

Standard Co-Emulation

Modeling Interface (SCE-MI)

Reference Manual

Version 2.4
November 2016

Copyright © 2003-2016 by Accellera Systems Initiative Inc. All rights reserved.

Electronic copies of this manual may be downloaded at www.accellera.org.

http://www.accellera.org/

SCE-MI 2.4 ii

Notices

The information contained in this manual represents the definition of the SCE-MI as reviewed and released by

Accellera Systems Initiative (Accellera) in November 2016.

Attention is called to the possibility that implementation of this standard may require use of subject

matter covered by patent rights. By publication of this standard, no position is taken with respect to the

existence or validity of any patent rights in connection therewith. Accellera Systems Initiative is not

responsible for identifying Essential Patent Claims for which a license may be required, for

conducting inquiries into the legal validity or scope of Patent Claims or determining whether any

licensing terms or conditions provided in connection with submission of a Letter of Assurance, if any,

or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are

expressly advised that determination of the validity of any patent rights, and the risk of infringement

of such rights, is entirely their own responsibility. Further information may be obtained from the

Accellera Systems Initiative IP Rights Committee.

Accellera reserves the right to make changes to the SCE-MI and this manual in subsequent revisions and

makes no warranties whatsoever with respect to the completeness, accuracy, or applicability of the information

in this manual, when used for production design and/or development.

Accellera does not endorse any particular simulator or other CAE tool that is based on the SCE-MI.

Suggestions for improvements to the SCE-MI and/or to this manual are welcome. They should be sent to the

SCE-MI email reflector or to the address below.

The current Working Group’s website address is

 http://workspace.accellera.org/apps/org/workgroup/itc

Information about Accellera and membership enrollment can be obtained by inquiring at www.accellera.org or

at the address below.

Published as: SCE-MI Reference Manual

Version 2.4 Release, November 2016.

Published by: Accellera Systems Initiative Inc.

8698 Elk Grove Blvd.

Suite 1, #114

Elk Grove, CA 95624

Phone: (916) 670-1056

Printed in the United States of America.

http://www.accellera.org/

SCE-MI 2.4 iii

Contributions

The following individuals were major contributors to the creation of the original version of this standard:

Duaine Pryor, Jason Andrews, Brian Bailey, John Stickley, Linda Prowse-Fossler, Gerard Mas, John Colley,

Jan Johnson, and Andy Eliopoulos.

The following individuals contributed to the creation, editing and review of the SCE-MI Reference Manual

Version 2.4

Brian Bailey Independent Consultant ITC Workgroup Chair

Per Bojsen AMD

John Stickley Mentor Graphics

Ajeya Prabhakar Broadcom

Mike Laisne Qualcomm

The following individuals contributed to the creation, editing and review of the SCE-MI Reference Manual

Version 2.3.

Brian Bailey Independent Consultant ITC Workgroup Chair

Per Bojsen AMD

John Stickley Mentor Graphics

Ajeya Prabhakar Broadcom

Ramesh Chandra Qualcomm

Mike Laisne Qualcomm

Janick Bergeron Synopsys

The following individuals contributed to the creation, editing and review of the SCE-MI Reference Manual

Version 2.2. The companies associated with each individual are those that they were working for when the

contribution was made.

Brian Bailey Independent Consultant ITC Workgroup Chair

Per Bojsen AMD

John Stickley Mentor Graphics

Jaekwang Lee Cadence

Ajeya Prabhakar Broadcom

Ramesh Chandra Qualcomm

Ping Tseng Cadence

James Wang Cadence

Philippe Georgelin STMicroelectronics

Gary Howard Intel

The following individuals contributed to the creation, editing and review of the SCE-MI Reference Manual

Version 2.1.

Brian Bailey Independent Consultant ITC Workgroup Chair

SCE-MI 2.4 iv

Per Bojsen AMD

Pramod Chandraiah Cadence

Shabtay Matalon Cadence

Steve Seeley Cadence

John Stickley Mentor Graphics

Ying-Tsai Chang Springsoft

Amy Lim Cadence

Ajeya Prabhakar Broadcom

Ramesh Chandra Qualcomm

Russ Vreeland Broadcom

The following individuals contributed to the creation, editing and review of the SCE-MI Reference Manual

Version 2.0

Brian Bailey Independent Consultant ITC Workgroup Chair

Per Bojsen AMD

Shabtay Matalon Cadence

Duiane Pryor Mentor Graphics

John Stickley Mentor Graphics

Russell Vreeland Broadcom

Edmund Fong AMD

Jason Rothfuss Cadence

Bryan Sniderman AMD

The following individuals contributed to the creation, editing, and review of SCE-MI Reference Manual

