {
rand_val > init_val;

}

exec post_solve {
exp_val = get_exp_val(rand_val);

}
}

Copyright © 2023 Accellera. All rights reserved.
218

Portable Test and Stimulus Standard 2.1 — October 2023

Example 158—post_solve ordering between action and flow objects

16.4.13 Body blocks and sampling external data

exec body blocks, or functions invoked by them, can assign values to attribute fields. exec body blocks are
evaluated for atomic actions as part of the test execution on the target platform (see 21.1). The impact of any
field values modified by an exec body block is evaluated after the entire exec body block has completed.

Example 159 shows an exec body block that assigns two non-rand attribute fields. The impact of the new
values applied to y1 and y2 are evaluated against the constraint system after the exec body block completes
execution. It shall be illegal if the new values of y1 and y2 conflict with other attribute field values and
constraints. Backtracking is not performed.

buffer mem_obj {
 exec post_solve { ... }
};

action write {
 output mem_obj out_obj;
 exec post_solve { ... }
};

action read {
 input mem_obj in_obj;
 exec post_solve { ... }
};

action test {
 write wr;
 read rd;

 activity {
 wr;
 rd;
 bind wr.out_obj rd.in_obj;
 }
 exec post_solve { ... }
};

Copyright © 2023 Accellera. All rights reserved.
219

Portable Test and Stimulus Standard 2.1 — October 2023

Example 159—exec body block sampling external data

function bit[3:0] compute_val1(bit[3:0] v);
function bit[3:0] compute_val2(bit[3:0] v);
component pss_top {

 action A {
 rand bit[3:0] x;
 bit[3:0] y1, y2;

 constraint assume_y_c {
 y1 >= x && y1 <= x+2;
 y2 >= x && y2 <= x+3;

 y1 <= y2;
 }

 exec body {
 y1 = compute_val1(x);
 y2 = compute_val2(x);
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
220

Portable Test and Stimulus Standard 2.1 — October 2023

17. Action inferencing

Perhaps the most powerful feature of PSS is the ability to focus purely on the user’s verification intent, while
delegating the means to achieve that intent. Previous clauses have introduced the semantic concepts to
define such abstract specifications of intent. The modeling constructs and semantic rules thus defined for a
portable stimulus model allow a tool to generate a number of scenarios from a single (partial) specification
to implement the desired intent.

Beginning with a root action, which may contain an activity, a number of actions and their relative
scheduling constraints is used to specify the verification intent for a given model. The other elements of the
model, including flow objects, resources and their binding, as well as algebraic constraints throughout,
define a set of rules that shall be followed to generate a valid scenario matching the specified intent. It is
possible to fully specify a verification intent model, in which only a single valid scenario of actions may be
generated. The randomization of data fields in the actions and their respective flow and resource objects
would render this scenario as what is generally referred to as a “directed random” test, in which the actions
are fully defined, but the data applied through the actions is randomized. The data values themselves may
also be constrained so that there is only one scenario that may be generated, including fully-specified values
for all data fields, in which case the scenario would be a “directed” test.

There are a number of ways to specify the scheduling relationship between actions in a portable stimulus
model. The first, which allows explicit specification of verification intent, is via an activity. As discussed in
Clause 12, an activity may define explicit scheduling dependencies between actions, which may include
statements, such as schedule, select, if-else and others, to allow multiple scenarios to be generated even for
a fully-specified intent model. Consider Example 160.

Example 160—Generating multiple scenarios

While an activity may be used to fully express the intent of a given model, it is more often used to define the
critical actions that must occur to meet the verification intent while leaving the details of how the actions
may interact unspecified. In this case, the rules defined by the rest of the model, including flow object

component pss_top {
 buffer data_buff_s {
 rand int val;
 };
 pool data_buff_s data_mem;
 bind data_mem *;

 action A_a {output data_buff_s dout;};
 action B_a {output data_buff_s dout;};
 action C_a {input data_buff_s din;};
 action D_a {input data_buff_s din;};

 action root_a {
 A_a a;
 B_a b;
 C_a c;
 D_a d;
 activity {
 select {a; b;}
 select {c; d;}
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
221

Portable Test and Stimulus Standard 2.1 — October 2023

requirements, resource limitations, pool bindings, and algebraic constraints, permit a tool to introduce the
traversal of additional actions as defined by the model to ensure the generation of a valid scenario that meets
the critical intent as defined by the activity. The introduction of an action in the execution of a scenario to
complete a partially specified flow is called action inferencing.

The evaluation ordering rules for pre_solve and post_solve exec blocks of actions, objects, and structs, as
specified in 16.4.12, apply regardless of whether the actions are explicitly traversed or inferred, and whether
objects are explicitly or implicitly bound. In particular, the order conforms to the scheduling relations
between actions, such that if an action is scheduled before another, its pre_solve and post_solve execs are
evaluated before the other’s. Backtracking is not performed across exec blocks. Assignments in exec blocks
to attributes that figure in constraints may therefore lead to unsatisfied constraint errors. This applies to
inferred parts of the scenarios in the same way as to parts that are explicitly specified in activities.

17.1 Implicit binding and action inferences

In a scenario description, the explicit binding of outputs to inputs may be left unspecified. In these cases, an
implementation shall execute a scenario that reflects a valid completion of the given partial specification in a
way that conforms to pool binding rules. If no valid scenario exists, the tool shall report an error.
Completing a partial specification may involve decisions on output-to-input binding of flow objects in
actions that are explicitly traversed. It may also involve introducing the traversal of additional actions,
beyond those explicitly traversed, to serve as the counterpart of a flow object exchange. Once an action
traversal is inferred to complete a given flow object exchange, it may also be considered for completing
other flow object exchanges with which it may also be compatible.

Action inferences are necessary to make a scenario execution legal if the following conditions hold:
a) An input of any kind is not explicitly bound to an output, or an output of stream kind is not explicitly

bound to an input.
b) There is no action explicitly traversed or inferred that is available to legally bind its output/input to

the unbound input/output, i.e.,
1) There is no action that is or may be scheduled before the inputting action in the case of buffer

or state objects.
2) There is no action that is or may be scheduled in parallel to the inputting/outputting action in

the case of stream objects.

The inferencing of actions may be based on random or policy-driven (which may include specified coverage
goals) decisions of a processing tool. Actions may only be inferred to complete a partially-specified flow. If
all required input-to-output bindings are specified by explicit bindings to the traversed actions in the
activity, an implementation may not introduce additional actions in the execution. See Annex E for more
details on inference rules.

Consider the model in Example 161.

If action send_data is designated as the root action, this is clearly a case of partial scenario description,
since action send_data has an input and an output, neither of which is explicitly bound. The buffer input
src_data is bound to the data_mem object pool, so there must be a corresponding output object also
bound to the same pool to provide the buffer object. The only action type outputting an object of the required
type that is bound to the same object pool is load_data. Thus, an implementation shall infer the prior
traversal of load_data before traversing send_data.

Similarly, load_data has a state input that is bound to the config_var pool. Since the output objects
of action types setup_A and setup_B are also bound to the same pool, load_data.curr_cfg can be
bound to the output of either setup_A or setup_B, but cannot be the initial state due to the constraint in

Copyright © 2023 Accellera. All rights reserved.
222

Portable Test and Stimulus Standard 2.1 — October 2023

load_data. In the absence of other constraints, the choice of whether to infer setup_A or setup_B
may be randomized and the chosen action traversal shall occur before the traversal of load_data.

Moreover, send_data has a stream output out_data, which shall be bound to the corresponding input
of another action that is also bound to the data_bus pool. So, an implementation shall infer the traversal
of an action of type receive_data in parallel to send_data.

Example 161—Action inferences for partially-specified flows

Note that action inferences may be more than one level deep. The scenario executed by an implementation
shall be the transitive closure of the specified scenario per the flow object dependency relations. Consider
adding another action within the pss_top component in Example 161, e.g.,

action xfer_data {
 input data_buff_s src_data;
 output data_buff_s out_data;
};

component pss_top {
 state config_s {};
 pool config_s config_var;
 bind config_var *;

 buffer data_buff_s {};
 pool data_buff_s data_mem;
 bind data_mem *;

 stream data_stream_s {};
 pool data_stream_s data_bus;
 bind data_bus *;

 action setup_A {
 output config_s new_cfg;
 };

 action setup_B {
 output config_s new_cfg;
 };

 action load_data {
 input config_s curr_cfg;
 constraint !curr_cfg.initial;
 output data_buff_s out_data;
 };

 action send_data {
 input data_buff_s src_data;
 output data_stream_s out_data;
 };

 action receive_data {
 input data_stream_s in_data;
 };
};

Copyright © 2023 Accellera. All rights reserved.
223

Portable Test and Stimulus Standard 2.1 — October 2023

In this case, the xfer_data action could also be inferred, along with setup_A or setup_B to provide
the data_buff_s input to send_data.src_data. If xfer_data were inferred, then its src_data
input would require the additional inference of another instance of setup_A, setup_B, or xfer_data
to provide the data_buff_s. This “inference chain” would continue until either an instance of setup_A
or setup_B is inferred, which would require no further inferencing, or the inferencing limit of the tool is
exceeded, in which case an error would be reported.

Since the type of the inferred action is randomly selected from all available compatible action types, a tool
may ensure that either setup_A or setup_B gets inferred before the inferencing limit is exceeded.

Consider Example 162. Starting with the constr_test action, two instances of the get_data action
are traversed in parallel. Since each instance inputs a buffer of type data_buff_s, at least one instance of
load_data must be inferred to provide the input buffer. The equality constraint c2 requires that
gd1.src_data and gd2.src_data are actually the same object, so only a single instance of
load_data will be inferred. Without the c2 constraint, it would have been possible to infer two separate
instances of load_data, each of which would provide a buffer object to either gd1 or gd2, although
inferring a single instance is also legal. Note that the c1 constraint by itself is not sufficient to guarantee a
single instance inference since there could be two distinct buffers with identical contents. With the c2
constraint present, the c1 constraint is redundant (but legal).

Example 162—Buffer equality constraint to limit inferencing

Consider Example 163. In the constr_rsrc_test action, two instances of the m2m action are scheduled
and traversed, each of which inputs and outputs a data_buff_s buffer object and locks a dma_descr
resource object, followed by the parallel traversal of two instances of the get_data action. Constraint c3
ensures that both m2m instances input the same data_buff_s object and therefore a single instance of
either load_data or m2m is inferred to provide it. Constraint c4 guarantees that the two get_data
instances will each consume a different data_buff_s object, so each will be provided by either m2m1 or
m2m2. Constraint c5 requires the two m2m instances to claim the same resource object, so the schedule

component pss_top {
 buffer data_buff_s {bit[4] val;};
 pool data_buff_s dbuf_p;
 bind dbuf_p *;

 action load_data {
 output data_buff_s out_data;
 }

 action get_data {
 input data_buff_s src_data;
 }

 action constr_test {
 get_data gd1, gd2;

 constraint c1 {gd1.src_data.val == gd2.src_data.val;}
 constraint c2 {gd1.src_data == gd2.src_data;}

 activity {
 parallel {gd1; gd2;}
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
224

Portable Test and Stimulus Standard 2.1 — October 2023

statement must require one instance to be traversed before the other, in either order. Note that the
commented-out constraint c6 is equivalent to c5.

Example 163—Resource equality constraint may affect scheduling

17.2 Object pools and action inferences

Action traversals may be inferred to support the flow object requirements of actions that are traversed in the
model, whether they are explicitly traversed or inferred. The set of actions from which a traversal may be
inferred is determined by object pool bindings.

In Example 164, there are two object pools of type data_buff_s, each of which is bound to a different
set of object field references. The select statement in the activity of root_a will randomly choose either c
or d, each of which has a data_buff_s buffer input type that requires a corresponding action to be
inferred to supply the buffer object. Since C_a is bound to the same pool as A_a, if the generated scenario
chooses c, then an instance of A_a shall be inferred to supply the c.din buffer input. Similarly, if d is
chosen, then an instance of B_a shall be inferred to supply the d.din buffer input.

component pss_top {
 buffer data_buff_s {bit[4] val;};
 resource dma_descr {bit[4] chan;};
 pool data_buff_s dbuf_p;
 bind dbuf_p *;
 pool [16] dma_descr descr_p;
 bind descr_p *;

 action load_data {
 output data_buff_s out_data;
 }

 action get_data {
 input data_buff_s src_data;
 }

 action m2m {
 input data_buff_s ibuf;
 output data_buff_s obuf;
 lock dma_descr descr;
 }

 action constr_rsrc_test {
 get_data gd1 , gd2;
 m2m m2m1, m2m2;

 constraint c3 {m2m1.ibuf == m2m2.ibuf;}
 constraint c4 {gd1.src_data != gd2.src_data;}
 constraint c5 {m2m1.descr == m2m2.descr;}
// constraint c6 {m2m1.descr.instance_id == m2m2.descr.instance_id;}

 activity {
 schedule {m2m1; m2m2;}
 parallel {gd1 ; gd2; }
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
225

Portable Test and Stimulus Standard 2.1 — October 2023

Example 164—Object pools affect inferencing

Consider the following modified version of Example 40 from 9.5.2. In this example, the traversal of action
foo in the activity of action gr_a requires the inference of an action that can be bound to the same pool as
graphics::foo and supply the compatible bar_s type flow object. Since the bar_p pool is bound by
default to all components under graphics and bus_c, it is legal to infer the traversal of
bus_c::write in parallel with foo, even though it was illegal to traverse this action explicitly as shown
in Example 40.

Example 165—Inferred traversal of an action outside of the containing component hierarchy

component pss_top {
 buffer data_buff_s {...};
 pool data_buff_s data_mem1, data_mem2;
 bind data_mem1 {A_a.dout, C_a.din};
 bind data_mem2 {B_a.dout, D_a.din};

 action A_a {output data_buff_s dout;};
 action B_a {output data_buff_s dout;};
 action C_a {input data_buff_s din;};
 action D_a {input data_buff_s din;};

 action root_a {
 C_a c;
 D_a d;
 activity {
 select {c; d;}
 }
 }
}

component bus_c {
 import bar_pkg::*;
 action write{input bar_s b;...} // bar_s is a stream
}

component graphics {
 import bar_pkg::*;
 action foo {output bar_s b;...}
 action gr_a {
 activity {
 do foo; // will infer traversal of bus_c::write
 // to complete stream object connection
 }
 }
}

component pss_top {
 import bar_pkg::*;
 bus_c a0;
 graphics g;
 pool bar_s bar_p;
 bind bar_p *;
}

Copyright © 2023 Accellera. All rights reserved.
226

Portable Test and Stimulus Standard 2.1 — October 2023

17.3 Data constraints and action inferences

As mentioned in Clause 16, introducing data constraints on flow objects or other elements of the design may
affect the inferencing of actions. Consider a slightly modified version of Example 160, as shown in
Example 166.

Since the explicit traversal of c does not constrain the val field of its input, it may be bound to the output of
either explicitly traversed action a or b; thus, there are two legal scenarios to be generated with the second
select statement evaluated to traverse action c. However, since the data constraint on the traversal of action
d is incompatible with the in-line data constraints on the explicitly-traversed actions a or b, another instance
of either A_a or B_a shall be inferred whose output shall be bound to d.din. Since there is no requirement
for the buffer output of either a or b to be bound, one of these actions shall be traversed from the first select
statement, but no other action shall be inferred.

Example 166—In-line data constraints affect action inferencing

component pss_top {
 buffer data_buff_s {
 rand int val;
 };
 pool data_buff_s data_mem;
 bind data_mem *;

 action A_a {output data_buff_s dout;};
 action B_a {output data_buff_s dout;};
 action C_a {input data_buff_s din;};
 action D_a {input data_buff_s din;};

 action root_a {
 A_a a;
 B_a b;
 C_a c;
 D_a d;
 activity {
 select {a with{dout.val<5;}; b with {dout.val<5;};}
 select {c; d with {din.val>5;};}
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
227

Portable Test and Stimulus Standard 2.1 — October 2023

Consider, instead, if the in-line data constraints were declared in the action types, as shown in Example 167.

In this case, there is no valid action type available to provide the d.din input that satisfies its constraint as
defined in the D_a action declaration, since the only actions that may provide the data_buff_s type,
actions A_a and B_a, have constraints that contradict the input constraint in D_a. Therefore, the only legal
action to traverse in the second select statement is c. In fact, it would be illegal to traverse action D_a under
any circumstances for this model, given the contradictory data constraints on the flow objects.

Example 167—Data constraints affect action inferencing

component pss_top {
 buffer data_buff_s {
 rand int val;
 };
 pool data_buff_s data_mem;
 bind data_mem *;

 action A_a {
 output data_buff_s dout;
 constraint {dout.val<5;}
 };
 action B_a {
 output data_buff_s dout;
 constraint {dout.val<5;}
 };
 action C_a {
 input data_buff_s din;
 };
 action D_a {
 input data_buff_s din;
 constraint {din.val > 5;}
 };

 action root_a {
 A_a a;
 B_a b;
 C_a c;
 D_a d;
 activity {
 select {a; b;}
 select {c; d;}
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
228

Portable Test and Stimulus Standard 2.1 — October 2023

18. Coverage specification constructs

The legal state space for all non-trivial verification problems is very large. Coverage goals identify key
value ranges and value combinations that need to occur in order to exercise key functionality. The
covergroup construct is used to specify these targets.

The coverage targets specified by the covergroup construct are more directly related to the test scenario
being created. As a consequence, in many cases the coverage targets would be considered coverage targets
on the “generation” side of stimulus. PSS also allows data to be sampled by calling external functions.
Coverage targets specified on data fields set by external functions can be related to the system state.

18.1 Defining the coverage model: covergroup

The covergroup construct encapsulates the specification of a coverage model. Each covergroup
specification can include the following elements:

— A set of coverage points
— Cross coverage between coverage points
— Optional formal arguments
— Coverage options

The covergroup construct is a user-defined type. There are two forms of the covergroup construct. The first
form allows an explicit type definition to be written once and instantiated multiple times in different
contexts. The second form allows an in-line specification of an anonymous covergroup type and a single
instance.

a) An explicit covergroup type can be defined in a package, component, action, or struct. In order to
be reusable, an explicit covergroup type shall specify a list of formal parameters and shall not refer-
ence fields in the scope in which it is declared. An instance of an explicit covergroup type can be
created in an action or struct. Syntax 62 defines an explicit covergroup type.

b) An in-line covergroup can be defined in an action or struct scope. An in-line covergroup can refer-
ence fields in the scope in which it is defined. 18.2 contains more information on in-line cover-
groups.

Copyright © 2023 Accellera. All rights reserved.
229

Portable Test and Stimulus Standard 2.1 — October 2023

18.1.1 Syntax

The syntax for covergroups is shown in Syntax 62.

Syntax 62—covergroup declaration

The following also apply:
a) The identifier associated with the covergroup declaration defines the name of the coverage model

type.
b) A covergroup can contain one or more coverage points. A coverage point can cover a variable or an

expression.
c) Each coverage point includes a set of bins associated with its sampled value. The bins can be user-

defined or automatically created by a tool. Coverage points are detailed in 18.3.
d) A covergroup can specify cross coverage between two or more coverage points or variables. Any

combination of more than two variables or previously declared coverage points is allowed. See also
Example 169.

e) A covergroup can also specify one or more options to control how coverage data are structured and
collected. Coverage options can be specified for the covergroup as a whole or for specific items
within the covergroup, i.e., any of its coverage points or crosses. In general, a coverage option spec-
ified at the covergroup level applies to all of its items unless overridden in a specific item’s defini-
tion. Coverage options are described in 18.5.

18.1.2 Examples

Example 168 defines an in-line covergroup cs1 with a single coverage point labeled c associated with
struct field color. The value of the variable color is sampled at the default sampling point: the end of an
action’s traversal in which the field color is randomized. Sampling is discussed in more detail in 18.6.

Because the coverage point does not explicitly define any bins, the tool automatically creates three bins, one
for each possible value of the enumeration type. Automatic bins are described in 18.3.4.

covergroup_declaration ::=
 covergroup covergroup_identifier (covergroup_port {, covergroup_port })
 { {covergroup_body_item} }
covergroup_port ::= data_type identifier
covergroup_body_item ::=
 covergroup_option
 | covergroup_coverpoint
 | covergroup_cross
 | covergroup_body_compile_if
 | stmt_terminator
covergroup_option ::=
 option . identifier = constant_expression ;

Copyright © 2023 Accellera. All rights reserved.
230

Portable Test and Stimulus Standard 2.1 — October 2023

Example 168—Single coverage point

Example 169 creates an in-line covergroup cs2 that includes two coverage points and two cross coverage
items. Explicit coverage points labeled Offset and Hue are defined for variables pixel_offset and
pixel_hue. PSS implicitly declares coverage points for variables color and pixel_adr to track their
cross coverage. Implicitly declared coverage points are described in 18.4.

Example 169—Two coverage points and cross coverage items

18.2 covergroup instantiation

A covergroup type can be instantiated in struct and action contexts. If the covergroup declared formal
parameters, these shall be bound to variables visible in the instantiation context. Instance-specific coverage
options (see 18.5) may be specified as part of instantiation. If a covergroup is specific to the containing
type, it cannot be generally instantiated in other types. In these cases, it is possible to declare a covergroup
instance in-line. In this case, the covergroup type is anonymous.

enum color_e {red, green, blue};

struct s {
rand color_e color;

covergroup {
c: coverpoint color;

} cs1;
}

enum color_e {red, green, blue};

struct s {
 rand color_e color;
 rand bit[3:0] pixel_adr, pixel_offset, pixel_hue;

 covergroup {
 Hue : coverpoint pixel_hue;
 Offset : coverpoint pixel_offset;
 AxC: cross color, pixel_adr;
 all : cross color, Hue, Offset;
 } cs2;
}

Copyright © 2023 Accellera. All rights reserved.
231

Portable Test and Stimulus Standard 2.1 — October 2023

18.2.1 Syntax

Syntax 63 specifies how a covergroup is instantiated and how an in-line covergroup instance is declared.

Syntax 63—covergroup instantiation

18.2.2 Examples

Example 170 defines a covergroup type with a formal parameter list and creates a covergroup instance.

Example 170—Creating and instantiating a covergroup type with a formal parameter list

covergroup_instantiation ::=
 covergroup_type_instantiation
 | inline_covergroup
inline_covergroup ::= covergroup { { covergroup_body_item } } identifier ;
covergroup_type_instantiation ::= covergroup_type_identifier covergroup_identifier
 (covergroup_portmap_list) covergroup_options_or_empty
covergroup_type_identifier ::= type_identifier
covergroup_portmap_list ::=
 covergroup_portmap { , covergroup_portmap }
 | hierarchical_id_list
covergroup_portmap ::= . identifier (hierarchical_id)
covergroup_options_or_empty ::=
 with { { covergroup_option } }
 | ;

enum color_e {red, green, blue};

struct s {
rand color_e color;

covergroup cs1(color_e c) {
c : coverpoint c;

}

cs1 cs1_inst(color);
}

Copyright © 2023 Accellera. All rights reserved.
232

Portable Test and Stimulus Standard 2.1 — October 2023

Example 171 defines a covergroup type and creates a covergroup instance with instance-specific options.

Example 171—Creating a covergroup instance with instance-specific options

Example 172 creates an in-line covergroup instance.

Example 172—Creating an in-line covergroup instance

18.3 Defining coverage points

A covergroup can contain one or more coverage points. A coverage point specifies an integer expression or
enum that is to be covered. Each coverage point includes a set of bins associated with the sampled values of
the covered expression. The bins can be explicitly defined by the user or automatically created by the PSS
processing tool. The syntax for specifying coverage points is shown in Syntax 64.

Evaluation of the coverage point expression (and of its enabling iff condition, if any) takes place when the
covergroup is sampled (see 18.6).

18.3.1 Syntax

The syntax for coverpoints is shown in Syntax 64.

enum color_e {red, green, blue};

struct s {
rand color_e color;

covergroup cs1 (color_e color) {
c: coverpoint color;

}

cs1 cs1_inst (color) with {
option.at_least = 2;

};
}

enum color_e {red, green, blue};

struct s {
rand color_e color;

covergroup {
option.at_least = 2;
c: coverpoint color;

} cs1_inst;
}

Copyright © 2023 Accellera. All rights reserved.
233

Portable Test and Stimulus Standard 2.1 — October 2023

Syntax 64—coverpoint declaration

The following also apply:
a) A coverpoint coverage point creates a hierarchical scope and can be optionally labeled. The label

(coverpoint_identifier) designates the name of the coverage point. This name can be used to add this
coverage point to a cross coverage specification. If the coverage point is associated with a single
variable and the label is omitted, the variable name becomes the name of the coverage point. A cov-
erage point on an expression is required to specify a label.

b) A data type for the coverpoint may be specified. The data type shall be an integer or enum type. If a
data type is specified, then a label shall also be specified.

c) If a data type is specified, the coverpoint expression shall be assignment compatible with the data
type. Values for the coverpoint shall be of the specified data type and shall be determined as though
the coverpoint expression were assigned to a variable of the specified type.

d) If no data type is specified, the inferred type for the coverpoint shall be the self-determined type of
the coverpoint expression.

e) The expression within the iff construct specifies an optional condition that disables coverage sam-
pling for that coverpoint. If the iff expression evaluates to false at a sampling point, the coverage
point is not sampled.

f) A coverage point bin associates a name and a count with a set of values. The count is incremented
every time the coverage point matches one of the values in the set. The bins for a coverage point can
be defined using the bins construct to name each bin. If the bins are not explicitly defined, they are
automatically created by the PSS processing tool. The number of automatically created bins can be
controlled using the auto_bin_max coverage option. Coverage options are described in Table 21.

18.3.2 Examples

In Example 173, coverage point s0 is covered only if is_s0_enabled is true.

Example 173—Specifying an iff condition

covergroup_coverpoint ::= [[data_type] coverpoint_identifier :] coverpoint
 expression [iff (expression)] bins_or_empty
bins_or_empty ::=
 { { covergroup_coverpoint_body_item } }
 | ;
covergroup_coverpoint_body_item ::=
 covergroup_option
 | covergroup_coverpoint_binspec

struct s {
rand bit[4] s0;
rand bool is_s0_enabled;

covergroup {
coverpoint s0 iff (is_s0_enabled);

} cs4;
}

Copyright © 2023 Accellera. All rights reserved.
234

Portable Test and Stimulus Standard 2.1 — October 2023

18.3.3 Specifying bins

The bins construct creates a separate bin for each value in the given range list or a single bin for the entire
range of values. The syntax for defining bins is shown in Syntax 65.

18.3.3.1 Syntax

The syntax for bins is shown in Syntax 65.

Syntax 65—bins declaration

The following also apply:
a) To create a separate bin for each value (an array of bins), add square brackets ([]) after the bin

name.
1) To create a fixed number of bins for a set of values, a single positive integral expression can be

specified inside the square brackets.
2) The bin name and optional square brackets are followed by a covergroup_range_list that spec-

ifies the set of values associated with the bin.
3) It shall be legal to use the range value form expression.. and ..expression to denote a range that

extends to the upper or lower value (respectively) of the coverpoint data type.
b) If a fixed number of bins is specified and that number is smaller than the specified number of values,

the possible bin values are uniformly distributed among the specified bins.
1) The first N specified values (where N = int(number of values / number of bins)) are assigned to

the first bin, the next N specified values are assigned to the next bin, etc.
2) Duplicate values are retained; thus, the same value can be assigned to multiple bins.
3) If the number of values is not evenly divisible by the number of bins, then the last bin will

include the remaining items, e.g., for
bins fixed [4] = [1..10, 1, 4, 7];

The 13 possible values are distributed as follows: <1,2,3>, <4,5,6>, <7,8,9>,
<10,1,4,7>.

c) A covergroup_expression is an expression. In the case of a with covergroup_expression, the expres-
sion can involve constant terms and the coverpoint variable (see 18.3.3.3).

covergroup_coverpoint_binspec ::= bins_keyword identifier
 [[[constant_expression]]] = coverpoint_bins
coverpoint_bins ::=
 [covergroup_range_list] [with (covergroup_expression)] ;
 | coverpoint_identifier with (covergroup_expression) ;
 | default ;
covergroup_range_list ::= covergroup_value_range { , covergroup_value_range }
covergroup_value_range ::=
 expression
 | expression .. [expression]
 | [expression] .. expression
bins_keyword ::= bins | illegal_bins | ignore_bins
covergroup_expression ::= expression

Copyright © 2023 Accellera. All rights reserved.
235

Portable Test and Stimulus Standard 2.1 — October 2023

d) The default specification defines a bin that catches the values of the coverage point that do not lie
within any of the defined bins. The default is useful for catching unplanned or invalid values. The
coverage calculation for a coverage point shall not take into account the coverage captured by
default bins. Default bins are also excluded from cross coverage (see 18.4). A default bin cannot be
explicitly ignored (see 18.3.5).

18.3.3.2 Examples

In Example 174, the first bins construct associates bin a with the values of v_a, between 0 and 63 and the
value 65. The second bins construct creates a set of 65 bins b[127], b[128], … b[191]. Note that
when empty square brackets are specified, each value is assigned one bin, including values that are specified
more than once. Likewise, the third bins construct creates 3 bins: c[200], c[201], and c[202]. The
fourth bins construct associates bin d with the values between 1000 and 1023 (the trailing .. represents
the maximum value of v_a). Every value that does not match bins a, b[], c[], or d is added into its own
distinct bin (e.g., the value 64), using the default specification.

Example 174—Specifying bins

18.3.3.3 Coverpoint bin with covergroup expressions

The with clause specifies that only those values in the covergroup_range_list (see Syntax 65) that satisfy
the given expression (i.e., for which the expression evaluates to true) are included in the bin. In the
expression, the name of the coverpoint shall be used to represent the candidate value. The candidate value is
of the same type as the coverpoint.

The with clause behaves as if the expression were evaluated for every value in the covergroup_range_list at
the time the covergroup instance is created. The with covergroup_expression is applied to the set of values
in the covergroup_range_list prior to distribution of values to the bins. The result of applying a with
covergroup_expression shall preserve multiple, equivalent bin items as well as the bin order. The intent of
these rules is to allow the use of non-simulation analysis techniques to calculate the bin (e.g., formal
symbolic analysis) or for caching of previously calculated results.

Consider Example 175, where the bin definition selects all values from 0 to 255 that are evenly divisible by
3.

struct s {
rand bit[10] v_a;

covergroup {
coverpoint v_a {

bins a = [0..63, 65];
bins b[] = [127..150, 148..191];
bins c[] = [200, 201, 202];
bins d = [1000..];
bins others[] = default;

}
} cs;

}

Copyright © 2023 Accellera. All rights reserved.
236

Portable Test and Stimulus Standard 2.1 — October 2023

Example 175—Select constrained values between 0 and 255

The name of the coverpoint itself may be used in place of the covergroup_range_list, preceding the with
keyword, to denote all values of the coverpoint. Only the name of the coverpoint containing the bin being
defined shall be allowed.

In Example 176, coverpoint name a is used in place of the covergroup_range_list to denote that the with
covergroup_expression will be applied to all values of the coverpoint.

Example 176—Using with in a coverpoint

18.3.4 Automatic bin creation for coverage points

If a coverage point does not define any bins, PSS automatically creates bins. This provides an easy-to-use
mechanism for binning different values of a coverage point. Users can either let the tool automatically create
bins for coverage points or explicitly define named bins for each coverage point.

When the automatic bin creation mechanism is used, PSS creates N bins to collect the sampled values of a
coverage point. The value N is determined as follows:

— For an enum coverage point, N is the cardinality of the enumeration.
— For an integer coverage point, N is the minimum of 2M and the value of the auto_bin_max option

(see Table 21), where M is the number of bits needed to represent the coverage point.

If the number of automatic bins is smaller than the number of possible values (N < 2M), the 2M values are
uniformly distributed in the N bins. If the number of values, 2M, is not divisible by N, then the last bin will
include the additional remaining items. For example, if M is 3 and N is 3, the eight possible values are
distributed as follows: <0..1>, <2..3>, <4..7>.

PSS implementations can impose a limit on the number of automatic bins. See Table 21 for the default value
of auto_bin_max.

Each automatically created bin will have a name of the form auto[value], where value is either a
single coverage point value or the range of coverage point values included in the bin (in the form

struct s {
rand bit[8] x;

covergroup {
a: coverpoint x {

 bins mod3[] = [0..255] with ((a % 3) == 0);
}

} cs;
}

struct s {
rand bit[8] x;

covergroup {
a: coverpoint x {

 bins mod3[] = a with ((a % 3) == 0);
}

} cs;
}

Copyright © 2023 Accellera. All rights reserved.
237

Portable Test and Stimulus Standard 2.1 — October 2023

low..high). For enumeration types, value is the named constant (enum item) associated with the
particular enumeration value.

18.3.5 Excluding coverage point values

A set of values associated with a coverage point can be explicitly excluded from coverage by specifying
them as ignore_bins. See Example 177.

All values associated with ignored bins are excluded from coverage. Each ignored value is removed from
the set of values associated with any coverage bin. The removal of ignored values shall occur after
distribution of values to the specified bins.

Example 177 may result in a bin that is associated with no values or sequences. Such empty bins are
excluded from coverage.

Example 177—Excluding coverage point values

18.3.6 Specifying illegal coverage point values

A set of values associated with a coverage point can be marked as illegal by specifying them as illegal_bins.
See Example 178.

All values associated with illegal bins are excluded from coverage. Each illegal value is removed from the
set of values associated with any coverage bin. The removal of illegal values shall occur after the
distribution of values to the specified bins. If an illegal value occurs, a runtime error shall be issued. Illegal
bins take precedence over any other bins, i.e., they result in a runtime error even if they are also included in
another bin.

Example 178 may result in a bin that is associated with no values or sequences. Such empty bins are
excluded from coverage.

Example 178—Specifying illegal coverage point values

struct s {
rand bit[4] a;

covergroup {
coverpoint a {

ignore_bins ignore_vals = [7, 8];
}

} cs23;
}

struct s {
rand bit[4] a;

covergroup {
coverpoint a {

illegal_bins illegal_vals = [7, 8];
}

} cs23;
}

Copyright © 2023 Accellera. All rights reserved.
238

Portable Test and Stimulus Standard 2.1 — October 2023

18.3.7 Value resolution

A coverpoint expression, the expressions in a bins construct, and the coverpoint type, if present, are all
involved in comparison operations in order to determine into which bins a particular value falls. Let e be the
coverpoint expression and b be an expression in a bins covergroup_range_list. The following rules shall
apply when evaluating e and b:

a) If there is no coverpoint type, the effective type of e shall be self-determined. In the presence of a
coverpoint type, the effective type of e shall be the coverpoint type.

b) b shall be statically cast to the effective type of e. An implementation shall issue a warning under the
following conditions:
1) If the effective type of e is unsigned and b is signed with a negative value.
2) If assigning b to a variable of the effective type of e would yield a value that is not equal to b

under normal comparison rules for ==.

If a warning is issued for a bins element, the following rules shall apply:
— If an element of a bins covergroup_range_list is a singleton value b, that element shall not appear in

the bins values.
— If an element of a bins covergroup_range_list is a range b1..b2 and there exists at least one value

in the range for which a warning would not be issued, the range shall be treated as containing the
intersection of the values in the range and the values expressible by the effective type of e.

Example 179 leads to the following:
— For b1, a warning is issued for the range 6..10. b1 is treated as though it had the specification

[1, 2..5, 6..7].
— For b2, a warning is issued for the range 1..10 and for the values -1 and 15. b2 is treated as

though it had the specification [1..7].
— For b3, a warning is issued for the ranges 2..5 and 6..10. b3 is treated as though it had the spec-

ification [1, 2..3].
— For b4, a warning is issued for the range 1..10 and for the value 15. b4 is treated as though it had

the specification [-1, 1..3].

Example 179—Value resolution

struct s {
rand bit[3] p1; // type expresses values in the range 0 to 7
int [3] p2; // type expresses values in the range -4 to 3

covergroup {
coverpoint p1 {

bins b1 = [1, 2..5, 6..10]; // warning issued for range 6..10
bins b2 = [-1, 1..10, 15]; // warning issued for range 1..10

} // and values -1 and 15
coverpoint p2 {

bins b3 = [1, 2..5, 6..10]; // warning issued for ranges 2..5
 // and 6..10
bins b4 = [-1, 1..10, 15]; // warning issued for range 1..10

} // and value 15
} c1;

}

Copyright © 2023 Accellera. All rights reserved.
239

Portable Test and Stimulus Standard 2.1 — October 2023

18.4 Defining cross coverage

A covergroup can specify cross coverage between two or more coverage points or variables. Cross
coverage is specified using the cross construct (see Syntax 66). When a variable V is part of a cross
coverage, the PSS processing tool shall implicitly create a coverage point for the variable, as if it had been
created by the statement coverpoint V;. Thus, a cross involves only coverage points. Expressions
cannot be used directly in a cross; a coverage point must be explicitly defined first.

18.4.1 Syntax

Syntax 66 declares a cross.

Syntax 66—cross declaration

The following also apply:
a) The label is required for a cross.
b) The expression within the optional iff provides a conditional sampling guard for the cross coverage.

If the condition evaluates to false at any sampling point, the cross coverage is not sampled.
c) Cross coverage of a set of N coverage points is defined as the coverage of all combinations of all

bins associated with the N coverage points, i.e., the Cartesian product of the N sets of coverage point
bins. See also Example 180.

18.4.2 Examples

The covergroup cov in Example 180 specifies the cross coverage of two 4-bit variables, a and b. The PSS
processing tool implicitly creates a coverage point for each variable. Each coverage point has 16 bins,
specifically auto[0]..auto[15]. The cross of a and b (labeled aXb), therefore, has 256 cross products
and each cross product is a bin of aXb.

covergroup_cross ::= covercross_identifier : cross
 coverpoint_identifier { , coverpoint_identifier }
 [iff (expression)] cross_item_or_null
cross_item_or_null ::=
 { { covergroup_cross_body_item } }
 | ;
covergroup_cross_body_item ::=
 covergroup_option
 | covergroup_cross_binspec
covergroup_cross_binspec ::=
 bins_keyword identifier = covercross_identifier with (covergroup_expression) ;
covergroup_expression ::= expression

Copyright © 2023 Accellera. All rights reserved.
240

Portable Test and Stimulus Standard 2.1 — October 2023

Example 180—Specifying a cross

18.4.3 Defining cross bins

In addition to specifying the coverage points that are crossed, PSS allows the definition of cross coverage
bins. Cross coverage bins are specified to group together a set of cross products. A cross coverage bin
associates a name and a count with a set of cross products. The count of the bin is incremented any time any
of the cross products match; i.e., every coverage point in the cross matches its corresponding bin in the cross
product.

User-defined bins for cross coverage are defined using bins with expressions. The names of the coverpoints
used as elements of the cross coverage are used in the with expressions. User-defined cross bins and
automatically generated bins can coexist in the same cross. Automatically generated bins are retained for
those cross products that do not intersect cross products specified by any user-defined cross bin.

Consider Example 181, where two coverpoints are declared for fields a and b. A cross coverage is specified
between these two coverpoints. The small_a_b bin collects those bins where both a<=10 and b <= 10.

Example 181—Specifying cross bins

18.5 Specifying coverage options

Options control the behavior of the covergroup, coverpoint, and cross elements. Options can be specified
when creating an instance of a reusable covergroup, and are specific to that covergroup instance.

Specifying a value for the same option more than once within the same covergroup definition shall be an
error. Specifying a value for the option more than once when creating a covergroup instance shall be an
error.

struct s {
rand bit[4] a, b;

covergroup {
aXb : cross a, b;

} cov;
}

struct s {
rand bit[8] a, b;

covergroup {
coverpoint a {

bins low[] = [0..127];
bins high = [128..255];

}
coverpoint b {

bins two[] = b with (b%2 == 0);
}

X : cross a, b {
bins small_a_b = X with (a<=10 && b<=10);

}
} cov;

}

Copyright © 2023 Accellera. All rights reserved.
241

Portable Test and Stimulus Standard 2.1 — October 2023

Table 21 lists the instance-specific covergroup options and their description. Each instance of a reusable
covergroup type can initialize an instance-specific option to a different value.

Instance options can be specified at the covergroup level. Except for the weight, goal, comment, and
per_instance options (see Table 21), all other options set at the covergroup syntactic level act as a
default value for the corresponding option of all coverpoints and crosses in the covergroup. Individual
coverpoints and crosses can overwrite these defaults. When set at the covergroup level, the weight,
goal, comment, and per_instance options do not act as default values to the lower syntactic levels.

Table 21—Instance-specific covergroup options

Option name Default Description

weight=number 1 If set at the covergroup syntactic level, it specifies the
weight of this covergroup instance relative to all other
instances when computing overall instance coverage. If set
at the coverpoint (or cross) syntactic level, it specifies the
weight of a coverpoint (or cross) for computing the instance
coverage of the enclosing covergroup. The specified weight
shall be a non-negative integral value.

goal=number 100 Specifies the target goal for a covergroup instance or for a
coverpoint or cross. The specified value shall be a non-neg-
ative integral value.

name=string unique name Specifies a name for the covergroup instance. If unspeci-
fied, a unique name for each instance shall be automatically
generated by the tool.

comment=string "" A comment that appears with the covergroup instance or
with a coverpoint or cross of a covergroup instance. The
comment is saved in the coverage database and included in
the coverage report.

at_least=number 1 Minimum number of hits for each bin. A bin with a hit count
that is less than number is not considered covered. The spec-
ified value shall be a positive integral value.

detect_overlap=bool false When true, a warning is issued if there is an overlap between
the range list of two bins of a coverpoint.

auto_bin_max=number 64 Maximum number of automatically created bins when no
bins are explicitly defined for a coverpoint. The specified
value shall be a positive integral value.

per_instance=bool false Each instance contributes to the overall coverage informa-
tion for the covergroup type. When true, coverage informa-
tion for this covergroup instance shall be saved in the
coverage database and included in the coverage report.
When false, implementations are not required to save
instance-specific information.

Copyright © 2023 Accellera. All rights reserved.
242

Portable Test and Stimulus Standard 2.1 — October 2023

18.5.1 Examples

The instance-specific options mentioned in Table 21 can be set in the covergroup definition. Example 182
shows this, and how coverage options can be set on a specific coverpoint.

Example 182—Setting options

18.6 covergroup sampling

Coverage credit can be taken once execution of the action containing covergroup instance(s) is complete.
Thus, by default, all covergroup instances that are created as a result of a given action’s traversal are
sampled when that action’s execution completes. Table 22 summarizes when covergroups are sampled,
based on the context in which they are instantiated.

18.7 Per-type and per-instance coverage collection

By default, covergroups collect coverage on a per-type basis. This means that all coverage values sampled
by instances of a given covergroup type, where per_instance is false, are merged into a single
collection.