Version 1.1.0

Jason Andrews Axis

Brian Bailey Independent Consultant ITC Workgroup Chair

Per Bojsen Zaiq Technologies

Dennis Brophy Mentor Graphics

Joseph Bulone ST Microelectronics

Andrea Castelnuovo ST Microelectronics

Fabrice Charpentier ST Microelectronics

Damien Deneault Zaiq Technologies

Andy Eliopoulos Cadence

Vassilios Gerousis Infineon

Richard Hersemeule ST Microelectronics

Jan Johnson Mentor Graphics

Matt Kopser Cadence

Todd Massey Verisity

SCE-MI 2.4 v

Shabtay Matalon Cadence

Richard Newell Aptix

Nish Parikh Synopsys

Duiane Pryor Mentor Graphics SCE-MI Subcommittee Chair

Joe Sestrich Zaiq Technologies

John Stickley Mentor Graphics

Russell Vreeland Broadcom

Irit Zilberberg Cadence

 or to prior versions of this standard.

SCE-MI 2.4 vi

Revision history:

Version 1.0 05/29/03

Version 1.1 1/13/05

Version 2.0 03/22/07

Version 2.1 12/21/2010

Version 2.2 01/20/2014

Version 2.3 06/01/2015

Version 2.4 11/16/2016

SCE-MI 2.4 vii

STATEMENT OF USE OF ACCELLERA STANDARDS

Accellera standards documents are developed within Accellera and the Technical Committee of Accellera Systems

Initiative Inc. Accellera develops its standards through a consensus development process, approved by its members

and board of directors, which brings together volunteers representing varied viewpoints and interests to achieve the

final product. Volunteers are not necessarily members of Accellera and serve without compensation. While

Accellera administers the process and establishes rules to promote fairness in the consensus development process,

Accellera does not independently evaluate, test, or verify the accuracy of any of the information contained in its

standards.

Use of an Accellera Standard is wholly voluntary. Accellera disclaims liability for any personal injury, property or

other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or

indirectly resulting from the publication, use of, or reliance upon this, or any other Accellera Standard document.

Accellera does not warrant or represent the accuracy or content of the material contained herein, and expressly

disclaims any express or implied warranty, including any implied warranty of merchantability or suitability for a

specific purpose, or that the use of the material contained herein is free from patent infringement. Accellera

Standards documents are supplied “AS IS.”

The existence of an Accellera Standard does not imply that there are no other ways to produce, test, measure,

purchase, market, or provide other goods and services related to the scope of an Accellera Standard. Furthermore,

the viewpoint expressed at the time a standard is approved and issued is subject to change due to developments in

the state of the art and comments received from users of the standard. Every Accellera Standard is subjected to

review periodically for revision and update. Users are cautioned to check to determine that they have the latest

edition of any Accellera Standard.

In publishing and making this document available, Accellera is not suggesting or rendering professional or other

services for, or on behalf of, any person or entity. Nor is Accellera undertaking to perform any duty owed by any

other person or entity to another. Any person utilizing this, and any other Accellera Standards document, should rely

upon the advice of a competent professional in determining the exercise of reasonable care in any given

circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to

specific applications. When the need for interpretations is brought to the attention of Accellera, Accellera will

initiate action to prepare appropriate responses. Since Accellera Standards represent a consensus of concerned

interests, it is important to ensure that any interpretation has also received the concurrence of a balance of interests.

For this reason, Accellera and the members of its Technical Committee are not able to provide an instant response to

interpretation requests except in those cases where the matter has previously received formal consideration.

Comments for revision of Accellera Standards are welcome from any interested party, regardless of membership

affiliation with Accellera. Suggestions for changes in documents should be in the form of a proposed change of text,

together with appropriate supporting comments. Comments on standards and requests for interpretations should be

addressed to:

Accellera Systems Initiative

8698 Elk Grove Blvd.

Suite 1, #114

Elk Grove, CA 95624

USA

www.accellera.org

Accellera is the sole entity that may authorize the use of Accellera-owned certification marks and/or trademarks to

indicate compliance with the materials set forth herein.

Authorization to copy portions of any individual standard for internal or personal use must be granted by Accellera,

provided that permission is obtained from and any required fee is paid to Accellera. To arrange for authorization

please contact Lynn Bannister, Accellera, 8698 Elk Grove Blvd. Suite 1, #114, Elk Grove, CA 95624, phone (916)

670-1056, e-mail lynn@accellera.org. Permission to copy portions of any individual standard for educational

classroom use can also be obtained from Accellera.