Per-instance coverage is collected when per_instance is true for a given covergroup instance and
when a contiguous path of named handles exists from the root component or root action to where new
instances of the containing type are created. If one of these conditions is not satisfied, per-type coverage is
collected for the covergroup instance.

Table 22—covergroup sampling

Instantiation context Sampling point

Flow objects Sampled when the outputting action completes traversal.

Resource objects Sampled before the first action referencing them begins traversal.

Action Sampled when the instantiating action completes traversal.

Data structures Sampled along with the context in which the data structure is instantiated, e.g., if a
data structure is instantiated in an action, the covergroup instantiated in the data
structure is sampled when the action completes traversal.

covergroup cs1 (bit[64] a_var, bit[64] b_var) {
option.per_instance = true;
option.comment = "This is CS1";

a : coverpoint a_var {
option.auto_bin_max = 128;

}

b : coverpoint b_var {
option.weight = 10;

}
}

Copyright © 2023 Accellera. All rights reserved.
243

Portable Test and Stimulus Standard 2.1 — October 2023

18.7.1 Per-instance coverage of flow and resource objects

Per-instance coverage of flow objects (buffer (see 13.1), stream (see 13.2), state (see 13.3)) and resource
objects (see 14.1)) is collected for each pool of that type.

In Example 183, there is one pool (pss_top.b1_p) of buffer type b1. When the PSS model runs,
coverage from all 10 executions of P_a and C_a is placed in the same coverage collection that is associated
with the pool through which P_a and C_a exchange the buffer object b1.

Example 183—Per-instance coverage of flow objects

18.7.2 Per-instance coverage in actions

Per-instance coverage for actions is enabled when per_instance is true for a covergroup instance and
when a contiguous path of named handles exists from the root action to the location where the covergroup
is instantiated.

In Example 184, a contiguous path of named handles exists from the root action to the covergroup instance
inside a1 (entry.a1.cg). Coverage data collected during traversals of action A are placed in a coverage
collection unique to this named path. Plus, four samples are placed in the coverage collection associated
with the instance path entry.a1.cg because the named action handle a1 is traversed four times.

enum mode_e { M0, M1, M2 }

buffer b1 {
rand mode_e mode;

covergroup {
option.per_instance = true;

coverpoint mode;
} cs;

}

component pss_top {
pool b1 b1_p;
bind b1_p *;

action P_a {
output b1 b1_out;

}

action C_a {
input b1 b1_in;

}

action entry {
activity {

repeat (10) {
do C_a;

}
}

}
}

Copyright © 2023 Accellera. All rights reserved.
244

Portable Test and Stimulus Standard 2.1 — October 2023

Also in Example 184, a contiguous path of named handles does not exist from the root action to the
covergroup instance inside the action traversal by type (do A). In this case, coverage data collected during
the 10 traversals of action A by type (do A) are placed in the per-type coverage collection associated with
covergroup type A::cg.

Example 184—Per-instance coverage in actions

enum mode_e { M0, M1, M2 }

component pss_top {

action A {
rand mode_e mode;

covergroup {
option.per_instance = true;

coverpoint mode;
} cg;

}

action entry {
A a1;
activity {

repeat (4) {
a1;

}
repeat (10) {

do A;
}

}
}

}

Copyright © 2023 Accellera. All rights reserved.
245

Portable Test and Stimulus Standard 2.1 — October 2023

19. Type inheritance, extension, and overrides

PSS supports the concepts of object-oriented inheritance and type extension to maximize reuse and
portability of the model. Type inheritance allows the declaration of model entities such as actions, objects,
components and struct types to be derived from a base type (or supertype), where the new derived type (or
subtype) includes all attributes and other members of the base type, and allows the declaration of the derived
type to add new members or mask the definition of existing members. Type extension allows the declaration
of additional fields in an existing type using a separate declaration. Type inheritance is described in 19.1,
and type extension is described in 19.2. Type overrides allow type-specific and instance-specific
replacement of the declared type of a field with a specified subtype, and are described in 19.5.

19.1 Type inheritance

For actions, components, structs, data flow and resource objects, the declaration may include an optional
super-spec qualifier to declare a base type of the same type category (action, component, struct, buffer,
stream, state, resource), from which the element is to be derived. The only exception is that data flow and
resource objects may inherit from an element of the same type category or from a struct.

A derived type includes all elements from the base type, and may declare new elements that may or may not
have the same name as a corresponding element in the base type. For fields declared in a derived type with
the same name as a field in the base type, the derived type’s field shadows (masks) the base type’s field, and
the base type’s field may be referenced as “super.<name>”. Certain unnamed elements, such as activities
and procedural exec blocks, may invoke the corresponding element(s) from the base type by the “super;”
statement.

The behavior of specific elements when declared in a derived type is shown in Table 23.

Copyright © 2023 Accellera. All rights reserved.
246

Portable Test and Stimulus Standard 2.1 — October 2023

Activities in derived actions shadow the activities from the base action type. However, the “super;”
statement may be used to traverse the base activity (or activities). See Example 92 in 12.6.

Procedural exec blocks defined in a derived type shadow same-kind exec block(s) defined in the base type.
The exec block in the derived type may include the “super;” statement, which will execute the contents of
the corresponding base-type exec block(s) at that point. See 21.1.4.1 and 21.1.4.2.

Target-template exec blocks defined in a derived type shadow same-kind exec blocks with the same target
language identifier in the base type. The “super;” statement shall not be allowed in a target-template exec
block.

Example 185 shows a simple case of declaring a component base_c, which contains an action declaration,
base_a. Derived component der_c inherits from base_c, so it is treated as having action base_a
already declared within it. Note that base_c and der_c are different component types. Action der_a
inherits from base_a, so it already includes random integer i and bit-vector b, as well as the unnamed
constraint limiting i to be less than 10 and constraint c forcing b > 7. Derived action der_a adds an
additional random integer, j, a new unnamed constraint that relates the values of i and j, and a new
constraint c that relates the values of b and j, shadowing constraint c from action base_a.

Table 23—Derived type element behaviors

Element kind In a component In an action In a struct, data flow or
resource object

activity n/a shadow, may call super; n/a

dynamic constraint n/a shadow (may access base
constraint as super.name)

shadow (may access base
constraint as super.name)

named static
constraint

n/a shadow shadow

unnamed static
constraint

n/a added added

field shadow (may access base
field as super.name)

shadow (may access base
field as super.name)

shadow (may access base
field as super.name)a

a If field is not a pool instance. Accessing the pool instance of a supertype component to do a bind in the subtype is
not allowed.

instance function shadow (may call base func-
tion as super.name(args))

n/a n/a

static function shadow n/a n/a

override declaration added added n/a

object pool bind added n/a n/a

procedural exec block shadow, may call super; shadow, may call super; shadow, may call super;

target-template exec
block

n/a shadow shadow

Copyright © 2023 Accellera. All rights reserved.
247

Portable Test and Stimulus Standard 2.1 — October 2023

Example 185—Declaring derived components and actions

When a pool bind statement (see 15.3) is used in a base component type, it may also apply to a derived type,
provided that any new component instances and actions in the derived type also match the path specification
in the bind statement and that the types of the object references match the pool type exactly.

In Example 186, the default bind statement in base_c binds the cpu_p pool to the actions act1_a and
act2_a defined therein. Since der_c is derived from base_c, it also inherits the bind statement, which
applies to all action definitions in der_c that match the path specification. In the context of der_c, the
default bind statement binds all three actions act1_a, act2_a and act3_a to the cpu_p pool.

Example 186—Default pool with inheritance

As mentioned above, a derived type inherits all members from the base type and may declare additional
elements specific to the derived type. When a named element (other than a function) is declared in the

component base_c {
 action base_a {
 rand int i;
 rand bit[31:0] b;
 constraint {i < 10;}
 constraint c {b > 7;}
 }
}

component der_c : base_c {
 action der_a : base_a {
 rand int j;
 constraint {j > 5 -> i < 5;}
 constraint c {j < 10 -> b < 128;}
 }
}

resource cpu_core_s {...
}

component base_c {
 pool[4] cpu_core_s cpu_p;
 bind cpu_p *;
 action act1_a {
 share cpu_core_s cpu_share;
 }
 action act2_a {
 lock cpu_core_s cpu_lock;
 }
}

component der_c : base_c {
 action act3_a {
 share cpu_core_s cpu_share;
 }
 ...
}

Copyright © 2023 Accellera. All rights reserved.
248

Portable Test and Stimulus Standard 2.1 — October 2023

derived type with the same name as an element in the base type, the derived type’s declaration shadows
(masks) the base type’s declaration (as with constraint c in Example 185).

When the shadowed element is a function, the function call is polymorphic, that is, the actual function called
depends on its context component. In Example 187, component der_c shadows the definition of function
foo() in component base_c. Action call_foo invokes the appropriate definition of foo() depending
on the type of its context component. Action test schedules call_foo in the context of a component of
type base_c, followed by call_foo in the context of der_c. Executing test will call the core library
target function message() to add the following messages to the execution log, at LOW verbosity:

base_c::foo
der_c::foo

Example 187—Polymorphic function calls

As discussed in 9.3, the qualified name of an action declared in a component is of the form 'component-
type::action-type'. In Example 188, the base component dma_base_c declares action xfer_a.
The derived component dma_der_c declares the compound action mult_xfer_a, which traverses the
xfer_a action. Since dma_der_c inherits the xfer_a action, the anonymous (by type) traversal in
mult_xfer_a correctly resolves to the xfer_a action declared in the base component. It is thus not
necessary to further qualify the type name xfer_a in the anonymous traversal in mult_xfer_a.

import std_pkg::*;

component base_c {
 target function void foo() {
 message(LOW, "base_c::foo");
 }

 action call_foo {
 exec body {
 comp.foo();
 }
 }
}

component der_c : base_c {
 function void foo() {
 message(LOW, "der_c::foo");
 }
};

component pss_top {
 base_c b;
 der_c d;
 action test {
 base_c::call_foo b_foo, d_foo;
 constraint {b_foo.comp == this.comp.b;
 d_foo.comp == this.comp.d;}
 activity {
 b_foo;
 d_foo;
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
249

Portable Test and Stimulus Standard 2.1 — October 2023

The component dma_test_c instantiates the derived component dma_der_c. The first traversal
statement in the activity is an anonymous traversal of the dma_der_c::mult_xfer_a action. The next
statement anonymously traverses the dma_base_c::xfer_a action. We can use the dma_base_c path
qualifier because the instantiated subcomponent of type dma_der_c is also considered a dma_base_c
component. It would be illegal to refer to dma_base_c::mult_xfer_a because mult_xfer_a is not
declared in dma_base_c. To promote reuse, the third anonymous traversal statement is preferred, referring
to dma_der_c::xfer_a, since xfer_a can be used without knowing whether it was declared in the
base component or the derived component. Note that, since there is only a single instance of the
dma_der_c component, the instance context of these traversals is the same.

Example 188—Derived type is also a base type

In Example 189, there are two instances of the dma_der_c component instantiated in dma_test_c. For
the first anonymous traversal of dma_base_c::xfer_a, either instance may be chosen as context for the
xfer_a action. In the second anonymous traversal, the comp attribute is constrained to specify that the
context component must be dma_test_c.dma1. As stated in 9.5, the static type of the comp attribute of
dma_der_c::xfer_a is actually dma_base_c, since that is its containing component type (See also
16.1.3).

Because comp is of type dma_base_c and not dma_der_c, it would be illegal to refer to fields of
dma_der_c as relative to comp, since these fields are not in dma_base_c. Rather, fields of
dma_der_c may be referred to relative to this.comp.dma1, which is the actual instance of
dma_der_c (which is also a dma_base_c) in which xfer_a will execute. Thus, based on the actual
instance of a context component, we can constrain the fields of xfer_a even though xfer_a may not
have visibility otherwise to the dma_der_c fields that control the constraints.

component dma_base_c {
 action xfer_a {
 ...
 }
}

component dma_der_c : dma_base_c {
 action mult_xfer_a {
 activity {
 repeat(3) {
 do xfer_a; // dma_base_c::xfer_a
 }
 }
 }
}

component dma_test_c {
 dma_der_c dma;

 action test_a {
 activity {
 do dma_der_c::mult_xfer_a;
 do dma_base_c::xfer_a;
 do dma_der_c::xfer_a; // dma_base_c::xfer_a
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
250

Portable Test and Stimulus Standard 2.1 — October 2023

Example 189—Use of comp and this.comp with inheritance

When declaring a new component, it shall be illegal to declare types that derive from types declared in an
existing component type unless the new component derives from the existing component.

Example 190 demonstrates why this kind of inheritance is problematic. Action new_a, derived from
existing_c::existing_a, inherits constraint con that constrains k based on the value of attribute i
of component existing_c. The comp field of action new_a is of type new_c and not existing_c,
and therefore does not have attribute i. For that reason, the action new_a is not able to evaluate constraint
con, Thus, modeling with this kind of inheritance cannot work.

component dma_base_c {
 action xfer_a {
 rand int i;
 ...
 }
}

component dma_der_c : dma_base_c {
 int j;
 action mult_xfer_a {
 activity {
 repeat(3) {
 do xfer_a; // dma_base_c::xfer_a
 }
 }
 }
}

component dma_test_c {
 dma_der_c dma1, dma2;

 action test_a {
 activity {
 do dma_base_c::xfer_a;
 do dma_der_c::xfer_a with {comp == this.comp.dma1;
 (this.comp.dma1.j < 8) -> i>4;};
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
251

Portable Test and Stimulus Standard 2.1 — October 2023

Example 190—Illegal inheritance declaration

19.2 Type extension

Type extensions in PSS enable the decomposition of model code so as to maximize reuse and portability.
Model entities, actions, objects, components, and data types, may have a number of properties that are
logically independent. Moreover, distinct concerns with respect to the same entities often need to be
developed independently. Later, the relevant definitions need to be integrated, or woven into one model, for
the purpose of generating tests.

Some typical examples of concerns that cut across multiple model entities are:
— Implementation of actions and objects for, or in the context of, some specific target platform/lan-

guage.
— Model configuration of generic definitions for a specific device under test (DUT) / environment

configuration, affecting components and data types that are declared and instantiated elsewhere.
— Definition of functional elements of a system that introduce new properties to common objects,

which define their inputs and outputs.

Such crosscutting concerns can be decoupled from one another by using type extensions and then
encapsulated as packages (see 20.1).

Composite and enumeration types in PSS are extensible. They are declared once, along with their initial
definition, and may later be extended any number of times, with new body items being introduced into their
scope. Items introduced in extensions may be of the same kinds as those introduced in the initial definition.
Extension statements may appear in package and component definitions.

An extension statement explicitly specifies the kind of type being extended, which must agree with the
specific type named (see Syntax 67).

component existing_c {
 int i;
 exec init {i = 1;}
 action existing_a {
 rand int in [0..4] k;
 constraint con {k > comp.i;};
 }
}

component new_c {
 action new_a : existing_c::existing_a {} // Illegal
}

component pss_top {
 new_c c;
 action entry_a {
 activity {
 do new_c::new_a;
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
252

Portable Test and Stimulus Standard 2.1 — October 2023

The overall definition of any given type in a model is the sum total of its definition statements—the initial
one along with extensions in active packages (see 20.1). The semantics of extensions are those of weaving
all those statements into a single definition.

Every type extension, regardless of whether it extends a package-level type or a component-level inner type,
is associated with the nearest package that lexically encloses its definition (an explicit package if enclosed
in a package_declaration statement or otherwise the unnamed global package (see 20.1)).

Members introduced in an extension of a type can be referenced throughout the package in which they were
introduced. As a corollary, members introduced in extensions associated with the global package can be
referenced everywhere. Members introduced in extensions cannot be referenced outside the scope of the
package in which the extension is defined unless the reference occurs in a lexical scope that wildcard-
imports that package.

These rules concern reference of static members as well as non-static members, and apply regardless of
whether fully-qualified static paths are used (for static members).

19.2.1 Syntax

Syntax 67—type extension

19.2.2 Examples

Examples of type extension are shown in Example 191.

Example 191—Type extension

extend_stmt ::=
 extend action type_identifier { { action_body_item } }
 | extend component type_identifier { { component_body_item } }
 | extend struct_kind type_identifier { { struct_body_item } }
 | extend enum type_identifier { [enum_item { , enum_item }] }

enum config_modes_e {UNKNOWN, MODE_A=10, MODE_B=20};

component uart_c {
action configure {

rand config_modes_e mode;
constraint {mode != UNKNOWN;}

}
}

package additional_config_pkg {
extend enum config_modes_e {MODE_C=30, MODE_D=50}

extend action uart_c::configure {
constraint {mode != MODE_D;}

}
}

Copyright © 2023 Accellera. All rights reserved.
253

Portable Test and Stimulus Standard 2.1 — October 2023

19.2.3 Composite type extensions

Any kind of member declared in the context of the initial definition of a composite type can be declared in
the context of an extension, as per its entity category (action, component, buffer, stream, state, resource,
struct, or enum).

Named type members of any kind, fields in particular, may be introduced in the context of a type extension.
Names of fields introduced in an extension shall not conflict with those declared in the initial definition of
the type. They shall also be unique in the scope of their type within the package in which they are declared.
However, field names do not have to be unique across extensions of the same type in different packages.

Fields are always accessible within the scope of the package in which they are declared, shadowing
(masking) fields with the same name declared in other packages. Members declared in a different package
are accessible if the declaring package is wildcard-imported into the scope of the accessing package or
component, given that the reference is unique. If the same field name or type name is wildcard-imported
from two or more separate packages, it shall be an error to reference it.

In Example 192, an action type is initially defined in the context of a component and later extended in a
separate package. Ultimately the action type is used in a compound action of a parent component. The
component explicitly wildcard-imports the package with the extension and can therefore constrain the
attribute introduced in the extension.

Copyright © 2023 Accellera. All rights reserved.
254

Portable Test and Stimulus Standard 2.1 — October 2023

Example 192—Action type extension

19.2.4 Enumeration type extensions

Enumeration types can be extended in one or more package contexts, introducing new enum items to the
domain of all variables of that type. Each enum item in an enum type shall be associated with an integer
value that is unique across the initial definition and all the extensions of the type. Enum item values are
assigned according to the same rules they would be if all the enum items appeared in the initial definition,
according to the order of package evaluations. An explicit conflicting value assignment shall be illegal.

component mem_ops_c {
enum mem_block_tag_e {SYS_MEM, A_MEM, B_MEM, DDR};

buffer mem_buff_s {
rand mem_block_tag_e mem_block;

}

pool mem_buff_s mem;
bind mem *;

action memcpy {
input mem_buff_s src_buff;
output mem_buff_s dst_buff;

}
}

package soc_config_pkg {
extend action mem_ops_c::memcpy {

rand int in [1, 2, 4, 8] ta_width; // introducing new attribute

constraint { // layering additional constraint
src_buff.mem_block in [SYS_MEM, A_MEM, DDR];
dst_buff.mem_block in [SYS_MEM, A_MEM, DDR];
ta_width < 4 -> dst_buff.mem_block != A_MEM;

}
}

}

component pss_top {
import soc_config_pkg::*;// explicitly importing the package grants

 // access to types and type members
mem_ops_c mem_ops;

action test {
mem_ops_c::memcpy cpy1, cpy2;
constraint cpy1.ta_width == cpy2.ta_width;// constraining an

// attribute introduced in an extension
activity {

repeat (3) {
parallel { cpy1; cpy2; };

}
}

}
}

Copyright © 2023 Accellera. All rights reserved.
255

Portable Test and Stimulus Standard 2.1 — October 2023

An enum item introduced in an extension can be referenced within the package in which the extension is
defined. Outside that package, enum items can be referenced inside a lexical scope that wildcard-imports
the respective package.

In Example 193, an enum type is initially declared empty and later extended in two independent packages.
Ultimately items are referenced from a component that wildcard-imports both packages.

Example 193—Enum type extensions

19.2.5 Ordering of type extensions

Multiple type extensions of the same type can be coded independently, and be integrated and woven into a
single stimulus model, without interfering with or affecting the operation of one another. Methodology
should encourage making no assumptions on their relative order.

package mem_defs_pkg { // reusable definitions
enum mem_block_tag_e {}; // initially empty

buffer mem_buff_s {
rand mem_block_tag_e mem_block;

}
}
package AB_subsystem_pkg {

import mem_defs_pkg ::*;

extend enum mem_block_tag_e {A_MEM, B_MEM};
}
package soc_config_pkg {

import mem_defs_pkg ::*;

extend enum mem_block_tag_e {SYS_MEM, DDR};
}
component dma_c {
 import mem_defs_pkg::*;
 action mem2mem_xfer {
 input mem_buff_s src_buff;
 output mem_buff_s dst_buff;
 }
}
extend component dma_c {

import AB_subsystem_pkg::*; // wildcard-importing the package
import soc_config_pkg::*; // grants access to enum items

action dma_test {

activity {
do mem2mem_xfer with {

src_buff.mem_block == A_MEM;
dst_buff.mem_block == DDR;

};
}

}
}

Copyright © 2023 Accellera. All rights reserved.
256

Portable Test and Stimulus Standard 2.1 — October 2023

From a semantics point of view, order would be visible in the following cases:
— Invocation order of exec blocks of the same kind
— Multiple default value constraints, default disable constraints, and type override declarations

occurring in a scope of the same type
— Integer values associated with enum items that do not explicitly have a value assignment

The initial definition always comes first in ordering of members. The order of extensions conforms to the
order in which packages are processed by a PSS implementation.

NOTE—This standard does not define specific ways in which a user can control the package processing order.

19.2.6 Template type extensions

Template types, as all other user-defined types, may be extended using the extend statement.

Template types may be extended in two ways:
a) Extending the generic template type. The extension will apply to all instances of the template type.
b) Extending the template type instance. The extension will apply to all instances of the template type

that are instantiated with the same set of parameter values.

NOTE—Partial template specialization is not supported.

19.2.6.1 Examples

Examples of extending the generic template type and the template type instance are shown in Example 194.

Copyright © 2023 Accellera. All rights reserved.
257

Portable Test and Stimulus Standard 2.1 — October 2023

Example 194—Template type extension

In the example above, the generic template type extension is used to add attr_all to all instances of
domain_s. The template type instance extension is used to add attr_2_7 to the specific <2,7> instance
of domain_s.

19.3 Combining inheritance and extension

It is important to understand that inheritance creates a new type derived from the base type, while extension
modifies the definition of an existing type. Once a derived type is created by inheriting from a base type, the
derived type may be extended just as any other type. In this case, the extensions to the derived type do not
affect the base type. However, since a derived type inherits from its base type, any extensions to the base
type will also affect the derived type. If multiple types are derived from the same base type, extensions to the
base type will affect all derivations thereof.

Extending types in a component scope is only allowed for types that are defined in that scope. It shall be
illegal to extend a type defined in a base component type from a derived or unrelated component type.

struct domain_s <int LB = 4, int UB = 7> {
 rand int attr;
 constraint attr >= LB && attr <= UB;
}

struct container_s {
 domain_s<2, 7> domA; // specialized with LB = 2, UB = 7
 domain_s<2, 8> domB; // specialized with LB = 2, UB = 8
}

extend struct domain_s {
 rand int attr_all; // container_s::domA and container_s::domB
 // will have attr_all
 constraint attr_all > LB && attr_all < UB;
}

extend struct domain_s<2> { // extend instance specialized with
 // LB = 2, UB = 7 (default)
 rand int attr_2_7; // container_t::domA will have attr_2_7
 constraint attr_2_7 > LB && attr_2_7 < UB; // parameters accessible in
 // template instance extension
}

struct sub_domain_s<int MIN, int MAX> : domain_s<MIN, MAX> {
 rand int domain_size;
 constraint domain_size == MAX - MIN + 1;

 dynamic constraint half_max_domain {
 attr >= LB && attr <= UB/2; // Error - LB and UB parameters not accessible
 // in inherited struct
 }
}

Copyright © 2023 Accellera. All rights reserved.
258

Portable Test and Stimulus Standard 2.1 — October 2023

In Example 195, by extending action der_a in component der_c, we add a new constraint on the j field.
This constraint is added to the existing constraints in the initial definition of der_a. By extending action
base_a in the base_c extension, we add a new constraint, i > 2, which is then inherited by the derived
action, der_a. The result is that j is constrained to be greater than 7, implying that i must be less than 5,
and the additional constraint requires that i must also be greater than 2.

The attempt to extend action base_a in component der_c is illegal, since base_a was originally
declared in base_c, which is a different type from der_c.

Example 195—Combining inheritance and extension

In Example 196, in the pss_top root action, the anonymous traversal of der_c::base_a will use the
base_a action as extended in base_c in the global scope. Thus, the constraints i > 2 and i < 10 will
apply. Its execution context will be either instance c1 or c2 of der_c.

The anonymous traversal of der_c::der_a similarly will use the extended definition of der_a, but the
with constraint forces the execution context to be instance c1. Note that the constraint c in
der_c::der_a masks the original constraint c in base_c::base_a, so the resolved set of applicable
constraints will be:
— j > 7
— i < 5 (due to constraint j > 5 -> i < 5)
— j < 10 -> b < 128

component base_c {
 action base_a {
 rand int i;
 rand bit[31:0] b;
 constraint { i < 10; }
 constraint c { b > 7; }
 }
}

component der_c : base_c {
 action der_a : base_a {
 rand int j;
 constraint { j > 5 -> i < 5; }
 constraint c { j < 10 -> b < 128; }
 }

 extend action der_a {
 constraint { j > 7; }
 }

 extend action base_a {...} // ILLEGAL
}

extend component base_c {
 extend action base_a {
 constraint { i > 2; }
 }
}

Copyright © 2023 Accellera. All rights reserved.
259

Portable Test and Stimulus Standard 2.1 — October 2023

Example 196—Inheritance and extension of constraints

19.4 Access protection

By default, all data attributes of components, actions, and structs have public accessibility. The default
accessibility can be modified for a single data attribute by prefixing the attribute declaration with the desired
accessibility. The default accessibility can be modified for all attributes going forward by specifying a
block-access modifier.

The following also apply:
a) A public attribute is accessible from any element in the model.
b) A private attribute is accessible only from the element in which the attribute is declared.
c) A protected attribute is accessible only from the element in which the attribute is declared, from

sub-elements that inherit from it, and from their extensions.

component base_c {
 action base_a {
 rand int i;
 rand bit[31:0] b;
 constraint { i < 10; }
 constraint c { b > 7; }
 }
}

component der_c : base_c {
 action der_a : base_a {
 rand int j;
 constraint { j > 5 -> i < 5; }
 constraint c { j < 10 -> b < 128; }
 }
}

extend component der_c {
 extend action der_a {
 constraint { j > 7; }
 }
}

extend component base_c {
 extend action base_a {
 constraint { i > 2; }
 }
}

component pss_top {
 der_c c1, c2;

 action root {
 activity {
 do der_c::base_a;
 do der_c::der_a with {comp == this.comp.c1; };
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
260

Portable Test and Stimulus Standard 2.1 — October 2023

Example 197 shows using a per-attribute access modifier to change the accessibility of the random attribute
b. Fields a and c are publicly accessible.

Example 197—Per-attribute access modifier

Example 198 shows using block access modifiers to set the accessibility of a group of attributes. Fields w
and x are private due to the private: directive. Field y is public because its access modifier is explicitly
specified. Field z is private, since the private: block access modifier is in effect. Field s is public, since the
preceding public: directive has changed the default accessibility back to public.

Example 198—Block access modifier

19.5 Overriding types

The override block (see Syntax 68) allows type- and instance-specific replacement of the declared type of a
field with some specified subtype.

Overrides apply to action fields, struct attribute fields, and component instance fields. In the presence of
override blocks in the model, the actual type that is instantiated under a field is determined according to the
following rules:

a) Walking from the field up the hierarchy from the contained entity to the containing entity, the appli-
cable override directive is the one highest up in the containment tree.

b) Within the same container, instance override takes precedence over type override.
c) For the same container and kind, an override introduced later in the code takes precedence.

Overrides do not apply to reference fields, namely fields with the modifiers input, output, lock, and share.
Component-type overrides under actions as well as action-type overrides under components are not
applicable to any fields; this shall be an error.

struct S1 {
 rand int a; // public accessibility (default)
 private rand int b; // private accessibility
 rand int c; // public accessibility (default)
}

struct S2 {
 private:
 rand int w; // private accessibility
 rand int x; // private accessibility
 public rand int y; // public accessibility
 rand int z; // private accessibility

 public:
 rand int s; // public accessibility
}

Copyright © 2023 Accellera. All rights reserved.
261

Portable Test and Stimulus Standard 2.1 — October 2023

19.5.1 Syntax

Syntax 68—override declaration

19.5.2 Examples

Example 199 combines type- and instance-specific overrides with type inheritance. Action reg2axi_top
specifies that all axi_write_action instances shall be instances of axi_write_action_x. The
specific instance xlator.axi_action shall be an instance of axi_write_action_x2. Action
reg2axi_top_x specifies that all instances of axi_write_action shall be instances of
axi_write_action_x4, which supersedes the override in reg2axi_top. In addition, action
reg2axi_top_x specifies that the specific instance xlator.axi_action shall be an instance of
axi_write_action_x3.

override_declaration ::= override { { override_stmt } }
override_stmt ::=
 type_override
 | instance_override
 | override_compile_if
 | stmt_terminator
type_override ::= type type_identifier with type_identifier ;
instance_override ::= instance hierarchical_id with type_identifier ;

Copyright © 2023 Accellera. All rights reserved.
262

Portable Test and Stimulus Standard 2.1 — October 2023

Example 199—Type inheritance and overrides

action axi_write_action { ... };

action xlator_action {
 axi_write_action axi_action;
 axi_write_action other_axi_action;
 activity {
 axi_action; // overridden by instance
 other_axi_action; // overridden by type
 }
};

action axi_write_action_x : axi_write_action { ... };

action axi_write_action_x2 : axi_write_action_x { ... };

action axi_write_action_x3 : axi_write_action_x { ... };

action axi_write_action_x4 : axi_write_action_x { ... };

action reg2axi_top {
 override {
 type axi_write_action with axi_write_action_x;
 instance xlator.axi_action with axi_write_action_x2;
 }

 xlator_action xlator;
 activity {
 repeat (10) {
 xlator; // override applies equally to all 10 traversals
 }
 }
};
action reg2axi_top_x : reg2axi_top {
 override {
 type axi_write_action with axi_write_action_x4;
 instance xlator.axi_action with axi_write_action_x3;
 }
};

Copyright © 2023 Accellera. All rights reserved.
263

Portable Test and Stimulus Standard 2.1 — October 2023

20. Source organization and processing

A PSS model is captured in one or more source units. Source units contain declarations of PSS elements.
Name resolution rules for types are specified with respect to source units. The bounds of a source unit are
specified either by a single file or by a collection of files identified to the PSS processing tool as being part
of a single source unit. The files comprising a multi-file source unit could be identified to the PSS
processing tool in several different ways. For example, the PSS processing tool could be instructed to
consider all PSS source files in a given directory to be a single source unit. The PSS processing tool could be
instructed to consider all PSS source files listed in a filelist to be a single source unit. Tool implementations
shall support both single-file and multi-file source unit processing modes, but this standard does not dictate
the mechanism by which source units shall be specified to the PSS processing tool.

A lexical scope must be fully contained within a single source file, independent of whether source files are
processed as single- or multi-file source units.

The processing order of a set of source units is user-specified to the PSS processing tool. This standard does
not dictate a specific processing order for files within a multi-file source unit, but tools may provide users
with means to control it.

20.1 Packages

Packages are a way to group, encapsulate, and identify sets of related definitions, namely type declarations
and type extensions. In a verification project, some definitions may be required for the purpose of generating
certain tests, while others need to be used for different tests. Moreover, extensions to the same types may be
inconsistent with one another, e.g., by introducing contradicting constraints or specifying different mappings
to the target platform. By enclosing these definitions in packages, they may coexist and be managed more
easily.

Packages also constitute namespaces for the types, functions, and constants declared in their scope. From a
namespace point of view, packages and components have the same meaning and use (see also 9.3).
However, in contrast to components, packages cannot be instantiated, and cannot contain attributes, sub-
component instances, or concrete action definitions.

Type declarations, functions, and constants declared under the scope of a package declaration statement are
members of that package. Package members may be referenced from outside the package using a qualified
reference or made visible by importing them into the referencing scope (see 20.1.3).

Definition statements that do not occur inside the lexical scope of a package declaration are implicitly
associated with the unnamed global package. Elements in the unnamed global package are visible to all
user-defined namespaces without the need for an import statement.

Tools may provide means to control and query which packages are active in the generation of a given test.
Tools may also provide ways to locate source files of a given package in the file system. However, these
means are not covered herein.

Copyright © 2023 Accellera. All rights reserved.
264

Portable Test and Stimulus Standard 2.1 — October 2023

20.1.1 Package declarations

20.1.1.1 Syntax

Syntax 69—package declaration

The following also apply:
a) Multiple package statements can apply to the same package name. The package contains the mem-

bers and type extensions declared in all package scopes with the same name.
b) In a const_field_declaration, the static keyword is optional, but the field is a static constant even if

the static keyword is not used.

20.1.1.2 Examples

For an example of package usage, see 21.2.6.

20.1.2 Nested packages

A package may be nested inside another package. There are two way to declare a nested package.

package_declaration ::= package package_id_path { { package_body_item } }
package_id_path ::= package_identifier { :: package_identifier }
package_identifier ::= identifier
package_body_item ::=
 abstract_action_declaration
 | struct_declaration
 | enum_declaration
 | covergroup_declaration
 | function_decl
 | import_class_decl
 | procedural_function
 | import_function
 | target_template_function
 | export_action
 | typedef_declaration
 | import_stmt
 | extend_stmt
 | const_field_declaration
 | component_declaration
 | package_declaration
 | compile_assert_stmt
 | package_body_compile_if
 | stmt_terminator
const_field_declaration ::= [static] const data_declaration

Copyright © 2023 Accellera. All rights reserved.
265

Portable Test and Stimulus Standard 2.1 — October 2023

One way is to include a package declaration inside the outer package declaration, as shown in the following
example:

Example 200—Hierarchical declaration of nested package

In the example above, the fully-qualified type name of the struct internal_impl_s is
my_lib::impl::internal_impl_s.

Nested packages can also be specified with double-colon-separated package identifier paths. In the example
below, the fully-qualified type name of the struct internal_impl_s is also
my_lib::impl::internal_impl_s.

Example 201—Direct declaration of nested package

Declaring a package inside another is equivalent to directly specifying a hierarchical name for a package
namespace

The declaration order of package namespaces is not significant. So, for example, it is not necessary to
declare an outer namespace prior to declaring an inner namespace. In the example below, two structs are
declared. my_lib::impl::internal_impl_s is declared first, while my_lib::public_s is
declared second.

Example 202—Declaration of nested package before outer package

20.1.3 Referencing package members

There are three ways to reference package members from outside the scope of their declaring package:
qualified reference, explicit import, and wildcard import.

One way to use a declaration from a package is to reference it explicitly using the scope resolution operator
::. This is called a qualified reference. Example:

my_lib::public_s my_struct;

package my_lib {
 package impl {
 struct internal_impl_s {}
 }
}

package my_lib::impl {
 struct internal_impl_s {}
 }

package my_lib::impl {
struct internal_impl_s {}

}

package my_lib {
struct public_s {}

}

Copyright © 2023 Accellera. All rights reserved.
266

Portable Test and Stimulus Standard 2.1 — October 2023

An alternate method for referencing package declarations is via the import statement. Importing an
identifier into a package or component makes that identifier visible within that lexical scope without
requiring the scope resolution operator. An import statement is a name resolution directive, and does not
introduce symbol declarations or symbol aliases into the namespace in which it appears.

Two forms of the import statement are provided: explicit import and wildcard import. An explicit import
only imports the symbols specifically referenced by the import. Example:

import my_lib::public_s;
public_s my_struct;

It shall be illegal to explicitly import an identifier from a package if the same name is already declared in the
importing namespace or to explicitly import the same identifier from two different packages.

A wildcard import allows all identifiers declared within a package to be imported into a lexical scope,
provided the identifier is not otherwise defined anywhere in the importing component or package. A
wildcard import also allows access from the lexical scope to members declared in type extensions found in
the imported package. Note that type extensions are unnamed and therefore cannot be explicitly imported.

A wildcard import is of the following form:

import my_lib::*;
public_s my_struct;

A local declaration of an identifier takes precedence over a wildcard import of the same identifier. An
explicit import of an identifier takes precedence over a wildcard import of the same identifier from a
different package. If the same name is declared in two wildcard-imported packages, neither is imported, a
qualified reference must be used.

import specifications may appear in package and component declaration statements and in component
extension statements, but shall come first in those statements. The scope of an import statement is limited to
the declaration statement or extension statement in which it appears.

Elements in the unnamed global package are visible to all user-defined namespaces without the need for an
explicit import statement. To explicitly refer to a type declared in the unnamed global package, prefix the
type name with “::”.

import statements are not transitive. If package B imports package A, package B does not have unqualified
access to contents declared in packages that A may have imported. Package B must import those packages
directly in order to have unqualified access to contents declared within them.

20.1.3.1 Syntax

Syntax 70—import statement

Note: Package aliases are described in 20.1.4.

import_stmt ::= import package_import_pattern ;
package_import_pattern ::= type_identifier [package_import_qualifier]
package_import_qualifier ::= package_import_wildcard | package_import_alias
package_import_wildcard ::= :: *
package_import_alias ::= as package_identifier

Copyright © 2023 Accellera. All rights reserved.
267

Portable Test and Stimulus Standard 2.1 — October 2023

Importing content from a package namespace using a wildcard only imports content from that exact
namespace, and does not import content from nested namespaces.

Note that using a wildcard import on an outer package namespace, as shown with p1::* in the example
below, allows inner package namespaces to be located without specifying the fully-qualified name of the
namespace. In this example, struct p1::p2::u can be referenced as p2::u because the elements of p1
are imported with a wildcard import.

Example 203—Importing the name of a nested package

20.1.4 Package aliases

The use of nested namespaces benefits from the ability to define a named alias for a given namespace. This
is used when it is necessary to disambiguate between content declared in different namespaces and it is
undesirable to use the fully-qualified name of the namespace. The syntax for declaring a package alias is
shown in Syntax 70.

A namespace alias is only visible in the lexical scope (e.g., a package declaration statement) in which it
appears. It is a name resolution shortcut, and does not introduce a new entity into the scope in which it is
specified.

In the example below, this means that p1 and p2 are not visible in the scope of any other declaration
statement of consumer_pkg. p1 and p2 may not be referenced from outside the package (e.g., as
consumer_pkg::p1). Wildcard-importing consumer_pkg into another package namespace does not
make symbols p1 and p2 visible in that namespace.

package p1 {
struct s { }
package p2 {

struct u { }
}

}

struct t { }
struct s { }

package top {
import p1::*;
struct my_s {

s v1; // Resolves to p1::s
::s v2; // Explicit reference to ::s
t v3; // Resolves to ::t
p2::u v4; // Resolves to p1::p2::u

}
}

Copyright © 2023 Accellera. All rights reserved.
268

Portable Test and Stimulus Standard 2.1 — October 2023

Example 204—Package alias

A package alias shall not have the same name as a package name added to the same namespace in previous
or current source units. However, it shall be legal to add a package name with the same name as the package
alias in subsequent source units. In addition, two package aliases defined in the same lexical scope shall not
have the same name.

Example 205—Illegal package alias declarations

20.2 Declaration and reference ordering

Elements may be referenced after their declaration, within the same source unit or in a subsequent source
unit. PSS also enables referencing most elements prior to their declaration within the same source unit, but
places stronger ordering requirements on some elements. The following apply:

a) A variable declared and referenced within a procedural block or an activity block may only be refer-
enced after its declaration.

b) A constant or enum item may be referenced in the initialization assignment expression of another
constant only after its declaration.

c) A constant declared within a type may reference type-level and package-level constants in its initial-
ization assignment expression. A package-level constant may only reference other package-level
constants in its initialization assignment expression.

package pkg1::a::b::c {
struct my_s {}

}

package pkg2::d::e::f {
struct my_s {}

}

package consumer_pkg {
import pkg1::a::b::c as p1;
import pkg2::d::e::f as p2;
struct s {

p1::my_s v1_1; // Refers to pkg1::a::b::c::my_s
pkg1::a::b::c::my_s v1_2; // v1_1 and v1_2 have the same type
p2::my_s v2; // Refers to pkg2::d::e::f::my_s

}
}

package P {
 package foo {}
}

package P {
 package bar {}
 import bar as foo; // Error: P already has a package named 'foo'
 import foo as my_alias;
 import bar as my_alias; // Error: cannot define two aliases named
 // 'my_alias' in the same scope
}

Copyright © 2023 Accellera. All rights reserved.
269

Portable Test and Stimulus Standard 2.1 — October 2023

20.2.1 Examples

In the example below, file1.pss (the first source unit) declares a component named lib_base_c.
file2.pss (the second source unit) declares a type my_base_c that inherits from lib_base_c, so
file1.pss must be processed before file2.pss. However, within file2.pss, the declaration of
my_a_c that refers to my_base_c as a supertype may be placed either before or after the declaration of
my_base_c.

Example 206—Reference to a previous source unit

In the example below, action pss_top::entry declares a field named val that is referenced in the
constraint val_c. Field val may be declared before or after the constraint that references it.

Example 207—Reference to a later-declared action field

In the example below, a local variable is declared within an exec block. As per requirement a) above, the
variable val may only be referenced after it is declared.

Example 208—Reference to local variable after declaration

In the example below, constants are declared and referenced in initialization expressions of other constants.
As per requirement b) above, a constant must be declared prior to its reference in an initialization expression
of a constant or in a type-width expression. Consequently, it is an error to reference the yet undeclared
constant C in the initialization expression for A. It is legal to reference the previously declared constant A in
the initialization expression for B.

// Source Unit 1 (file1.pss)
component lib_base_c { /* ... */ }

// Source Unit 2 (file2.pss)
component my_a_c : my_base_c { /* ... */ }

component my_base_c : lib_base_c { /* ... */ }

component pss_top {
 action entry {
 constraint val_c {
 val < 10;
 }

 rand bit[4] val;
 }
}

function int get_val();

component pss_top {
 exec init_up {
 int val;
 val = get_val();
 }
}

Copyright © 2023 Accellera. All rights reserved.
270

Portable Test and Stimulus Standard 2.1 — October 2023

Example 209—Initialization of constants

20.3 Name resolution

For the purpose of the following description, the term namespace refers to either a package or a type (e.g.,
component, struct) under which static members (types, static constants, static functions, and enum items)
may be declared.

The members of a package namespace include the members declared in the union of all the package
definition statements of that package (see 20.1.1.1). The visible members of a type namespace include the
members declared in the union of the type’s initial definition and all visible extensions of the type (see 19.2),

Members of PSS namespaces shall have unique names in the context of their namespace, but members may
have the same name if declared under different namespaces.

Types can be referenced in different contexts, such as declaring a variable, extending a type, or inheriting
from a type. In all cases, a qualified name of the type can be used, using the scope operator ::.

Constants, static functions, and enum items can be referenced in expression contexts. In these cases too, a
qualified name can be used, using the scope operator.

Informally, unqualified entity names can be used in the following cases:
— when referencing an entity that was declared in the same namespace or in an enclosing namespace.
— when referencing an entity that was declared in a package imported into a logical scope enclosing

the reference.

Precedence is given to the current namespace scope; explicit qualification can be used to override the
precedence.

Formally, unqualified names are resolved using the following process, starting with step a, continuing with
step b, and then step c, in the absence of resolution in previous steps:

a) If the reference occurs within an expression whose expected type is an enumeration type (see 8.4.3
for definition of expected type):
1) Search enum items declared in the expected type’s initial definition.
2) Search enum items declared in the expected type’s extensions that are defined under the current

package or one of its containing packages (see 19.2), or in the expected type’s extensions that
are within a package wildcard-imported into a lexical scope enclosing the reference.

b) If the reference occurs within the definition of a type:
1) Search members of the type declared in its initial definition.
2) Search members of the type declared in its extensions that are defined under the current pack-

age or one of its containing packages (see 19.2), or in its extensions that are within a package
wildcard-imported into a lexical scope enclosing the reference.

3) If the type inherits from a supertype, search members declared in the supertype using the pro-
cess described in steps 1 and 2. Repeat for all supertypes in the inheritance hierarchy.

package my {
 const int A = C /* Error: C is not yet declared */;
 const int B = A + 2;
 const int C = 3;
}

Copyright © 2023 Accellera. All rights reserved.
271

Portable Test and Stimulus Standard 2.1 — October 2023

4) If the scope is a component initial definition or extension:
i) Search package members explicitly imported into the lexical scope of the initial definition

or extension, respectively.
ii) Search members of packages wildcard-imported into the lexical scope of the initial defini-

tion or extension, respectively.
5) If the type is an inner type (e.g., an action declared inside a component), search members

declared in the outer type using the process described in steps 1 through 4 above.
c) Search package namespaces, starting with the package namespace of the immediate lexical scope

and working outward along the package hierarchy. At each level, do the following:
1) Search package members declared under all package_declarations of the same package.
2) If the reference is enclosed in a lexical package scope corresponding to the namespace being

searched:
i) If the package member being searched for is itself a package, search for a package alias

name defined in the lexical scope of the corresponding package_declaration statement.
ii) Search package members explicitly imported into the lexical scope.of the corresponding

package_declaration statement.
iii) Search members of packages wildcard-imported into the lexical scope.of the correspond-

ing package_declaration statement.

A qualified name is composed of double-colon-separated elements. Qualified name elements are resolved by
first applying the same process for unqualified names described above on the first element of the static path.
Having resolved the first element to a certain package/type, the rest of the static path is used to access down
from it.

20.3.1 Name resolution examples

In Example 210, s is declared in three places: imported package P1, encapsulating package P2, and nested
component C1. The s referenced in nested component C1 is resolved to the s locally defined in nested
component C1. Using qualifiers, P1::s would be used to resolve to s in imported package P1, and P2::s
would be used to resolve to s in encapsulating package P2.

Example 210—Name resolution to declaration in nested namespace

package P1 {
 struct s {};
};

package P2 {
 struct s {};

 component C1 {
 import P1::*;
 struct s {};
 s f;
 };
};

Copyright © 2023 Accellera. All rights reserved.
272

Portable Test and Stimulus Standard 2.1 — October 2023

In Example 211, s is declared in two places: imported package P1 and encapsulating package P2. The s
referenced in nested component C1 is resolved to the s defined in imported package P1. Using qualifiers,
P2::s would be used to resolve to s in encapsulating package P2.

Example 211—Name resolution to declaration in imported package in nested namespace

In Example 212, s is declared in two places: imported package P1 and encapsulating package P2. The s
referenced in nested component C1 is resolved to the s defined in encapsulating package P2. Using
qualifiers, P1::s would be used to resolve to s in package P1 imported in encapsulating package P2.

Example 212—Name resolution to declaration in encapsulating package

In Example 213, s is declared in one place: imported package P1. The s referenced in nested component C1
is resolved to the s defined in package P1 imported inside encapsulating package P2.

Example 213—Name resolution to declaration in imported package in encapsulating package

package P1 {
 struct s {};
};

package P2 {
 struct s {};

 component C1 {
 import P1::*;
 s f;
 };
};

package P1 {
 struct s {};
};

package P2 {
 import P1::*;
 struct s {};

 component C1 {
 s f;
 };
};

package P1 {
 struct s {};
};

package P2 {
 import P1::*;

 component C1 {
 s f;
 };
}

Copyright © 2023 Accellera. All rights reserved.
273

Portable Test and Stimulus Standard 2.1 — October 2023

Example 214 shows a case where importing the encapsulating package has no effect on the resolution rules.
s will resolve to the same s in P2.

Example 214—Package import has no effect on name resolution

Example 215 shows a case where importing the encapsulating package does have effect on the resolution
rules. s will resolve to s in P1 due to the wildcard import of P1.

Example 215—Package import affects name resolution

In Example 216 below, a_pkg declares a struct S1, b_pkg imports content from a_pkg, and b_pkg
declares a struct S2 that inherits from S1. pss_top imports content from b_pkg.

— Line (1): S2 is resolved via the import of b_pkg.
— Line (2): Imports are not transitive. Therefore, the import of b_pkg does not make content from

a_pkg visible in component pss_top.
— Line (3): S1 can be referenced with a fully-qualified type name, a_pkg::S1.
— Line (4): Importing a package does not introduce symbols into the importing namespace.

package P1 {
 struct s {};
};

package P2 {
 import P1::*;
 struct s {};

 component C1 {
 import P2::*;
 s f;
 };
}

package P1 {
 struct s {}

 package P2 {
 struct s {}
 component C1 {
 import P1::*;
 s f; // P1::s
 P2::s g; // P1::P2::s
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
274

Portable Test and Stimulus Standard 2.1 — October 2023

Example 216—Package import is not a declaration

Example 217 demonstrates the use of qualified and unqualified enum item references. The unqualified
references are resolved based on the expected type in context, namely the type of the expression on the other
side of the equality operator and on the left-hand side of the in operator.

Example 217—Resolution of enum item references

Example 218 demonstrates how name resolution is affected by using package aliases. P2::s is resolved to
P3::P4::s and not to P1::P2::s, because the package alias takes precedence over the wildcard import
in resolving P2.

package a_pkg {
 struct S1 { }
}

package b_pkg {
 import a_pkg::*;
 struct S2 : S1 { }
}

component pss_top {
 import b_pkg::*;
 S2 s2_i0; // (1) OK
 S1 s1_i1; // (2) Error: S1 is not made visible
 // by importing b_pkg
 a_pkg::S1 s1_i2; // (3) OK: S1 is declared in a_pkg
 b_pkg::S1 s1_i3; // (4) Error: import of a_pkg in b_pkg
 // does not make S1 a b_pkg member
};

component my_ip_c {
 enum mode_e {A, B, C, D};
 action my_op {
 rand mode_e mode;
 }
}

component pss_top {
 my_ip_c my_ip;
 action test {
 my_ip_c::my_op op;
 constraint op.mode == my_ip_c::mode_e::A;
 constraint op.mode == A;
 constraint op.mode in [A, C, D];

 activity {
 op;
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
275

Portable Test and Stimulus Standard 2.1 — October 2023

Example 218—Resolution in presence of package alias

package P1 {
 package P2 {
 struct s {}
 }
}

package P3 {
 package P4 {
 struct s {}
 }
}

component pss_top {
 import P1::*;
 import P3::P4 as P2;
 action test {
 P2::s f;
 }
}

Copyright © 2023 Accellera. All rights reserved.
276

Portable Test and Stimulus Standard 2.1 — October 2023

21. Test realization

A PSS model interacts with foreign languages in order to drive, or bring about, the behaviors that leaf-level
actions represent in a test scenario. This is done by calling application programming interfaces (APIs)
available in the execution environment, or generating foreign language code that executes as part of the test.
In addition, external code, such as reference models and checkers, may be used to help compute stimulus
values or expected results during stimulus generation.

The platform on which test generation takes place is generally referred to as the solve platform, while the
platform on which test execution takes place is called the target platform.

Logic used to help compute stimulus values is coded using procedural constructs (see 21.7), possibly
invoking a foreign procedural interface on the solve platform (see 21.4). The implementation of runtime
behavior of leaf-level actions can similarly be specified with procedural constructs, possibly invoking a
foreign procedural interface on the target platform or invoking target template functions (see 21.6).
Alternatively, implementation of actions and other scenario entities can be specified as target code template
blocks (see 21.5). In all cases, the constructs for specifying implementation of PSS entities are called exec
blocks.

Functions can be defined in PSS as a means to factor out and reuse portable procedural logic required for the
implementation of scenario entities in exec blocks (see 21.3). Functions may take parameters and optionally
return a result value. Like exec blocks, functions are defined in terms of procedural constructs or as target
code templates.

21.1 exec blocks

exec blocks provide a mechanism for associating specific functionality with a component, an action, a flow/
resource object, or a struct (see Syntax 71). A number of exec block kinds are used to implement scenario
entities.

— init_down and init_up exec blocks allow component data fields to be assigned a value as the com-
ponent tree is being elaborated (see 9.4).

— body exec blocks specify the actual runtime implementation of atomic actions.
— pre_solve and post_solve exec blocks of actions, flow/resource objects, and structs are a way to

involve arbitrary computation as part of the scenario solving.
— Other exec kinds serve more specific purposes in the context of pre-generated test code and auxil-

iary files.

Copyright © 2023 Accellera. All rights reserved.
277

Portable Test and Stimulus Standard 2.1 — October 2023

21.1.1 Syntax

Syntax 71—exec block declaration

The following also apply:
a) exec block content is given in one of two forms: as a sequence of procedural constructs (possibly

involving foreign function calls) or as a text segment of target code parameterized with PSS attri-
butes.

b) In either case, a single exec block is always mapped to implementation in no more than one foreign
language.

c) In the case of a target-template block, the target language shall be explicitly declared; however,
when using procedural constructs, the corresponding language may vary.

d) “exec init” is an alias for “exec init_up,” and is considered deprecated as of PSS 2.0. The keyword
“init” may be removed in a future version of this standard. Users should use “init_up” instead.

e) Multiple exec blocks of the same kind may be declared in a given definition scope. If multiple exec
blocks of the same kind are declared in a given definition scope, they shall be considered as a single
exec block of the given kind, processed in source order.

21.1.2 exec block kinds

The following list describes the different exec block kinds:

exec_block_stmt ::=
 exec_block
 | target_code_exec_block
 | target_file_exec_block
 | stmt_terminator
exec_block ::= exec exec_kind { { exec_stmt } }
exec_kind ::=
 pre_solve
 | post_solve
 | pre_body
 | body
 | header
 | declaration
 | run_start
 | run_end
 | init_down
 | init_up
 | init
exec_stmt ::=
 procedural_stmt
 | exec_super_stmt
exec_super_stmt ::= super ;
target_code_exec_block ::= exec exec_kind language_identifier = string_literal ;
target_file_exec_block ::= exec file filename_string = string_literal ;

Copyright © 2023 Accellera. All rights reserved.
278

Portable Test and Stimulus Standard 2.1 — October 2023

— pre_solve—valid in action, flow/resource object, and struct types. The pre_solve block is pro-
cessed prior to solving of random-variable relationships in the PSS model. pre_solve exec blocks are
used to initialize non-random variables that the solve process uses. See also 16.4.12.

— post_solve—valid in action, flow/resource object, and struct types. The post_solve block is pro-
cessed after random-variable relationships have been solved. The post_solve exec block is used to
compute values of non-random fields based on the solved values of random fields. See also 16.4.12.

— pre_body—valid in action, flow/resource object, and struct types. The pre_body block is an exec
block evaluated on the solve platform that is evaluated after exec post_solve and before exec body
is evaluated as part of the test realization process. It is evaluated after executor assignments and
memory allocations are completed for the given action, but before code is generated to represent the
body block. Solve functions may be called in this exec block, as well as the executor(),
addr_value_solve(), and addr_value_abs() functions.

— body—valid in action types. The body block constitutes the implementation of an atomic action.
The body block of each action is invoked in its respective order during the execution of a sce-
nario—after the body blocks of all predecessor actions complete. Execution of an action’s body
may be logically time-consuming and concurrent with that of other actions. In particular, the invoca-
tion of exec blocks of actions with the same set of scheduling dependencies logically takes place at
the same time. Implementation of the standard should guarantee that executions of exec blocks of
same-time actions take place as close as possible.

— run_start—valid in action, flow/resource object, and struct types. The run_start block is a proce-
dural non-time-consuming code block to be executed before any body block of the scenario is
invoked. It is used typically for one-time test bring-up and configuration required by the context
action or object. exec run_start is restricted to pre-generation flow (see Table 25).

— run_end—valid in action, flow/resource object, and struct types. The run_end block is a proce-
dural non-time-consuming code block to be executed after all body blocks of the scenario are com-
pleted. It is used typically for test bring-down and post-run checks associated with the context action
or object. exec run_end is restricted to pre-generation flow (see Table 25).

— init_down/init_up(init)—valid in component types. The init_down and init_up blocks are used to
assign values to component attributes and to initialize foreign language objects. Component
init_down and init_up blocks are called before the scenario root action’s pre_solve block is
invoked. init_down and init_up blocks may not call target template functions.
1) init_down—Starting with the root component, init_down blocks are evaluated top-down for

each component in the hierarchy. The relative order of evaluating init_down blocks for compo-
nents at the same level of hierarchy is undefined. For any component, the init_down block
shall be evaluated before its init_up block is evaluated.

2) init_up—For a leaf-level component (i.e., one that does not instantiate any subcomponents),
the init_up block shall be evaluated after its init_down block (if any). A parent component’s
init_up block shall be evaluated only after all subcomponent init_up blocks have been evalu-
ated.

— header—valid in action, flow/resource object, and struct types. The header block specifies top-
level statements for header declarations presupposed by subsequent code blocks of the context
action or object. Examples are '#include' directives in C, or forward function or class declara-
tions.

— declaration—valid in action, flow/resource object, and struct types. The declaration block speci-
fies declarative statements used to define entities that are used by subsequent code blocks. Examples
are the definition of global variables or functions.

exec header and declaration blocks shall only be specified in terms of target code templates. All other exec
kinds may be specified in terms of procedural constructs or target code templates.

Copyright © 2023 Accellera. All rights reserved.
279

Portable Test and Stimulus Standard 2.1 — October 2023

21.1.3 Examples

In Example 219, the init_up exec blocks are evaluated in the following order:
a) init_up in pss_top.s1
b) init_up in pss_top.s2
c) init_up in pss_top

This results in the component fields having the following values:
a) s1.base_addr=0x2000 (init_up in pss_top overwrote the value set by

init_up in sub_c)
b) s2.base_addr=0x1000 (value set by init_up in sub_c)

Example 219—Data initialization in a component

In Example 220, the init_down and init_up blocks will be evaluated in the following order:
— init_down in T
— init_down in T.c1
— init_down in T.c2
— init_up in T.c1

— init_up in T.c2
— init_up in T

component sub_c {
 int base_addr;

 exec init_up {
 base_addr = 0x1000;
 }
};

component pss_top {
 sub_c s1, s2;

 exec init_up {
 s1.base_addr = 0x2000;
 }
};

Copyright © 2023 Accellera. All rights reserved.
280

Portable Test and Stimulus Standard 2.1 — October 2023

Example 220—init_down and init_up exec blocks

A diagram of the example is shown below:

Figure 21—Order of invocation of init_down and init_up exec blocks

The order of initialization calls is annotated on each of the init_d(own) and init_u(p) blocks. Note that
init_down in T is called first, followed by init_down in T.c1, etc.

Note that a tool is free to execute the exec init_down and init_up blocks of sibling instances in arbitrary
order. For example, while the diagram above shows init_down in T.c1 executing before init_down in
T.c2, the opposite order is also correct. The key requirements are that the exec init_down block of a parent
component instance (e.g., T) execute before the exec init_down block of any child component instances,
and that the exec init_up block of a parent component instance (e.g., T) execute after all exec init_up blocks
of child component instances have executed. This implies that the following ordering of execution is also
legal:
— init_down in T
— init_down in T.c1

component C {
 exec init_down {
 }
 exec init_up {
 }
}

component T {
 C c1, c2;
 exec init_down {
 }
 exec init_up {
 }
}

init_d
(1)

init_u
(6)

T:T

init_d
(2)

init_u
(4)

T.c1:C

init_d
(3)

init_u
(5)

T.c2:C

Copyright © 2023 Accellera. All rights reserved.
281

Portable Test and Stimulus Standard 2.1 — October 2023

— init_up in T.c1
— init_down in T.c2
— init_up in T.c2
— init_up in T

In Example 221, component pss_top contains two instances of component sub_c, named s1 and s2.
Component sub_c contains a data field named base_addr that controls the value to function
activate() when action A is traversed.

During construction of the component tree, component pss_top sets s1.base_addr=0x1000 and
s2.base_addr=0x2000.

Action pss_top::entry traverses action sub_c::A twice. Depending on which component instance
sub_c::A is associated with during traversal, it will cause sub_c::A to be associated with a different
base_addr.

— If sub_c::A executes in the context of pss_top.s1, sub_c::A uses 0x1000.
— If sub_c::A executes in the context of pss_top.s2, sub_c::A uses 0x2000.

Example 221—Accessing component data field from an action

For additional examples of exec block usage, see 21.2.6.

component sub_c {
bit[32] base_addr = 0x1000;
action A {

exec body {
// reference base_addr in context component
activate(comp.base_addr + 0x10);

// activate() is an imported function
}

}
}

component pss_top {
sub_c s1, s2;
exec init_up {

s1.base_addr = 0x1000;
s2.base_addr = 0x2000;

}
action entry {

sub_c::A a;
activity {

repeat (2) {
a; // Runs sub_c::A with 0x1000 as base_addr when

// associated with s1
// Runs sub_c::A with 0x2000 as base_addr when
// associated with s2

}
}

}
}

Copyright © 2023 Accellera. All rights reserved.
282

Portable Test and Stimulus Standard 2.1 — October 2023

21.1.4 exec block evaluation with inheritance and extension

Both inheritance and type extension can impact the behavior of exec blocks. See also 19.1 and 19.2.

21.1.4.1 Inheritance and shadowing

exec blocks are considered to be virtual, in that a derived type that defines an exec block completely replaces
the behavior of any same-kind exec block (e.g., body) specified by its base type. Procedural exec blocks may
include the “super;” statement, which will execute the contents of the corresponding base-type exec
block(s) at that point (see 21.1.4.2).

The following examples use the core library target function message() to add a formatted line as a
message to the execution log, at LOW verbosity. In Example 222, action B inherits from action A and
shadows the pre_solve and body exec blocks defined by action A.

Example 222—Inheritance and shadowing

When an instance of action B is evaluated, the following is printed:

Hello from B 2

21.1.4.2 Using super

Specifying “super;” as a statement in a subtype executes the behavior of the same-kind procedural exec
block(s) from the base type, allowing a type to prepend or append behavior. The “super;” statement shall
not be allowed in a target-template exec block.

In Example 223, both A1 and A2 inherit from action A. Both execute the pre_solve exec block inherited
from A. A1 invokes the body behavior of A, then displays an additional statement. A2 displays an additional
statement, then invokes the body behavior of A.

import std_pkg::*;

action A {
 int a;

 exec pre_solve {
 a=1;
 }
 exec body {
 message(LOW,"Hello from A %d", a);
 }
}

action B : A {
 exec pre_solve {
 a=2;
 }
 exec body {
 message(LOW,"Hello from B %d", a);
 }
}

Copyright © 2023 Accellera. All rights reserved.
283

Portable Test and Stimulus Standard 2.1 — October 2023

Example 223—Using super

When an instance of A1 is evaluated, the following is printed:

Hello from A 1
Hello from A1 1

When an instance of A2 is evaluated, the following is printed:

Hello from A2 1
Hello from A 1

21.1.4.3 Type extension

Type extension enables additional features to be contributed to action, component, and struct types. Type
extension is additive and all exec blocks contributed via type extension are evaluated, along with exec blocks
specified within the initial definition. First, the initial definition’s exec blocks (if any) are evaluated. Next,
the exec blocks (if any) contributed via type extension are evaluated, in the order that they are processed by
the PSS processing tool.

import std_pkg::*;

action A {
 int a;

 exec pre_solve {
 a=1;
 }
 exec body {
 message(LOW,"Hello from A %d", a);
 }
}

action A1 : A {
 exec body {
 super;
 message(LOW,"Hello from A1 %d", a);
 }
}
action A2 : A {
 exec body {
 message(LOW,"Hello from A2 %d", a);
 super;
 }
}

Copyright © 2023 Accellera. All rights reserved.
284

Portable Test and Stimulus Standard 2.1 — October 2023

In Example 224, a type extension contributes an exec block to action A1.

Example 224—Type extension contributes an exec block

When an instance of A1 is evaluated, the following is printed:

Hello from A 1
Hello from A1 1
Hello from A1 extension 1

import std_pkg::*;

action A {
 int a;

 exec pre_solve {
 a=1;
 }
 exec body {
 message(LOW,"Hello from A %d", a);
 }
}

action A1 : A {
 exec body {
 super;
 message(LOW,"Hello from A1 %d", a);
 }
}

extend action A1 {
 exec body {
 message(LOW,"Hello from A1 extension %d", a);
 }
}

Copyright © 2023 Accellera. All rights reserved.
285

Portable Test and Stimulus Standard 2.1 — October 2023

In Example 225, two exec blocks are added to action A1 via extension.

Example 225—exec blocks added via extension

If the PSS processing tool processes the first extension followed by the second extension, then the following
is produced:

Hello from A 1
Hello from A1 1
Hello from A1(1) extension 1
Hello from A1(2) extension 1

If the PSS processing tool processes the second extension followed by the first extension, then the following
is produced:

Hello from A 1
Hello from A1 1
Hello from A1(2) extension 1
Hello from A1(1) extension 1

import std_pkg::*;

action A {
 int a;

 exec pre_solve {
 a=1;
 }
 exec body {
 message(LOW,"Hello from A %d", a);
 }
}

action A1 : A {
 exec body {
 super;
 message(LOW,"Hello from A1 %d", a);
 }
}

extend action A1 {
 exec body {
 message(LOW,"Hello from A1(1) extension %d", a);
 }
}

extend action A1 {
 exec body {
 message(LOW,"Hello from A1(2) extension %d", a);
 }
}

Copyright © 2023 Accellera. All rights reserved.
286

Portable Test and Stimulus Standard 2.1 — October 2023

21.2 Functions

Functions are a means to encapsulate behaviors used by actions and other entities to implement test
scenarios. Functions are called in procedural description contexts, and are akin to procedures in
conventional programming languages.

Functions can be declared in global, package, or component scopes. Functions can be static or instance
(non-static) functions. A global or package function is always static. A component function can be explicitly
declared as static. If a component function is non-static, each function call is associated with a specific
instance of that component type.

A function may be defined in one of three ways:
— Using native PSS procedural statements, possibly calling other functions (see 21.3).
— As bound to a procedural interface in a foreign programming language, such as a function in C/C++,

or a function/task in SystemVerilog (see 21.4). This only applies to static functions; an instance
function cannot be bound.

— As a target code template block (see 21.6).

The definition of a functions in one of these three ways may be coupled with the function’s initial
declaration. The definition may also be provided separately, in a different lexical scope. The intent and
semantics of a function are fixed by its declaration, but its implementation could vary between different
environments and contexts.

Functions may be called from procedural exec blocks, namely exec init_down, init_up, pre_solve,
post_solve, body, run_start, and run_end. Functions called from exec init_down, init_up, pre_solve, and
post_solve are evaluated on the solve platform, whereas functions called from exec body, run_start and
run_end are evaluated on the target platform.

A static function declared in a component scope may be shadowed by a function declaration with the same
name in a derived component, which can be static or non-static. The function declaration in the derived
component may have a different return type or arguments than in the base component.

An instance function declared in a component scope may be shadowed by an instance function declaration
with the same name in a derived component. The function declaration in the derived component must have
the same return type and arguments as that in the base component. The function in the base type may be
called from within the function in the derived type by calling “super.<function name>(...)”.

However, an instance function cannot be shadowed by a static function.

When the shadowed element is an instance function, the function call is polymorphic, that is, the actual
function called depends on its context component. See 19.1 for details. On the other hand, static functions
calls are not polymorphic.

21.2.1 Function declarations

A function prototype is declared in a package or component scope within a PSS description. The function
prototype specifies whether the function is static, the function name, return type, and function parameters.
See Syntax 72. Note that the syntax shown here is for the declaration of a function prototype only, where the
definition is provided separately. A function can also be declared and defined at once using a procedural
statement block or a target code template (see 21.3 and 21.6, respectively). The same syntax is used for
specifying the prototype in these cases also.

Copyright © 2023 Accellera. All rights reserved.
287

Portable Test and Stimulus Standard 2.1 — October 2023

21.2.1.1 Syntax

Syntax 72—Function declaration

The following also apply:
a) Functions declared in global or package scopes are considered static, regardless of whether the static

qualifier is used.
b) Static functions (declared any scope) are called optionally using package or component type qualifi-

cation with the scope operator (::).
c) Instance functions are called optionally using the dot operator (.) on a component instance expres-

sion.

21.2.1.2 Examples

For an example of declaring a function, see 21.2.2, below.

21.2.2 Parameters and return types

A function shall explicitly specify a data type as its return type or use the keyword void to indicate that the
function does not return a value. Function return values shall be either plain-data types (scalars and
aggregates thereof) or reference types. Functions shall not return action types, component types, or flow/
resource object types without the ref modifier.

A function may specify any number of formal parameters, stating their types and names. Function
parameters shall be either plain-data types or reference types. Functions shall not have parameters of action
types, component types, or flow/resource object types without the ref modifier. Functions may also declare

function_decl ::= [pure] [static] function function_prototype ;
function_prototype ::= function_return_type function_identifier function_parameter_list_prototype
function_return_type ::=
 void
 | data_type
function_parameter_list_prototype ::=
 ([function_parameter { , function_parameter }])
 | ({ function_parameter , } varargs_parameter)
function_parameter ::=
 [function_parameter_dir] data_type identifier [= constant_expression]
 | (type | ref type_category | struct) identifier
function_parameter_dir ::=
 input
 | output
 | inout
varargs_parameter ::= (data_type | type | ref type_category | struct) ... identifier
type_category ::=
 action
 | component
 | struct_kind

Copyright © 2023 Accellera. All rights reserved.
288

Portable Test and Stimulus Standard 2.1 — October 2023

generic parameters without stating their specific type, and may declare a variable number of parameters—
see 21.2.4. Note that the set of types allowed for imported foreign functions is restricted (see 21.4).

Parameter direction modifiers (input, output, or inout) are optional in the function declaration. However, if
they are specified in the function declaration, such a function may only be imported (see 21.4). In the
declaration of native functions and target-template functions, direction modifiers shall not be used.

Example 226 declares a function in a package scope. In this case, the function compute_value returns
an int, accepts an input value (val), and returns an output value via the out_val parameter.

Example 226—Function declaration

21.2.3 Default parameter values

Default parameter values serve as the actual values for the respective parameters if explicit actual
parameters are missing in the function call.

The following also apply:
a) A default parameter value shall be specified as a constant expression, and therefore can only be

specified for a parameter of a plain-data type.
b) In a function declaration, following a parameter with a specified default value, all subsequent

parameters must also have default values specified.
c) A default parameter value is in effect for redeclarations (and overrides) of a function. A default

parameter value shall not be specified in the redeclaration of a function if already declared for the
same parameter in a previous declaration, even if the value is the same.

d) In an import function declaration, default parameters are not allowed on output or inout arguments.

Example 227 demonstrates the declaration and use of a default parameter value.

Example 227—Default parameter value

21.2.4 Generic and varargs parameters

Generic parameters and varargs parameters are means to declare functions that are generic or variadic with
respect to their parameters. Examples are functions that apply to all actions or objects as such, and functions
that involve string formatting.

Generic and varargs parameters are used for the declaration of functions whose definition is built into
implementations. In particular, they are used to declare functions included in the PSS core library (see

package generic_functions {
 function int compute_value(

int val,
output int out_val);

}

function void foo(int x, int y = 100);
function void bar() {
 foo(3,200); // the value 200 is used for parameter y
 foo(3); // the value 100 is used for parameter y
}

Copyright © 2023 Accellera. All rights reserved.
289

Portable Test and Stimulus Standard 2.1 — October 2023

Clause 23). PSS does not provide a native mechanism to operate on an unspecified number of parameters or
on parameters with no declared type, nor does PSS define mapping of functions with generic/varargs
parameters to foreign languages.

The following also apply:
a) A generic parameter is declared either with the keyword type or with a type category, rather than

with a specific type. A value of any type (if type was specified), or any type that belongs to the spec-
ified category (if a type category was specified), is accepted in the function call. In the case of the
struct category, the ref modifier shall not be used, but for the other categories (component, action,
one of the object kinds), the ref modifier shall be used. See more on the use of type categories in
11.3.2.

b) Default values may not be specified for generic parameters.
c) The varargs parameter (ellipsis notation – “...”) signifies that zero or more trailing values may be

passed as actual parameters in the function call. Note that a varargs parameter may only occur as the
last parameter in the parameter list.

d) In a function call, the expressions corresponding to a varargs parameter must all be of the declared
type if a type is specified, or belong to the same type category if one is specified. Note that in the
case of a type category, the types of the actual parameter expressions may vary, so long as they all
belong to the specified category. When a varags parameter is declared with the keyword type, actual
parameters types may vary with no restriction.

Example 228 demonstrates the declaration and use of a generic parameter.

Example 228—Generic parameter

Example 229 demonstrates the declaration and use of a varargs parameter.

Example 229—Varargs parameter

21.2.5 Pure functions

Pure functions are functions for which the return value depends only on the values of their parameters, and
their evaluation has no side-effects. Declaring a function as pure may provide the PSS implementation with

function void foo(struct x);
struct my_struct {};
struct your_struct {};
function void bar() {
 my_struct s1;
 your_struct s2;
 foo(s1);
 foo(s2);
}

function string format_string(string format, type ... args);
function void bar() {
 string name = "John";
 int age = 55;
 string result;
 result = format_string("name %s: age %d", name, age);
}

Copyright © 2023 Accellera. All rights reserved.
290

Portable Test and Stimulus Standard 2.1 — October 2023

opportunities for optimization. Note that a function declared as pure may lead to unexpected behavior if it
fails to obey these rules.

The following rules apply to pure functions, that is, functions declared with the pure modifier:
a) Only non-void functions with no output or inout parameters may be declared pure.
b) A pure function will be considered pure in derived types even if the pure modifier is not explicitly

specified in the derived type function declaration.

A non-pure function shall not be declared as pure in derived types.

21.2.5.1 Examples

Example 230 demonstrates declaration and use of pure functions.

Example 230—Pure function

In the example above, the function factorial() is pure and therefore will not necessarily be re-
evaluated for each element in the array. If some elements in the array are equal, the PSS implementation
may choose to use the result of a previous evaluation, and not evaluate the function again.

21.2.6 Calling functions

Functions may be called directly from exec blocks or from other functions using procedural constructs (see
21.7). Recursive function calls are allowed.

Functions not returning a value (declared with void return type) may only be called as standalone procedural
statements. Functions returning a value may be used as operands in expressions; the value of that operand is
the value returned by the function. The function can be used as a standalone statement and the return value
discarded by casting the function call to void:

(void)function_call();

Calling a nonvoid function as if has no return value shall be legal, but it is recommended to explicitly
discard the return value by casting the function call to void, as shown above.

Example 231 demonstrates calling various functions. In this example, the mem_segment_s buffer object
captures information about a memory buffer with a random size. The specific address in an instance of the
mem_segment_s object is computed using the alloc_addr function. alloc_addr is called after the
solver has selected random values for the rand fields (specifically, size in this case) to select a specific
address for the addr field.

pure function int factorial(int n);
action A {

rand int vals[10];
int factorial_vals[10];

exec post_solve {
foreach (vals[i]) {

factorial_vals[i] = factorial(vals[i]);
}

}
}

Copyright © 2023 Accellera. All rights reserved.
291

Portable Test and Stimulus Standard 2.1 — October 2023

Example 231—Calling functions

21.3 Native PSS functions

It is possible to specify the definition for native PSS functions using the procedural constructs described in
21.7.

For an instance function, the definition (if provided) shall be in the same component type as the original
declaration (either in its initial definition or in an extension) or in a derived component. For a static
function, the definition shall be in the same package or component as the original declaration (in case of a
component, either in its initial definition or in an extension).

package external_functions_pkg {
 function bit[31:0] alloc_addr(bit[31:0] size);

 function void transfer_mem(
 bit[31:0] src, bit[31:0] dst, bit[31:0] size
);

 buffer mem_segment_s {
 rand bit[31:0] size;
 bit[31:0] addr;

 constraint size in [8..4096];

 exec post_solve {
 addr = alloc_addr(size);
 }
 }
}

component mem_xfer {
 import external_functions_pkg::*;

 action xfer_a {
 input mem_segment_s in_buff;
 output mem_segment_s out_buff;

 constraint in_buff.size == out_buff.size;

 exec body {
 transfer_mem(in_buff.addr, out_buff.addr, in_buff.size);
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
292

Portable Test and Stimulus Standard 2.1 — October 2023

21.3.1 Syntax

Syntax 73—Function definition

The optional platform_qualifier (either solve or target) specifies function availability. An unqualified
function is assumed to be available during all phases of test generation and execution.

For native PSS functions, function_parameter_dir shall be left unspecified for all parameters of the function,
both in the original function declaration (if provided) and in the native PSS function definition.

21.3.2 Parameter passing semantics

Parameter direction shall be unspecified in the function prototype for native PSS functions. This implies that
the parameter direction (input, output, or inout) shall not be used.

In the implementation of these functions, the following apply:
— Parameters of scalar data types are passed by value. Any changes to these parameters in the callee do

not update the values in the caller.
— Parameters of aggregate data types are passed as a handle to the instance in the caller. Updates to

these parameters in the callee will modify the instances in the caller. When a variable of inherited
type is passed as a parameter of base type, only the fields present in the base type are visible within

procedural_function ::= [platform_qualifier] [pure] [static] function function_prototype
 { { procedural_stmt } }
platform_qualifier ::=
 target
 | solve
function_prototype ::= function_return_type function_identifier function_parameter_list_prototype
function_return_type ::=
 void
 | data_type
function_parameter_list_prototype ::=
 ([function_parameter { , function_parameter }])
 | ({ function_parameter , } varargs_parameter)
function_parameter ::=
 [function_parameter_dir] data_type identifier [= constant_expression]
 | (type | ref type_category | struct) identifier
function_parameter_dir ::=
 input
 | output
 | inout
varargs_parameter ::= (data_type | type | ref type_category | struct) ... identifier
type_category ::=
 action
 | component
 | struct_kind

Copyright © 2023 Accellera. All rights reserved.
293

Portable Test and Stimulus Standard 2.1 — October 2023

the function. Note that as variables, parameters of aggregate data types have value semantics in
assignment and equality expressions (see 8.3 and 8.5.3).

— Parameters of reference data types are passed as reference assignments. The parameter points to (is
an alias to) the entity referred to in the actual parameter expression. Note that as variables, parame-
ters of reference types have reference semantics in assignment and equality expressions (see 8.3 and
8.5.3), and may evaluate to null.

Example 232 shows the parameter passing semantics.

Copyright © 2023 Accellera. All rights reserved.
294

Portable Test and Stimulus Standard 2.1 — October 2023

Example 232—Parameter passing semantics

package generic_functions {
 struct params_s {
 int x;
 };

struct params_inh_s : params_s {
 int y;
}

 // Prototypes
 function void set_val0(params_s p, int a);
 function void set_val1(params_s p_dst, params_s p_src);
 function params_s zero_attributes();

 // Definitions
 function void set_val0(params_s p, int a)
 {
 p.x = a;
 a = 0;
 }
 function void set_val1(params_s p_dst, params_s p_src)
 {
 p_dst.x = p_src.x;
 }
 function params_s zero_attributes()
 {
 params_s s;
 s.x = 0;
 return s;
 }

 component A {
 params_s p;
 params_inh_s p_inh1, p_inh2;
 int a;

 exec init_up {
 a = 10;
 p.x = 20;
 set_val0(p, a);
 // p.x is set to 10 at this point and a is unchanged

 set_val1(p, zero_attributes());
 // p.x is set to 0 at this point

 // Variables of inherited type may be passed as
 // function parameters of base type
 p_inh1.x = 5;
 p_inh1.y = 15;
 p_inh2.x = 10;
 p_inh2.y = 20;
 set_val1(p_inh1, p_inh2);
 // The value of p_inh1.y can never be changed by set_val1 because
 // set_val1 can only access fields of params_s (i.e., x)
 }
 };
}

Copyright © 2023 Accellera. All rights reserved.
295

Portable Test and Stimulus Standard 2.1 — October 2023

21.4 Foreign procedural interface

Static function declarations in PSS may expose, and ultimately be bound to, foreign language APIs
(functions, tasks, procedures, etc.) available on the target platform and/or on the solve platform. A function
that was previously declared in the PSS description can be designated as imported. Calling an imported
function from a PSS procedural context invokes the respective API in the foreign language. Parameters and
result passing are subject to the type mapping defined for that language.

Instance functions may not be imported.

21.4.1 Definition using imported functions

Additional qualifiers are added to imported functions to provide more information to the tool about the way
the function is implemented and/or in what phases of the test-creation process the function is available.
Imported function qualifiers are specified separately from the function declaration for modularity (see
Syntax 74). In typical use, qualifiers are specified in an environment-specific package (e.g., a UVM
environment-specific package or C-test-specific package).

A static function declared in a component may only be imported in the scope of the same component type.
It shall be illegal to import a function declared in a base component type within a derived or unrelated
component type.

It shall be illegal to import a function declared in a template component type.

21.4.1.1 Syntax

Syntax 74—Imported function qualifiers

The following also apply:
a) Return values and parameter values of imported functions are restricted to the following types:

1) bit or int, provided width is no more than 64 bits
2) bool
3) enum
4) string
5) chandle
6) struct
7) array whose element type is one of these listed types, including a sub-array
See Annex D for type-mapping rules to C, C++, and SystemVerilog.

b) Parameter direction modifiers may be used in the function declaration or in the import declaration
to specify the passing semantics between PSS and the foreign language:
1) If the value of an input parameter is modified by the foreign language implementation, the

updated value is not reflected back to the PSS model.

import_function ::=
 import [platform_qualifier] [language_identifier] function type_identifier ;
 | import [platform_qualifier] [language_identifier] [static] function function_prototype ;
platform_qualifier ::=
 target
 | solve

Copyright © 2023 Accellera. All rights reserved.
296

Portable Test and Stimulus Standard 2.1 — October 2023

2) An output parameter sets the value of a PSS model variable. The foreign language implemen-
tation shall consider the value of an output parameter to be unknown on entry; it shall specify a
value for an output parameter.

3) An inout parameter takes an initial value from a variable in the PSS model and reflects the
value specified by the foreign language implementation back to the PSS model.

c) In the absence of an explicit direction modifier, parameters default to input.

In addition, the following apply when the second form of import_function is used (with the function
prototype specified):

a) If the direction for a parameter is left unspecified in the import declaration, it defaults to input.
b) The prototype specified in the import declaration shall match the prototype specified in the func-

tion declaration in the following ways:
1) For a static function declared in a component, the static qualifier shall be used.
2) The number of parameters shall be identical.
3) The parameter names and types shall be identical.
4) The return types shall be identical.

c) If the function declaration specifies a parameter direction explicitly, the direction specified in the
import declaration (either explicitly or by default) must match the function declaration.

d) If in the function declaration, the direction was unspecified for any parameter, the prototype speci-
fied in the import declaration can provide the direction of the parameter as input, output or inout.

21.4.1.2 Specifying function availability

In some environments, test generation and execution are separate activities. In those environments, some
functions may only be available during test generation, on the solve platform, while others are only available
during test execution, on the target platform. For example, reference model functions may only be available
during test generation while the utility functions that program hardware devices may only be available
during test execution.

An unqualified imported function is assumed to be available during all phases of test generation and
execution. Qualifiers are specified to restrict a function’s availability. Functions restricted to the solve
platform shall not be called directly or indirectly from target execs, namely body, run_start, and run_end.
Similarly, functions restricted to the target platform shall not be called from solve execs, namely init_down,
init_up, pre_solve, post_solve, and pre_body.

Example 233 specifies function availability. Two imported functions are declared in the
external_functions_pkg package. The alloc_addr function allocates a block of memory, while
the transfer_mem function causes data to be transferred. Both of these functions are present in all phases
of test execution in a system where solving is done on-the-fly as the test executes.

In a system where a pre-generated test is to be compiled and run on an embedded processor, memory
allocation may be pre-computed. Data transfer shall be performed when the test executes. The
pregen_tests_pkg package specifies these restrictions: alloc_addr is only available during the
solving phase of stimulus generation, while transfer_mem is only available during the execution phase
of stimulus generation. PSS processing uses this specification to ensure that the way imported functions are
used aligns with the restrictions of the target environment.

Copyright © 2023 Accellera. All rights reserved.
297

Portable Test and Stimulus Standard 2.1 — October 2023

Example 233—Function availability

Example 234 demonstrates an activity with reactive control flow based on values returned from a target
function called in an exec body block.

Example 234—Reactive control flow

package external_functions_pkg {

 function bit[31:0] alloc_addr(bit[31:0] size);

 function void transfer_mem(
 bit[31:0] src, bit[31:0] dst, bit[31:0] size
);
}

package pregen_tests_pkg {

 import solve function external_functions_pkg::alloc_addr;

 import target function external_functions_pkg::transfer_mem;

}

component my_ip_c {
 function int sample_DUT_state();
 import target C function sample_DUT_state;
 // specify mapping to target C function by that same name

 action check_state {
 int curr_val;
 exec body {
 curr_val = comp.sample_DUT_state();
 // value only known during execution on target platform
 }
 };

 action A { };
 action B { };

 action my_test {
 check_state cs;
 activity {
 repeat {
 cs;
 if (cs.curr_val % 2 == 0) {
 do A;
 } else {
 do B;
 }
 } while (cs.curr_val < 10);
 }
 };
};

Copyright © 2023 Accellera. All rights reserved.
298

Portable Test and Stimulus Standard 2.1 — October 2023

21.4.1.3 Specifying an implementation language

The implementation language for an imported function can be specified implicitly or explicitly. In many
cases, the implementation language need not be explicitly specified because the PSS processing tool can use
sensible defaults (e.g., all imported functions are implemented in C++). Explicitly specifying the
implementation language using a separate statement allows different imported functions to be implemented
in different languages, however (e.g., reference model functions are implemented in C++, while functions to
drive stimulus are implemented in SystemVerilog).