SCE-MI 2.4 viii

 Table of Contents

1. OVERVIEW... 1

1.1 SCOPE ... 1
1.2 PURPOSE ... 1
1.3 USAGE .. 2
1.4 PERFORMANCE GOALS ... 2
1.5 DOCUMENT CONVENTIONS ... 3
1.6 CONTENTS OF THIS STANDARD ... 3

2. REFERENCES .. 4

3. DEFINITIONS ... 5

3.1 TERMINOLOGY ... 5
3.1.1 abstraction bridge: .. 5
3.1.2 abstraction gasket: ... 5
3.1.3 behavioral model: .. 5
3.1.4 bridge netlist: ... 5
3.1.5 co-emulation: ... 5
3.1.6 co-modeling: .. 5
3.1.7 controlled clock (cclock): .. 6
3.1.8 controlled time: .. 6
3.1.9 co-simulation: .. 6
3.1.10 cycle stamping: .. 6
3.1.11 don’t care duty cycle: .. 7
3.1.12 device or design under test (DUT): ... 7
3.1.13 DUT proxy: .. 7
3.1.14 fastest clock: .. 7
3.1.15 hardware model: .. 7
3.1.16 hardware side: ... 7
3.1.17 infrastructure linkage process: .. 8
3.1.18 macros: .. 8
3.1.19 message: .. 8
3.1.20 message channel: ... 8
3.1.21 message port: ... 8
3.1.22 message port proxy: ... 8
3.1.23 negedge: ... 8
3.1.24 posedge: ... 8
3.1.25 service loop:... 8
3.1.26 software model: ... 8
3.1.27 software side: ... 8
3.1.28 structural model: ... 9
3.1.29 transaction: .. 9
3.1.30 transactor: ... 9
3.1.31 uncontrolled clock (uclock): .. 9
3.1.32 uncontrolled reset: ... 9
3.1.33 uncontrolled time: .. 9
3.1.34 untimed model: .. 9

3.2 ACRONYMS AND ABBREVIATIONS .. 9

4. USE MODELS ... 11

4.1 MACRO-BASED MESSAGE PASSING INTERFACE .. 12
4.1.1 High-level description.. 12

4.2 SUPPORT FOR ENVIRONMENTS .. 13
4.2.1 Multi-threaded environments ... 13
4.2.2 Single-threaded environments ... 13

SCE-MI 2.4 ix

4.3 USERS OF THE INTERFACE ... 13
4.3.1 End-user ... 13
4.3.2 Transactor implementer ... 14
4.3.3 SCE-MI infrastructure implementor .. 14

4.4 BRIDGING LEVELS OF MODELING ABSTRACTION ... 14
4.4.1 Untimed software level modeling abstraction ... 14
4.4.2 Cycle-accurate hardware level modeling abstraction ... 15
4.4.3 Messages and transactions .. 16
4.4.4 Controlled and uncontrolled time .. 17

4.5 WORK FLOW ... 18
4.5.1 Software model compilation .. 19
4.5.2 Infrastructure linkage .. 19
4.5.3 Hardware model elaboration ... 19
4.5.4 Software model construction and binding ... 19

4.6 MACRO-BASED SCE-MI INTERFACE COMPONENTS .. 19
4.6.1 Hardware side interface components .. 19
4.6.2 Software side interface components ... 20

4.7 FUNCTION-BASED INTERFACE ... 20
4.7.1 Overview .. 20
4.7.2 The DPI is API-less.. 20
4.7.3 Define a function in one language, call it from the other .. 20
4.7.4 The function call is the transaction .. 22
4.7.5 Function calls provide mid level of abstraction - not to high, not to low .. 22
4.7.6 SystemVerilog DPI is already a standard .. 22
4.7.7 DPI datatypes .. 23
4.7.8 Context handling .. 23
4.7.9 SV-Connect – Using DPI with SystemVerilog HVL ... 25

4.8 PIPE-BASED INTERFACE .. 31
4.8.1 Overview .. 31
4.8.2 Streaming pipes vs. TLM FIFOs .. 32
4.8.3 Reference vs. optimized implementations of transaction pipes .. 33
4.8.4 Deadlock avoidance ... 34
4.8.5 Input pipe ... 34
4.8.6 Output pipe .. 35
4.8.7 Implementation defined buffer depth for pipes, user defined buffer depth for FIFOs 36
4.8.8 Variable length messaging ... 36
4.8.9 Clocked pipes ... 38

4.9 BACKWARD COMPATIBILITY AND COEXISTENCE OF FUNCTION- AND PIPES-BASED APPLICATIONS WITH

MACRO-BASED APPLICATIONS .. 39
4.9.1 What does not change? .. 39
4.9.2 Error handling, initialization, and shutdown API ... 40
4.9.3 Requirements and limitations for mixing macro-based models with function- and pipe-based models

 40
4.9.4 Definition of macro-based vs. function- and pipe-based models ... 40
4.9.5 Requirements for a function- or pipe-based model .. 41
4.9.6 Subset of DPI for SCE-MI 2... 41
4.9.7 Use of SCE-MI DPI subset with Verilog and VHDL ... 41
4.9.8 Support for multiple messages in 0-time .. 41

4.10 SCOPE OF CALLING DPI EXPORTED FUNCTIONS .. 42
4.10.1 The calling application is linked with the simulation kernel: .. 42
4.10.2 Calling application is not linked with the simulation kernel: .. 43
4.10.3 DPI function calls are deterministic .. 43

4.11 BACKDOOR MEMORY AND REGISTER APIS ... 44

5. FORMAL SPECIFICATION ... 45

5.1 GENERAL .. 45

SCE-MI 2.4 x

5.1.1 Reserved namespaces .. 45
5.1.2 Header files .. 45
5.1.3 Const argument types... 45
5.1.4 Argument lifetimes ... 45
5.1.5 SCE-MI compliance ... 45

5.2 MACRO-BASED HARDWARE SIDE INTERFACE MACROS .. 45
5.2.1 Dual-ready protocol .. 46
5.2.2 SceMiMessageInPort macro .. 46
5.2.3 SceMiMessageOutPort macro ... 49
5.2.4 SceMiClockPort macro .. 51
5.2.5 SceMiClockControl macro .. 55
5.2.6 SCE-MI 2 support for clock definitions ... 59

5.3 MACRO-BASED INFRASTRUCTURE LINKAGE ... 59
5.3.1 Parameters ... 59

5.4 MACRO-BASED SOFTWARE SIDE INTERFACE - C++ API .. 61
5.4.1 Primitive data types ... 61
5.4.2 Miscellaneous interface issues ... 61
5.4.3 Class SceMi - SCE-MI software side interface .. 64
5.4.4 Class SceMiParameters - parameter access .. 69
5.4.5 Class SceMiMessageData - message data object .. 72
5.4.6 Class SceMiMessageInPortProxy .. 74
5.4.7 Class SceMiMessageOutPortProxy ... 76

5.5 MACRO-BASED SOFTWARE SIDE INTERFACE - C API .. 77
5.5.1 Primitive data types ... 77
5.5.2 Miscellaneous interface support issues.. 78
5.5.3 SceMi - SCE-MI software side interface .. 79
5.5.4 SceMiParameters - parameter access.. 80
5.5.5 SceMiMessageData - message data object .. 81
5.5.6 SceMiMessageInPortProxy - message input port proxy .. 82
5.5.7 SceMiMessageOutPortProxy - message output port proxy ... 83

5.6 FUNCTION-BASED INTERFACE ... 83
5.6.1 The DPI C-layer .. 83
5.6.2 The DPI SystemVerilog layer... 90
5.6.3 SV-Connect – Using DPI with SystemVerilog HVL ... 91

5.7 TIME ACCESS .. 93
5.8 PIPES-BASED INTERFACE: TRANSACTION PIPES ... 95

5.8.1 SCE-MI 2 pipes compliance... 95
5.8.2 Transaction pipes ... 95
5.8.3 Pipe handles... 112
5.8.4 Transaction pipes API: blocking, thread-aware interface ... 112
5.8.5 Basic transaction pipes API: non-blocking, thread-neutral interface ... 117

5.9 DIRECT MEMORY INTERFACE .. 145
5.9.1 Block interfaces: .. 147
5.9.2 Word interface ... 148
5.9.3 Block of bytes interface .. 149
5.9.4 File interface .. 149
5.9.5 Pattern fill interface ... 150