Example 235 shows explicit specification of the foreign language in which the imported function is
implemented. In this case, the function is implemented in C. Notice that only the name of the imported
function is specified and not the full function prototype.

Example 235—Explicit specification of the implementation language

21.4.2 Imported classes

In addition to interfacing with external foreign language functions, the PSS description can interface with
foreign language classes. See also Syntax 75.

21.4.2.1 Syntax

Syntax 75—Import class declaration

The following also apply:
a) Imported class functions support the same return and parameter types as imported functions. import

class declarations also support capturing the class hierarchy of the foreign language classes.
b) Fields of import class type can be instantiated in package and component scopes. An import class

field in a package scope is a global instance. A unique instance of an import class field in a compo-
nent exists for each component instance.

c) Imported class functions are called from an exec block just as imported functions are.

21.4.2.2 Examples

Example 236 declares two imported classes. import class base declares a function base_function,
while import class ext extends from import class base and adds a function named ext_function.

package known_c_functions {
import C function generic_functions::compute_expected_value;

}

import_class_decl ::= import class import_class_identifier [import_class_extends]
 { { import_class_function_decl } }
import_class_extends ::= : type_identifier { , type_identifier }
import_class_function_decl ::= function_prototype ;

Copyright © 2023 Accellera. All rights reserved.
299

Portable Test and Stimulus Standard 2.1 — October 2023

Example 236—Import class

21.5 Target-template implementation of exec blocks

Implementation of execs may be specified using a target template—a string literal containing code in a
specific foreign language, optionally embedding references to fields in the PSS description. Target-template
implementation is restricted to target exec kinds (body, run_start, run_end, header, and declaration). In
addition, target templates can be used to generate other text files using exec file. Target-template
implementations may not be used for solve execs (init_down, init_up, pre_solve, post_solve, and
pre_body).

Target-template execs are inserted by the PSS tool verbatim into the generated test code, with embedded
expressions substituted with their actual values. Multiple target-template exec blocks of the same kind are
allowed for a given action, flow/resource object, or struct. They are (logically) concatenated in the target
file, as if they were all concatenated in the PSS source.

21.5.1 Target language

A language_identifier serves to specify the intended target programming language of the code block.
Clearly, a tool supporting PSS must be aware of the target language to implement the runtime semantics.
PSS does not enforce any specific target language support, but recommends implementations reserve the
identifiers C, CPP, and SV to denote the languages C, C++, and SystemVerilog respectively. Other target
languages may be supported by tools, given that the abstract runtime semantics are kept. PSS does not define
any specific behavior if an unrecognized language_identifier is encountered.

Each target-template exec block is restricted to one target language in the context of a specific generated
test. However, the same action may have target-template exec blocks in different languages under different
packages, given that these packages are not used for the same test.

21.5.2 exec file

Not all the artifacts needed for the implementation of tests are coded in a programming language that tools
are expected to support as such. Tests may require scripts, command files, make files, data files, and files in
other formats. The exec file construct (see 21.1) specifies text to be generated out to a given file. exec file
constructs of different actions/objects with the same target are concatenated in the target file in their
respective scenario flow order.

21.5.3 Referencing PSS fields in target-template exec blocks

Implementing test intent requires using data from the PSS model in the code created from target-template
exec blocks. PSS variables are referenced using mustache notation: {{expression}}. A reference is to
an expression involving variables declared in the scope in which the exec block is declared. Only scalar
variables (except chandle) can be referenced in a target-template exec block.

import class base {
 void base_function();
}

import class ext : base {
 void ext_function();
}

Copyright © 2023 Accellera. All rights reserved.
300

Portable Test and Stimulus Standard 2.1 — October 2023

21.5.3.1 Examples

Example 237 shows referencing PSS variables inside a target-template exec block using mustache notation.

Example 237—Referencing PSS variables using mustache notation

A variable reference can be used in any position in the generated code. Example 238 shows a variable
reference used to select the function being called.

Example 238—Variable reference used to select the function

One implication of this is that a mustache reference cannot be used to assign a value to a PSS variable.

Example 238 also declares a random func_id variable that identifies a C function to call. When a PSS tool
processes this description, the following output shall result, assuming func_id==1 and a==4:

func_1(4);

Example 239 shows how a procedural pre_solve exec block is used along with a target-template declaration
exec block to allow programmatic declaration of a target variable declaration.

component top {
struct S {

rand int b;
}
action A {

rand int a;
rand S s1;
exec body C = """
 printf("a={{a}} s1.b={{s1.b}} a+b={{a+s1.b}}\n");
""";

}
}

component top {
action A {

rand bit[1:0] func_id;
rand bit[3:0] a;
exec body C = """
 func_{{func_id}}({{a}});
""";

}
}

Copyright © 2023 Accellera. All rights reserved.
301

Portable Test and Stimulus Standard 2.1 — October 2023

Example 239—Allowing programmatic declaration of a target variable declaration

Assume that the solver selects my_int16 as the value of the obj_type field and that the
get_unique_obj_name() function returns field__0. In this case, the PSS processing tool shall
generate the following content in the declaration section:

static my_int16 field__0;

21.5.3.2 Formatting

When a variable reference is converted to a string, the result is formatted as follows:
— int signed decimal (%d)
— bit unsigned decimal (%ud)
— bool "true" | "false"
— string string (%s)
— chandle pointer (%p)
— float32, float64 floating-point (%f)

21.6 Target-template implementation for functions

When integrating with languages that do not have the concept of a “function,” such as assembly language,
the implementation for functions can be provided by target-template code strings.

The target-template form of functions (see Syntax 76) allows interactions with a foreign language that do
not involve a procedural interface. Examples are injecting assembly code or global variables into generated
tests. The target-template forms of functions are always target implementations. Variable references may
only be used in expression positions. Function return values shall not be provided, i.e., only functions that
return void are supported. If a target-template function is an instance (non-static) function, PSS expressions
embedded in the target code (using mustache notation) may make reference to the instance attributes,
optionally using this.

See also 21.5.3.

enum obj_type_e {my_int8,my_int16,my_int32,my_int64};
function string get_unique_obj_name();
import solve function get_unique_obj_name;

buffer mem_buff_s {
 rand obj_type_e obj_type;
 string obj_name;

 exec post_solve {
 obj_name = get_unique_obj_name();
 }

 // declare an object in global space
 exec declaration C = """
 static {{obj_type}} {{obj_name}};
 """;
};

Copyright © 2023 Accellera. All rights reserved.
302

Portable Test and Stimulus Standard 2.1 — October 2023

21.6.1 Syntax

Syntax 76—Target-template function implementation

The following also apply:
a) If the direction for a parameter is left unspecified in the target template declaration, it defaults to

input.
b) The prototype specified in the target template declaration must match the prototype specified in the

function declaration in the following way:
1) The number of parameters must be identical.
2) The parameter names and types must be identical.
3) The return types must be identical.

c) If the function declaration specifies a parameter direction explicitly, the direction specified in the
target template declaration (either explicitly or by default) must match the function declaration.

d) If in the function declaration, the direction was unspecified for any parameter, the prototype speci-
fied in the target template declaration can provide the direction of the parameter as input, output or
inout.

21.6.2 Examples

Example 240 provides an assembly-language target-template code block implementation for the do_stw
function. Function parameters are referenced using mustache notation ({{variable}}).

Example 240—Target-template function implementation

21.7 Procedural constructs

This section specifies the procedural control flow constructs. When relevant, these constructs have the same
syntax and execution semantics as the corresponding activity control flow statements (see 12.4).

21.7.1 Scoped blocks

A scoped block creates a new unnamed nested scope, similar to C-style blocks.

target_template_function ::= target language_identifier [static]
 function function_prototype = string_literal ;

package thread_ops_pkg {
 function void do_stw(bit[31:0] val, bit[31:0] vaddr);
}

package thread_ops_asm_pkg {
 target ASM function void do_stw(bit[31:0] val, bit[31:0] vaddr) = """
 loadi RA {{val}}
 store RA {{vaddr}}
 """;
}

Copyright © 2023 Accellera. All rights reserved.
303

Portable Test and Stimulus Standard 2.1 — October 2023

21.7.1.1 Syntax

Syntax 77—Procedural block statement

The sequence keyword before the block statement is optional, and is provided to let users state explicitly
that the statements are executed in sequence.

Typically, blocks are used to group multiple statements that are part of a control flow statement (such as
repeat, if-else, etc.). It is also valid to have a stand-alone block that is not part of a control flow statement, in
which case the following equivalencies apply:

— A stand-alone block that does not create new variables (and hence does not destroy any variables
when the scope ends) is equivalent (in so far as to the AST constructed) to the case where the con-
tents of the code block are merged with the enclosing parent block. For example:
{

int a;
int b;
{

b = a;
}

}

is equivalent to
{

int a;
int b;
b = a;

}

— If the start of an enclosing block coincides with the start of the stand-alone nested block (i.e., with no
statements in between) and similarly the end of that enclosing block coincides with the end of the
stand-alone nested block, it is then equivalent to the case where there is just a single code-block with
the contents of the nested block. For example:
{

{
int a;
int b;
//

}
}

is equivalent to
{

int a;
int b;
//

}

procedural_stmt ::=
 procedural_sequence_block_stmt
 | ...
procedural_sequence_block_stmt ::= [sequence] { { procedural_stmt } }

Copyright © 2023 Accellera. All rights reserved.
304

Portable Test and Stimulus Standard 2.1 — October 2023

21.7.2 Variable declarations

Variables may be declared with the same notation used in other declarative constructs (e.g., action). The
declaration may be placed at any point in a scope (i.e., C++ style) and does not necessarily have to be
declared at the beginning of a scope. However, the declaration shall precede any reference to the variable.

All data types listed in Clause 7 may be used for variable types. It shall be an error to instantiate rand
variables in a procedural context.

21.7.2.1 Syntax

Syntax 78—Procedural variable declaration

21.7.3 Assignments

Assignments to variables in the scope may be made.

21.7.3.1 Syntax

Syntax 79—Procedural assignment statement

The following rules apply to assignments in native PSS functions and execs:
a) A plain-data variable declared within a function/exec scope may be assigned in the scope where it is

visible with no restriction.
b) A native PSS function definition may set data attributes of component instances through

component references passed as parameters. Instance functions may similarly set data attributes of
their context component directly. Since component attributes can only be set during the
initialization phase, a function that sets such data attributes shall be called only from within exec
init_down or init_up.

c) An exec init_down or init_up block may set the data attributes of the component instance directly
in the body of the exec.

procedural_stmt ::=
 procedural_sequence_block_stmt
 | procedural_data_declaration
 | ...
procedural_data_declaration ::= data_type procedural_data_instantiation
 { , procedural_data_instantiation } ;
procedural_data_instantiation ::= identifier [array_dim] [= expression]

procedural_stmt ::=
 procedural_sequence_block_stmt
 | procedural_data_declaration
 | procedural_assignment_stmt
 | ...
procedural_assignment_stmt ::= ref_path assign_op expression ;

Copyright © 2023 Accellera. All rights reserved.
305

Portable Test and Stimulus Standard 2.1 — October 2023

d) Data attributes of a struct instance may be set using the handle passed as a parameter. Similarly,
data attributes of actions and flow/resource objects may be set using the reference passed as a
parameter. A function that sets such data attributes may be invoked in init, solve or body execs.

e) A struct instance may be assigned to another struct instance of the same type, which results in a
deep-copy operation of the data attributes. That is, this single assignment is equivalent to
individually setting data attributes of the left-side instance to the corresponding right-side instance,
for all the data attributes directly present in that type or in a contained struct type. A struct instance
may be assigned from another struct instance that is of a type that inherits from the type of the left-
hand side of the assignment. This results in a deep copy of all data attributes present in the base
struct type (left-hand type) from the right-hand struct instance to the left-hand struct instance. See
8.3.

21.7.4 Void function calls

Functions not returning a value (declared with void return type) may only be called as standalone procedural
statements. Functions returning a value may be used as a standalone statement and the return value
discarded by casting the function call to void:

(void)function_call();

Calling a nonvoid function as if has no return value shall be legal, but it is recommended to explicitly
discard the return value by casting the function call to void, as shown above.

21.7.4.1 Syntax

Syntax 80—Void function call

21.7.5 return statement

PSS functions shall return a value to the caller using the return statement. In PSS functions that do not
return a value, the return statement without an argument shall be used.

The return statement without an argument can also be used in execs. The return signifies end of
execution—no further statements in the exec are executed.

procedural_stmt ::=
 procedural_sequence_block_stmt
 | procedural_data_declaration
 | procedural_assignment_stmt
 | procedural_void_function_call_stmt
 | ...
procedural_void_function_call_stmt ::= [(void)] function_call ;

Copyright © 2023 Accellera. All rights reserved.
306

Portable Test and Stimulus Standard 2.1 — October 2023

21.7.5.1 Syntax

Syntax 81—Procedural return statement

21.7.5.2 Examples

Example 241—Procedural return statement

21.7.6 repeat (count) statement

The procedural repeat statement allows the specification of a loop consisting of one or more procedural
statements. This section describes the count-expression variant (see Syntax 82) and 21.7.7 describes the
while-expression variants.

21.7.6.1 Syntax

Syntax 82—Procedural repeat-count statement

The following also apply:
a) expression shall be a non-negative integer expression (int or bit).

procedural_stmt ::=
 procedural_sequence_block_stmt
 | procedural_data_declaration
 | procedural_assignment_stmt
 | procedural_void_function_call_stmt
 | procedural_return_stmt
 | ...
procedural_return_stmt ::= return [expression] ;

target function int add(int a, int b) {
 return (a+b);
}

procedural_stmt ::=
 procedural_sequence_block_stmt
 | procedural_data_declaration
 | procedural_assignment_stmt
 | procedural_void_function_call_stmt
 | procedural_return_stmt
 | procedural_repeat_stmt
 | ...
procedural_repeat_stmt ::=
 repeat ([index_identifier :] expression) procedural_stmt
 | ...

Copyright © 2023 Accellera. All rights reserved.
307

Portable Test and Stimulus Standard 2.1 — October 2023

b) Intuitively, the procedural_stmt is iterated the number of times specified in the expression. An
optional index-variable identifier can be specified that ranges between 0 and one less than the itera-
tion count. If the expression evaluates to 0, the procedural_stmt is not evaluated at all.

21.7.6.2 Examples

Example 242—Procedural repeat-count statement

21.7.7 repeat-while statement

The procedural repeat statement allows the specification of a loop consisting of one or more procedural
statements. This section describes the while-expression variants (see Syntax 83).

21.7.7.1 Syntax

Syntax 83—Procedural repeat-while statement

The following also apply:
a) expression shall be of type bool.
b) Intuitively, the procedural_stmt is iterated so long as the expression condition is true, as sampled

before the procedural_stmt (in the while variant) or after (in the repeat-while variant).

target function int sum(int a, int b) {
 int res;

 res = 0;

 repeat(b) {
 res = res + a;
 }

 return res;
}

procedural_stmt ::=
 procedural_sequence_block_stmt
 | procedural_data_declaration
 | procedural_assignment_stmt
 | procedural_void_function_call_stmt
 | procedural_return_stmt
 | procedural_repeat_stmt
 | ...
procedural_repeat_stmt ::=
 . . .
 | repeat procedural_stmt while (expression) ;
 | while (expression) procedural_stmt

Copyright © 2023 Accellera. All rights reserved.
308

Portable Test and Stimulus Standard 2.1 — October 2023

21.7.7.2 Examples

Example 243—Procedural while statement

21.7.8 foreach statement

The procedural foreach statement allows the specification of a loop that iterates over the elements of a
collection (see Syntax 84).

21.7.8.1 Syntax

Syntax 84—Procedural foreach statement

The following also apply:
a) expression shall be of a collection type (i.e., array, list, map or set). expression may also be an

array of action handles, components, or flow and resource object references.
b) The body of the foreach statement is a sequential block in which procedural_stmt is evaluated once

for each element in the collection.
c) iterator_identifier specifies the name of an iterator variable of the collection element type. Within

procedural_stmt, the iterator variable, when specified, is an alias to the collection element of the
current iteration.

d) index_identifier specifies the name of an index variable. Within procedural_stmt, the index variable,
when specified, corresponds to the element index of the current iteration.
1) For arrays and lists, the index variable shall be a variable of type int, ranging from 0 to one

less than the size of the collection variable, in that order.

target function bool get_parity(int n) {
 bool parity;

 parity = false;
 while (n != 0) {
 parity = !parity;
 n = n & (n-1);
 }

 return parity;
}

procedural_stmt ::=
 procedural_sequence_block_stmt
 | procedural_data_declaration
 | procedural_assignment_stmt
 | procedural_void_function_call_stmt
 | procedural_return_stmt
 | procedural_repeat_stmt
 | procedural_foreach_stmt
 | ...
procedural_foreach_stmt ::=
 foreach ([iterator_identifier :] expression [[index_identifier]]) procedural_stmt

Copyright © 2023 Accellera. All rights reserved.
309

Portable Test and Stimulus Standard 2.1 — October 2023

2) For maps, the index variable shall be a variable of the same type as the map keys, and range
over the values of the keys. The order of key traversal is undetermined.

3) For sets, an index variable shall not be specified.
e) Both the index and iterator variables, if specified, are implicitly declared within the foreach scope

and limited to that scope. Regular name resolution rules apply when the implicitly declared variables
are used within the foreach body. For example, if there is a variable in an outer scope with the same
name as the index variable, that variable is shadowed (masked) by the index variable within the
foreach body. The index and iterator variables are not visible outside the foreach scope.

f) Either an index variable or an iterator variable or both shall be specified. For a set, an iterator vari-
able shall be specified, but not an index variable.

g) The index and iterator variables are read-only. Their values shall not be changed within the foreach
body. It shall be an error to change the contents of the iterated collection variable with the foreach
body.

21.7.9 if-else statement

The procedural if-else statement introduces a branch point (see Syntax 85).

21.7.9.1 Syntax

Syntax 85—Procedural if-else statement

expression shall be of type bool.

procedural_stmt ::=
 procedural_sequence_block_stmt
 | procedural_data_declaration
 | procedural_assignment_stmt
 | procedural_void_function_call_stmt
 | procedural_return_stmt
 | procedural_repeat_stmt
 | procedural_foreach_stmt
 | procedural_if_else_stmt
 | ...
procedural_if_else_stmt ::= if (expression) procedural_stmt [else procedural_stmt]

Copyright © 2023 Accellera. All rights reserved.
310

Portable Test and Stimulus Standard 2.1 — October 2023

21.7.9.2 Examples

Example 244—Procedural if-else statement

21.7.10 match statement

The procedural match statement specifies a multi-way decision point that tests whether an expression
matches one of a number of other expressions and executes the matching branch accordingly (see
Syntax 86).

21.7.10.1 Syntax

Syntax 86—Procedural match statement

The following also apply:
a) When the match statement is evaluated, the match_expression is evaluated.
b) After the match_expression is evaluated, the open_range_list of each procedural_match_choice

shall be compared to the match_expression. open_range_lists are described in 8.5.9.1.

target function int max(int a, int b) {
 int c;

 if (a > b) {
 c = a;
 } else {
 c = b;
 }

 return c;
}

procedural_stmt ::=
 procedural_sequence_block_stmt
 | procedural_data_declaration
 | procedural_assignment_stmt
 | procedural_void_function_call_stmt
 | procedural_return_stmt
 | procedural_repeat_stmt
 | procedural_foreach_stmt
 | procedural_if_else_stmt
 | procedural_match_stmt
 | ...
procedural_match_stmt ::=
 match (match_expression) { procedural_match_choice { procedural_match_choice } }
match_expression ::= expression
procedural_match_choice ::=
 [open_range_list] : procedural_stmt
 | default : procedural_stmt

Copyright © 2023 Accellera. All rights reserved.
311

Portable Test and Stimulus Standard 2.1 — October 2023

c) If there is exactly one match, then the corresponding branch shall be evaluated.
d) It shall be an error if more than one match is found for the match_expression.
e) If there are no matches, then the default branch, if provided, shall be evaluated.
f) The default branch is optional. There may be at most one default branch in the match statement.
g) If a default branch is not provided and there are no matches, it shall be an error.

21.7.10.2 Examples

Example 245—Procedural match statement

21.7.11 break/continue statement

The procedural break and continue statements allow for additional control in loop termination (see
Syntax 87).

21.7.11.1 Syntax

Syntax 87—Procedural break/continue statement

target function int bucketize(int a) {
 int res;

 match (a) {
 [0..3]: res = 1;
 [4..7]: res = 2;
 [8..15]: res = 3;
 default: res = 4;
 }

 return res;
}

procedural_stmt ::=
 procedural_sequence_block_stmt
 | procedural_data_declaration
 | procedural_assignment_stmt
 | procedural_void_function_call_stmt
 | procedural_return_stmt
 | procedural_repeat_stmt
 | procedural_foreach_stmt
 | procedural_if_else_stmt
 | procedural_match_stmt
 | procedural_break_stmt
 | procedural_continue_stmt
 | ...
procedural_break_stmt ::= break ;
procedural_continue_stmt ::= continue ;

Copyright © 2023 Accellera. All rights reserved.
312

Portable Test and Stimulus Standard 2.1 — October 2023

The following also apply:
a) The semantics are similar to break and continue in C++.
b) break and continue may only appear within loop statements (repeat-count, repeat-while or

foreach). Within a loop, break and continue may be nested in conditional branch or match state-
ments.

c) break and continue affect the innermost loop statement they are nested within.
d) break signifies that execution should continue from the statement after the enclosing loop construct.

continue signifies that execution should proceed to the next loop iteration.

21.7.11.2 Examples

Example 246—Procedural foreach statement with break/continue

21.7.12 randomize statement

The procedural randomize statement shall randomize the specified data attributes or variables.

// Sum all elements of 'a' that are even, starting from a[0], except those
// that are equal to 42. Stop summation if the value of an element is 0.

function int sum(array<int,100> a) {
 int res;

 res = 0;

 foreach (el : a) {
 if (el == 0)
 break;
 if (el == 42)
 continue;
 if ((el % 2) == 0) {
 res = res + el;
 }
 }

 return res;
}

Copyright © 2023 Accellera. All rights reserved.
313

Portable Test and Stimulus Standard 2.1 — October 2023

21.7.12.1 Syntax

Syntax 88—Procedural randomize statement

The rules and semantics of the randomize statement are described in 16.4.6.

21.7.13 exec block

Example 247 shows how an exec body can be specified using procedural constructs in PSS.

Example 247—exec block using procedural control flow statements

procedural_stmt ::=
 procedural_sequence_block_stmt
 | procedural_data_declaration
 | procedural_assignment_stmt
 | procedural_void_function_call_stmt
 | procedural_return_stmt
 | procedural_repeat_stmt
 | procedural_foreach_stmt
 | procedural_if_else_stmt
 | procedural_match_stmt
 | procedural_break_stmt
 | procedural_continue_stmt
 | procedural_randomization_stmt
 | procedural_compile_if
 | stmt_terminator
procedural_randomization_stmt ::=
 randomize procedural_randomization_target procedural_randomization_term
procedural_randomization_target ::= hierarchical_id { , hierarchical_id }
procedural_randomization_term ::=
 with constraint_set
 | ;

action A {
 rand bool flag;

 exec body {
 int var;

 if(flag) {
 var = 10;
 } else {
 var = 20;
 }
 // send_cmd is an imported function
 send_cmd(var);
 }
}

Copyright © 2023 Accellera. All rights reserved.
314

Portable Test and Stimulus Standard 2.1 — October 2023

21.8 Comparison between mapping mechanisms

Previous sections describe three mechanisms for mapping PSS entities to external (non-PSS) definitions:
functions that directly map to foreign API (see 21.4), functions that map to foreign language procedural code
using target code templates (see 21.6), and exec blocks where arbitrary target code templates are in-lined
(see 21.5). These mechanisms differ in certain respects and are applicable in different flows and situations.
This section summarizes their differences.

PSS tests may need to be realized in different ways in different flows:
— by directly exercising separately-existing environment APIs via procedural linking/binding;
— by generating code once for a given model, corresponding to entity types, and using it to execute

scenarios; or
— by generating dedicated target code for a given scenario instance.

Table 24 shows how these relate to the mapping constructs.

Not all mapping forms can be used for every exec kind. Solving/generation-related code must have direct
procedural binding since it is executed prior to possible code generation. exec blocks that expand
declarations and auxiliary files shall be specified as target-templates since they expand non-procedural code.
The run_start exec block is procedural in nature, but involves up-front commitment to the behavior that is
expected to run.

Table 25 summarizes these rules.

The possible use of action and struct attributes differs between mapping constructs. Explicitly declared
prototypes of functions enable the type-aware exchange of values of all data types. On the other hand, free
parameterization of uninterpreted target code provides a way to use attribute values as target-language meta-
level parameters, such as types, variables, functions, and even preprocessor constants.

Table 26 summarizes the parameter passing rules for the different constructs.

Table 24—Flows supported for mapping mechanisms

No target code
generation

Per-model
target code
generation

Per-test target
code generation

Non-procedural
binding

Direct-mapped
functions

X X X

Target-template
functions

X X

Target-template
exec-blocks

X X

Copyright © 2023 Accellera. All rights reserved.
315

Portable Test and Stimulus Standard 2.1 — October 2023

21.9 Exported actions

Imported functions and classes specify functions and classes external to the PSS description that can be
called from the PSS description. Exported actions specify actions that can be called from a foreign language.
See also Syntax 89.

21.9.1 Syntax

Syntax 89—Export action declaration

The export statement for an action specifies the action to export and the parameters of the action to make
available to the foreign language, where the parameters of the exported action are associated by name with
the action being exported. The export statement also optionally specifies in which phases of test generation
and execution the exported action will be available.

The following also apply:
a) As with imported functions (see 21.2.1), the exported action is assumed to always be available if the

function availability is not specified.
b) Each call into an export action infers an independent tree of actions, components, and resources.

Table 25—exec block kinds supported for mapping mechanisms

Action runtime
behavior

exec blocks:
body

Non-procedural
exec blocks:

header,
declaration, file

Global test
exec blocks:
run_start,
run_end

Solve exec blocks:
init_down, init_up,

pre_solve, post_solve,
pre_body

Direct-mapped
functions

X X (only in pre-
generation)

X

Target-template
functions

X X (only in pre-
generation)

Target-template
exec-blocks

X X X

Table 26—Data passing supported for mapping mechanisms

Back assignment to PSS
attributes

Passing user-defined and
aggregate data types

Using PSS attributes in
non-expression positions

Direct-mapped
functions

X X

Target-template
functions

X

Target-template
exec-blocks

X

export_action ::= export [platform_qualifier] action_type_identifier
 function_parameter_list_prototype ;

Copyright © 2023 Accellera. All rights reserved.
316

Portable Test and Stimulus Standard 2.1 — October 2023

c) Constraints and resource allocation are considered within the inferred action tree and are not consid-
ered across imported function / exported action call chains.

21.9.2 Examples

Example 248 shows an exported action. In this case, the action comp::A1 is exported. The foreign
language invocation of the exported action supplies the value for the mode field of action A1. The PSS
processing tool is responsible for selecting a value for the val field. Note that comp::A1 is exported to the
target, indicating the target code can invoke it.

Example 248—Export action

21.9.3 Export action foreign language binding

An exported action is exposed as a function in the target foreign language (see Example 249). The
component namespace is reflected using a language-specific mechanism: C++ namespaces, SystemVerilog
packages. Parameters to the exported action are implemented as parameters to the foreign language function.

Example 249—Export action foreign language implementation

component comp {

 action A1 {
 rand bit mode;
 rand bit[31:0] val;

 constraint {
 if (mode!=0) {
 val in [0..10];
 } else {
 val in [10..100];
 }
 }
 }

}

package pkg {
 // Export A1, providing a mapping to field 'mode'
 export target comp::A1(bit mode);
}

namespace comp {
void A1(unsigned char mode);

}

Copyright © 2023 Accellera. All rights reserved.
317

Portable Test and Stimulus Standard 2.1 — October 2023

22. Conditional code processing

It is often useful to conditionally process portions of a PSS model based on some configuration parameters.
This clause details a compile if construct that can be evaluated as part of the elaboration process.

22.1 Overview

This section covers general considerations for using compile statements.

22.1.1 Statically-evaluated statements

A statically-evaluated statement marks content that may or may not be elaborated. The description within a
statically-evaluated statement shall be syntactically correct, but need not be semantically correct when the
static scope is disabled for evaluation.

A statically-evaluated statement may specify a block of statements. However, this does not introduce a new
scope in the resulting description.

22.1.2 Elaboration procedure

Compile statements are processed top-to-bottom within a given source unit. The following steps are
performed in processing source code in the presence of conditional compilation directives:

a) Syntactic code analysis is performed.
b) Compile-time expressions are evaluated in order within the following contexts:

1) static const initializers
2) compile if conditions (see 22.2)

 These expressions are evaluated based on types and static constants declared:
1) Unconditionally, or in an enabled compile if branch, within a previously-processed source unit
2) Unconditionally, or in an enabled compile if branch, previously processed within the current

source unit
c) Globally-visible content and the content within enabled compile if branches is elaborated.

22.1.3 Compile-time expressions

The value of any compile if expressions must be determinable at compile time. Because compile if
statements are evaluated early in PSS source processing, only types and constants declared in package
scopes may be referenced. Types and constants declared in type scopes (e.g., an action type declared within
a component type) may not be referenced.

The example below highlights the reference rules for conditional compilation directives:
a) Conditional compilation directives are evaluated based on previously defined elements.

1) Consequently, the first directive (compile has(s)) evaluates true because p1::s is visi-
ble at this point in the evaluation.

2) The second directive (compile has(t)) also evaluates true because p2::t has been previ-
ously declared in the source unit.

b) Conditional compilation directives may not reference inner members of types. Consequently,
attempting to reference t::A is an error, since t is a type and A is an inner member of type t.

Copyright © 2023 Accellera. All rights reserved.
318

Portable Test and Stimulus Standard 2.1 — October 2023

Example 250—Conditional compilation evaluation

22.2 compile if

22.2.1 Scope

compile if statements may appear in the following scopes:
— Global/package
— Action
— Component
— Struct
— Execs
— Constraints
— Covergroups
— Overrides

package p1 {
 struct s {
 static const int A = 3;
 };
};

package p2 {
 import p1::*;

 // derived from p2::s defined later in this file
 struct t : s { };

 // evaluates to true because such a type has been previously defined,
 // namely p1::s
 compile if (compile has (s)) { … }

 // evaluates to true because such a type has been previously defined,
 // namely p2::t (even though its supertype is not yet known)
 compile if (compile has (t)) { … }

 // Illegal! Cannot reference a member of a struct in compile-if context
 compile if (t::A == 2) { … }

 struct s {};
}

Copyright © 2023 Accellera. All rights reserved.
319

Portable Test and Stimulus Standard 2.1 — October 2023

22.2.2 Syntax

Syntax 90 shows the grammar for a compile if statement.

Syntax 90—compile if declaration

NOTE—In previous versions of PSS, a compile if branch consisting of a single item, such as a single
package_body_item, did not have to be enclosed in curly braces. That syntax has been deprecated.

22.2.3 Examples

Example 251 shows an example of conditional processing if PSS were to use C pre-processor directives. If
the PROTOCOL_VER_1_2 directive is defined, then action new_flow is evaluated. Otherwise, action
old_flow is processed.

NOTE—Example 251 is only shown here to illustrate the functionality of C pre-processor directives in a familiar for-
mat. It is not part of PSS.

package_body_compile_if ::= compile if (constant_expression)
 package_body_compile_if_item [else package_body_compile_if_item]
action_body_compile_if ::= compile if (constant_expression)
 action_body_compile_if_item [else action_body_compile_if_item]
component_body_compile_if ::= compile if (constant_expression)
 component_body_compile_if_item [else component_body_compile_if_item]
struct_body_compile_if ::= compile if (constant_expression)
 struct_body_compile_if_item [else struct_body_compile_if_item]
procedural_compile_if ::= compile if (constant_expression)
 procedural_compile_if_stmt [else procedural_compile_if_stmt]
constraint_body_compile_if ::= compile if (constant_expression)
 constraint_body_compile_if_item [else constraint_body_compile_if_item]
covergroup_body_compile_if ::= compile if (constant_expression)
 covergroup_body_compile_if_item [else covergroup_body_compile_if_item]
override_compile_if ::= compile if (constant_expression)
 override_compile_if_stmt [else override_compile_if_stmt]
package_body_compile_if_item ::= { { package_body_item } }
action_body_compile_if_item ::= { { action_body_item } }
component_body_compile_if_item ::= { { component_body_item } }
struct_body_compile_if_item ::= { { struct_body_item } }
procedural_compile_if_stmt ::= { { procedural_stmt } }
constraint_body_compile_if_item ::= { { constraint_body_item } }
covergroup_body_compile_if_item ::= { { covergroup_body_item } }
override_compile_if_stmt ::= { { override_stmt } }

Copyright © 2023 Accellera. All rights reserved.
320

Portable Test and Stimulus Standard 2.1 — October 2023

Example 251—Conditional processing (C pre-processor)

Example 252 shows a PSS version of Example 251 using a compile if statement instead.

Example 252—Conditional processing (compile if)

When the true case is triggered, the code in Example 252 is equivalent to:

action new_flow {
 activity { ... }
 }

When the false case is triggered, the code in Example 252 is equivalent to:

action old_flow {
 activity { ... }
 }

22.3 compile has

compile has allows conditional elaboration to reason about the existence of types and constants. The
compile has expression evaluates to true if a type or constant has been previously declared unconditionally
or within an enabled conditional block (see 22.1.2); otherwise, it evaluates to false.

22.3.1 Syntax

Syntax 91 shows the grammar for a compile has expression.

#ifdef PROTOCOL_VER_1_2
action new_flow {
 activity { ... }
}
#else
action old_flow {
 activity { ... }
}
#endif

package config_pkg {
 const bool PROTOCOL_VER_1_2 = false;
}
compile if (config_pkg::PROTOCOL_VER_1_2) {
 action new_flow {
 activity { ... }
 }
} else {
 action old_flow {
 activity { ... }
 }
}

Copyright © 2023 Accellera. All rights reserved.
321

Portable Test and Stimulus Standard 2.1 — October 2023

Syntax 91—compile has expression

22.3.2 Examples

Example 253 checks whether the config_pkg::PROTOCOL_VER_1_2 field exists and tests its value if
it does. In this example, old_flow will be used because config_pkg::PROTOCOL_VER_1_2 does
not exist.

Example 253—compile has

Example 254 is composed of a single source unit.
— The first top-level compile if block checks for the existence of X. This evaluates to false, since X is

only subsequently declared within the source unit.
— The second top-level compile if block checks for the non-existence of Y. This evaluates to true, since

Y was not previously declared (the first compile if block was not expanded). As a consequence, Y is
declared with a value of 0.

Example 254—Nested conditions

compile_has_expr ::= compile has (static_ref_path)
static_ref_path ::= [::] { type_identifier_elem :: } member_path_elem

package config_pkg {
}

compile if (compile has(config_pkg::PROTOCOL_VER_1_2) &&
 config_pkg::PROTOCOL_VER_1_2) {
 action new_flow {
 activity { ... }
 }
} else {
 action old_flow {
 activity { ... }
 }
}

compile if (compile has(X)) {
 const int Y = 2;
 compile if (compile has(Y)) {
 const int Z;
 }
}

const int X = 1;

compile if (!(compile has(Y))) {
 const int Y=0;
} else {
 compile if (compile has(Z)) {
 const int A;
 }
}

Copyright © 2023 Accellera. All rights reserved.
322

Portable Test and Stimulus Standard 2.1 — October 2023

22.4 compile assert

compile assert assists in flagging errors when the source is incorrectly configured. This construct is
evaluated during elaboration. A tool shall report a failure if constant_expression does not evaluate to true,
and report the user-provided message, if specified.

22.4.1 Syntax

Syntax 92 shows the grammar for a compile assert statement.

Syntax 92—compile assert statement

22.4.2 Examples

Example 255 shows a compile assert example.

Example 255—compile assert

compile_assert_stmt ::= compile assert (constant_expression [, string_literal]) ;

compile if (compile has(FIELD2)) {
 static const FIELD1 = 1;
}

compile if (compile has(FIELD1)) {
 static const FIELD2 = 2;
}
compile assert(compile has(FIELD1), "FIELD1 not found");

Copyright © 2023 Accellera. All rights reserved.
323

Portable Test and Stimulus Standard 2.1 — October 2023

23. PSS core library

The PSS core library provides standard portable functionality and utilities for common PSS applications. It
defines a set of component types, data types, functions, and attributes. The interface of the core library is
specified in PSS-language terms, and its use conforms to the rules of the language. However, the full
semantics of its entities involve reference to type information, solving, scheduling, and runtime services.
Hence, the implementation of the core library depends on inner workings of PSS processing tools and is
expected to be coupled with them.

The core library currently covers functionality in the following areas:
— String formatting and output operations
— File operations
— Error reporting
— Randomization
— Manipulation and storage of floating-point values
— Representation of execution contexts in the target environment
— Assignments of actions and flow/resource objects to execution contexts
— Representation of target address spaces
— Allocation from and management of target address spaces
— Access to target address spaces
— Representation of and access to registers

The core library functionality is defined in three packages:
— std_pkg, covering string formatting, file operations, error reporting, randomization, and core data

types
— executor_pkg, covering representation of execution contexts and assignment of actions and

flow/resource objects to execution contexts
— addr_reg_pkg, covering representation of address spaces and access to memory, and representa-

tion and access to registers

This section covers the interface, semantics, and intended use of core library entities in the areas listed
above. Note that it defines a library interface, not new language constructs. The code for the built-in library
package contents appears in Annex C.

In the following sections, library code definitions may omit reiterating the surrounding package, and
example code may omit importing core library packages for brevity.

23.1 String formatting and output

The PSS core library provides means for string formatting and output operations. The built-in package
std_pkg defines functions and types for these purposes, as well as for file operations and error reporting,
introduced in the next two sections of this document.

On solve platforms, a complete set of input/output and file operations is provided, similar to other
programming languages. Functions are defined for string formatting, printing, and reading from and writing
to text files.

On target platforms, a limited portable messaging capability is provided, because some target environments
may not have a file system or access to string manipulation libraries such as in C.

Copyright © 2023 Accellera. All rights reserved.
324

Portable Test and Stimulus Standard 2.1 — October 2023

23.1.1 String formatting

Several output functions involve a string formatting capability. They are based on an approach similar to C
printf()-style string formatting. Each of these functions gets a format string parameter format_str of
type string, followed by a generic varargs parameter args.

The format string is used as a template, where all characters are taken literally except when the character %
appears. A % followed by another % denotes a single literal %. Otherwise, a % starts a format specifier.

A format specifier determines how data passed in each subsequent function parameter (passed as varargs)
should be embedded in the resulting string. It consists of the following optional parts followed by a
formatting character:

%[flags][width][.precision]format

The optional flags, if specify, denote the following:

The optional width, if specified, denotes the minimum number of characters to insert into the formatted
string. The inserted value is not truncated if larger than the specified width. width is typically used to pad
fixed-width fields in tabulated output.

The optional precision, if specified, denotes the following:
— For integer formats (including p), specifies the minimum number of digits to be inserted into the for-

matted string. If needed, the result is padded with leading zeros. The value is not truncated even if
the result is longer. A precision of 0 means that no character is inserted for the value 0.

— For floating-point formats e, E, and f, specifies the number of digits to be inserted after the decimal
point. By default, this is 6.

— For floating-point formats g and G, specifies the maximum number of significant digits to be
inserted.

— For s and n formats, specifies the maximum number of characters to be inserted. By default, all
characters in the string, the enumeration item name, or the boolean name are used. Truncation, if
needed, is from the right.

If precision is empty (the period is specified without an explicit value for precision), 0 is assumed.

- Left justification (default is right justification)

+ Force a sign (+ or -) to precede numeric values.
By default, positive numbers are not preceded with +.

space If a numeric value is not preceded by a sign,
it is preceded by a space.

#

For o, x, X, b or B format characters, the value is preceded with
0, 0x, 0X, 0b or 0B, respectively, for values different from zero.
For floating-point formats, force a decimal point even if no more
digits follow the decimal point.

0 When left padding is used, pad a numeric value with zeros instead
of spaces.

Copyright © 2023 Accellera. All rights reserved.
325

Portable Test and Stimulus Standard 2.1 — October 2023

The formatting character determines the expected data type of the corresponding function parameter and
how it is formatted, as follows:

The following also apply:
a) If the format string contains % followed neither by another % nor by a valid format specifier, an error

shall be generated.
b) The number of format specifiers in the format string shall be equal to the number of parameters in

the varargs. Otherwise, an error shall be generated.
c) Each format specifier in the format string shall match the type of the corresponding parameter in the

varargs. Implicit type conversions shall be allowed. For example: if %d is used for a parameter of an
unsigned type, the value is converted to signed type before being formatted; if %f is used for a
parameter of an integer type, the value is converted to floating-point before being formatted. If the
type does not match and an implicit type conversion is not applicable, an error shall be generated.

23.1.2 Solve-time string formatting and output

The functions format() and print() are used on the solve platform to facilitate the string formatting
functionality. The function format() returns a formatted string. The function print() outputs a
formatted string to the standard output and can be used to display and log certain information.

Syntax 93—String formatting and output functions

d A signed integer in decimal radix.

u An unsigned integer in decimal radix.

x,X An unsigned integer in hexadecimal radix.
x uses lowercase letters and X uses uppercase.

o An unsigned integer in octal radix.

b,B An unsigned integer in binary radix.
If # flag is specified, b uses lowercase 0b and B uses uppercase 0B.

f A floating-point value in decimal form. For example, 123.4567.

e,E A floating-point value in scientific form. For example, 1.234567e+02.
e uses lowercase e for the exponent and E uses uppercase E.

g,G A floating-point value in the shortest form, decimal or scientific.
If scientific form, g corresponds to e, and G corresponds to E.

n An enumeration item value in the form of its name, or a Boolean value in the form of
“false” or “true”.

s A string.

p A chandle as a pointer value in hexadecimal form, including the preceding 0x
(similar to %#x for integer numbers)

package std_pkg {
 function string format(string format_str, type... args);
 function void print(string format_str, type... args);
}

Copyright © 2023 Accellera. All rights reserved.
326

Portable Test and Stimulus Standard 2.1 — October 2023

Example 256 demonstrates how native functions can be used to print or to return a formatted string of the
context of a given struct instance.

Example 256—Printing or formatting the context of a struct

23.1.3 Runtime messaging

The function message() is used to log certain information during the execution of a test in a portable way.
It inserts a text line, including a trailing newline (‘\n’), into the execution log on the target platform.

Syntax 94—Runtime messaging function

The PSS processing tool shall provide means for specifying a messaging verbosity level for a given test run.
For a higher test run verbosity level, more messages will be issued and more information will be provided.

The parameter vrb_level denotes the verbosity level of a particular message, and determines the
minimum test run verbosity level for which the message should be issued. Messages with verbosity higher
than the test run verbosity level shall be ignored.

For example, a message of verbosity level NONE is considered non-verbose; it is typically a critical message
which shall always be issued regardless of the verbosity level of the run. A message of verbosity level LOW
shall not be issued in a run whose verbosity level is NONE, but shall be issued in all other cases, because it is
typically an important, though not critical, message. A message of verbosity level FULL is considered very
verbose, and it shall only be issued in a run whose verbosity level is FULL; it is typically a least important
message which may provide some additional details or information which is not essential in most runs.

The parameter vrb_level shall be an expression whose value is known at solve time, i.e., an expression
whose value is unchanged in target contexts. Implementations may leverage this fact to optimize generated
test code based on verbosity settings.

The parameter format_str shall be a string expression whose value is known at solve time. If any
subsequent args data parameters are strings (as opposed to numbers), their values must also be known at
solve time. In particular, string variables that are assigned in target contexts are not allowed. This is to

import std_pkg::*;
struct my_struct {
 int value;
 string name;
}
solve function void print_foo(my_struct s) {
 print("The context of the struct is:\n");
 print("value = %d\nname = '%s'\n", s.value, s.name);
}
solve function string get_foo_context_string(my_struct s) {
 return format("value = %d\nname = '%s'\n", s.value, s.name);
}

package std_pkg {
 enum message_verbosity_e {NONE, LOW, MEDIUM, HIGH, FULL};
 function void message

(message_verbosity_e vrb_level, string format_str, type... args);
}

Copyright © 2023 Accellera. All rights reserved.
327

Portable Test and Stimulus Standard 2.1 — October 2023

enable implementations to determine on the solve platform the target memory requirements for the string
formatting operation.

If expressions with side effects, such as non-pure function calls, are passed as parameters to message(),
their evaluation is not guaranteed, because the verbosity level of a particular test run may determine whether
or not they are evaluated. Therefore, users should avoid such expressions as parameters to message().

Example 257 demonstrates the usage of message() in an exec body block. There are two messages: the
first message of verbosity level FULL, and the second message of verbosity level LOW. In test runs whose
verbosity level is NONE, no message is issued. In runs whose verbosity level is at least LOW but lower than
FULL, only the second message is issued. In runs with verbosity level FULL, both messages are issued.

Example 257—Runtime messages

23.2 File operations

The PSS core library provides two flavors of text input/output operations on solve platform files. Files can
be opened separately to obtain a file handle, which can then be used when calling write and read functions.
Alternatively, write and read can be performed with a single function call that also opens and closes the file.

File read and write operations in both flavors use string values.

Syntax 95 specifies types and functions used for file operations that use file handles.

import std_pkg::*;
component C {
 target function int my_func() {…}
 action A {
 rand int x;
 exec body {
 y = my_func();
 message(FULL, "The values of the variables x and y are: ");
 message(LOW, "%d, %d", x, y);
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
328

Portable Test and Stimulus Standard 2.1 — October 2023

Syntax 95—Text file operations using file handles

The type file_handle_t is used to represent a text file that is open for the purpose of reading or writing.
A file handle is obtained by calling function file_open().

Values of the enumeration type file_option_e represent the purpose of the file, as follows:
— TRUNCATE Delete any existing content of the file and allow write operations.
— APPEND Allow write operations; text will be appended to the existing file content.
— READ Allow read operations.

The function file_open() returns a file handle to the file whose name is specified by filename. If the
file fails to open in the mode specified by opt, the special value nullfilehandle is returned.

The function file_close() closes the file represented by file_handle, which must have been
previously opened and not closed. Once a file has been closed, the handle can no longer be used for reading
or writing.

The function file_exists() returns true if a file with the specified filename exists in the file system,
otherwise returns false.

The function file_write() writes a formatted string to a file represented by file_handle, which
must have been opened with the TRUNCATE or APPEND option. A newline is not added at the end.

The function file_read() reads at most size number of characters from a file represented by
file_handle, and returns a string containing those characters. If size is negative (or not specified), the
entire content of the file is read and returned. The file must have been opened with the READ option.

The functions file_write(), file_read(), and file_close() shall trigger an appropriate error
if the operation cannot be performed.

Syntax 96 specifies functions used for file reading and writing in a single function call.

package std_pkg {
 typedef chandle file_handle_t;

 static const file_handle_t nullfilehandle = /* implementation-specific */;

 enum file_option_e {TRUNCATE, APPEND, READ};

 function file_handle_t file_open(string filename, file_option_e opt);

 function void file_close(file_handle_t file_handle);

 function bool file_exists(string filename);

 function void file_write
 (file_handle_t file_handle, string format_str, type... args);

 function string file_read(file_handle_t file_handle, int size = -1);
}

Copyright © 2023 Accellera. All rights reserved.
329

Portable Test and Stimulus Standard 2.1 — October 2023

Syntax 96—Simple text file operations

The function file_write_lines() writes all strings in lines to the file whose name is specified by
filename. A newline character is inserted at the end of each string. opt must be either TRUNCATE or
APPEND. If APPEND is used, a newline character is also inserted at the end of the existing file content,
unless the last character in it is already a newline character.

The function file_read_lines() reads the entire file whose name is specified by filename, and
returns a list of strings representing the text in the file. A string is terminated when a newline character in the
file is reached. The newline characters themselves are not included in the strings.

Both functions trigger an appropriate error if the operation cannot be performed.

In principle, the string passed as the filename parameter to functions file_open(),
file_exists(), file_write_lines(), and file_read_lines() can include a directory path.
PSS processing tools may provide specific ways of mapping a physical file in the file system to a given
filename string. For example, a tool may use an environment variable to provide one or more search
paths for files (similar to a PATH environment variable used in many operating systems to search for
executable files).

Example 258 shows two functions that write the content of a given struct list into a text file in a certain
arbitrary format. Both functions achieve the same result, but the first function uses a file handle, and the
second function uses file_write_lines() directly.

package std_pkg {
 function void file_write_lines
 (string filename, list<string> lines, file_option_e opt);

 function list<string> file_read_lines(string filename);
}

Copyright © 2023 Accellera. All rights reserved.
330

Portable Test and Stimulus Standard 2.1 — October 2023

Example 258—File operations

23.3 Error reporting

The functions error() and fatal() are used to report an error during a test and/or to abort the rest of
the run in a portable way. They are similarly used for the solving process.

Syntax 97—Error reporting functions

Both error() and fatal() insert the specified formatted text into the solving or execution log, with a
trailing newline character.

The parameter format_str shall be a string expression whose value is known at solve time. If there are
strings (as opposed to numbers) among the subsequent args data parameters, they must also be known at
solve time. In other words, when used in target contexts, the string values of those parameters must be
constant at run time.

The function fatal() shall terminate the solving or execution flow at the nearest possible point. The value
of the parameter status is returned to the calling environment.

The function error() may terminate the solving or execution flow, or it may not, depending on tool/
session-specific criteria.

Example 259 demonstrates reporting of a run-time error under a particular condition.

import std_pkg::*;
struct my_struct {
 int value;
 string name;
}
solve function void write_my_struct_list_using_file_handle
 (string file_name, list<my_struct> s_list)
{
 file_handle_t f = file_open(file_name, TRUNCATE);
 foreach (s: s_list) {
 file_write(f, "%d %s\n", s.value, s.name);
 }
 file_close(f);
}
solve function void write_my_struct_list_using_string_list
 (string file_name, list<my_struct> s_list)
{
 list<string> lines;
 foreach (s: s_list) {
 lines.push_back(format("%d %s", s.value, s.name));
 }
 file_write_lines(file_name, lines, TRUNCATE);
}

package std_pkg {
 function void error(string format_str, type... args);
 function void fatal(int status, string format_str, type... args);
}

Copyright © 2023 Accellera. All rights reserved.
331

Portable Test and Stimulus Standard 2.1 — October 2023

Example 259—Error reporting

23.4 Randomization

Randomization functions are contained within the std_pkg package.

Syntax 98—Randomization functions

23.4.1 urandom()

The urandom() function returns an unsigned 32-bit integer.

23.4.2 urandom_range(min, max)

The urandom_range() function returns an unsigned 32-bit integer between the specified minimum and
maximum values.

23.5 Floating-point

PSS defines a set of functions for manipulating floating-point values and representing various storage
formats of floating-point numbers. These functions and data types are defined in the std_pkg package.

23.5.1 Floating-point storage types

Syntax 99—Floating-point storage types

component C {
 function int get_some_id();
 action A {
 exec body {
 int id = comp.get_some_id();
 if (id > 1000) {
 error("Id is too large: %d", id);
 }
 }
 }
}

package std_pkg {
function bit[32] urandom();
function bit[32] urandom_range(bit[32] min, bit[32] max);

}

struct float_base_s <int Wm, int We, endianness_e E=LITTLE_ENDIAN> :
packed_s<E> {
 rand bit[Wm] mantissa;
 rand bit[We] exponent;
 rand bit sign;
}

typedef float_base_s<23, 8> float32_s;
typedef float_base_s<52,11> float64_s;

Copyright © 2023 Accellera. All rights reserved.
332

Portable Test and Stimulus Standard 2.1 — October 2023

The PSS core library defines a struct, float_base_s, to represent the in-memory layout of floating-
point numbers. Specific specializations of this templated type are used to capture specific storage layouts.
The float_base_s struct inherits from the packed_s struct type, which is described in 23.9. Storage
formats for the two built-in computation types are defined as part of the core library package.

23.5.2 Floating-point computation functions

The PSS core library defines the following floating-point computation functions. All functions return
float64 as a result, and accept parameters of type float64. Their behavior shall match the equivalent C
language standard math library function with the same name, since float64 is equivalent to the double type
in C. Function prototypes may be found in Annex C.

Floating-point functions may not be used in constraints.

Table 27—Floating-point computation functions

Function Description

log(x) Natural logarithm

log10(x) Decimal logarithm

exp(x) Exponential

sqrt(x) Square root

pow(x,y) xy

round(x) Round to nearest value

floor(x) Floor

ceil(x) Ceiling

sin(x) Sine

cos(x) Cosine

tan(x) Tangent

asin(x) Arc-sine

acos(x) Arc-cosine

atan(x) Arc-tangent

atan2(y,x) Arc-tangent of y/x

hypot(x,y) sqrt(x*x+y*y)

sinh(x) Hyperbolic sine

cosh(x) Hyperbolic cosine

tanh(x) Hyperbolic tangent

asinh(x) Arc-hyperbolic sine

acosh(x) Arc-hyperbolic cosine

atanh(x) Arc-hyperbolic tangent

Copyright © 2023 Accellera. All rights reserved.
333

Portable Test and Stimulus Standard 2.1 — October 2023

23.5.3 Computation-type field extraction and composition

Floating-point computation and storage data types both have a sign, exponent, and mantissa component.
Floating-point types differ in the width of the exponent and mantissa components. PSS defines functions for
accessing the various components of computation types, and functions for forming a computation-type value
from floating-point component parts.

Syntax 100—float_mantissa function

The float_mantissa() function extracts the mantissa bit image from the specified float64 value as is
with no conversion.

Syntax 101—float_exponent function

The float_exponent() function extracts the exponent bit image from the specified float64 value as is
with no conversion.

Syntax 102—float_sign function

The float_sign() function extracts the sign bit of the specified float64 value.

Syntax 103—to_float function

The to_float() function composes a float64 value from the specified sign, exponent, and mantissa
component bit images.

function bit[52] float_mantissa(float64 fv);

function bit[11] float_exponent(float64 fv);

function bit float_sign(float64 fv);

function float64 to_float(bit[52] mantissa, bit[11] exp, bit sign);

Copyright © 2023 Accellera. All rights reserved.
334

Portable Test and Stimulus Standard 2.1 — October 2023

Example 260—Conversion to and from storage type

Example 260 above shows conversion of the floating-point value 20.25 held in a float64 variable to a
bfloat16_s floating-point storage data type. The bfloat16_s storage type has an exponent of 8 bits
and a mantissa of 7 bits, while the float64 variable has an exponent of 11 bits and a mantissa of 52 bits.

In this example, the exponent part is stored in the storage type in biased form. To achieve this, it is first
unbiased from the original bit image representation of 11 bits (by subtracting 211-1-1) and then biased for 8
bits (by adding 28-1-1). For the mantissa part, the 7 left-most bits are used, which is achieved by left-shifting
by 52-7 bits.

Finally, the components of the bfloat16_s type are converted back to a float64 value using the
to_float() function.

23.6 Executors

A PSS generated test calls foreign functions available in the target environment, executes target-language
code blocks, and performs target operations provided in the core-library. It does so in accordance with the
user-defined realization of actions and of flow/resource objects specified in the form of target exec blocks—
body, run_start, and run_end—and functions called from them. Foreign function calls, target-language
code blocks, and built-in target operations, all need to be performed under a certain agent of execution
available to the test in the runtime environment, or in short, an executor.

An executor is an abstract notion that may correspond to different kinds of entities in different
environments. For example:

— An embedded processor core or HW thread in a bare-metal environment that executes code gener-
ated by the PSS tool

— A BFM instantiated as a master on an interconnect of the DUT that exposes transactional APIs to the
PSS tool

typedef float_base_s<7,8> bfloat16_s;

struct S {
 exec post_solve {
 float64 f1 = 20.25;
 bfloat16_s f2;
 float64 f3;
 f2.sign = float_sign(f1);

 // Unbias from 11-bit exponent, and bias for 8-bit
 f2.exponent = float_exponent(f1) - (2**(11-1)-1) + (2**(8-1)-1);

 // Use the leftmost bits, so we lose some precision
 // but preserve the correct value.
 f2.mantissa = float_mantissa(f1) >> (52-7);

 f3 = to_float(
 f2.mantissa << (52-7),
 f2.exponent - (2**(8-1)-1) + (2**(11-1)-1),
 f2.sign);
 }
}

Copyright © 2023 Accellera. All rights reserved.
335

Portable Test and Stimulus Standard 2.1 — October 2023

— A transactor, or testbench agent, connected to an I/O interface of the system that exposes transac-
tional APIs, or higher-level stimulus sequences, to the PSS tool

The PSS core library provides means to represent executors in the PSS description and to assign scenario
entities to them. Executors are characterized by user-defined properties called traits, which serve to control
the assignment of actions/objects to them. For example, the cluster of a CPU core could be represented as a
trait attribute. Related executors are grouped together so that scenario entities can be assigned to a random
instance out of a group. The selection of executors satisfies constraints on their trait attributes, if any are
specified.

In addition, executors can be used to customize the implementation of target functions for specific
environments. Actions assigned to different executors can thereby employ different mappings of portable
operations.

The PSS built-in package executor_pkg defines types and functions related to the management of
executors. In subsequent sections, except Syntax 104, the enclosing executor_pkg is omitted for brevity.
Examples may also omit import of executor_pkg.

23.6.1 Executor representation

An executor is an execution agent or context available to the test in the runtime environment. Executors are
represented using a core-library component type instantiated in the PSS description. Actions and flow/
resource objects may subsequently be assigned to these executors. This assignment is controlled through an
executor claim struct (see 23.6.2).

Representing executors in a PSS description is optional. In the absence of executor instances, PSS tools are
free to determine the execution context of entities based on other considerations, such as global defaults or
policies.

23.6.1.1 Executor component type

An executor is represented using the template component executor_c, or a subtype of it. The template
parameter is used to tag the executor and possibly to provide additional selection attributes. Template
executor_c is derived from executor_base_c.

Syntax 104—Executor component

An executor component is strictly a test-realization artifact. It shall be an error to declare in its scope
scenario model elements, namely: action types, pool instances, and pool binding directives.

package executor_pkg {

 struct executor_trait_s {};

 struct empty_executor_trait_s : executor_trait_s {};

 component executor_base_c {};

 component executor_c
 <struct TRAIT : executor_trait_s = empty_executor_trait_s>

: executor_base_c {
 TRAIT trait;
 };
...

Copyright © 2023 Accellera. All rights reserved.
336

Portable Test and Stimulus Standard 2.1 — October 2023

23.6.1.2 Executor group component type

Component executor_group_c is used to group one or more executors that serve similar purposes.
Actions and flow/resource objects that claim an executor are assigned to an executor selected out of one
specific group (see more on matching rules in 23.6.2.2).

Syntax 105—Executor group component

An executor group component is strictly a test-realization artifact. It shall be an error to declare in its scope
scenario model elements, namely: action types, pool instances, and pool binding directives.

23.6.1.2.1 add_executor function

Instance function add_executor (see Syntax 105) of executor_group_c is used to populate the
group with executor instances. Executors added to a group must all match with the group’s trait struct type.
The add_executor function may only be called in exec init_down and init_up blocks.

The following also apply:
a) Any executor can be added to a given group, regardless of where it is instantiated in the component

instance tree. This includes executors instantiated above the group, below it, or in a different sub-
tree.

b) An executor instance may not be added more than once to the same group.
c) An executor instance may be added to more than one group.
d) An executor does not have to be added to any group. An executor that is not part of any group would

be inactive—no exec blocks would ever be assigned to it.

Example 261 demonstrates how executors are defined, instantiated, and added to an executor group. The
executor group my_hybrid_group_c is populated with two different executor types. These two types
may vary in properties, but are both derived from the instantiation of template executor_c with the struct
type master_trait_s. The executors in this group are treated symmetrically when assigning actions to
them.

component executor_group_c
<struct TRAIT : executor_trait_s = empty_executor_trait_s> {

 function void add_executor(ref executor_c<TRAIT> exe);
};

Copyright © 2023 Accellera. All rights reserved.
337

Portable Test and Stimulus Standard 2.1 — October 2023

Example 261—Defining an executor group

23.6.2 Executor assignment

An action or a flow/resource object can declare its claim for an executor by instantiating a claim struct. Each
claim instance is statically matched to an executor group that is nearest in the component instance tree and
parameterized by the same trait struct type. The entity is assigned to an executor out of the matching group,
which satisfies the trait constraints.

It is not required that scenario entities be explicitly assigned to an executor even if they contain target exec
blocks. In the absence of explicit assignments, PSS tools are free to determine the execution context of
entities based on other considerations, such as global defaults or policies.

Executors do not generally limit concurrency of PSS behaviors in a test scenario. In cases where
concurrently scheduled actions are assigned to the same underlying executor, the PSS tool is responsible for
employing the means to enable concurrent execution, such as preemptive or cooperative multitasking.

23.6.2.1 Executor claim struct type

An action or a flow/resource object can control its assignment to an executor by declaring an executor claim
—an attribute of template struct type executor_claim_s. An executor claim can be a direct field of the
entity, a field of any of its nested structs, or in the case of flow/resource objects, the supertype from which
the object is derived. In all these cases, the assignment to an executor applies in the same way.

An action or a flow/resource object may be assigned to no more than one executor. Therefore, there can only
be one executor claim struct anywhere under a given action or object. Multiple executor claim structs within
the same action or object shall be flagged as an error. Note that the assignment of executors per an executor
claim is not exclusive, and is generally unrelated to the relative scheduling of actions.

struct master_trait_s : executor_trait_s {};

component my_core_executor_c : executor_c<master_trait_s> { ... };

component my_bus_vip_executor_c : executor_c<master_trait_s> { ... };

component my_hybrid_group_c : executor_group_c<master_trait_s> {
 my_core_executor_c cores[4];
 my_bus_vip_executor_c bfms[2];

 exec init_down {
 foreach (c: cores) {
 add_executor(c);
 }
 foreach (b: bfms) {
 add_executor(b);
 }
 }
};

Copyright © 2023 Accellera. All rights reserved.
338

Portable Test and Stimulus Standard 2.1 — October 2023

Syntax 106—Executor claim struct

Example 262 demonstrates the use of the executor_claim_s struct. In this case, action A declares an
executor claim. A’s executor claim is matched with executor group eg that is instantiated directly under its
context component C, as both are parameterized with the same (default) trait type. Consequently, action A
is necessarily assigned to the executor e instantiated under its context component. Component C is
instantiated twice under pss_top. Under the entry action test, action A is invoked three times. The
generated test will call the function do_something() twice under the execution context associated with
executor c1.e, and subsequently once under the execution context associated with executor c2.e.

Example 262—Simple executor assignment

23.6.2.2 Rules for matching an executor claim with an executor group

An executor claim is matched with an executor group for the purpose of selecting an executor. The matching
is based on the static structure of the model. A claim is resolved to an executor group that:

a) is parameterized by the same trait type as the claim;
b) is instantiated in a containing component of the declaring scenario entity (the context component

hierarchy of an action or the container component of a flow/resource object pool);

struct executor_claim_s
<struct TRAIT : executor_trait_s = empty_executor_trait_s> {

 rand TRAIT trait;
};

component C {
 executor_c<> e;
 executor_group_c<> eg;
 exec init_down {
 eg.add_executor(e);
 }

 action A {
 rand executor_claim_s<> ec;
 exec body C = """
 do_something();
 """;
 };
};

component pss_top {
 C c1,c2;

 action test {
 C::A a1, a2, a3;
 activity {
 parallel {
 a1 with { comp == this.comp.c1; };
 a2 with { comp == this.comp.c1; };
 a3 with { comp == this.comp.c2; };
 }
 }
 };
};

Copyright © 2023 Accellera. All rights reserved.
339

Portable Test and Stimulus Standard 2.1 — October 2023

c) and is nearest in the component hierarchy going up from the context component to the root compo-
nent.

It shall be an error if no executor group matches a claim per the above rules. Similarly, it shall be an error if
more than one executor group in the component context identified in b) matches a claim.

Note that given the above rules, instantiating a group within a group would be pointless, as no executor
claim could match the inner group.

23.6.2.3 Claim trait semantics

The trait type of an executor claim must be the same as that of the executor selected for the declaring entity.
In addition, the trait attribute values of the executor claim instance must be equal to the values of the
corresponding attributes of the executor trait. Hence, the selected executor shall satisfy the claim trait
constraints.

Example 263 demonstrates the use of the executor trait struct for the selection of executors. In this example,
executors in group my_embedded_cores_group_c, representing eight CPU cores, are classified into
two clusters, each consisting of four cores. Action my_ip_c::op claims an executor. It constrains the
selection of the executor, relating the executor cluster ID to other attributes. Action
ops_on_two_clusters executes two op actions, one on each cluster. Note that the one assigned to
cluster 0 will have its input buffer mem_kind not equal to DDR, due to the constraint in action op.

Copyright © 2023 Accellera. All rights reserved.
340

Portable Test and Stimulus Standard 2.1 — October 2023

Example 263—Definition and use of executor trait

struct my_core_trait_s : executor_trait_s {
 rand int in [0..1] cluster_id;
};

component my_embedded_cores_group_c : executor_group_c<my_core_trait_s> {
 executor_c<my_core_trait_s> cores[8];
 exec init_down {
 foreach (c: cores[i]) {
 c.trait.cluster_id = i/4;
 add_executor(c);
 }
 }
};

component my_ip_c {
 action op {
 input data_buff in_buff;
 rand executor_claim_s<my_core_trait_s> core;
 constraint in_buff.mem_kind == DDR -> core.trait.cluster_id != 0;
 };
};

component pss_top {
 my_embedded_cores_group_c embedded_core_group;
 my_ip_c my_ip;

 action ops_on_two_clusters {
 activity {
 do my_ip_c::op with { core.trait.cluster_id == 0; };
 do my_ip_c::op with { core.trait.cluster_id == 1; };
 }
 };
};

Copyright © 2023 Accellera. All rights reserved.
341

Portable Test and Stimulus Standard 2.1 — October 2023

23.6.2.4 Executor resources

In some cases, the assignment of certain actions to executors needs to be exclusive, ruling out the handling
of concurrent actions by the same execution agent. Resource claims and resource pools express such rules at
the scenario model level, guaranteeing that random schedules satisfy the resource consistency of executors.
In these cases, the executor assigned to actions needs to be in strict correspondence with the resource
instance claimed by them.

A resource object that is derived from template struct executor_claim_s is considered a claim not just
for the purpose of its own executor assignment, but also for that of the actions that claim it as a resource in
either lock or share mode. In other words, from the executor assignment point of view, a reference to a
resource object derived from struct executor_claim_s functions like an executor claim of the action
itself.

In Example 264, resource object my_core_r represents a processor core at the scenario model level.
Action my_ip_c::op1 needs to be assigned a core exclusively for its duration, and therefore locks a
resource instance. Action my_ip_c::op2 does not require exclusive use of a core, and therefore claims a
resource instance in share mode. Action test executes a random selection of op1 and op2, which need to
be scheduled consistently across the different cores.

Copyright © 2023 Accellera. All rights reserved.
342

Portable Test and Stimulus Standard 2.1 — October 2023

Example 264—Use of resource objects as executor claims

struct my_core_trait_s : executor_trait_s {
 rand int in [0..7] core_id;
};

resource my_core_r : executor_claim_s<my_core_trait_s> {
 constraint trait.core_id == instance_id;
};

component my_cores_group_c : executor_group_c<my_core_trait_s> {
 executor_c<my_core_trait_s> cores[8];
 exec init_down {
 foreach (c: cores[i]) {
 c.trait.core_id = i;
 add_executor(c);
 }
 }
};

component my_ip_c {
 action op1 {
 lock my_core_r core;
 exec body {
 my_ip_blocking_op();
 }
 };

 action op2 {
 share my_core_r core;
 exec body {
 while (!my_ip_op2_done()) { yield(); }
 }
 };
};

component pss_top {
 my_cores_group_c core_group;
 pool [8] my_core_r core_pool;
 bind core_pool *;

 my_ip_c my_ip;

 action test {
 activity {
 schedule {
 replicate (10) {
 select {
 do my_ip_c::op1;
 do my_ip_c::op2;
 }
 }
 }
 }
 };
};

Copyright © 2023 Accellera. All rights reserved.
343

Portable Test and Stimulus Standard 2.1 — October 2023

23.6.2.5 Executor query function

The function executor() returns a reference to the executor instance currently operative. When called
during the evaluation of exec blocks of an action or flow/resource object or of any function invoked by
them, it returns the executor instance assigned to that entity. The function executor() can be used,
among other purposes, to delegate generic target functions to an executor-specific implementation.

Syntax 107—Executor query function

Note that the reference returned from executor() for actions assigned to different executors would be
different, even if these actions are executing concurrently. The returned value shall be null if the evaluating
entity is not assigned to any executor. Since assignment to executors is only resolved as part of the solve
process, calling executor() in pre_solve exec blocks shall always return null.

In Example 265, a call to the global function my_target_op() is delegated to the instance function
my_target_op_impl() of the currently operative executor, through a call to executor(). Function
my_target_op_impl() is declared in component executor_base_c and implemented differently
in two executor subtypes. Consequently, the call to my_target_op() in the exec body of action
call_op will be implemented differently based on the executor assignment of call_op.

function ref executor_base_c executor();

Copyright © 2023 Accellera. All rights reserved.
344

Portable Test and Stimulus Standard 2.1 — October 2023

Example 265—Function delegation to executor

23.7 Address spaces

The address space concept is introduced to model memory and other types of storage in a system. An
address space is a space of storage atoms accessible using unique addresses. System memory, external
storage, internal SRAM, routing tables, memory mapped I/O, etc., are entities that can be modeled with
address spaces in PSS.

An address space is composed of regions. Regions are characterized by user-defined properties called traits.
For example, a trait could be the type of system memory of an SoC, which could be DRAM or SRAM.
Address claims can be made by scenario entities (actions/objects) on an address space with optional
constraints on user-defined properties. An address space handle is an opaque representation of an address
within an address space.

function void my_target_op(int param) {
 if (executor() != null) {
 executor().my_target_op_impl(param);
 } else {
 // default implementation
 }
}

extend component executor_base_c {
 function void my_target_op_impl(int param);
};

component A_executor_c : executor_c<> {
 function void my_target_op_impl(int param) {
 // implementation for execution agent of type A
 }
};

component B_executor_c : executor_c<> {
 function void my_target_op_impl(int param) {
 // implementation for execution agent of type B
 }
};

component pss_top {
 executor_group_c<> exe_g;
 A_executor_c a_exe;
 B_executor_c b_exe;

 exec init_down {
 exe_g.add_executor(a_exe);
 exe_g.add_executor(b_exe);
 }

 action call_op {
 rand executor_claim_s<> my_exe;
 exec body {
 my_target_op(10);
 }
 };
};

Copyright © 2023 Accellera. All rights reserved.
345

Portable Test and Stimulus Standard 2.1 — October 2023

Standard operations are provided to read data from and write data to a byte-addressable address space.
Registers and register groups are allocated within an address space and use address space regions and
handles to read and write register values. Data layout for packed PSS structs is defined for byte-addressable
address spaces.

The PSS built-in package addr_reg_pkg defines types and functions for registers, address spaces,
address allocation and operations on address spaces. In subsequent sections, except Syntax 108, the
enclosing addr_reg_pkg is omitted for brevity. Examples may also omit import of addr_reg_pkg and
std_pkg.

23.7.1 Address space categories

23.7.1.1 Base address space type

An address space is a set of storage atoms accessible using unique addresses. Actions/objects may allocate
one or more atoms for their exclusive use.

Address spaces are declared as components. addr_space_base_c is the base type for all other address
space types. This component cannot be instantiated directly. The definition of addr_space_base_c is
shown in Syntax 108.

Syntax 108—Generic address space component

23.7.1.2 Contiguous address spaces

A contiguous address space is an address space whose addresses are non-negative integer values. and whose
atoms are contiguously addressed. Multiple atoms can be allocated in one contiguous chunk.

Byte-addressable system memory and blocks of data on disk drive are examples of contiguous address
spaces.

A contiguous address space is defined by the built-in library component contiguous_addr_space_c
shown in Syntax 109 below. The meanings of the struct type addr_trait_s and the template parameter
TRAIT are defined in 23.7.2. Address space regions are described in 23.7.3.

package addr_reg_pkg {
 component addr_space_base_c {};
...
}

Copyright © 2023 Accellera. All rights reserved.
346

Portable Test and Stimulus Standard 2.1 — October 2023

Syntax 109—Contiguous address space component

A contiguous address space is created in a PSS model by creating an instance of component
contiguous_addr_space_c in a top-level component or any other component instantiated under the
top-level component.

23.7.1.2.1 add_region function

The add_region function of contiguous address space components is used to add allocatable address
space regions to a contiguous address space. The function returns an address handle corresponding to the
start of the region in the address space. Actions and objects can allocate space only from allocatable regions
of an address space.

Address space regions are defined in 23.7.3. Address space regions are part of the static component
hierarchy. The add_region function may only be called in exec init_down and init_up blocks. Address
handles are defined in 23.9.3.

23.7.1.2.2 add_nonallocatable_region function

The add_nonallocatable_region function of contiguous address space components is used to add
non-allocatable address space regions to a contiguous address space. The function returns an address handle
corresponding to the start of the region in the address space.

The address space allocation algorithm shall not use non-allocatable regions for allocation.

Address space regions are defined in 23.7.3. Address space regions are part of the static component
hierarchy. The add_nonallocatable_region function may only be called in exec init_down and
init_up blocks. Address handles are defined in 23.9.3.

struct addr_trait_s {};

struct empty_addr_trait_s : addr_trait_s {};

typedef chandle addr_handle_t;

component contiguous_addr_space_c <struct TRAIT : addr_trait_s =
empty_addr_trait_s> : addr_space_base_c

{
 function addr_handle_t add_region(addr_region_s <TRAIT> r);
 function addr_handle_t add_nonallocatable_region(addr_region_s <> r);

 bool byte_addressable = true;
};

Copyright © 2023 Accellera. All rights reserved.
347

Portable Test and Stimulus Standard 2.1 — October 2023

23.7.1.2.3 Example

Example 266 demonstrates instantiating an address space and adding regions to it (for the definition of
struct addr_region_s, see 23.7.3.2).

Example 266—Contiguous address space in pss_top

23.7.1.3 Byte-addressable address spaces

A byte-addressable space is a contiguous address space whose storage atom is a byte and to/from which PSS
data can be written/read using standard generic operations. The PSS core library standardizes generic APIs
to write data to or read data from any address value as bytes. The read/write API and data layout of PSS data
into a byte-addressable space are defined in 23.9.

By default, component contiguous_addr_space_c is a byte-addressable space unless the
byte_addressable Boolean field is set to false.

23.7.1.4 Transparent address spaces

Transparent address spaces are used to enable transparent claims—constraining and otherwise operating on
concrete address values on the solve platform. For more information on transparent address claims, see
23.8.3.

All regions of a transparent space provide a concrete start address and the size of the region. Only
transparent regions (see 23.7.3.3) may be added to a transparent address space using function
add_region(). Note however that transparent regions may be added to a non-transparent space.

Component transparent_addr_space_c is used to create a transparent address space (see
Syntax 110). See Example 268.

component pss_top {

 import addr_reg_pkg::*;

my_ip_c ip;

contiguous_addr_space_c<> sys_mem;

exec init_up {
 // Add regions to space here
 addr_region_s<> r1;
 r1.size = 0x40000000; // 1 GB
 (void)sys_mem.add_region(r1);

 addr_region_s<> mmio;
 mmio.size = 4096;
 (void)sys_mem.add_nonallocatable_region(mmio);

}
}

Copyright © 2023 Accellera. All rights reserved.
348

Portable Test and Stimulus Standard 2.1 — October 2023

Syntax 110—Transparent address space component

23.7.1.5 Other address spaces

Other kinds of address spaces, with different assumptions on allocations and generic operations, are
possible. These may be represented as derived types of the corresponding base space/region/claim types. An
example could be a space representing a routing table in a network router. PSS does not attempt to
standardize these.

23.7.2 Address space traits

An address space trait is a PSS struct. A trait struct describes properties of a contiguous address space and
its regions. empty_addr_trait_s is defined as an empty trait struct that is used as the default trait type
for address spaces, regions and claims.

All regions of an address space share a trait type. Every region has its specific trait value.

Example 267—Example address trait type

component transparent_addr_space_c
<struct TRAIT: addr_trait_s = empty_addr_trait_s>
: contiguous_addr_space_c<TRAIT> {};

package ip_pkg {

 struct mem_trait_s : addr_trait_s {
 rand mem_kind_e kind;
 rand cache_attr_e ctype;
 rand int in [0..3] sec_level;
 rand bool mmio;
 };

};

Copyright © 2023 Accellera. All rights reserved.
349

Portable Test and Stimulus Standard 2.1 — October 2023

Figure 22—Address space regions with trait values

Example 268—Address space with trait

kind = SRAM
ctype = WB
sec_level = 0
mmio = false
size = 4K
address = 0x400

kind = SRAM
ctype = WB
sec_level = 0
mmio = true
size = 1M
address = 0x1000

kind = DRAM
ctype = WB
sec_level = 0
mmio = false
size = 1G
address = 0x1000000

Regions
struct mem_trait_s : addr_trait_s {
 rand mem_kind_e kind;
 rand cache_attr_e ctype;
 rand int in [0..3] sec_level;
 rand bool mmio;
};

component pss_top {

 import addr_reg_pkg::*;
 import ip_pkg::*;

 // IP component
 my_ip_c ip;

 // mem_trait_s trait struct is used for sys_mem address space
 transparent_addr_space_c<mem_trait_s> sys_mem;

 exec init_up {
 // Add regions to space here. All regions added to sys_mem space
 // must have trait type mem_trait_s

 transparent_addr_region_s<mem_trait_s> sram_region;

 sram_region.trait.kind = SRAM;
 sram_region.trait.ctype = WB;
 sram_region.trait.sec_level = 0;
 sram_region.trait.mmio = false;
 sram_region.size = 4096;
 sram_region.addr = 0x400;

 (void)sys_mem.add_region(sram_region);

 // add other regions
 // ...

}
}

Copyright © 2023 Accellera. All rights reserved.
350

Portable Test and Stimulus Standard 2.1 — October 2023

23.7.3 Address space regions

An address space may be composed of regions. Regions map to parts of an address space. A region may be
characterized by values assigned to address space traits. Traits define properties of a region. Specific
constraints are placed on address claim traits to allocate addresses from regions with desired characteristics.
Regions with trait values that satisfy the claim's trait constraints are the candidate matching regions. An
address claim may span more than one region that satisfies claim trait constraints.

Address space regions are part of the static component hierarchy. The add_region and
add_nonallocatable_region functions (see 23.7.1.2.1 and 23.7.1.2.2) may only be called in exec
init_down and init_up blocks.

23.7.3.1 Base region type

addr_region_base_s is the base type for all address space regions (see Syntax 111). Specifying a
value for the size field is required. Specifying a value for the tag field is optional.

Syntax 111—Base address region type

The tag associated with the region from which a memory claim is satisfied may be retrieved using the
get_tag() function (see 23.9.8).

23.7.3.2 Contiguous address regions

The addr_region_s type represents a region in contiguous address space (see Syntax 112). The region type is
fully characterized by the template TRAIT parameter value and the size attribute of the base region type.

Syntax 112—Contiguous address space region type

The values of the trait struct attributes describes the contiguous address region. The PSS tool will match the
trait attributes of regions to satisfy an address claim as described in 23.8. See an example of trait attribute
setting in 23.8.7.

23.7.3.3 Transparent address regions

The transparent_addr_region_s type defines a transparent region over a contiguous address
space. Transparent means that the region’s start (lower) address is known to the PSS tool for solve-time
resolution of a claim address within the address space.

The addr field of this region is assigned the start address of the region. The end address of the region is the
calculated value of the expression: addr + size - 1.

See Example 268 where a transparent region is added to a transparent address space.

struct addr_region_base_s {
 bit[64] size;
 string tag;
};

struct addr_region_s <struct TRAIT : addr_trait_s = empty_addr_trait_s>
 : addr_region_base_s {

 TRAIT trait;
};

Copyright © 2023 Accellera. All rights reserved.
351

Portable Test and Stimulus Standard 2.1 — October 2023

Syntax 113—Transparent region type

23.8 Allocation within address spaces

The PSS input model can allocate storage atoms from an address space for the exclusive use of certain
behaviors. For example, a DMA controller action might allocate a buffer in system memory for output data.

All address space allocations are done in the declarative domain of a PSS input model. An address claim
struct, defined in the following sections, is used for allocation.

An instance of an address claim struct describes an address claim on an address space. A claim is matched to
the address space nearest in the component instance tree, whose trait type matches the claim trait type (see
23.8.6). A claim is satisfied by allocation from a region (or regions) whose trait value satisfies the
constraints on the claim trait (see 23.8.4).

A claim struct can be instantiated under an action, a flow object or resource object, or any of their nested
structs. The declaration of a claim struct instance causes allocation to occur when the declaring object is
instantiated or the action is traversed.

23.8.1 Base claim type

The addr_claim_base_s struct (see Syntax 114) is the base type for all address space claims.

Syntax 114—Base address space claim type

23.8.2 Contiguous claims

An address claim can be made on a contiguous address space by declaring a struct of type
addr_claim_s. This claim is also known as an opaque claim. The absolute address of the claim is not
assumed to be known at solve time.

This standard does not define any method by which the PSS tool might resolve address claims at solve time
or might generate code for runtime allocation. One possible method could be PSS tool-specific APIs for
solve-time and runtime allocation. The address space handle obtained from a claim shall fall within a region
or regions whose traits satisfy the claim constraints.

An address claim in contiguous address space is always a contiguous chunk of addresses, potentially
spanning multiple regions that are adjacent.

An address claim can be made on transparent (described below, in 23.8.3) or non-transparent address spaces.

struct transparent_addr_region_s
<struct TRAIT : addr_trait_s = empty_addr_trait_s>
: addr_region_s<TRAIT> {

 bit[64] addr;
};

struct addr_claim_base_s {
 rand bit[64] size;
 rand bool permanent;
 constraint default permanent == false;
};

Copyright © 2023 Accellera. All rights reserved.
352

Portable Test and Stimulus Standard 2.1 — October 2023

Syntax 115—Contiguous address space claim type

The alignment attribute specifies the address alignment of the resolved claim address.

23.8.3 Transparent claims

A claim of type transparent_addr_claim_s (see Syntax 116) is required to make a transparent
claim on a transparent contiguous address space. A transparent claim is characterized by the absolute
allocation address attribute (addr) of the claim. A transparent claim is associated with the nearest address
space with the same trait type, in the same way that a non-transparent claim is. However, a transparent claim
that is thereby associated with a non-transparent space shall be flagged as an error. The PSS tool has all the
information at solve time about the transparent address space necessary to perform allocation within the
limits of the address space. More details about allocation and claim lifetime can be found in the following
section.

The addr field of this claim type can be used to put a constraint on an absolute address of a claim.

Syntax 116—Transparent contiguous address space claim type

Example 269 illustrates how a transparent claim is used. A transparent address claim is used in action
my_op. A constraint is placed on the absolute resolved address of the claim. This is possible only because of
the transparent address space that contain transparent regions where the base address of the region is known
at solve time.

struct addr_claim_s <struct TRAIT : addr_trait_s = empty_addr_trait_s>
: addr_claim_base_s {

 rand TRAIT trait;
 rand bit[64] in [64'd2**0, 64'd2**1, 64'd2**2, 64'd2**3 , 64'd2**4 ,

 64'd2**5 , 64'd2**6 , 64'd2**7 , 64'd2**8 , 64'd2**9 , 64'd2**10,
 64'd2**11, 64'd2**12, 64'd2**13, 64'd2**14, 64'd2**15, 64'd2**16,
 64'd2**17, 64'd2**18, 64'd2**19, 64'd2**20, 64'd2**21, 64'd2**22,
 64'd2**23, 64'd2**24, 64'd2**25, 64'd2**26, 64'd2**27, 64'd2**28,
 64'd2**29, 64'd2**30, 64'd2**31, 64'd2**32, 64'd2**33, 64'd2**34,
 64'd2**35, 64'd2**36, 64'd2**37, 64'd2**38, 64'd2**39, 64'd2**40,
 64'd2**41, 64'd2**42, 64'd2**43, 64'd2**44, 64'd2**45, 64'd2**46,
 64'd2**47, 64'd2**48, 64'd2**49, 64'd2**50, 64'd2**51, 64'd2**52,
 64'd2**53, 64'd2**54, 64'd2**55, 64'd2**56, 64'd2**57, 64'd2**58,
 64'd2**59, 64'd2**60, 64'd2**61, 64'd2**62, 64'd2**63] alignment;

};

struct transparent_addr_claim_s
<struct TRAIT : addr_trait_s = empty_addr_trait_s>
: addr_claim_s<TRAIT> {

 rand bit[64] addr;
};

Copyright © 2023 Accellera. All rights reserved.
353

Portable Test and Stimulus Standard 2.1 — October 2023

Example 269—Transparent address claim

23.8.4 Claim trait semantics

Constraints placed on the trait attribute of a claim instance must be satisfied by the allocated addresses.
Allocated addresses shall be in regions whose trait values satisfy claim trait constraints.

See an example in 23.8.7.

23.8.5 Allocation consistency

An address claim struct is resolved to represent the allocation of a set of storage atoms from the nearest
storage space, for the exclusive use of actions that can access the claim attribute. In the case of a contiguous
address space, the set is a contiguous segment, from the start address to the start address + size - 1. All
addresses in the set are uniquely assigned to that specific instance of the address claim struct for the duration
of its lifetime, as determined by the actions that can access it (see details below). Two instances of an
address claim struct shall resolve to mutually exclusive sets of addresses if

— Both are taken from the same address space, and
— An action that has access to one may overlap in execution time with an action that has access to the

other.

The number of storage atoms in an allocation is represented by the attribute size.

The start address is represented directly by the attribute addr in transparent_addr_claim_s<>, or
otherwise obtained by calling the function addr_value() on the address space handle returned by
make_handle_from_claim().

component pss_top {

 transparent_addr_space_c<> mem;

 action my_op {
 rand transparent_addr_claim_s<> claim;
 constraint claim.size == 20;

 // Constraint on absolute address
 constraint (claim.addr & 0x3) == 0x1;
 };

 exec init_up {
 transparent_addr_region_s<> region1, region2;
 region1.size = 50;
 region1.addr = 0x10000;
 (void)mem.add_region(region1);

 region2.size = 10;
 region2.addr = 0x20000;
 (void)mem.add_region(region2);
 }
};

Copyright © 2023 Accellera. All rights reserved.
354

Portable Test and Stimulus Standard 2.1 — October 2023

Following is the definition of the lifetime of scenario entities:

The lifetime of the allocation to which a claim struct resolves, and hence the exclusive use of the set of
addresses, may be extended beyond the scenario entity in which the claim is instantiated in one of two ways:

— A handle that originates in a claim is assigned to entities that have no direct access to the claim in
solve execs (for definition of address space handles, see 23.9.3). For example, if an action assigns a
handle field (of type addr_handle_t) of its output buffer object with a handle it obtained from
its own claim, the allocation lifetime is extended to the end of the last action that inputs that buffer
object.

— The attribute permanent is constrained to true, in which case the lifetime of the claim is extended
to the end of the test.

23.8.5.1 Example

The example below demonstrates how the scheduling of actions affects possible resolutions of address
claims. In this model, action my_op claims 20 bytes from an address space, in which there is one region of
size 50 bytes and another of size 10. In action test1, the three actions of type my_op are scheduled
sequentially, as the iterations of a repeat statement. No execution of my_op overlaps in time with another,
and therefore each one can be allocated any set of consecutive 20 bytes, irrespective of previous allocations.
Note that all three allocations must come from the 50-byte region, as the 10-byte region cannot fit any of
them. In test2, by contrast, the three actions of type my_op expanded from the replicate statement are
scheduled in parallel. This means that they would overlap in execution time, and therefore need to be
assigned mutually exclusive sets of addresses. However, such allocation is not possible out of the 50 bytes
available in the bigger region. Here too, the smaller region cannot fit any of the three allocations. Nor can it
fit part of an allocation, because it is not known to be strictly contiguous with the other region.

Table 28—Scenario entity lifetimes

Entity Lifetime

Atomic action From the time of exec body entry (immediately before executing the first statement) to the
time of the exec body exit (immediately after executing the last statement).

Compound action From the start time of the first sub-action(s) to the end time of the last sub-action(s).

Flow object From the start time of the action outputting it (for the initial state, the start time of the first
action in the scenario) to the end time of the last action(s) inputting it (if any) or the end-
time of the last action outputting it (if no action inputs it).

Resource object From the start time of the first action(s) locking/sharing it to the end time of the last
action(s) locking/sharing it.

Struct Identical with the entity that instantiates it.

Copyright © 2023 Accellera. All rights reserved.
355

Portable Test and Stimulus Standard 2.1 — October 2023

Example 270—Address space allocation example

component pss_top {
 action my_op {
 rand addr_claim_s<> claim;
 constraint claim.size == 20;
 };

 contiguous_addr_space_c<> mem;

 exec init_up {
 addr_region_s<> region1, region2;
 region1.size = 50;
 (void)mem.add_region(region1);
 region2.size = 10;
 (void)mem.add_region(region2);
 }

 action test1 {
 activity {
 repeat (3) {
 do my_op; // OK – allocations can be recycled
 }
 }
 };

 action test2 {
 activity {
 parallel {
 replicate (3) {
 do my_op; // error – cannot satisfy concurrent claims
 }
 }
 }
 };
};

Copyright © 2023 Accellera. All rights reserved.
356

Portable Test and Stimulus Standard 2.1 — October 2023

23.8.6 Rules for matching a claim to an address space

a) A claim is associated with a unique address space based on the static structure of the model.
b) A claim is resolved to an address space that:

1) matches the trait type of the claim
2) is instantiated in a containing component of the current scenario entity (the context compo-

nent hierarchy of an action or the container component of a flow/resource object pool)
3) is nearest in the component hierarchy going up from the context component to the root

component
c) It shall be an error if more than one address space matches a claim at the component context

identified in b).

23.8.7 Allocation example

In following example, pss_top has instances of the sub_ip and great_ip components. sub_ip is
composed of the good_ip and great_ip components. good_ip and great_ip allocate space with
trait mem_trait_s. Memory allocation in the top_gr_ip instance of pss_top will be matched to the
sys_mem address space that is instantiated in pss_top. Memory claims in gr_ip and go_ip from
pss_top.sub_system will be matched to the address space in sub_ip, as the sub_ip address_space
will be the nearest space with a matching trait in the component tree.

Note how within the two address spaces, there are regions with the same base address. Claims from actions
of the two instances of great_ip may be satisfied with overlapping addresses even if they are concurrent,
since they are taken out of different address spaces.

Copyright © 2023 Accellera. All rights reserved.
357

Portable Test and Stimulus Standard 2.1 — October 2023

Example 271—Address space allocation example

import addr_reg_pkg::*;
import mem_pkg::*;

package mem_pkg {
 enum cache_attr_e {UC, WB, WT, WC, WP};

 struct mem_trait_s : addr_trait_s {
 rand cache_attr_e ctype;
 rand int in [0..3] sec_level;
 }
};

component good_ip {
 action write_mem {
 // Allocate from nearest address space matching TRAIT type and value
 rand transparent_addr_claim_s<mem_trait_s> mem_claim;

 constraint mem_claim.size == 128;
 constraint mem_claim.trait.ctype == UC;
 }

 action write_mem_unconstrained {
 // Allocate from nearest address space matching TRAIT type and value

 // Note that ctype field of the claim trait is unconstrained.
 // However, given there is only a single region in the address space
 // with ctype==UC, that region is chosen as it is the only match
 // available that can satisfy the trait constraints.

 // ctype cannot be randomized to have a value that is not UC because
 // it is compelled to match with one of the regions, just like when
 // an action wants to consume a buffer object, it needs to pick from
 // the available objects in the pool.
 rand transparent_addr_claim_s mem_claim;
 constraint mem_claim.size == 128;
 }
};

component great_ip {
 action write_mem {

 // Allocate from nearest address space matching TRAIT type and value
 rand transparent_addr_claim_s<mem_trait_s> mem_claim;

 constraint mem_claim.size == 256;
 constraint mem_claim.trait.ctype == UC;
 }
};

component sub_ip {
 // Subsystem has its own address space
 transparent_addr_space_c<mem_trait_s> mem;

 good_ip go_ip;
 great_ip gr_ip;
};

Copyright © 2023 Accellera. All rights reserved.
358

Portable Test and Stimulus Standard 2.1 — October 2023

Example 271—Address space allocation example (cont.)

23.9 Data layout and access operations

23.9.1 Data layout

Many PSS use cases require writing structured data from the PSS model to byte-addressable space in a well-
defined layout. In PSS, structured data is represented with a struct. For example, a DMA engine might
expect DMA descriptors that encapsulate DMA operation to be in memory in a known layout. Packed
structs may be beneficial to represent bit fields of hardware registers.

The built-in PSS library struct packed_s is used as a base struct to denote that a PSS struct is packed.

Any struct derived from built-in struct packed_s directly or indirectly is considered packed by the PSS
tool. Packed structs are only allowed to have fields of numeric types, Boolean types, enumerated types that
have a base type, packed struct types, or arrays thereof. Following are the declarations of the endianness
enum and packed struct in std_pkg8:

Syntax 117—packed_s base struct

8 In PSS 2.0, these declarations were in the addr_reg_pkg package. Referring to these declarations via addr_reg_pkg is
deprecated in PSS 2.1. To support backward compatibility, PSS tools shall support referencing these declarations in either std_pkg or
addr_reg_pkg as if they were the same types.

component pss_top {
 sub_ip sub_system;
 great_ip top_gr_ip;

 transparent_addr_space_c<mem_trait_s> sys_mem;

 exec init_up {
 transparent_addr_region_s<mem_trait_s> region;

 region.size = 1024;
 region.addr = 0x8000;
 region.trait.ctype = UC;
 region.trait.sec_level = 0;

 transparent_addr_region_s<mem_trait_s> great_region;

 great_region.size = 1024;
 great_region.addr = 0x8000;
 great_region.trait.ctype = UC;
 great_region.trait.sec_level = 2;

 (void)sys_mem.add_region(region);

 (void)sub_system.mem.add_region(great_region);
 };
};

enum endianness_e {LITTLE_ENDIAN, BIG_ENDIAN};

struct packed_s <endianness_e e = LITTLE_ENDIAN> {};

Copyright © 2023 Accellera. All rights reserved.
359

Portable Test and Stimulus Standard 2.1 — October 2023

Type extensions of packed structs shall not add new fields.

23.9.1.1 Packing rule

PSS uses the de facto packing algorithm from the GNU C/C++ compiler. The ordering of fields of structs
follows the rules of the C language. This means that fields declared first would go in lower addresses. For
this purpose, if a packed struct is derived from another packed struct, fields declared in the derived struct are
considered to be declared later than those declared in the base struct. The layout of fields in a packed struct
is defined by the endianness template parameter of the packed struct. Bit fields in PSS structs can be of any
size. For this purpose, Boolean fields are considered to be of 1 bit.

For the packing algorithm, a register of size N bytes is used, where N*8 is greater than or equal to the
number of bits in the packed struct.

For big-endian mode, fields are packed into registers from the most significant bit (MSB) to the least
significant bit (LSB) in the order in which they are defined. Fields are packed in memory from the most
significant byte (MSbyte) to the least significant byte (LSbyte) of the packed register. If the total size of the
packed struct is not an integer multiple of bytes, don't-care bits are added at the LSB side of the packed
register.

For little-endian mode, fields are packed into registers from the LSB to the MSB in the order in which they
are defined and packed in memory from the LSbyte to the MSbyte of the packed register. If the total size of
the packed struct is not an integer multiple of bytes, don't-care bits are added at the MSB side of the packed
register.

23.9.1.2 Little-endian packing example

A packed struct is shown in Example 272. This struct has 30 bits. A register for packing this struct would
have 4 bytes.

Example 272—Packed PSS little-endian struct

Register packing will start from field A. The least significant bit of A would go in the least significant bit of
the register, as shown in Figure 23. Field B would go after field A. The least significant bit of B would go in
the lowest bit after A in the packed register, and so on. The layout of the packed struct in byte-addressable
space is shown in Figure 24. (X means “don’t-care bit” in Figure 23 and Figure 24.)

Figure 23—Little-endian struct packing in register

struct my_packed_struct : packed_s<LITTLE_ENDIAN> {
 bit[6] A;
 bit[2] B;
 bit[9] C;
 bit[7] D;
 bit[6] E;
}

MSB LSB
 X X E E E E E E D D D D D D D C C C C C C C C C B B A A A A A A
 X X 5 4 3 2 1 0 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 1 0 5 4 3 2 1 0

Copyright © 2023 Accellera. All rights reserved.
360

Portable Test and Stimulus Standard 2.1 — October 2023

Figure 24—Little-endian struct packing in byte-addressable space

23.9.1.3 Big-endian packing example

A packed struct is shown in Example 273. This struct has 30 bits. A register for packing this struct would
have 4 bytes.

Example 273—Packed PSS big-endian struct

Register packing will start from field A. The most significant bit of A would go in the most significant bit of
the register, as shown in Figure 25. Field B would go after field A. The most significant bit of B would go in
the highest bit after A in the packed register, and so on. The layout of the packed struct in byte-addressable
space is shown in Figure 26. (X means “don’t-care bit” in Figure 25 and Figure 26.)

Figure 25—Big-endian struct packing in register

Figure 26—Big-endian struct packing in byte-addressable space

23.9.2 sizeof_s

The template struct sizeof_s is used to query the physical storage size of a PSS data type. It applies to
types that can be written to or read from a byte-addressable address space, namely numeric types, Booleans,
enumerated types that have a base type, packed structs, and arrays thereof. The sizeof_s struct is
declared in the std_pkg package.9

9 In PSS 2.0, these declarations were in the addr_reg_pkg package. Referring to these declarations via addr_reg_pkg is
deprecated in PSS 2.1. To support backward compatibility, PSS tools shall support referencing these declarations in either std_pkg or
addr_reg_pkg as if they were the same types.

 byte 0 byte 1 byte 2 byte 3
B B A A A A A A C C C C C C C C D D D D D D D C X X E E E E E E
1 0 5 4 3 2 1 0 7 6 5 4 3 2 1 0 6 5 4 3 2 1 0 8 X X 5 4 3 2 1 0

struct my_packed_struct : packed_s<BIG_ENDIAN> {
 bit[6] A;
 bit[2] B;
 bit[9] C;
 bit[7] D;
 bit[6] E;
}

MSB LSB
 A A A A A A B B C C C C C C C C C D D D D D D D E E E E E E X X
 5 4 3 2 1 0 1 0 8 7 6 5 4 3 2 1 0 6 5 4 3 2 1 0 5 4 3 2 1 0 X X

 byte 0 byte 1 byte 2 byte 3
A A A A A A B B C C C C C C C C C D D D D D D D E E E E E E X X
5 4 3 2 1 0 1 0 8 7 6 5 4 3 2 1 0 6 5 4 3 2 1 0 5 4 3 2 1 0 X X

Copyright © 2023 Accellera. All rights reserved.
361

Portable Test and Stimulus Standard 2.1 — October 2023

23.9.2.1 Definition

Syntax 118—sizeof_s struct

The static constant nbytes is initialized to the number of consecutive addresses required to store a value of
type T in a byte-addressable address space. When using the read/write target functions (see 23.9.9), this
number of bytes is assumed to be taken up by the data in the target storage. For types that are not byte-
aligned in size, the number of bytes is rounded up. For the definition of packed struct layout in an address
space, see 23.9.1.

The static constant nbits is initialized to the exact number of bits that are taken up by the representation of
a value of type T in a byte-addressable address space.

sizeof_s<> shall not be parameterized with types other than numeric types, Booleans, enumerated types
that have a base type, packed structs, and arrays thereof.

23.9.2.2 Examples

The following code snippets show the value of nbytes of sizeof_s<> instantiated for several different
types:

sizeof_s<int>::nbytes == 4

sizeof_s<int[3:0]>::nbytes == 1

sizeof_s<bit>::nbytes == 1
sizeof_s<bit[33]>::nbytes == 5

sizeof_s<array<int,10>>::nbytes == 40

struct my_packed_s : packed_s<> {bit[2] kind; int data;};
sizeof_s<my_packed_s>::nbytes == 5

23.9.3 Address space handles

The built-in package addr_reg_pkg defines PSS types for address space handles.

Syntax 119—Address space handle

struct sizeof_s<type T> {
 static const int nbytes = /* implementation-specific */;
 static const int nbits = /* implementation-specific */;
};

typedef chandle addr_handle_t;

const addr_handle_t nullhandle = /* implementation-specific */;

struct sized_addr_handle_s < int SZ, // in bits
 int lsb = 0,
 endianness_e e = LITTLE_ENDIAN
 > : packed_s<e> {
 addr_handle_t hndl;
};

Copyright © 2023 Accellera. All rights reserved.
362

Portable Test and Stimulus Standard 2.1 — October 2023

23.9.3.1 Generic address space handle

addr_handle_t is the generic type for address handles within an address space. A variable of type
addr_handle_t resolves to a concrete address value during test execution, on the target platform.
However, the concrete value of an address handle cannot be obtained during the solve process, on the solve
platform. A field of type addr_handle_t cannot be declared directly in a packed struct type. Packed
structs are defined in 23.9.1.

23.9.3.2 nullhandle

nullhandle represents the address value 0 within the target address space, regardless of the actual
mapping of regions.

23.9.3.3 sized address space handle

The wrapper struct sized_addr_handle_s is used for specifying the size of an address handle in a
packed struct. An address field within a packed struct shall only be declared using
sized_addr_handle_s, and not directly as a field of type addr_handle_t.

The SZ parameter specifies the size of the handle itself in bits when used in a packed struct. Note that the SZ
parameter is not the size of the data it is pointing to.

The lsb parameter defines the starting bit in the resolved address that would become bit 0 of sized address
handle in packed struct. For example, assume that the resolved address is 64 bits and the size of the handle is
30 bits, with the the lsb parameter set to 2. In this case, a sized handle in a packed struct would have bits 31
to 2 from the resolved address.

See an example in 23.9.10.

23.9.4 Obtaining an address space handle

A handle in an address space can be created from an address claim (with an optional offset value), from
another handle (with an offset value), or from a region in an address space. An address claim is made using
a claim struct declaration in actions and objects.

Some address space regions are non-allocatable. These regions can be used to represent memory-mapped
I/O (MMIO) register spaces. A handle can be created from a region in an address space, in order to access
non-allocatable regions.

A handle to a region is obtained when the region is added to the address space, using the add_region (see
23.7.1.2.1) or add_nonallocatable_region (see 23.7.1.2.2) functions. To create address handles
from address claims or from other handles, the following functions are defined in the built-in package
addr_reg_pkg.

23.9.4.1 make_handle_from_claim function

The function make_handle_from_claim() creates an address handle from a claim, with an optional
offset value.

Syntax 120—make_handle_from_claim function

function addr_handle_t make_handle_from_claim
(addr_claim_base_s claim, bit[64] offset = 0);

Copyright © 2023 Accellera. All rights reserved.
363

Portable Test and Stimulus Standard 2.1 — October 2023

The make_handle_from_claim function arguments are:
— A claim struct instance declared in an action or a flow/resource object
— An optional offset value, of a 64-bit type

The returned handle's resolved address will be the sum of the claim’s resolved address and the offset. The
return value of the function is of type addr_handle_t.

23.9.4.1.1 Example

Example 274—make_handle_from_claim example

23.9.4.2 make_handle_from_handle function

The function make_handle_from_handle() creates an address handle from another handle, given an
offset.

Syntax 121—make_handle_from_handle function

The make_handle_from_handle function arguments are:
— A handle that was created by a different call to a make_handle function
— An offset value, of a 64-bit type

The returned handle's resolved address will be the sum of the handle parameter’s resolved address and the
offset. The return value of the function is of type addr_handle_t.

action my_action {
 rand transparent_addr_claim_s<> claim;

 constraint claim.size == 128;
 constraint claim.alignment == 2**4;

 exec body {
 int offset = 16;
 int data = 128;

 addr_handle_t h0 = make_handle_from_claim(claim);
 write32(h0, data); // access API defined in 23.9.9.1

 // Address handle from claim with an offset
 addr_handle_t h1 = make_handle_from_claim(claim, offset);
 write32(h1, data);
 }
};

function addr_handle_t make_handle_from_handle
(addr_handle_t handle, bit[64] offset);

Copyright © 2023 Accellera. All rights reserved.
364

Portable Test and Stimulus Standard 2.1 — October 2023

23.9.4.2.1 Example

Example 275—make_handle_from_handle example

23.9.5 addr_value function

The function addr_value() returns the resolved address of the parameter handle, as a numeric value.
addr_value() is a target function and shall only be used in exec body, run_start, run_end, or functions
called from these exec blocks.

Syntax 122—addr_value function

Per-executor custom implementations of the addr_value() function may be provided, much as custom
implementations of read/write functions are (see 23.9.9.5).

23.9.6 addr_value_solve function

Syntax 123—addr_value_solve function

The solve function addr_value_solve() returns either the full absolute address of the hndl parameter
or the offset of the hndl parameter within its containing address region as a numeric value. If the hndl
parameter is within a transparent region, the returned value will be an absolute address. If the hndl
parameter is within an opaque region, the returned value may be an absolute address or an offset depending
on what tool-specific metadata has been supplied to the PSS processing tool. The addr_value_abs()
function is used to determine what information will be returned by addr_value_solve() for a given
address handle.

Users may provide executor-specific implementations of addr_value_solve() by overriding this
method in an executor implementation.

action my_action {
 transparent_addr_claim_s<> claim;
 constraint claim.alignment == 2**4;

 exec body {
 int offset = 16;
 int data = 128;

 addr_handle_t h0 = make_handle_from_claim(claim, offset);
 write32(h0, data);

 // Make handle from another handle with an offset
 addr_handle_t h1 = make_handle_from_handle(h0, sizeof_s<int>::nbytes);
 write32(h1, data);
 }
};

function bit[64] addr_value (addr_handle_t hndl);
import target function addr_value;

function bit[64] addr_value_solve(addr_handle_t hndl);

Copyright © 2023 Accellera. All rights reserved.
365

Portable Test and Stimulus Standard 2.1 — October 2023

The addr_value_solve() function may only be called in the context of a pre_body exec block. If
addr_value_solve() is called from other contexts, the return value is undefined.

23.9.7 addr_value_abs function

Syntax 124—addr_value_abs function

The solve function addr_value_abs() returns ‘true’ if the absolute address value is available for the
specified address handle. The absolute address value is available if hndl is within a transparent region, and
may be available when hndl is within an opaque region depending on what tool-specific metadata has been
supplied to the PSS processing tool.

The addr_value_abs() function may only be called in the context of a pre_body exec block. If
addr_value_abs() is called from other contexts, the return value is undefined.

23.9.8 get_tag function

The function get_tag() returns the tag (see Syntax 111) of the region in which the specified address
handle is located. get_tag() is a target function and shall only be used in exec pre_body, body,
run_start, run_end, or in functions called from these exec blocks.

Syntax 125—get_tag function

23.9.9 Access operations

Read/write operations of PSS data from/to byte-addressable address space are defined as a set of target
functions. Target exec blocks (exec body, run_start, run_end), and functions called from them, may call
these core library functions to access allocated addresses.

Access functions use an address handle to designate the required location within an address space.

PSS provides a way to customize the implementation of access functions for different executors (see
23.9.9.5).

23.9.9.1 Primitive read operations

Syntax 126 defines read operations for integer types from byte addressable address spaces to read one, two,
four or eight consecutive bytes starting at the address indicated by the addr_handle_t argument.

Syntax 126—Primitive read operations for byte addressable spaces

The first byte goes into bits [7:0], then the next byte goes into bits [15:8], and so on.

function bool addr_value_abs(addr_handle_t hndl);

function string get_tag(addr_handle_t hndl);

function bit[8] read8(addr_handle_t hndl);
function bit[16] read16(addr_handle_t hndl);
function bit[32] read32(addr_handle_t hndl);
function bit[64] read64(addr_handle_t hndl);

Copyright © 2023 Accellera. All rights reserved.
366

Portable Test and Stimulus Standard 2.1 — October 2023

23.9.9.2 Primitive write operations

Syntax 127 defines write operations for integer types to byte addressable address spaces to write one, two,
four or eight consecutive bytes from the data argument starting at the address indicated by the
addr_handle_t argument.

Syntax 127—Primitive write operations for byte addressable spaces

Bits [7:0] of the input data go into the starting address specified by the addr_handle_t argument, bits
[15:8] go into the next address (starting address + 1), and so on.

23.9.9.3 Read and write N consecutive bytes

Syntax 128 defines operations to read and write a series of consecutive bytes from byte addressable space.

For a read operation, the read data is stored in the argument data. For function read_bytes(), the
size argument indicates the number of consecutive bytes to read. The returned list is resized accordingly,
and its previous values, if any, are overwritten.

For a write operation, the input data is taken from the argument data. For function write_bytes(), the
number of bytes to write is determined by the list size of the data parameter.

Syntax 128—Read and write series of bytes

The first byte read comes from the address indicated by the hndl argument. This byte is stored at the first
location (index 0) in the data list. The second byte comes from the address incremented by one and is
stored at the second location (index 1) in the data list, and so on. The same semantics apply to
write_bytes().

23.9.9.4 Read and write packed structs

Read and write operations to access packed structs are defined in Syntax 129. Argument packed_struct
of functions read_struct() and write_struct() shall be a subtype of the packed_s struct. The
packed_struct argument is read from or written to the address specified by the hndl argument.

Syntax 129—Read and write packed structs

The PSS implementation shall convert calls to read_struct() and write_struct() to one or more
invocations of the primitive read and write operations (see 23.9.9.1 and 23.9.9.2) or to an invocation of the
read_bytes()or write_bytes() function (see 23.9.9.3). Reading and writing of structs of size 8, 16,
32, or 64 bits stored at a correspondingly aligned address shall be implemented with a single primitive

function void write8 (addr_handle_t hndl, bit[8] data);
function void write16(addr_handle_t hndl, bit[16] data);
function void write32(addr_handle_t hndl, bit[32] data);
function void write64(addr_handle_t hndl, bit[64] data);

function void read_bytes (addr_handle_t hndl, list<bit[8]> data, int size);
function void write_bytes(addr_handle_t hndl, list<bit[8]> data);

function void read_struct (addr_handle_t hndl, struct packed_struct);
function void write_struct(addr_handle_t hndl, struct packed_struct);

Copyright © 2023 Accellera. All rights reserved.
367

Portable Test and Stimulus Standard 2.1 — October 2023

operation of the corresponding size, and in other cases may be partitioned into one or more primitive
operations of any size, or a single call to the read_bytes()or write_bytes() function.

23.9.9.5 Executor-based customization of memory functions

PSS tools may provide built-in implementations of read, write, and addr_value() operations for
mainstream execution contexts. However, users can optionally customize the implementation of these
operations for their own purposes and execution contexts.

Calls to primitive read, write, and addr_value() functions (defined above in 23.9.9.1, 23.9.9.2, and
23.9.5), and calls to byte list read/write functions (defined above in 23.9.9.3), are delegated to functions with
the identical prototype in the executor instance assigned to the evaluation action or flow/resource object.
Syntax 130 below shows the declarations of the executor implementation functions.

Syntax 130—Primitive operation implementation functions

Note that struct read/write functions (defined above in 23.9.9.4) and register read/write functions (defined
below in 23.10.1) are implemented in terms of their respective primitive operations. Therefore, custom
implementations of the primitive operations in an executor apply similarly to struct and register read/write
functions.

The code in Example 276 below illustrates how a PSS implementation may define the delegation of one of
the primitive read/write functions to the corresponding function in the current executor. The actual
implementation does not necessarily take this form, but should have equivalent observable behavior. See
23.6.2.5 for more on the semantics of function executor().

Example 276—Illustration of read32()

extend component executor_base_c {
function bit[64] addr_value(addr_handle_t hndl);

function bit[8] read8 (addr_handle_t hndl);
function bit[16] read16(addr_handle_t hndl);
function bit[32] read32(addr_handle_t hndl);
function bit[64] read64(addr_handle_t hndl);

function void write8 (addr_handle_t hndl, bit[8] data);
function void write16(addr_handle_t hndl, bit[16] data);
function void write32(addr_handle_t hndl, bit[32] data);
function void write64(addr_handle_t hndl, bit[64] data);

function void read_bytes (addr_handle_t hndl, list<bit[8]> data,
 int size);

function void write_bytes(addr_handle_t hndl, list<bit[8]> data);
};

function bit[32] read32(addr_handle_t hndl) {
 if (executor() != null) {
 return executor().read32(hndl);
 } else {
 // return value per default implementation
 }
}

Copyright © 2023 Accellera. All rights reserved.
368

Portable Test and Stimulus Standard 2.1 — October 2023

Example 277 below demonstrates how primitive operations read32() and write32() are mapped to
calls to functions of a C bus transactor in the context of a user-defined executor type.

Example 277—Mapping of primitive operations to foreign C functions

In Example 278 below, executor type uvm_ubus_executor_c corresponds to a UVM bus master. The
write8() function is defined in terms of a SystemVerilog imported function (task) that starts a write-byte
sequence on the agent designated by the path parameter. The executor type is instantiated twice under
pss_top, and each instance is associated with a different UVM agent in the target environment using the
UVM path.

Example 278—Mapping of primitive operations to UVM sequences

function bit[32] my_transactor_read_word(bit[64] addr);
import target C function my_transactor_read_word;

function void my_transactor_write_word(bit[64] addr, bit[32] data);
import target C function my_transactor_write_word;

component my_transactor_executor_c<struct TRAIT : executor_trait_s =
 empty_executor_trait_s> : executor_c<TRAIT> {

 function bit[32] read32(addr_handle_t hndl) {
 return my_transactor_read_word(addr_value(hndl));
 }

 function void write32(addr_handle_t hndl, bit[32] data) {
 my_transactor_write_word(addr_value(hndl), data);
 }
};

import target SV function void ubus_write8(string uvm_path, bit[64] addr,
bit[8] data);

component uvm_ubus_executor_c : executor_c<bus_trait_s> {
 string uvm_path;

 function void write8(addr_handle_t hndl, bit[8] data) {
 ubus_write8(uvm_path, addr_value(hndl), data);
 }
};

extend component pss_top {
 uvm_ubus_executor_c masters[2];
 executor_group_c<bus_trait_s> bus_group;
 exec init_down {
 foreach (m: masters) {
 bus_group.add_executor(m);
 }
 masters[0].uvm_path = "uvm_test_top.env.ubus_master0";
 masters[1].uvm_path = "uvm_test_top.env.ubus_master1";
 }
};

Copyright © 2023 Accellera. All rights reserved.
369

Portable Test and Stimulus Standard 2.1 — October 2023

In Example 279 below, an executor corresponding to a 32-bit architecture CPU customizes the read64()
and write64() operations to be implemented in terms of the built-in read32() and write32()
operations.

Example 279—Implementing primitive operations in terms of other operations

In the example below, the user has an address map where each of a set of executors is allocated a unique set
of addresses within the address space. While each executor is assigned a unique portion of the global address
space, the executor-specific address window is mapped at the same address from the perspective of the
executor. Allocations are modeled using the global address map to ensure claims are globally unique.
However, depending on the executor, an address may need to be transformed to conform to the executor-
specific address map.

Figure 27—Executor address mapping

Overriding the addr_value() function can be used to perform such custom translations. The
addr_window_exec_c executor shown below overrides the addr_value() function and applies a
translation if the address falls within a specific window that is configurable on a per-executor instance basis.

Let’s assume that the executor-specific address windows are located at 0x80000000 and 0x80001000 in
the global address map. Each executor maps this shared window at 0x1000. The executor instantiation and
configuration below show how we could configure this translation scheme. When, for example, an action
running on exec1 accesses address 0x8000_0100, the customized addr_value() function will
convert the address to 0x0000_1100.

component my_32bit_cpu_c : executor_c<my_core_trait_s> {
 function bit[64] read64(addr_handle_t hndl) {
 bit[64] result;
 result[31: 0] = read32(hndl);
 result[63:32] = read32(make_handle_from_handle(hndl,4));
 return result;
 }

 function void write64(addr_handle_t hndl, bit[64] data) {
 write32(hndl, data[31:0]);
 write32(make_handle_from_handle(hndl,4), data[63:32]);
 }
};

Global Address Map

Exec1 Map

Exec2 Map

Exec Shared

Exec Shared

Exec2 Shared
Exec1 Shared

Copyright © 2023 Accellera. All rights reserved.
370

Portable Test and Stimulus Standard 2.1 — October 2023

Example 280—Customization of addr_value()

component addr_window_exec_c : executor_base_c {
 bit[64] window_base = 0x80000000;
 bit[64] window_size = 0x1000;
 bit[64] window_offset = 0x80000000;

 function bit[64] addr_value(addr_handle_t hndl) {
 bit[64] addr = super.addr_value(hndl);
 if (addr >= window_base && addr < (window_base+window_size)) {
 addr = (addr-window_offset)+0x1000;
 }
 return addr;
 }
}

component subsystem_c {
 addr_window_exec_c exec1;
 addr_window_exec_c exec2;

 exec init_down {
 exec1.window_base = 0x8000_0000;
 exec1.window_offset = 0x8000_0000;
 exec2.window_base = 0x8000_1000;
 exec2.window_offset = 0x8000_1000;
 }
}

Copyright © 2023 Accellera. All rights reserved.
371

Portable Test and Stimulus Standard 2.1 — October 2023

23.9.10 Target data structure setup example

The following example demonstrates use of packed PSS data written to allocations on byte addressable
space. It also demonstrates the use of address handles to construct complex data structures in target memory.
Lifetime of allocation is extended by using address handles in flow objects.

Example 281—Example using complex data structures

buffer data_buff {
 rand addr_claim_s<> mem_seg;
};

component dma_c {

 struct descriptor_s : packed_s<> {
 sized_addr_handle_s<32> src_addr;
 sized_addr_handle_s<32> dst_addr;
 int size;
 sized_addr_handle_s<32> next_descr;
 };

 state descr_chain_state {
 list<addr_handle_t> handle_list;
 };

 pool descr_chain_state descr_chain_statevar;
 bind descr_chain_statevar *;

 action alloc_first_descr {
 output descr_chain_state out_chain;

 rand addr_claim_s<> next_descr_mem;
 constraint next_descr_mem.size == sizeof_s<descriptor_s>::nbytes;

 exec post_solve {
 out_chain.handle_list.push_back(

 make_handle_from_claim(next_descr_mem));
 }
 };

Copyright © 2023 Accellera. All rights reserved.
372

Portable Test and Stimulus Standard 2.1 — October 2023

Example 281—Example using complex data structures (cont.)

 action chained_xfer {
 input data_buff src_buff;
 output data_buff dst_buff;
 constraint dst_buff.mem_seg.size == src_buff.mem_seg.size;

 input descr_chain_state in_chain;
 output descr_chain_state out_chain;

 rand bool last;

 descriptor_s descr;

 rand addr_claim_s<> next_descr_mem;
 constraint next_descr_mem.size == sizeof_s<descriptor_s>::nbytes;

 addr_handle_t descr_hndl;

 exec post_solve {
 descr.src_addr.hndl = make_handle_from_claim(src_buff.mem_seg);
 descr.dst_addr.hndl = make_handle_from_claim(dst_buff.mem_seg);
 descr.size = src_buff.mem_seg.size;
 if (last) {
 descr.next_descr.hndl = nullhandle;
 } else {
 descr.next_descr.hndl = make_handle_from_claim(next_descr_mem);
 }

 // tail of current list
 descr_hndl = in_chain.handle_list[in_chain.handle_list.size()-1];

 // copy over list from input to output
 out_chain.handle_list = in_chain.handle_list;
 // add next pointer
 out_chain.handle_list.push_back(

 make_handle_from_claim(next_descr_mem));
 }

 exec body {
 write_struct(descr_hndl,descr);
 }
 };

 action execute_xfer {
 input descr_chain_state in_chain;

 addr_handle_t descr_list_head;

 exec post_solve {
 descr_list_head = in_chain.handle_list[0]; // head of list
 }

 exec body {
 // Initiate chained-transfer with descr_list_head
 // Wait for the chained-transfer to complete
 }
 };

Copyright © 2023 Accellera. All rights reserved.
373

Portable Test and Stimulus Standard 2.1 — October 2023

Example 281—Example using complex data structures (cont.)

In this example, the chained_xfer action represents the data flow (source/destination buffers)
associated with this transaction. It populates the descriptor, including a pointer to the next descriptor, which
it allocates. Its runtime execution writes the full descriptor out to memory, in the location allocated for it by
the previous link in the chain.

23.10 Registers

A PSS model will often specify interaction with the hardware SUT to control how the PSS tool-generated
code will read/write to programmable registers of the SUT. This section shows how to associate meaningful
identifiers with register addresses that need to be specified in the PSS model description, as well as
manipulation of the value of register fields by name.

All the core library constructs in this section are declared in the addr_reg_pkg package. For brevity, the
definitions below do not include the package name.

23.10.1 PSS register definition

A register is a logical aggregation of fields that are addressed as a single unit.

The reg_c component is a base type for specifying the programmable registers of the DUT. Note that it is
a pure component (see 9.6). It shall be illegal to extend the reg_c class.

 action multi_xfer {
 rand int in [1..10] num_of_xfers;

 activity {
 do alloc_first_descr;
 repeat (i: num_of_xfers) {
 do chained_xfer with {last == (i == num_of_xfers-1);};
 }
 do execute_xfer;
 }
 };
};

Copyright © 2023 Accellera. All rights reserved.
374

Portable Test and Stimulus Standard 2.1 — October 2023

Syntax 131—PSS register definition

Component reg_c is parameterized by:
a) A type R for the value (referred to as the register-value type) that can be read/written from/to the

register, which can be:
1) A packed structure type (that represents the register structure)
2) A bit-vector type (bit[N])

b) Kind of access allowed to the register, which by default is READWRITE
c) Width of the register (SZ) in number of bits, which by default equals the size of the register-value

type R (rounded up to a multiple of 8)

SZ, if specified by the user, shall be greater than or equal to the size of the register-value type R. If the size
of the register-value type R is less than the width of the register, it will be equivalent to having
SZ – sizeof_s<R>::nbits reserved bits at the end of the structure.

The register access functions described in Syntax 131 may be called from the test-realization layer of a PSS
model. Being declared as target functions, these need to be called in an exec body context.

The read() and read_val() functions return the value of the register in the DUT (the former returns an
instance of register-value type and the latter returns a bit vector). The write() and write_val()
functions update the value of a register in a DUT (the former accepting an instance of register-value type and
the latter a bit vector). If the register-value type is a bit vector, then the functions read() and
read_val() are equivalent, as are write() and write_val().

enum reg_access {READWRITE, READONLY, WRITEONLY};

pure component reg_c < type R,
reg_access ACC = READWRITE,
int SZ = (8*sizeof_s<R>::nbytes)> {

function R read();
import target function read;

 function void write(R r);
 import target function write;

 function bit[SZ] read_val();
 import target function read_val;

 function void write_val(bit[SZ] r);
import target function write_val;

function void write_masked(R mask, R val);
import target function write_masked;

function void write_val_masked(bit[SZ] mask, bit[SZ] val);
import target function write_val_masked;

function void write_field(string name, bit[SZ] val);
import target function write_field;

function void write_fields(list<string> names, list<bit[SZ]> vals);
import target function write_fields;

};

Copyright © 2023 Accellera. All rights reserved.
375

Portable Test and Stimulus Standard 2.1 — October 2023

The write_masked() and write_val_masked() methods cause the register to be read, a write
value to be calculated from the current register value and the specified masked value, and the write value to
be written back to the register. The effect is the following:

REG_VAL(new) = (REG_VAL(current) & ~mask) | (val & mask)

If dedicated read-modify-write instructions are available on a platform, a PSS processing tool may, but is not
required to, implement these operations in terms of those instructions.

The write_masked() and write_val_masked() methods only differ in how the mask and value are
specified. In the case of write_val_masked(), both are specified as numeric quantities. In the case of
write_masked(), both are specified in terms of the register-value type used to define the register.

The write_field() and write_fields() methods specify read-write-modify operations on a
register using named register fields. Note that these methods may only be used on registers specified in
terms of a struct data type. The following restrictions apply to the field names specified to
write_field() and write_fields():

a) Only string literals may be used in specifying field names.
b) The names may only specify top-level fields, and may not specify dotted hierarchical references.
c) The field name may not refer to aggregate data type fields within the register.
d) The set of strings passed to write_fields() must be unique.

Copyright © 2023 Accellera. All rights reserved.
376

Portable Test and Stimulus Standard 2.1 — October 2023

Example 282—Read-modify-write operations

In Example 282, a register is defined in terms of a packed struct with three operational fields and a reserved
unused region (pad). In the action cfg_a, three different ways are shown to ensure that the mode and
coeff fields are set to specific values while leaving the en field unmodified:

a) Mask and value parameters are formulated using struct literal expressions and passed to the
write_masked() method. Fields in the mask parameter are set to the negation of 0 (all bits set)
in order to cause the value of the corresponding register bits to be set. Unspecified fields in the mask
parameter take on the default value, which PSS specifies as 0 for integer data types.

b) Numeric mask and value parameters are computed using shift and composition operations and
passed to the write_val_masked() method.

c) Lists of field names and field values are passed to the write_fields() method.

See 23.10.4 for a description of the implementation of these functions. It shall be an error to call a register
read or read-modify-write function on a register object whose access is set to WRITEONLY. It shall be an
error to call a register write or read-modify-write function on a register object whose access is set to
READONLY.

struct CR : packed_s<> {
 bit en;
 bit[11] pad;
 bit[4] mode;
 bit[16] coeff;
}

pure component dut_regs_c : reg_group_c {
 reg_c<CR> cr;
}

component dut_c {
 dut_regs_c regs;

 action cfg_a {
 rand bit[4] mode;
 rand bit[16] coeff;
 exec body {
 // Three equivalent ways to modify the 'mode' and 'coeff' fields
 comp.regs.cr.write_masked(
 {.mode=~0, .coeff=~0}, {.mode=mode, .coeff=coeff});
 comp.regs.cr.write_val_masked(
 0xFFFFF000, (coeff << 16) | (mode << 12));
 comp.regs.cr.write_fields({"mode", "coeff"}, {mode, coeff});
 }
 }

 action enable_a {
 exec body {
 // Two equivalent ways to set the 'en' bit
 comp.regs.cr.write_masked({.en=~0}, {.en=1});
 comp.regs.cr.write_field("en", 1);
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
377

Portable Test and Stimulus Standard 2.1 — October 2023

A template instantiation of the class reg_c (i.e., reg_c<R, ACC, SZ> for some concrete values for R,
ACC and SZ) or a component derived from such a template instantiation (directly or indirectly) is a register
type. An object of register type can be instantiated only in a register group (see 23.10.2).

Example 283 shows examples of register declarations.

Example 283—Examples of register declarations

Notes:
1) my_reg0_s is the register-value type. The endianness can be explicitly specified if needed.
2) my_reg0_c is the register type. Since it derives from reg_c<my_reg0_s>, it inherits the

reg_c read/write functions. Note that the access is READWRITE by default and the width
equals the size of the associated register-value type, my_reg0_s.

3) Fixed-size arrays are allowed.
4) sizeof_s<my_reg1_s>::nbits = 13, which is less than the specified register width

(32). This is allowed and is equivalent to specifying a field of size 32 – 13 = 19 bits after
fld2[5]. This reserved field cannot be accessed using read()/write() functions on the
register object. In the numeric value passed to write_val() and in the return value of
read_val(), the value of these bits is not defined by this standard.

It is recommended to declare the register type as pure. This allows the PSS implementation to optimally
handle large static register components.

23.10.2 PSS register group definition

A register group aggregates instances of registers and of other register groups.

The reg_group_c component is the base type for specifying register groups. Note that it is a pure
component (see 9.6). It shall be illegal to extend the reg_group_c class.

struct my_reg0_s : packed_s<> { // (1)
 bit [16] fld0;
 bit [16] fld1;
};

pure component my_reg0_c : reg_c<my_reg0_s> {} // (2)

struct my_reg1_s : packed_s<> {

 bit fld0;
 bit [2] fld1;
 bit [2] fld2[5]; // (3)
};

pure component my_reg1_c : reg_c<my_reg1_s, READWRITE, 32> {} // (4)

Copyright © 2023 Accellera. All rights reserved.
378

Portable Test and Stimulus Standard 2.1 — October 2023

Syntax 132—PSS register group definition

A register group may instantiate registers and instances of other register groups. An instance of a register
group may be created in another register group, or directly in a non-register-group component. In the latter
case, the register group can be associated with an address region. The set_handle() function associates
the register group with an address region. The definition of this function is implementation-defined. See
23.10.3 for more details on use of this function.

Each element in a register group (whether an instance of a register or an instance of another group) has a
user-defined address offset relative to a notional base address of the register group.

The function get_offset_of_instance() retrieves the offset of a non-array element in a register
group, by name of the element. The function get_offset_of_instance_array() retrieves the
offset of an array element in a register group, by name of the element and index in the array.

For example, suppose a is an instance of a register group that has the following elements:
— A register instance, r0
— A register array instance, r1[4]

Calling a.get_offset_of_instance("r0") returns the offset of the element r0. Calling a.
get_offset_of_instance_array("r1", 2) returns the offset at index 2 of element r1.

The function get_offset_of_path() retrieves the offset of a register from a hierarchical path of the
register, starting from a given register group. The hierarchical path of the register is specified as a list of
node_s objects. Each node_s object provides the name of the element (as a string) and an index
(applicable if and only if the element is of array type). The first element of the list corresponds to an object
directly instantiated in the given register group. Successive elements of the list correspond to an object
instantiated in the register group referred by the predecessor node. The last element of the list corresponds to
the final register instance.

 For example, suppose b is an instance of a register group that has the following elements: a register group
array instance grp0[10], which in turn has a register group instance grp1, which in turn has a register
instance, r0. The hierarchical path of register r0 in grp1 within grp0[5] within b will then be the list
(e.g., path_to_r0) with the following elements in succession:

— [0]: node_s object with name = "grp0" and index = 5
— [1]: node_s object with name = "grp1" (index is not used)
— [2]: node_s object with name = "r0" (index is not used)

struct node_s {
 string name;
 int index;
};

pure component reg_group_c {
 pure function bit[64] get_offset_of_instance(string name);
 pure function bit[64] get_offset_of_instance_array(string name,
 int index);
 pure function bit[64] get_offset_of_path(list<node_s> path);

 function void set_handle(addr_handle_t addr);
 import solve function set_handle;
};

Copyright © 2023 Accellera. All rights reserved.
379

Portable Test and Stimulus Standard 2.1 — October 2023

Calling b.get_offset_of_path(path_to_r0) will return the offset of register r0 relative to the
base address of b.

For a given register group, users shall provide the implementation of either get_offset_of_path()or
of both functions get_offset_of_instance() and get_offset_of_instance_array(). It
shall be an error to provide an implementation of all three functions. These may be implemented as native
PSS functions, or foreign-language binding may be used. These functions (when implemented) shall provide
the relative offset of all the elements in the register group. These functions are called by a PSS tool to
compute the offset for a register access (as described later in 23.10.4). Note that these functions are declared
pure —the implementation shall not have side-effects.

Example 284 shows an example of a register group declaration.

Example 284—Example of register group declaration

Notes:
1) my_readonly_reg0_c, my_reg1_c, etc., are all register types (declarations not shown in

the example).
2) Arrays of registers are allowed.
3) Groups may contain other groups (declaration of my_sub_reg_grp_c not shown in the

example).
4) A direct instance of reg_c<> may be created in a register group.
5) Offsets of two elements may be same. A typical use case for this is when a READONLY and a

WRITEONLY register share the same offset.

23.10.3 Association with address region

Before the read/write functions can be invoked on a register, the top-level register group (under which the
register object has been instantiated) must be associated with an address region, using the set_handle()

pure component my_reg_grp0_c : reg_group_c {
 my_readonly_reg0_c reg0; // (1)
 my_reg1_c reg1[4]; // (2)
 my_sub_reg_grp_c sub; // (3)
 reg_c<my_regx_s, WRITEONLY, 32> regx; // (4)

 // May be foreign, too
 function bit[64] get_offset_of_instance(string name) {
 match(name) {
 ["reg0"]: return 0x0;
 ["sub"]: return 0x20;
 ["regx"]: return 0x0; // (5)
 default: return -1; // Error case
 }
 }

 function bit[64] get_offset_of_instance_array(string name, int index) {
 match(name) {
 ["reg1"]: return (0x4 + index*4);
 default: return -1; // Error case
 }
 }
}

Copyright © 2023 Accellera. All rights reserved.
380

Portable Test and Stimulus Standard 2.1 — October 2023

function in that register group. This is done from within an exec init_up or init_down context. Only the top-
level register group shall be associated with an address region; it shall be an error to call set_handle()
on other register group instances. An example is shown in Example 285.

Example 285—Top-level group and address region association

23.10.4 Translation of register read/write

The PSS implementation shall convert invocations of the register access functions described in Syntax 131
to invocations of the primitive read/write operations on the address associated with the register (see 23.9.9.1
and 23.9.9.2). The conversion shall proceed as follows:

a) The read/write function is selected based on the size of the register. For example, if the size of the
register is 32, the function read32(addr_handle_t hndl) will be called for a register read.

b) The total offset is calculated by summing the offsets of all elements starting from the top-level regis-
ter group to the register itself.
1) If the function get_offset_of_path() is available in any intermediate register group

instance, the PSS implementation will use that function to find the offset of the register relative
to the register group.

2) Otherwise, the function get_offset_of_instance_array() or get_off-
set_of_instance() is used, depending on whether or not the register instance or register
group instance is an array.

For example, in the expression (where a, b, c, and d are all instances of register groups and reg is
a register object):

comp.a.b.c.d[4].reg.write_val(10)

if the function get_offset_of_path() is implemented in the type of element c, then the offset
is calculated as:

 offset = comp.a.get_offset_of_instance("b") +
 comp.a.b.get_offset_of_instance("c") +
 comp.a.b.c.get_offset_of_path(path)

where path is the list [{"d", 4}, {"reg", 0}].
c) The handle for the access is calculated as make_handle_from_handle(h, offset), where

h is the handle set using set_handle() on the top-level register group.

component my_component_c
{
 my_reg_grp0_c grp0; // Top-level group

 transparent_addr_space_c<> sys_mem;

 exec init_up {
 transparent_addr_region_s<> mmio_region;
 addr_handle_t h;
 mmio_region.size = 1024;
 mmio_region.addr = 0xA0000000;

 h = sys_mem.add_nonallocatable_region(mmio_region);

 grp0.set_handle(h);
 }
};

Copyright © 2023 Accellera. All rights reserved.
381

Portable Test and Stimulus Standard 2.1 — October 2023

23.10.5 Recommended packaging

It is recommended that all the register (and register group) definitions of a device be placed in a separate file
and in a separate package by themselves, as shown in Example 286.

Example 286—Recommended packaging

This ensures that the register file can be easily generated from a register specification (e.g., IP-XACT).

// In my_IP_regs.pss
package my_IP_regs {
 import addr_reg_pkg::*;
 struct my_reg0_s : packed_s<> { ... };
 pure component my_reg0_c : reg_c<my_reg0_s, READWRITE, 32> { ... };
 // ... etc: other registers

 pure component my_reg_group_c : reg_group_c {
 my_reg0_c r0;
 // ... etc: other registers
 };
}

Copyright © 2023 Accellera. All rights reserved.
382

Portable Test and Stimulus Standard 2.1 — October 2023

Annex A

(informative)

Bibliography

[B1] IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition. New York: Insti-
tute of Electrical and Electronics Engineers, Inc.

Copyright © 2023 Accellera. All rights reserved.
383

Portable Test and Stimulus Standard 2.1 — October 2023

Annex B

(normative)

Formal syntax

The PSS formal syntax is described using Backus-Naur Form (BNF). The syntax of the PSS source is
derived from the starting symbol Model. If there is a conflict between a grammar element shown anywhere
in this standard and the material in this annex, the material shown in this annex shall take precedence.

Model ::= { portable_stimulus_description }

portable_stimulus_description ::=
 package_body_item
 | package_declaration
 | component_declaration

B.1 Package declarations

package_declaration ::= package package_id_path { { package_body_item } }

package_id_path ::= package_identifier { :: package_identifier }

package_body_item ::=
 abstract_action_declaration
 | struct_declaration
 | enum_declaration
 | covergroup_declaration
 | function_decl
 | import_class_decl
 | procedural_function
 | import_function
 | target_template_function
 | export_action
 | typedef_declaration
 | import_stmt
 | extend_stmt
 | const_field_declaration
 | component_declaration
 | package_declaration
 | compile_assert_stmt
 | package_body_compile_if
 | stmt_terminator

import_stmt ::= import package_import_pattern ;

package_import_pattern ::= type_identifier [package_import_qualifier]

package_import_qualifier ::=
 package_import_wildcard
 | package_import_alias

package_import_wildcard ::= :: *

Copyright © 2023 Accellera. All rights reserved.
384

Portable Test and Stimulus Standard 2.1 — October 2023

package_import_alias ::= as package_identifier

extend_stmt ::=
 extend action type_identifier { { action_body_item } }
 | extend component type_identifier { { component_body_item } }
 | extend struct_kind type_identifier { { struct_body_item } }
 | extend enum type_identifier { [enum_item { , enum_item }] }

const_field_declaration ::= [static] const data_declaration

stmt_terminator ::= ;

B.2 Action declarations

action_declaration ::= action action_identifier
 [template_param_decl_list] [action_super_spec] { { action_body_item } }

abstract_action_declaration ::= abstract action_declaration

action_super_spec ::= : type_identifier

action_body_item ::=
 activity_declaration
 | override_declaration
 | constraint_declaration
 | action_field_declaration
 | symbol_declaration
 | covergroup_declaration
 | exec_block_stmt
 | activity_scheduling_constraint
 | attr_group
 | compile_assert_stmt
 | covergroup_instantiation
 | action_body_compile_if
 | stmt_terminator

activity_declaration ::= activity { { activity_stmt } }

action_field_declaration ::=
 attr_field
 | activity_data_field
 | action_handle_declaration
 | object_ref_field_declaration

object_ref_field_declaration ::=
 flow_ref_field_declaration
 | resource_ref_field_declaration

flow_ref_field_declaration ::=
 (input | output) flow_object_type object_ref_field { , object_ref_field } ;

resource_ref_field_declaration ::=
 (lock | share) resource_object_type object_ref_field {, object_ref_field } ;

Copyright © 2023 Accellera. All rights reserved.
385

Portable Test and Stimulus Standard 2.1 — October 2023

flow_object_type ::=
 buffer_type_identifier
 | state_type_identifier
 | stream_type_identifier

resource_object_type ::= resource_type_identifier

object_ref_field ::= identifier [array_dim]

action_handle_declaration ::= action_type_identifier action_instantiation ;

action_instantiation ::=
 action_handle_identifier [array_dim]
 { , action_handle_identifier [array_dim] }

activity_data_field ::= action data_declaration

activity_scheduling_constraint ::= constraint (parallel | sequence)
 { hierarchical_id , hierarchical_id { , hierarchical_id } } ;

B.3 Struct declarations

struct_declaration ::= struct_kind struct_identifier
 [template_param_decl_list] [struct_super_spec] { { struct_body_item } }

struct_kind ::=
 struct
 | object_kind

object_kind ::=
 buffer
 | stream
 | state
 | resource

struct_super_spec ::= : type_identifier

struct_body_item ::=
 constraint_declaration
 | attr_field
 | typedef_declaration
 | exec_block_stmt
 | attr_group
 | compile_assert_stmt
 | covergroup_declaration
 | covergroup_instantiation
 | struct_body_compile_if
 | stmt_terminator

Copyright © 2023 Accellera. All rights reserved.
386

Portable Test and Stimulus Standard 2.1 — October 2023

B.4 Exec blocks

exec_block_stmt ::=
 exec_block
 | target_code_exec_block
 | target_file_exec_block
 | stmt_terminator

exec_block ::= exec exec_kind { { exec_stmt } }

exec_kind ::=
 pre_solve
 | post_solve
 | pre_body
 | body
 | header
 | declaration
 | run_start
 | run_end
 | init_down
 | init_up
 | init

exec_stmt ::=
 procedural_stmt
 | exec_super_stmt

exec_super_stmt ::= super ;

target_code_exec_block ::= exec exec_kind language_identifier = string_literal;

target_file_exec_block ::= exec file filename_string = string_literal ;

B.5 Functions

procedural_function ::= [platform_qualifier] [pure] [static] function
function_prototype { { procedural_stmt } }

function_decl ::= [pure] [static] function function_prototype ;

function_prototype ::=
 function_return_type function_identifier function_parameter_list_prototype

function_return_type ::=
 void
 | data_type

function_parameter_list_prototype ::=
 ([function_parameter { , function_parameter }])
 | ({ function_parameter , } varargs_parameter)

function_parameter ::=
 [function_parameter_dir] data_type identifier [= constant_expression]
 | (type | ref type_category | struct) identifier

Copyright © 2023 Accellera. All rights reserved.
387

Portable Test and Stimulus Standard 2.1 — October 2023

function_parameter_dir ::=
 input
 | output
 | inout

varargs_parameter ::=
 (data_type | type | ref type_category | struct) ... identifier

B.6 Foreign procedural interface

import_function ::=
import [platform_qualifier] [language_identifier]

function type_identifier ;
 | import [platform_qualifier] [language_identifier] [static]

function function_prototype ;

platform_qualifier ::=
 target
 | solve

target_template_function ::=
 target language_identifier [static]

function function_prototype = string_literal ;

import_class_decl ::= import class import_class_identifier
[import_class_extends] { { import_class_function_decl } }

import_class_extends ::= : type_identifier { , type_identifier }

import_class_function_decl ::= function_prototype ;

export_action ::= export [platform_qualifier] action_type_identifier
function_parameter_list_prototype ;

B.7 Procedural statements

procedural_stmt ::=
 procedural_sequence_block_stmt
 | procedural_data_declaration
 | procedural_assignment_stmt
 | procedural_void_function_call_stmt
 | procedural_return_stmt
 | procedural_repeat_stmt
 | procedural_foreach_stmt
 | procedural_if_else_stmt
 | procedural_match_stmt
 | procedural_break_stmt
 | procedural_continue_stmt
 | procedural_randomization_stmt
 | procedural_compile_if
 | stmt_terminator

procedural_sequence_block_stmt ::= [sequence] { { procedural_stmt } }

Copyright © 2023 Accellera. All rights reserved.
388

Portable Test and Stimulus Standard 2.1 — October 2023

procedural_data_declaration ::= data_type procedural_data_instantiation
 { , procedural_data_instantiation } ;

procedural_data_instantiation ::= identifier [array_dim] [= expression]

procedural_assignment_stmt ::= ref_path assign_op expression ;

procedural_void_function_call_stmt ::= [(void)] function_call ;

procedural_return_stmt ::= return [expression] ;

procedural_repeat_stmt ::=
 repeat ([index_identifier :] expression) procedural_stmt
 | repeat procedural_stmt while (expression) ;
 | while (expression) procedural_stmt

procedural_foreach_stmt ::=
 foreach ([iterator_identifier :] expression [[index_identifier]])
 procedural_stmt

procedural_if_else_stmt ::=
 if (expression) procedural_stmt [else procedural_stmt]

procedural_match_stmt ::=
 match (match_expression)
 { procedural_match_choice { procedural_match_choice } }

procedural_match_choice ::=
 [open_range_list] : procedural_stmt
 | default : procedural_stmt

procedural_break_stmt ::= break ;

procedural_continue_stmt ::= continue ;

procedural_randomization_stmt ::=
 randomize procedural_randomization_target procedural_randomization_term

procedural_randomization_target ::= hierarchical_id { , hierarchical_id }

procedural_randomization_term ::=
 with constraint_set
 | ;

B.8 Component declarations

component_declaration ::=
 [pure] component component_identifier [template_param_decl_list]
 [component_super_spec] { { component_body_item } }

component_super_spec ::= : type_identifier

component_body_item ::=
 override_declaration
 | component_data_declaration

Copyright © 2023 Accellera. All rights reserved.
389

Portable Test and Stimulus Standard 2.1 — October 2023

 | component_pool_declaration
 | action_declaration
 | abstract_action_declaration
 | object_bind_stmt
 | exec_block
 | struct_declaration
 | enum_declaration
 | covergroup_declaration
 | function_decl
 | import_class_decl
 | procedural_function
 | import_function
 | target_template_function
 | export_action
 | typedef_declaration
 | import_stmt
 | extend_stmt
 | compile_assert_stmt
 | attr_group
 | component_body_compile_if
 | stmt_terminator

component_data_declaration ::=
 [access_modifier] [static const] data_declaration

component_pool_declaration ::=
 pool [[expression]] type_identifier identifier ;

object_bind_stmt ::= bind hierarchical_id object_bind_item_or_list ;

object_bind_item_or_list ::=
 object_bind_item_path
 | { object_bind_item_path { , object_bind_item_path } }

object_bind_item_path ::= { component_path_elem . } object_bind_item

component_path_elem ::= component_identifier [[domain_open_range_list]]

object_bind_item ::=
 action_type_identifier . identifier [[domain_open_range_list]]
 | *

B.9 Activity statements

activity_stmt ::=
 [label_identifier :] labeled_activity_stmt
 | activity_action_traversal_stmt
 | activity_data_field
 | activity_bind_stmt
 | action_handle_declaration
 | activity_constraint_stmt
 | activity_scheduling_constraint
 | stmt_terminator

labeled_activity_stmt ::=
 activity_sequence_block_stmt

Copyright © 2023 Accellera. All rights reserved.
390

Portable Test and Stimulus Standard 2.1 — October 2023

 | activity_parallel_stmt
 | activity_schedule_stmt
 | activity_repeat_stmt
 | activity_foreach_stmt
 | activity_select_stmt
 | activity_if_else_stmt
 | activity_match_stmt
 | activity_replicate_stmt
 | activity_super_stmt
 | activity_atomic_block_stmt
 | symbol_call

activity_action_traversal_stmt ::=
 identifier [[expression]] inline_constraints_or_empty
 | [label_identifier :] do type_identifier inline_constraints_or_empty

inline_constraints_or_empty ::=
 with constraint_set
 | ;

activity_sequence_block_stmt ::= [sequence] { { activity_stmt } }

activity_parallel_stmt ::= parallel [activity_join_spec] { { activity_stmt } }

activity_schedule_stmt ::= schedule [activity_join_spec] { { activity_stmt } }

activity_join_spec ::=
 activity_join_branch
 | activity_join_select
 | activity_join_none
 | activity_join_first

activity_join_branch ::= join_branch (label_identifier { , label_identifier })

activity_join_select ::= join_select (expression)

activity_join_none ::= join_none

activity_join_first ::= join_first (expression)

activity_repeat_stmt ::=
 repeat ([index_identifier :] expression) activity_stmt
 | repeat activity_stmt while (expression) ;

activity_foreach_stmt ::= foreach ([iterator_identifier :] expression
[[index_identifier]]) activity_stmt

activity_select_stmt ::= select { select_branch select_branch { select_branch } }

select_branch ::= [[(expression)][[expression]] :] activity_stmt

activity_if_else_stmt ::= if (expression) activity_stmt [else activity_stmt]

activity_match_stmt ::=
 match (match_expression) { match_choice { match_choice } }

match_expression ::= expression

Copyright © 2023 Accellera. All rights reserved.
391

Portable Test and Stimulus Standard 2.1 — October 2023

match_choice ::=
 [open_range_list] : activity_stmt
 | default : activity_stmt

activity_replicate_stmt ::= replicate ([index_identifier :] expression)
[label_identifier [] :] labeled_activity_stmt

activity_super_stmt ::= super ;

activity_atomic_block_stmt ::= atomic { { activity_stmt } }

activity_bind_stmt ::= bind hierarchical_id activity_bind_item_or_list ;

activity_bind_item_or_list ::=
 hierarchical_id
 | { hierarchical_id_list }

activity_constraint_stmt ::= constraint constraint_set

symbol_declaration ::=
 symbol symbol_identifier [(symbol_paramlist)] { { activity_stmt } }

symbol_paramlist ::= [symbol_param { , symbol_param }]

symbol_param ::= data_type identifier

B.10 Overrides

override_declaration ::= override { { override_stmt } }

override_stmt ::=
 type_override
 | instance_override
 | override_compile_if
 | stmt_terminator

type_override ::= type type_identifier with type_identifier ;

instance_override ::= instance hierarchical_id with type_identifier ;

B.11 Data declarations

data_declaration ::= data_type data_instantiation { , data_instantiation } ;

data_instantiation ::= identifier [array_dim] [= constant_expression]

array_dim ::= [constant_expression]

attr_field ::= [access_modifier] [rand | static const] data_declaration

access_modifier ::= public | protected | private

attr_group ::= access_modifier :

Copyright © 2023 Accellera. All rights reserved.
392

Portable Test and Stimulus Standard 2.1 — October 2023

B.12 Template types

template_param_decl_list ::= < template_param_decl { , template_param_decl } >

template_param_decl ::= type_param_decl | value_param_decl

type_param_decl ::= generic_type_param_decl | category_type_param_decl

generic_type_param_decl ::= type identifier [= type_identifier]

category_type_param_decl ::=
 type_category identifier [type_restriction] [= type_identifier]

type_restriction ::= : type_identifier

type_category ::=
 action
 | component
 | struct_kind

value_param_decl ::= data_type identifier [= constant_expression]

template_param_value_list ::=
 < [template_param_value { , template_param_value }] >

template_param_value ::= constant_expression | data_type

B.13 Data types

data_type ::=
 scalar_data_type
 | collection_type
 | reference_type
 | type_identifier

scalar_data_type ::=
 chandle_type
 | integer_type
 | string_type
 | bool_type
 | enum_type
 | float_type

casting_type ::=
 integer_type
 | bool_type
 | enum_type
 | float_type
 | reference_type
 | type_identifier

chandle_type ::= chandle

integer_type ::= integer_atom_type
 [[constant_expression [: 0]]]
 [in [domain_open_range_list]]

Copyright © 2023 Accellera. All rights reserved.
393

Portable Test and Stimulus Standard 2.1 — October 2023

integer_atom_type ::=
 int
 | bit

domain_open_range_list ::=
 domain_open_range_value { , domain_open_range_value }

domain_open_range_value ::=
 constant_expression [.. constant_expression]
 | constant_expression ..
 | .. constant_expression

string_type ::= string [in [string_literal { , string_literal }]]

bool_type ::= bool

enum_declaration ::=
 enum enum_identifier [: data_type] { [enum_item { , enum_item }] }

enum_item ::= identifier [= constant_expression]

enum_type ::= enum_type_identifier [in [domain_open_range_list]]

float_type ::=
 float32
 | float64

collection_type ::=
 array < data_type , array_size_expression >
 | list < data_type >
 | map < data_type , data_type >
 | set < data_type >

array_size_expression ::= constant_expression

reference_type ::= ref entity_type_identifier

typedef_declaration ::= typedef data_type identifier ;

B.14 Constraints

constraint_declaration ::=
 constraint constraint_set
 | [dynamic] constraint identifier constraint_block

constraint_set ::=
 constraint_body_item
 | constraint_block

constraint_block ::= { { constraint_body_item } }

constraint_body_item ::=
 expression_constraint_item
 | foreach_constraint_item

Copyright © 2023 Accellera. All rights reserved.
394

Portable Test and Stimulus Standard 2.1 — October 2023

 | forall_constraint_item
 | if_constraint_item
 | implication_constraint_item
 | unique_constraint_item
 | default hierarchical_id == constant_expression ;
 | default disable hierarchical_id ;
 | dist_directive
 | constraint_body_compile_if
 | stmt_terminator

expression_constraint_item ::= expression ;

foreach_constraint_item ::=
 foreach ([iterator_identifier :] expression [[index_identifier]])
 constraint_set

forall_constraint_item ::=
 forall (iterator_identifier : type_identifier [in ref_path]) constraint_set

if_constraint_item ::= if (expression) constraint_set [else constraint_set]

implication_constraint_item ::= expression -> constraint_set

unique_constraint_item ::= unique { hierarchical_id_list } ;

dist_directive ::= dist expression in [dist_list] ;

dist_list ::= dist_item { , dist_item }

dist_item ::= open_range_value [dist_weight]

dist_weight ::=
 := expression
 | :/ expression

B.15 Coverage specification

covergroup_declaration ::= covergroup covergroup_identifier
(covergroup_port { , covergroup_port }) { { covergroup_body_item } }

covergroup_port ::= data_type identifier

covergroup_body_item ::=
 covergroup_option
 | covergroup_coverpoint
 | covergroup_cross
 | covergroup_body_compile_if
 | stmt_terminator

covergroup_option ::=
 option . identifier = constant_expression ;

covergroup_instantiation ::=
 covergroup_type_instantiation
 | inline_covergroup

Copyright © 2023 Accellera. All rights reserved.
395

Portable Test and Stimulus Standard 2.1 — October 2023

inline_covergroup ::= covergroup { { covergroup_body_item } } identifier ;

covergroup_type_instantiation ::=
covergroup_type_identifier covergroup_identifier
 (covergroup_portmap_list) covergroup_options_or_empty

covergroup_portmap_list ::=
 covergroup_portmap { , covergroup_portmap }
 | hierarchical_id_list

covergroup_portmap ::= . identifier (hierarchical_id)

covergroup_options_or_empty ::=
 with { { covergroup_option } }

 | ;
covergroup_coverpoint ::= [[data_type] coverpoint_identifier :] coverpoint
 expression [iff (expression)] bins_or_empty

bins_or_empty ::=
 { { covergroup_coverpoint_body_item } }
 | ;

covergroup_coverpoint_body_item ::=
 covergroup_option
 | covergroup_coverpoint_binspec

covergroup_coverpoint_binspec ::= bins_keyword identifier
[[[constant_expression]]] = coverpoint_bins

coverpoint_bins ::=
 [covergroup_range_list] [with (covergroup_expression)] ;
 | coverpoint_identifier with (covergroup_expression) ;
 | default ;

covergroup_range_list ::= covergroup_value_range { , covergroup_value_range }

covergroup_value_range ::=
 expression
 | expression .. [expression]
 | [expression] .. expression

bins_keyword ::= bins | illegal_bins | ignore_bins

covergroup_expression ::= expression

covergroup_cross ::=
 covercross_identifier : cross coverpoint_identifier
 { , coverpoint_identifier }[iff (expression)] cross_item_or_null

cross_item_or_null ::=
 { { covergroup_cross_body_item } }
 | ;

covergroup_cross_body_item ::=
 covergroup_option
 | covergroup_cross_binspec

Copyright © 2023 Accellera. All rights reserved.
396

Portable Test and Stimulus Standard 2.1 — October 2023

covergroup_cross_binspec ::= bins_keyword identifier = covercross_identifier
with (covergroup_expression) ;

B.16 Conditional compilation

package_body_compile_if ::= compile if (constant_expression)
package_body_compile_if_item [else package_body_compile_if_item]

action_body_compile_if ::= compile if (constant_expression)
action_body_compile_if_item [else action_body_compile_if_item]

component_body_compile_if ::= compile if (constant_expression)
component_body_compile_if_item [else component_body_compile_if_item]

struct_body_compile_if ::= compile if (constant_expression)
struct_body_compile_if_item [else struct_body_compile_if_item]

procedural_compile_if ::= compile if (constant_expression)
procedural_compile_if_stmt [else procedural_compile_if_stmt]

constraint_body_compile_if ::= compile if (constant_expression)
constraint_body_compile_if_item [else constraint_body_compile_if_item]

covergroup_body_compile_if ::= compile if (constant_expression)
covergroup_body_compile_if_item [else covergroup_body_compile_if_item]

override_compile_if ::= compile if (constant_expression)
override_compile_if_stmt [else override_compile_if_stmt]

package_body_compile_if_item10 ::= { { package_body_item } }

action_body_compile_if_item10 ::= { { action_body_item } }

component_body_compile_if_item10 ::= { { component_body_item } }

struct_body_compile_if_item10 ::= { { struct_body_item } }

procedural_compile_if_stmt10 ::= { { procedural_stmt } }

constraint_body_compile_if_item10 ::= { { constraint_body_item } }

covergroup_body_compile_if_item10 ::= { { covergroup_body_item } }

override_compile_if_stmt10 ::= { { override_stmt } }

compile_has_expr ::= compile has (static_ref_path)

compile_assert_stmt ::=
 compile assert (constant_expression [, string_literal]) ;

10 In previous versions of PSS, a compile if branch consisting of a single item, such as a single package_body_item, did not have to be
enclosed in curly braces. That syntax has been deprecated.

Copyright © 2023 Accellera. All rights reserved.
397

Portable Test and Stimulus Standard 2.1 — October 2023

B.17 Expressions

constant_expression ::= expression

expression ::=
 primary
 | unary_operator primary
 | expression binary_operator expression
 | conditional_expression
 | in_expression

unary_operator ::= - | ! | ~ | & | | | ^

binary_operator ::=
 * | / | % | + | - | << | >> | == | != | < | <= | > | >= | || | && | |
 | ^ | & | **

assign_op ::= = | += | -= | <<= | >>= | |= | &=

conditional_expression ::= cond_predicate ? expression : expression

cond_predicate ::= expression

in_expression ::=
 expression in [open_range_list]
 | expression in collection_expression

open_range_list ::= open_range_value { , open_range_value }

open_range_value ::= expression [.. expression]

collection_expression ::= expression

primary ::=
 number
 | aggregate_literal
 | bool_literal
 | string_literal
 | null_ref
 | paren_expr
 | cast_expression
 | ref_path
 | compile_has_expr

paren_expr ::= (expression)

cast_expression ::= (casting_type) expression

ref_path ::=
 static_ref_path [. hierarchical_id] [bit_slice]
 | [super .] hierarchical_id [bit_slice]

static_ref_path ::= [::] { type_identifier_elem :: } member_path_elem

bit_slice ::= [constant_expression : constant_expression]

Copyright © 2023 Accellera. All rights reserved.
398

Portable Test and Stimulus Standard 2.1 — October 2023

function_call ::=
 super . function_ref_path
 | [::] { type_identifier_elem :: } function_ref_path

function_ref_path ::= { member_path_elem . } identifier function_parameter_list

symbol_call ::= symbol_identifier function_parameter_list ;

function_parameter_list ::= ([expression { , expression }])

B.18 Identifiers

identifier ::=
 ID
 | ESCAPED_ID

hierarchical_id_list ::= hierarchical_id { , hierarchical_id }

hierarchical_id ::= member_path_elem { . member_path_elem }

member_path_elem ::= identifier [function_parameter_list] { [expression] }

action_identifier ::= identifier

action_handle_identifier ::= identifier

component_identifier ::= identifier

covercross_identifier ::= identifier

covergroup_identifier ::= identifier

coverpoint_identifier ::= identifier

enum_identifier ::= identifier

function_identifier ::= identifier

import_class_identifier ::= identifier

index_identifier ::= identifier

iterator_identifier ::= identifier

label_identifier ::= identifier

language_identifier ::= identifier

package_identifier ::= identifier

struct_identifier ::= identifier

symbol_identifier ::= identifier

type_identifier ::= [::] type_identifer_elem { :: type_identifer_elem }

Copyright © 2023 Accellera. All rights reserved.
399

Portable Test and Stimulus Standard 2.1 — October 2023

type_identifier_elem ::= identifier [template_param_value_list]

action_type_identifier ::= type_identifier

buffer_type_identifier ::= type_identifier

component_type_identifier ::= type_identifier

covergroup_type_identifier ::= type_identifier

enum_type_identifier ::= type_identifier

resource_type_identifier ::= type_identifier

state_type_identifier ::= type_identifier

stream_type_identifier ::= type_identifier

entity_type_identifier ::=
 action_type_identifier
 | component_type_identifier
 | flow_object_type
 | resource_object_type

B.19 Numbers and literals

number ::=
 integer_number
 | floating_point_number

integer_number ::=
 bin_number
 | oct_number
 | dec_number
 | hex_number
 | based_bin_number
 | based_oct_number
 | based_dec_number
 | based_hex_number

bin_digit ::= [0-1]

oct_digit ::= [0-7]

dec_digit ::= [0-9]

hex_digit ::= [0-9] | [a-f] | [A-F]

bin_number ::= 0[b|B] bin_digit { bin_digit | _ }

oct_number ::= 0 { oct_digit | _ }

dec_number ::= [1-9] { dec_digit | _ }

hex_number ::= 0[x|X] hex_digit { hex_digit | _ }

Copyright © 2023 Accellera. All rights reserved.
400

Portable Test and Stimulus Standard 2.1 — October 2023

BASED_BIN_LITERAL ::= '[s|S]b|B bin_digit { bin_digit | _ }

BASED_OCT_LITERAL ::= '[s|S]o|O oct_digit { oct_digit | _ }

BASED_DEC_LITERAL ::= '[s|S]d|D dec_digit { dec_digit | _ }

BASED_HEX_LITERAL ::= '[s|S]h|H hex_digit { hex_digit | _ }

based_bin_number ::= [dec_number] BASED_BIN_LITERAL

based_oct_number ::= [dec_number] BASED_OCT_LITERAL

based_dec_number ::= [dec_number] BASED_DEC_LITERAL

based_hex_number ::= [dec_number] BASED_HEX_LITERAL

floating_point_number ::=
 floating_point_dec_number
 | floating_point_sci_number

unsigned_number ::= dec_digit { dec_digit | _ }

floating_point_dec_number ::= unsigned_number . unsigned_number

floating_point_sci_number ::=
 unsigned_number [. unsigned_number] exp [sign] unsigned_number

exp ::= e | E

sign ::= + | -

aggregate_literal ::=
 empty_aggregate_literal
 | value_list_literal
 | map_literal
 | struct_literal

empty_aggregate_literal ::= { }

value_list_literal ::= { expression { , expression } }

map_literal ::= { map_literal_item { , map_literal_item } }

map_literal_item ::= expression : expression

struct_literal ::= { struct_literal_item { , struct_literal_item } }

struct_literal_item ::= . identifier = expression

bool_literal ::=
 true
 | false

null_ref ::= null

Copyright © 2023 Accellera. All rights reserved.
401

Portable Test and Stimulus Standard 2.1 — October 2023

B.20 Additional lexical conventions

SL_COMMENT ::= //{any_ASCII_character_except_newline}\n

ML_COMMENT ::= /*{any_ASCII_character}*/

string_literal ::=
 QUOTED_STRING
 | TRIPLE_QUOTED_STRING

QUOTED_STRING ::= " { unescaped_character | escaped_character } "

unescaped_character ::= any_printable_ASCII_character

escaped_character ::= \('|"|?|\|a|b|f|n|r|t|v|[0-7][0-7][0-7])

TRIPLE_QUOTED_STRING ::= """{any_ASCII_character}"""

filename_string ::= QUOTED_STRING

ID ::= [a-z]|[A-Z]|_ {[a-z]|[A-Z]|_|[0-9]}

ESCAPED_ID ::= \{any_printable_ASCII_character_except_whitespace} whitespace

whitespace ::= space | tab | newline | end_of_file

Copyright © 2023 Accellera. All rights reserved.
402

Portable Test and Stimulus Standard 2.1 — October 2023

Annex C

(normative)

Core library package

This annex contains the contents of the built-in core library packages std_pkg, executor_pkg and
addr_reg_pkg described in Clause 23. If there is a conflict between core library package contents shown
anywhere in this standard and the material in this annex, the material shown in this annex shall take
precedence.

C.1 Package std_pkg

package std_pkg {

enum endianness_e {LITTLE_ENDIAN, BIG_ENDIAN};

struct packed_s<endianness_e e = LITTLE_ENDIAN> {};

struct sizeof_s<type T> {
 static const int nbytes = /* implementation-specific */;
 static const int nbits = /* implementation-specific */;

};

 // Functions available on solve platform only
 function string format(string format_str, type... args);
 function void print(string format_str, type... args);

 enum message_verbosity_e {NONE, LOW, MEDIUM, HIGH, FULL};

 // Function available on target platform only
 function void message

(message_verbosity_e vrb_level, string format_str, type... args);

 typedef chandle file_handle_t;
 static const file_handle_t nullfilehandle = /* implementation-specific */;

 enum file_option_e {TRUNCATE, APPEND, READ};

 // Functions available on solve platform only
 function file_handle_t file_open(string filename, file_option_e opt);
 function void file_close(file_handle_t file_handle);
 function bool file_exists(string filename);

 function void file_write
(file_handle_t file_handle, string format_str, type... args);

 function string file_read(file_handle_t file_handle, int size = -1);

 function void file_write_lines
 (string filename, list<string> lines, file_option_e opt);
 function list<string> file_read_lines(string filename);

 function void error(string format_str, type... args);
 function void fatal(int status, string format_str, type... args);

Copyright © 2023 Accellera. All rights reserved.
403

Portable Test and Stimulus Standard 2.1 — October 2023

// random functions
function bit[32] urandom();
function bit[32] urandom_range(bit[32] min, bit[32] max);

// Floating-point Storage Types
struct float_base_s <int Wm, int We, endianness_e E=LITTLE_ENDIAN> :

packed_s<E> {
 rand bit[Wm] mantissa;
 rand bit[We] exponent;
 rand bit sign;

}

// Pre-defined storage types to match computation types
typedef float_base_s<23, 8> float32_s;
typedef float_base_s<52,11> float64_s;

// Floating-point Functions
function float64 log(float64 x);
function float64 log10(float64 x);
function float64 exp(float64 x);
function float64 sqrt(float64 x);
function float64 pow(float64 x, float64 y);
function float64 round(float64 x);
function float64 floor(float64 x);
function float64 ceil(float64 x);
function float64 sin(float64 x);
function float64 cos(float64 x);
function float64 tan(float64 x);
function float64 asin(float64 x);
function float64 acos(float64 x);
function float64 atan(float64 x);
function float64 atan2(float64 y, float64 x);
function float64 hypot(float64 x, float64 y);
function float64 sinh(float64 x);
function float64 cosh(float64 x);
function float64 tanh(float64 x);
function float64 asinh(float64 x);
function float64 acosh(float64 x);
function float64 atanh(float64 x);

function bit[52] float_mantissa(float64 fv);
function bit[11] float_exponent(float64 fv);
function bit float_sign(float64 fv);
function float64 to_float(bit[52] mantissa, bit[11] exp, bit sign);

}

Copyright © 2023 Accellera. All rights reserved.
404

Portable Test and Stimulus Standard 2.1 — October 2023

C.2 Package executor_pkg

package executor_pkg {

 struct executor_trait_s {};

 struct empty_executor_trait_s : executor_trait_s {};

 component executor_base_c {};

 component executor_c
<struct TRAIT : executor_trait_s = empty_executor_trait_s>
: executor_base_c {

 TRAIT trait;
 };

 component executor_group_c
<struct TRAIT : executor_trait_s = empty_executor_trait_s> {

 function void add_executor(ref executor_c<TRAIT> exe);
 };

 struct executor_claim_s
<struct TRAIT : executor_trait_s = empty_executor_trait_s> {

 rand TRAIT trait;
 };

 function ref executor_base_c executor();
}

C.3 Package addr_reg_pkg

package addr_reg_pkg {
 import std_pkg::* ;
 import executor_pkg::* ;

 component addr_space_base_c {};

struct addr_trait_s {};

struct empty_addr_trait_s : addr_trait_s {};

typedef chandle addr_handle_t;

component contiguous_addr_space_c
<struct TRAIT : addr_trait_s = empty_addr_trait_s>
: addr_space_base_c {

 function addr_handle_t add_region(addr_region_s <TRAIT> r);
 function addr_handle_t add_nonallocatable_region(addr_region_s <> r);

 bool byte_addressable = true;
};

component transparent_addr_space_c
<struct TRAIT: addr_trait_s = empty_addr_trait_s>
: contiguous_addr_space_c<TRAIT> {};

Copyright © 2023 Accellera. All rights reserved.
405

Portable Test and Stimulus Standard 2.1 — October 2023

struct addr_region_base_s {
 bit[64] size;

string tag;

};

struct addr_region_s <struct TRAIT : addr_trait_s = empty_addr_trait_s>
 : addr_region_base_s {

 TRAIT trait;
};

struct transparent_addr_region_s
<struct TRAIT : addr_trait_s = empty_addr_trait_s>
: addr_region_s<TRAIT> {

 bit[64] addr;
};

struct addr_claim_base_s {
 rand bit[64] size;
 rand bool permanent;
 constraint default permanent == false;

};

struct addr_claim_s <struct TRAIT : addr_trait_s = empty_addr_trait_s>
: addr_claim_base_s {

rand TRAIT trait;
rand bit[64] in [64'd2**0, 64'd2**1, 64'd2**2, 64'd2**3 , 64'd2**4 ,

 64'd2**5 , 64'd2**6 , 64'd2**7 , 64'd2**8 , 64'd2**9 , 64'd2**10,
 64'd2**11, 64'd2**12, 64'd2**13, 64'd2**14, 64'd2**15, 64'd2**16,
 64'd2**17, 64'd2**18, 64'd2**19, 64'd2**20, 64'd2**21, 64'd2**22,
 64'd2**23, 64'd2**24, 64'd2**25, 64'd2**26, 64'd2**27, 64'd2**28,
 64'd2**29, 64'd2**30, 64'd2**31, 64'd2**32, 64'd2**33, 64'd2**34,
 64'd2**35, 64'd2**36, 64'd2**37, 64'd2**38, 64'd2**39, 64'd2**40,
 64'd2**41, 64'd2**42, 64'd2**43, 64'd2**44, 64'd2**45, 64'd2**46,
 64'd2**47, 64'd2**48, 64'd2**49, 64'd2**50, 64'd2**51, 64'd2**52,
 64'd2**53, 64'd2**54, 64'd2**55, 64'd2**56, 64'd2**57, 64'd2**58,
 64'd2**59, 64'd2**60, 64'd2**61, 64'd2**62, 64'd2**63] alignment;
};

struct transparent_addr_claim_s
<struct TRAIT : addr_trait_s = empty_addr_trait_s>
: addr_claim_s<TRAIT> {

 rand bit[64] addr;
};

const addr_handle_t nullhandle = /* implementation-specific */;

struct sized_addr_handle_s < int SZ, // in bits
 int lsb = 0,
 endianness_e e = LITTLE_ENDIAN >
 : packed_s<e> {
 addr_handle_t hndl;

};

function addr_handle_t make_handle_from_claim (addr_claim_base_s claim,
 bit[64] offset = 0);

function addr_handle_t make_handle_from_handle (addr_handle_t handle,
 bit[64] offset);

Copyright © 2023 Accellera. All rights reserved.
406

Portable Test and Stimulus Standard 2.1 — October 2023

function bit[64] addr_value(addr_handle_t hndl);
function bit[64] addr_value_solve(addr_handle_t hndl);
function bool addr_value_abs(addr_handle_t hndl);

import target function addr_value;

function string get_tag(addr_handle_t hndl);

function bit[8] read8(addr_handle_t hndl);
function bit[16] read16(addr_handle_t hndl);
function bit[32] read32(addr_handle_t hndl);
function bit[64] read64(addr_handle_t hndl);

function void write8 (addr_handle_t hndl, bit[8] data);
function void write16(addr_handle_t hndl, bit[16] data);
function void write32(addr_handle_t hndl, bit[32] data);
function void write64(addr_handle_t hndl, bit[64] data);

function void read_bytes (addr_handle_t hndl, list<bit[8]> data,
 int size);

function void write_bytes(addr_handle_t hndl, list<bit[8]> data);

function void read_struct (addr_handle_t hndl, struct packed_struct);
function void write_struct(addr_handle_t hndl, struct packed_struct);

 extend component executor_base_c {
 function bit[64] addr_value(addr_handle_t hndl);
 function bit[64] addr_value_solve(addr_handle_t hndl);

 function bit[8] read8(addr_handle_t hndl);
 function bit[16] read16(addr_handle_t hndl);
 function bit[32] read32(addr_handle_t hndl);
 function bit[64] read64(addr_handle_t hndl);

 function void write8 (addr_handle_t hndl, bit[8] data);
 function void write16(addr_handle_t hndl, bit[16] data);
 function void write32(addr_handle_t hndl, bit[32] data);
 function void write64(addr_handle_t hndl, bit[64] data);

 function void read_bytes (addr_handle_t hndl, list<bit[8]> data,
 int size);

 function void write_bytes(addr_handle_t hndl, list<bit[8]> data);
 };

enum reg_access {READWRITE, READONLY, WRITEONLY};

pure component reg_c < type R,
 reg_access ACC = READWRITE,

int SZ = (8*sizeof_s<R>::nbytes)> {
function R read();

 import target function read;

 function void write(R r);
 import target function write;

 function bit[SZ] read_val();
 import target function read_val;

Copyright © 2023 Accellera. All rights reserved.
407

Portable Test and Stimulus Standard 2.1 — October 2023

 function void write_val(bit[SZ] r);
import target function write_val;

function void write_masked(R mask, R val);
import target function write_masked;

function void write_val_masked(bit[SZ] mask, bit[SZ] val);
import target function write_val_masked;

function void write_field(string name, bit[SZ] val);
import target function write_field;

function void write_fields(list<string> names, list<bit[SZ]> vals);
import target function write_fields;

};

struct node_s {
 string name;
 int index;

};

pure component reg_group_c {
 pure function bit[64] get_offset_of_instance(string name);
 pure function bit[64] get_offset_of_instance_array(string name,
 int index);
 pure function bit[64] get_offset_of_path(list<node_s> path);

 function void set_handle(addr_handle_t addr);
 import solve function set_handle;

};
}

Copyright © 2023 Accellera. All rights reserved.
408

Portable Test and Stimulus Standard 2.1 — October 2023

Annex D

(normative)

Foreign language bindings

D.1 Function prototype mapping

Let f be a function declared under hierarchical path H in PSS with type signature as below (with Dx as the
direction, Tx as the type and px as the parameter name):

f(D0 T0 p0, D1 T1 p1, . . ., Dn Tn pn);

When f is bound to a foreign language API (see 21.4), it is mapped to the following function in the target
language:

H’::f’(T’0 p0, T’1 p1, . . ., T’n pn);

If the foreign language supports parameter directions, their directions are the same as in PSS.

NOTE—See D.5 for exceptions when mapping PSS functions to SystemVerilog tasks.

Each parameter in the PSS function is mapped to a corresponding parameter in the mapped function. The
details of function name and data type binding are covered further below.

D.2 Data type mapping

PSS specifies data type bindings to C/C++ and SystemVerilog. The data type binding rules apply only to
parameter and return types referenced (directly or indirectly) in the declaration of functions in PSS that are
bound to foreign language APIs (see 21.4). The allowed types are specified in 21.4.1.1, namely:

— Primitive types: bit or int (width no more than 64 bits), bool, string, chandle.
— User-defined types: enum and struct, excluding packed structs (see 23.8.1) and excluding flow/

resource objects. Fields of structs shall be of these allowed types (recursively).
— Fixed-size arrays of these types.

The type binding is specified for parameter and return types.

D.3 C language bindings

D.3.1 Function names

PSS implementations shall support mapping a PSS function name to an identical function name in C,
ignoring the hierarchical path in PSS. PSS implementations may define additional mapping schemes for
function names.

Copyright © 2023 Accellera. All rights reserved.
409

Portable Test and Stimulus Standard 2.1 — October 2023

D.3.2 Primitive types

The mapping between the PSS primitive types and C types is specified in Table D.1.

Where pointers are used, the callee shall not allocate or de-allocate the memory region referenced by the
pointer. Further, for non-void pointers, the callee shall assume that the memory location is valid only for the
duration of the function execution, and shall not retain a reference to the parameter after the function call
returns. For strings and chandles, in the case of inout/output directions, the callee may return a pointer to
storage it owns.

D.3.3 Arrays

Fixed-sized arrays are mapped to fixed-size arrays in C for function arguments. Mapping PSS fixed-sized
arrays to C is not supported for function return types.

D.3.4 Structs

D.3.4.1 Name mapping

The mapping between a PSS struct type (TPSS) defined in a hierarchical path H and a C type (TC) is shown
in Table D.2.

Table D.1—Mapping PSS primitive types and C types

PSS type C input type C output/inout type C return type

string const char * char ** char *

bool unsigned int unsigned int * unsigned int

chandle const void * void ** void *

bit (1-8-bit domain) unsigned char unsigned char * unsigned char

bit (9-16-bit domain) unsigned short unsigned short * unsigned short

bit (17-32-bit domain) unsigned int unsigned int * unsigned int

bit (33-64-bit domain) unsigned long long unsigned long long * unsigned long long

int (1-8-bit domain) char char * char

int (9-16-bit domain) short short * short

int (17-32-bit domain) int int * int

int (33-64-bit domain) long long long long * long long

Table D.2—Mapping PSS struct types and C types

PSS type C input type C output/inout type C return type

H::TPSS const TC * TC * TC

Copyright © 2023 Accellera. All rights reserved.
410

Portable Test and Stimulus Standard 2.1 — October 2023

In the general case, the name of the type in C (TC), is derived from the PSS type name (TPSS) and its
hierarchical path (H). A PSS implementation shall support the name mapping scheme where the name of the
C type is identical to the PSS type (ignoring the hierarchical path), i.e., TC == TPSS. A PSS implementation
may support additional name mapping schemes.

D.3.4.2 Field mapping

Each PSS struct field is mapped to a corresponding field in C of the corresponding type and name in the
same order. If the field type is itself a user-defined type (e.g., struct or enum), the mapping of the field
entails the corresponding mapping of the type (recursively). For primitive types, the field is mapped as
shown in Table D.3.

Since the C language does not support type inheritance, if the PSS struct TPSS derives from a PSS base type,
then the fields of that base type are mapped directly into the mapped type TC. The code listing below shows
an example of struct type mapping in C.

Table D.3—Mapping PSS struct field primitive types and C types

PSS field type C field type

string char *

bool unsigned int

chandle void *

bit (1-8-bit domain) unsigned char

bit (9-16-bit domain) unsigned short

bit (17-32-bit domain) unsigned int

bit (33-64-bit domain) unsigned long long

int (1-8-bit domain) char

int (9-16-bit domain) short

int (17-32-bit domain) int

int (33-64-bit domain) long long

float32 float

float64 double

Copyright © 2023 Accellera. All rights reserved.
411

Portable Test and Stimulus Standard 2.1 — October 2023

Example D.1—PSS struct mapping into C

Only the field name, its type and the position of the field inside a struct is relevant for mapping to the C
type. Other field properties (such as initial value) and struct properties (such as constraints) are ignored.

D.3.4.3 Other mapping aspects

Tools may automatically generate C definitions for the required types, given PSS source code. Or, tools may
utilize existing C declarations of the types. Regardless of whether these definitions are automatically
generated or obtained in another way, PSS test generation tools may assume that these definitions are
operative in the compilation of the C user implementation of the imported functions.

Note that the C declaration of a struct data type may have additional fields that are not reflected in the PSS
type declaration. A PSS implementation may not assume that the C struct is size-compatible to the PSS
struct type.

D.3.5 Enumeration types

A PSS enumeration type E is mapped to C as a plain integer type N as follows:

where N is:
a) one of: char, short, int, or long long
b) If E has a base type: the mapping for the base type, according to D.3.2. Otherwise: the smallest type

that includes the values of all the enum items in its domain

Table D.4—Mapping PSS enum types and C types

PSS type C input type C output/inout type C return type

E N N * N

// PSS code

struct base_s {
 string f0;
};

struct sub_s {
 int in [0..99] f1 = 2;
 string f2;
};

struct my_struct_s : base_s {
 sub_s f3;
 bit[16] f4;
};

my_struct_s function foo
(input my_struct_s x,
output my_struct_s y);

// C code

struct sub_s {
 char f1;
 char *f2;
};

struct my_struct_s {
 char *f0;
 sub_s f3;
 unsigned short f4;
};

my_struct_s foo
(const my_struct_s *x,
 my_struct_s *y);

Copyright © 2023 Accellera. All rights reserved.
412

Portable Test and Stimulus Standard 2.1 — October 2023

A PSS implementation will pass the value of the enumeration as an argument in the generated call to the
function. These values can be either explicitly user-defined or assigned by a PSS implementation.

D.4 C++ language bindings

D.4.1 Function name mapping and namespaces

Generally, PSS user-defined types correspond to C++ types with identical names. In PSS, packages and
components constitute namespaces for types declared in their scopes. The C++ type definition
corresponding to a PSS type declared in a package or component scope shall be inside the namespace
statement scope having the same name as the PSS component/package. Consequently, both the unqualified
and qualified names of the C++ mapped type are the same as in PSS.

PSS implementations shall support mapping a PSS function name to an identical function name in C++, in
the same namespace hierarchical path. PSS implementations may define additional mapping schemes for
function names.

D.4.2 Primitive types

a) C++ type mapping for primitive numeric types is the same as that for C.
b) A PSS bool is a C++ bool and the values: false, true are mapped respectively from PSS to

their C++ equivalents.
c) C++ mapping of a PSS string is std::string (typedef-ed by the Standard Template Library

(STL) to std::basic_string<char> with default template parameters).

Table D.5 provides the mapping between PSS primitive types and C++ types. Note that string is passed as a
reference.

Table D.5—Mapping PSS primitive types and C++ types

PSS type C++ input type C++ output/inout type C++ return type

string const std::string & std::string & std::string

bool bool bool * bool

chandle const void * void ** void *

Copyright © 2023 Accellera. All rights reserved.
413

Portable Test and Stimulus Standard 2.1 — October 2023

D.4.3 Arrays

The C++ mapping of a PSS array is std::vector of the C++ mapping of the respective element type
(using the default allocator class). Fixed-sized arrays in PSS are mapped to the corresponding STL vector
class, just like arrays of an unspecified size. However, if modified, they are resized to the original size upon
return, filling the default values of the respective element type as needed.

D.4.4 Structs

D.4.4.1 Name mapping

The mapping between a PSS struct type (TPSS) and a C++ type (TCPP) is shown in Table D.6.

PSS struct types are mapped to C++ structs, along with their field structure and inherited base type, if
specified.

The base type declaration of the struct, if any, is mapped to the (public) base struct type declaration in C++
and entails the mapping of its base type (recursively).

D.4.4.2 Field mapping

Each PSS field is mapped to a corresponding (public, non-static) field in C++ of the corresponding type and
in the same order. If the field type is itself a user-defined type (struct or enum), the mapping of the field
entails the corresponding mapping of the type (recursively).

bit (1-8-bit domain) unsigned char unsigned char * unsigned char

bit (9-16-bit domain) unsigned short unsigned short * unsigned short

bit (17-32-bit domain) unsigned int unsigned int * unsigned int

bit (33-64-bit domain) unsigned long long unsigned long long * unsigned long long

int (1-8-bit domain) char char * char

int (9-16-bit domain) short short * short

int (17-32-bit domain) int int * int

int (33-64-bit domain) long long long long * long long

float32 float float * float

float64 double double * double

Table D.6—Mapping PSS struct types and C++ types

PSS type C++_ input type C++ output/inout type C++ return type

TPSS const TCPP & TCPP & TCPP

Table D.5—Mapping PSS primitive types and C++ types (Continued)

PSS type C++ input type C++ output/inout type C++ return type

Copyright © 2023 Accellera. All rights reserved.
414

Portable Test and Stimulus Standard 2.1 — October 2023

For example, given the following imported function definitions:

function void foo(derived_s d);
import solve CPP function foo;

with the corresponding PSS definitions:

struct base_s {
 int in [0..99] f1;
};
struct sub_s {
 string f2;
};
struct derived_s : base_s {
 sub_s f3;
 bit[15:0] f4[4];
};

mapping type derived_s to C++ involves the following definitions:

struct base_s {
 int f1;
};
struct sub_s {
 std::string f2;
};
struct derived_s : base_s {
 sub_s f3;
 std::vector<unsigned short> f4;
};

Nested structs in PSS are instantiated directly under the containing struct, that is, they have value
semantics. Mapped struct types have no member functions and, in particular, are confined to the default
constructor and implicit copy constructor.

Mapping a struct type does not entail the mapping of any of its subtypes. However, struct instances are
passed according to the type of the actual parameter expression used in an import function call. Therefore,
the ultimate set of C++ mapped types for a given PSS model depends on its function calls, not just the
function prototypes.

D.4.4.3 Other mapping aspects

In the case of output and inout composite parameters, if a different memory representation is used for
the PSS tool vs. C++, the inner state shall be copied in upon calling it and any change shall be copied back
out onto the PSS entity upon return.

D.4.5 Enumeration types

PSS enumeration types are mapped to C++ unscoped enumeration types (as opposed to enum classes), with
the corresponding base type, if any, and with the same set of enum items in the same order and identical
names. When specified, explicit numeric constant values for an enum item correspond to the same value in
the C++ definition.

Copyright © 2023 Accellera. All rights reserved.
415

Portable Test and Stimulus Standard 2.1 — October 2023

For example, the PSS definition:

enum color_e {red = 0x10, green = 0x20, blue = 0x30};

is mapped to the C++ type as defined by this very same code.

Consequently, enum item names within types used in PSS-to-C++ type binding must be unique.

D.5 SystemVerilog language bindings

D.5.1 Function names

PSS implementations shall support mapping a PSS function name to an identical function or task name in
SystemVerilog, ignoring the hierarchical path in PSS. PSS implementations may define additional mapping
schemes for function names.

D.5.2 Primitive types

The mapping between the PSS primitive types and SystemVerilog types for both parameter and return types
is specified in Table D.7.

PSS functions designated with the target qualifier (see 21.4.1) may be mapped either to tasks or functions in
SystemVerilog, and shall be mapped to tasks by default. PSS solve functions shall be mapped to
SystemVerilog functions. If neither platform qualifier is used, the default mapping shall be to a function.
PSS functions that are mapped to SystemVerilog tasks may not be called on the solve platform.

Table D.7—Mapping PSS primitive types and SystemVerilog types

PSS type SystemVerilog type

string string

bool bit

chandle chandle

bit (1-8-bit domain) byte unsigned

bit (9-16-bit domain) shortint unsigned

bit (17-32-bit domain) int unsigned

bit (33-64-bit domain) longint unsigned

int (1-8-bit domain) byte

int (9-16-bit domain) shortint

int (17-32-bit domain) int

int (33-64-bit domain) longint

float32 shortreal

float64 real

Copyright © 2023 Accellera. All rights reserved.
416

Portable Test and Stimulus Standard 2.1 — October 2023

When a PSS function is mapped to a SystemVerilog function, the return type (if any) and arguments of the
SystemVerilog function shall correspond to those of the PSS function prototype.

When a PSS function is mapped to a SystemVerilog task, the following apply:
a) If the PSS function is a void function, then all arguments of the SystemVerilog task shall correspond

to the PSS prototype:

f(D0 T0 p0, D1 T1 p1, . . ., Dn Tn pn); => t(D0 T’0 p0, D1 T’1 p1, . . ., Dn T’n pn);

b) If the PSS function returns a value, then the first argument of the SystemVerilog task shall be an out-
put of the type corresponding to the return value. All other arguments shall correspond accordingly:

Tr f(D0 T0 p0, D1 T1 p1, . . ., Dn Tn pn); => t(output T’r pr, D0 T’0 p0, D1 T’1 p1, . . ., Dn T’n pn);

D.5.3 Numeric value mapping

When a numeric type or value is passed from PSS to SystemVerilog, the value shall be expanded or
truncated according to SystemVerilog rules (IEEE 1800-2017, section 10.7), treating the SystemVerilog
type as the left-hand side of an assignment statement where the PSS value is the right-hand side.

When a numeric type of value is passed from SystemVerilog to PSS, the value shall be expanded or
truncated according to the rules in 8.7 and 8.8, treating the SystemVerilog type as the right-hand side of an
assignment statement where the PSS value is the left-hand side.

D.5.4 Arrays

Fixed-size arrays in PSS are mapped to SystemVerilog dynamic arrays of corresponding type. Arrays are
passed by value between PSS and SystemVerilog.

D.5.5 Structs

PSS struct types are mapped to classes in SystemVerilog with fields whose types correspond and whose
names match. Values of all fields are deep-copied between mapped elements.

The following also apply:
a) The target SystemVerilog class must contain all fields present in the PSS struct. The target System-

Verilog class may be derived from a base class type.
b) Inheritance relationships may or may not be the same across the boundary. Whether the PSS struct

is derived from a base type has no bearing on whether the SystemVerilog class to which it is mapped
is derived from a similar (or any) type.

c) Passing inheritance hierarchies with shadowed fields is not supported.
d) Tools shall ignore the containing namespace of mapped structs.

D.5.6 Enumeration types

A PSS enumeration type is mapped to a SystemVerilog enum type. The integer values of the enum_items
must match, but it is not required that the names of the enum_items match.

If a PSS enumeration type is passed to or from SystemVerilog, the enum value is passed as its integer
equivalent, according to D.5.3.

Copyright © 2023 Accellera. All rights reserved.
417

Portable Test and Stimulus Standard 2.1 — October 2023

Annex E

(informative)

Solution space

Once a PSS model has been specified, the elements of the model must be processed in some way to ensure
that resulting scenarios accurately reflect the specified behaviors. This annex describes the steps a
processing tool may take to analyze a portable stimulus description and create a (set of) scenario(s). See also
Clause 17.

a) Identify root action:
1) Specified by the user.
2) Unless otherwise specified, the designated root action shall be located in the root component.

By default, the root component shall be pss_top.
3) If the specified root action is an atomic action, consider it to be the initial action traversed in an

implicit activity statement.
4) If the specified root action is a compound action:

i) Identify all bind statements in the activity and bind the associated object(s) accordingly.
Identify all resulting scheduling dependencies between bound actions.

ii) For every compound action traversed in the activity, expand its activity to include each
sub-action traversal in the overall activity to be analyzed.

iii) Identify scheduling dependencies among all action traversals declared in the activity and
add to the scheduling dependency list identified in a.4.i.

b) For each action traversed in the activity:
1) For each resource locked or shared (i.e., claimed) by the action:

i) Identify the resource pool of the appropriate type to which the resource reference may be
bound.

ii) Identify all other action(s) claiming a resource of the same type that is bound to the same
pool.

iii) Each resource object instance in the resource pool has an built-in instance_id field
that is unique for that pool.

iv) The algebraic constraints for evaluating field(s) of the resource object are the union of the
constraints defined in the resource object type and the constraints in all actions ultimately
connected to the resource object.

v) Identify scheduling dependencies enforced by the claimed resource and add these to the
set of dependencies identified in a.4.i.
1. If an action locks a resource instance, no other action claiming that same resource

instance may be scheduled concurrent with the locking action.
2. If actions scheduled concurrently collectively attempt to lock more resource instances

than are available in the pool, an error shall be generated.
3. If the resource instance is not locked, there are no scheduling implications of sharing a

resource instance.
2) For each flow object declared in the action that is not already bound:

i) If the flow object is not explicitly bound to a corresponding flow object, identify the object
pool(s) of the appropriate type to which the flow object may be bound.

Copyright © 2023 Accellera. All rights reserved.
418

Portable Test and Stimulus Standard 2.1 — October 2023

ii) The algebraic constraints for evaluating field(s) of the flow object are the union of the
constraints defined in flow object type and the constraints in all actions ultimately con-
nected to the flow object.

iii) Identify all other explicitly-traversed actions bound to the same pool that:
1. Declare a matching object type with consistent data constraints,
2. Meet the scheduling constraints from b.1.v, and
3. Are scheduled consistent with the scheduling constraints implied by the type of the flow

object.
iv) The set of explicitly-traversed actions from b.2.iii shall compose the inferencing candi-

date list (ICL).
v) If no explicitly traversed action appears in the ICL, then an anonymous instance of each

action type bound to the pool from b.2.i shall be added to the ICL.
vi) If the ICL is empty, an error shall be generated.
vii) For each element in the ICL, perform step b.2 until no actions in the ICL have any

unbound flow object references or the tool’s inferencing limit is reached (see c).
c) If the tool reaches the maximum inferencing depth, it shall infer a terminating action if one is avail-

able. Given the set of actions, flow and resource objects, scheduling and data constraints, and associ-
ated ICLs, pick an instance from the ICL and a value for each data field in the flow object that
satisfies the constraints and bind the flow object reference from the action to the corresponding
instance from the ICL.

	Portable Test and Stimulus Standard Version 2.1 October 2023
	Contents
	List of figures
	List of tables
	List of syntax excerpts
	List of examples
	1. Overview
	1.1 Purpose
	1.2 Language design considerations
	1.3 Modeling basics
	1.4 Test realization
	1.5 Conventions used
	1.5.1 Visual cues (meta-syntax)
	1.5.2 Notational conventions
	1.5.3 Examples

	1.6 Use of color in this standard
	1.7 Contents of this standard

	2. References
	3. Definitions, acronyms, and abbreviations
	3.1 Definitions
	3.2 Acronyms and abbreviations

	4. Lexical conventions
	4.1 Comments
	4.2 Identifiers
	4.3 Escaped identifiers
	4.4 Keywords
	4.5 Operators
	4.6 Numbers
	4.6.1 Integer constants
	4.6.1.1 Using integer literals in expressions

	4.6.2 Floating-point constants

	4.7 String literals
	4.7.1 Examples

	4.8 Aggregate literals
	4.8.1 Empty aggregate literal
	4.8.2 Value list literals
	4.8.3 Map literals
	4.8.4 Structure literals
	4.8.5 Nesting aggregate literals

	5. Modeling concepts
	5.1 Modeling data flow
	5.1.1 Buffers
	5.1.2 Streams
	5.1.3 States
	5.1.4 Data flow object pools

	5.2 Modeling system resources
	5.2.1 Resource objects
	5.2.2 Resource pools
	5.2.2.1 Locking resources
	5.2.2.2 Sharing resources

	5.3 Basic building blocks
	5.3.1 Components and binding
	5.3.2 Evaluation and inference

	5.4 Constraints and inferencing
	5.5 Summary

	6. Execution semantic concepts
	6.1 Overview
	6.2 Assumptions of abstract scheduling
	6.2.1 Starting and ending action executions
	6.2.2 Concurrency
	6.2.3 Synchronized invocation

	6.3 Scheduling concepts
	6.3.1 Preliminary definitions
	6.3.2 Sequential scheduling
	6.3.3 Parallel scheduling
	6.3.4 Concurrent scheduling

	7. Data types
	7.1 General
	7.1.1 Syntax

	7.2 Integer types
	7.2.1 Syntax
	7.2.2 Examples

	7.3 Floating-point types
	7.3.1 Syntax
	7.3.2 Cross-platform results

	7.4 Booleans
	7.5 Enumeration types
	7.5.1 Syntax
	7.5.2 Examples

	7.6 Strings
	7.6.1 Syntax
	7.6.2 Examples

	7.7 Chandles
	7.7.1 Syntax
	7.7.2 Example

	7.8 Structs
	7.8.1 Syntax
	7.8.2 Examples

	7.9 Collections
	7.9.1 Syntax
	7.9.2 Arrays
	7.9.2.1 Array operators
	7.9.2.2 Array methods
	7.9.2.3 Examples
	7.9.2.4 Array properties

	7.9.3 Lists
	7.9.3.1 List operators
	7.9.3.2 List methods
	7.9.3.3 Examples
	7.9.3.4 List randomization

	7.9.4 Maps
	7.9.4.1 Map operators
	7.9.4.2 Map methods
	7.9.4.3 Example

	7.9.5 Sets
	7.9.5.1 Set operators
	7.9.5.2 Set methods
	7.9.5.3 Examples

	7.10 Reference types
	7.10.1 Syntax
	7.10.2 Examples

	7.11 User-defined data types
	7.11.1 Syntax
	7.11.2 Examples

	7.12 Data type conversion
	7.12.1 Syntax
	7.12.2 Examples

	8. Operators and expressions
	8.1 Syntax
	8.2 Constant expressions
	8.3 Assignment operators
	8.4 Expression operators
	8.4.1 Operator precedence and associativity
	8.4.2 Using aggregate literals in expressions
	8.4.3 Type inference rules
	8.4.4 Operator expression short-circuiting

	8.5 Operator descriptions
	8.5.1 Arithmetic operators
	8.5.1.1 Arithmetic expressions with unsigned and signed types

	8.5.2 Relational operators
	8.5.3 Equality operators
	8.5.4 Logical operators
	8.5.5 Bitwise operators
	8.5.6 Reduction operators
	8.5.7 Shift operators
	8.5.8 Conditional operator
	8.5.9 Set membership operator
	8.5.9.1 Syntax
	8.5.9.2 Examples

	8.6 Primary expressions
	8.6.1 Bit-selects and part-selects
	8.6.2 Selecting an element from a collection (indexing)

	8.7 Bit sizes for numeric expressions
	8.7.1 Rules for expression bit sizes

	8.8 Evaluation rules for numeric expressions
	8.8.1 Rules for expression signedness
	8.8.2 Steps for evaluating a numeric expression
	8.8.3 Steps for evaluating an assignment

	9. Components
	9.1 Syntax
	9.2 Examples
	9.3 Components as namespaces
	9.4 Component instantiation
	9.4.1 Semantics
	9.4.2 Examples

	9.5 Component references
	9.5.1 Semantics
	9.5.2 Examples

	9.6 Pure components

	10. Actions
	10.1 Syntax
	10.2 Examples
	10.2.1 Atomic actions
	10.2.2 Compound actions
	10.2.3 Abstract actions

	11. Template types
	11.1 General
	11.2 Template type declarations
	11.2.1 Syntax
	11.2.2 Examples

	11.3 Template parameter declarations
	11.3.1 Template value parameter declarations
	11.3.1.1 Syntax
	11.3.1.2 Examples

	11.3.2 Template type parameter declarations
	11.3.2.1 Syntax
	11.3.2.2 Examples

	11.4 Template type instantiation
	11.4.1 Syntax
	11.4.2 Examples

	11.5 Template type user restrictions

	12. Activities
	12.1 Activity declarations
	12.2 Activity constructs
	12.2.1 Syntax

	12.3 Action scheduling statements
	12.3.1 Action traversal statement
	12.3.1.1 Syntax
	12.3.1.2 Examples

	12.3.2 Action handle array traversal
	12.3.3 Sequential block
	12.3.3.1 Syntax
	12.3.3.2 Examples

	12.3.4 parallel
	12.3.4.1 Syntax
	12.3.4.2 Examples

	12.3.5 schedule
	12.3.5.1 Syntax
	12.3.5.2 Examples

	12.3.6 Fine-grained scheduling specifiers
	12.3.6.1 Syntax
	12.3.6.2 Examples

	12.3.7 Atomic block specifier
	12.3.7.1 Syntax
	12.3.7.2 Examples

	12.4 Activity control flow constructs
	12.4.1 repeat (count)
	12.4.1.1 Syntax
	12.4.1.2 Examples

	12.4.2 repeat-while
	12.4.2.1 Syntax
	12.4.2.2 Examples

	12.4.3 foreach
	12.4.3.1 Syntax
	12.4.3.2 Examples

	12.4.4 select
	12.4.4.1 Syntax
	12.4.4.2 Examples

	12.4.5 if-else
	12.4.5.1 Syntax
	12.4.5.2 Examples

	12.4.6 match
	12.4.6.1 Syntax
	12.4.6.2 Examples

	12.5 Activity construction statements
	12.5.1 replicate
	12.5.1.1 Syntax
	12.5.1.2 Examples

	12.6 Activity evaluation with extension and inheritance
	12.7 Symbols
	12.7.1 Syntax
	12.7.2 Examples

	12.8 Named sub-activities
	12.8.1 Syntax
	12.8.2 Scoping rules for named sub-activities
	12.8.3 Hierarchical references using named sub-activity

	12.9 Explicitly binding flow objects
	12.9.1 Syntax
	12.9.2 Examples

	12.10 Hierarchical flow object binding
	12.11 Hierarchical resource object binding

	13. Flow objects
	13.1 Buffer objects
	13.1.1 Syntax
	13.1.2 Examples

	13.2 Stream objects
	13.2.1 Syntax
	13.2.2 Examples

	13.3 State objects
	13.3.1 Syntax
	13.3.2 Examples

	13.4 Using flow objects
	13.4.1 Syntax
	13.4.2 Examples

	14. Resource objects
	14.1 Declaring resource objects
	14.1.1 Syntax
	14.1.2 Examples

	14.2 Claiming resource objects
	14.2.1 Syntax
	14.2.2 Examples

	15. Pools
	15.1 Syntax
	15.2 Examples
	15.3 Static pool binding directive
	15.3.1 Syntax
	15.3.2 Examples

	15.4 Resource pools and the instance_id attribute
	15.5 Pool of states and the initial attribute

	16. Randomization specification constructs
	16.1 Algebraic constraints
	16.1.1 Member constraints
	16.1.1.1 Syntax
	16.1.1.2 Examples

	16.1.2 Constraint inheritance
	16.1.3 Action traversal in-line constraints
	16.1.4 Logical expression constraints
	16.1.4.1 Syntax

	16.1.5 Implication constraints
	16.1.5.1 Syntax
	16.1.5.2 Examples

	16.1.6 if-else constraints
	16.1.6.1 Syntax
	16.1.6.2 Examples

	16.1.7 foreach constraints
	16.1.7.1 Syntax
	16.1.7.2 Examples

	16.1.8 forall constraints
	16.1.8.1 Syntax
	16.1.8.2 Examples

	16.1.9 Unique constraints
	16.1.9.1 Syntax
	16.1.9.2 Examples

	16.1.10 Default value constraints
	16.1.10.1 Syntax
	16.1.10.2 Examples

	16.1.11 Distribution directive
	16.1.11.1 Examples

	16.2 Scheduling constraints
	16.2.1 Syntax
	16.2.2 Example

	16.3 Sequencing constraints on state objects
	16.4 Randomization process
	16.4.1 Random attribute fields
	16.4.1.1 Semantics
	16.4.1.2 Examples

	16.4.2 Randomization of lists
	16.4.3 Randomization of flow objects
	16.4.4 Randomization of resource objects
	16.4.5 Randomization of component assignment
	16.4.6 Procedural randomization of data
	16.4.6.1 Support on solve and target platforms
	16.4.6.2 Random stability

	16.4.7 Random value selection order
	16.4.8 Evaluation of expressions with action handles
	16.4.9 Relationship lookahead
	16.4.9.1 Example 1
	16.4.9.2 Example 2

	16.4.10 Lookahead and sub-actions
	16.4.11 Lookahead and dynamic constraints
	16.4.12 pre_solve and post_solve exec blocks
	16.4.12.1 Example 1
	16.4.12.2 Example 2

	16.4.13 Body blocks and sampling external data

	17. Action inferencing
	17.1 Implicit binding and action inferences
	17.2 Object pools and action inferences
	17.3 Data constraints and action inferences

	18. Coverage specification constructs
	18.1 Defining the coverage model: covergroup
	18.1.1 Syntax
	18.1.2 Examples

	18.2 covergroup instantiation
	18.2.1 Syntax
	18.2.2 Examples

	18.3 Defining coverage points
	18.3.1 Syntax
	18.3.2 Examples
	18.3.3 Specifying bins
	18.3.3.1 Syntax
	18.3.3.2 Examples
	18.3.3.3 Coverpoint bin with covergroup expressions

	18.3.4 Automatic bin creation for coverage points
	18.3.5 Excluding coverage point values
	18.3.6 Specifying illegal coverage point values
	18.3.7 Value resolution

	18.4 Defining cross coverage
	18.4.1 Syntax
	18.4.2 Examples
	18.4.3 Defining cross bins

	18.5 Specifying coverage options
	18.5.1 Examples

	18.6 covergroup sampling
	18.7 Per-type and per-instance coverage collection
	18.7.1 Per-instance coverage of flow and resource objects
	18.7.2 Per-instance coverage in actions

	19. Type inheritance, extension, and overrides
	19.1 Type inheritance
	19.2 Type extension
	19.2.1 Syntax
	19.2.2 Examples
	19.2.3 Composite type extensions
	19.2.4 Enumeration type extensions
	19.2.5 Ordering of type extensions
	19.2.6 Template type extensions
	19.2.6.1 Examples

	19.3 Combining inheritance and extension
	19.4 Access protection
	19.5 Overriding types
	19.5.1 Syntax
	19.5.2 Examples

	20. Source organization and processing
	20.1 Packages
	20.1.1 Package declarations
	20.1.1.1 Syntax
	20.1.1.2 Examples

	20.1.2 Nested packages
	20.1.3 Referencing package members
	20.1.3.1 Syntax

	20.1.4 Package aliases

	20.2 Declaration and reference ordering
	20.2.1 Examples

	20.3 Name resolution
	20.3.1 Name resolution examples

	21. Test realization
	21.1 exec blocks
	21.1.1 Syntax
	21.1.2 exec block kinds
	21.1.3 Examples
	21.1.4 exec block evaluation with inheritance and extension
	21.1.4.1 Inheritance and shadowing
	21.1.4.2 Using super
	21.1.4.3 Type extension

	21.2 Functions
	21.2.1 Function declarations
	21.2.1.1 Syntax
	21.2.1.2 Examples

	21.2.2 Parameters and return types
	21.2.3 Default parameter values
	21.2.4 Generic and varargs parameters
	21.2.5 Pure functions
	21.2.5.1 Examples

	21.2.6 Calling functions

	21.3 Native PSS functions
	21.3.1 Syntax
	21.3.2 Parameter passing semantics

	21.4 Foreign procedural interface
	21.4.1 Definition using imported functions
	21.4.1.1 Syntax
	21.4.1.2 Specifying function availability
	21.4.1.3 Specifying an implementation language

	21.4.2 Imported classes
	21.4.2.1 Syntax
	21.4.2.2 Examples

	21.5 Target-template implementation of exec blocks
	21.5.1 Target language
	21.5.2 exec file
	21.5.3 Referencing PSS fields in target-template exec blocks
	21.5.3.1 Examples
	21.5.3.2 Formatting

	21.6 Target-template implementation for functions
	21.6.1 Syntax
	21.6.2 Examples

	21.7 Procedural constructs
	21.7.1 Scoped blocks
	21.7.1.1 Syntax

	21.7.2 Variable declarations
	21.7.2.1 Syntax

	21.7.3 Assignments
	21.7.3.1 Syntax

	21.7.4 Void function calls
	21.7.4.1 Syntax

	21.7.5 return statement
	21.7.5.1 Syntax
	21.7.5.2 Examples

	21.7.6 repeat (count) statement
	21.7.6.1 Syntax
	21.7.6.2 Examples

	21.7.7 repeat-while statement
	21.7.7.1 Syntax
	21.7.7.2 Examples

	21.7.8 foreach statement
	21.7.8.1 Syntax

	21.7.9 if-else statement
	21.7.9.1 Syntax
	21.7.9.2 Examples

	21.7.10 match statement
	21.7.10.1 Syntax
	21.7.10.2 Examples

	21.7.11 break/continue statement
	21.7.11.1 Syntax
	21.7.11.2 Examples

	21.7.12 randomize statement
	21.7.12.1 Syntax

	21.7.13 exec block

	21.8 Comparison between mapping mechanisms
	21.9 Exported actions
	21.9.1 Syntax
	21.9.2 Examples
	21.9.3 Export action foreign language binding

	22. Conditional code processing
	22.1 Overview
	22.1.1 Statically-evaluated statements
	22.1.2 Elaboration procedure
	22.1.3 Compile-time expressions

	22.2 compile if
	22.2.1 Scope
	22.2.2 Syntax
	22.2.3 Examples

	22.3 compile has
	22.3.1 Syntax
	22.3.2 Examples

	22.4 compile assert
	22.4.1 Syntax
	22.4.2 Examples

	23. PSS core library
	23.1 String formatting and output
	23.1.1 String formatting
	23.1.2 Solve-time string formatting and output
	23.1.3 Runtime messaging

	23.2 File operations
	23.3 Error reporting
	23.4 Randomization
	23.4.1 urandom()
	23.4.2 urandom_range(min, max)

	23.5 Floating-point
	23.5.1 Floating-point storage types
	23.5.2 Floating-point computation functions
	23.5.3 Computation-type field extraction and composition

	23.6 Executors
	23.6.1 Executor representation
	23.6.1.1 Executor component type
	23.6.1.2 Executor group component type

	23.6.2 Executor assignment
	23.6.2.1 Executor claim struct type
	23.6.2.2 Rules for matching an executor claim with an executor group
	23.6.2.3 Claim trait semantics
	23.6.2.4 Executor resources
	23.6.2.5 Executor query function

	23.7 Address spaces
	23.7.1 Address space categories
	23.7.1.1 Base address space type
	23.7.1.2 Contiguous address spaces
	23.7.1.3 Byte-addressable address spaces
	23.7.1.4 Transparent address spaces
	23.7.1.5 Other address spaces

	23.7.2 Address space traits
	23.7.3 Address space regions
	23.7.3.1 Base region type
	23.7.3.2 Contiguous address regions
	23.7.3.3 Transparent address regions

	23.8 Allocation within address spaces
	23.8.1 Base claim type
	23.8.2 Contiguous claims
	23.8.3 Transparent claims
	23.8.4 Claim trait semantics
	23.8.5 Allocation consistency
	23.8.5.1 Example

	23.8.6 Rules for matching a claim to an address space
	23.8.7 Allocation example

	23.9 Data layout and access operations
	23.9.1 Data layout
	23.9.1.1 Packing rule
	23.9.1.2 Little-endian packing example
	23.9.1.3 Big-endian packing example

	23.9.2 sizeof_s
	23.9.2.1 Definition
	23.9.2.2 Examples

	23.9.3 Address space handles
	23.9.3.1 Generic address space handle
	23.9.3.2 nullhandle
	23.9.3.3 sized address space handle

	23.9.4 Obtaining an address space handle
	23.9.4.1 make_handle_from_claim function
	23.9.4.2 make_handle_from_handle function

	23.9.5 addr_value function
	23.9.6 addr_value_solve function
	23.9.7 addr_value_abs function
	23.9.8 get_tag function
	23.9.9 Access operations
	23.9.9.1 Primitive read operations
	23.9.9.2 Primitive write operations
	23.9.9.3 Read and write N consecutive bytes
	23.9.9.4 Read and write packed structs
	23.9.9.5 Executor-based customization of memory functions

	23.9.10 Target data structure setup example

	23.10 Registers
	23.10.1 PSS register definition
	23.10.2 PSS register group definition
	23.10.3 Association with address region
	23.10.4 Translation of register read/write
	23.10.5 Recommended packaging

	Annex A (informative) Bibliography
	Annex B (normative) Formal syntax
	B.1 Package declarations
	B.2 Action declarations
	B.3 Struct declarations
	B.4 Exec blocks
	B.5 Functions
	B.6 Foreign procedural interface
	B.7 Procedural statements
	B.8 Component declarations
	B.9 Activity statements
	B.10 Overrides
	B.11 Data declarations
	B.12 Template types
	B.13 Data types
	B.14 Constraints
	B.15 Coverage specification
	B.16 Conditional compilation
	B.17 Expressions
	B.18 Identifiers
	B.19 Numbers and literals
	B.20 Additional lexical conventions

	Annex C (normative) Core library package
	C.1 Package std_pkg
	C.2 Package executor_pkg
	C.3 Package addr_reg_pkg

	Annex D (normative) Foreign language bindings
	D.1 Function prototype mapping
	D.2 Data type mapping
	D.3 C language bindings
	D.3.1 Function names
	D.3.2 Primitive types
	D.3.3 Arrays
	D.3.4 Structs
	D.3.5 Enumeration types

	D.4 C++ language bindings
	D.4.1 Function name mapping and namespaces
	D.4.2 Primitive types
	D.4.3 Arrays
	D.4.4 Structs
	D.4.5 Enumeration types

	D.5 SystemVerilog language bindings
	D.5.1 Function names
	D.5.2 Primitive types
	D.5.3 Numeric value mapping
	D.5.4 Arrays
	D.5.5 Structs
	D.5.6 Enumeration types

	Annex E (informative) Solution space