5.10 REGISTER ACCESS INTERFACE .. 150
5.11 STOPPING A SIMULATION .. 151

APPENDIX A: EXAMPLE USING DYNAMIC CALLBACKS ... 152

APPENDIX B: VHDL SCE-MI MACROS PACKAGE ... 153

APPENDIX C: MACRO-BASED MULTI-CLOCK HARDWARE SIDE INTERFACE EXAMPLE 154

APPENDIX D: USING TRANSACTION PIPES COMPATIBLY WITH ACCELLERA SYSTEMS

INITIATIVE’S SYSTEMC-TLM APPLICATIONS ... 158

SCE-MI 2.4 xi

APPENDIX E: SAMPLE HEADER FILES FOR THE MACRO-BASED SCE-MI 162

APPENDIX F: SAMPLE HEADER FILE FOR BASIC TRANSACTION-PIPES C-SIDE API 179

APPENDIX G: SAMPLE HEADER FILE FOR SCE-MI DMI INTERFACE .. 185

APPENDIX H: BIBLIOGRAPHY .. 188

SCE-MI 2.4 1

1. Overview

The broad intent of the standard is to create a modeling interface that meets all the requirements for simulation,

and enables transactor models to be easily migrated from simulation to emulation, as long as they adhere to the

requirements resulting from the additional demands of emulators.

The Verilog language was extended to create SystemVerilog (see Bibliography [B4]) and as part of this new

standard a new interface was created called the Direct Programming Interface (DPI). This interface is intended

to allow the efficient connection of an HDL model with a C model, fulfilling one of the goals of this standard.

This standard has thus tried to adopt the DPI interface for SystemVerilog wherever possible and has tried to

add additional capabilities to facilitate the efficient connection of the host based code with an emulator through

additional mechanisms such as pipes.

Note: Verilog is now officially incorporated into SystemVerilog. When SystemVerilog is mentioned in a design context it can

also mean Verilog.

It is customary for Accellera standards to have been verified in practice before a standard is established. This

ensures that the basis for the standard has been tested in the field on a number of real cases and is thus likely to

be reasonably stable.

1.1 Scope

The scope of this document shall be restricted to what is specifically referred to herein as the Standard Co-

Emulation API: Modeling Interface (SCE-MI).

1.2 Purpose

There is an urgent need for the EDA industry to meet the exploding verification requirements of SoC design

teams. While the industry has delivered verification performance in the form of a variety of emulation and

rapid prototyping platforms, there remains the problem of connecting them into SoC modeling environments

while realizing their full performance potential. This standard defines a multi-channel communication interface

that addresses these challenges and caters to the needs of verification (both simulation and emulation) end-

users and suppliers and providers of verification IP. In many places in this document it makes reference to

emulation as this was the focus of the macro-based v1.X version of this specification. The new function-based

and pipes capabilities added in the 2.X version of the specification are applicable to both simulation and

emulation environments but each case isn't defined as such because it would unnecessarily and significantly

increase the length of the standard.

The SCE-MI can be used to solve the following verification tool user problems.

 Most emulators offer some proprietary APIs in addition to SCE-MI 1.1 API. The proliferation of APIs

makes it very difficult for software-based verification products to port to the different emulators, thus

restricting the solutions available to emulator users. This also leads to lower productivity and lower

return on investment (ROI) for emulator users who build their own solutions.

 The emulation “APIs” that exist today are oriented to gate-level and not system-level verification.

 The industry needs an API that takes full advantage of emulation performance.

 A method is provided that enables the portability of transactor models between emulation systems,

making it possible for IP providers to write a single model. In addition, with the extensions for the 2.0

version of this standard, the standard enables transactor models to be migrated from a simulation

environment into an emulation environment as long as certain requirements are met. Models will also

migrate in the other direction without any changes.

The SCE-MI can also be used to solve the following verification tool provider problems.

SCE-MI 2.4 2

 Emulator users are reluctant to invest in building applications on proprietary APIs.

 Traditional simulator APIs like programmable language interface (PLI) and VHDL PLI slow down

emulators.

 Third parties are reluctant to invest in building applications on proprietary APIs.

 The establishment of a common API that supports both simulators and emulators will encourage more

third part model developers to make transactor available that are also suitable for emulators.

1.3 Usage

This document specifies a modeling interface which provides multiple channels of communication that allow

software models detailing system behavior to connect to structural models describing implementation of a

device under test (DUT). Each communication channel is designed to transport un-timed messages of arbitrary

abstraction between its two end points or “ports” of a channel.

These message channels are not meant to connect software models to each other, but rather to connect software

proxy models to message port interfaces on the hardware side of the design. The means to interconnect

software models to each other shall be provided by a software modeling and simulation environment, such as

SystemC, which is beyond the scope of this document.

Although the software side of a system can be modeled at several different levels of abstraction, including un-

timed, cycle-accurate, and even gate-level, the focus of this standard is to interface purely un-timed software

models with a register transfer level- (RTL) or gate-level DUT.

This can be summarized with the following recommendations regarding the API:

 This standard should not be used to bridge event-based or sub cycle-accurate simulation environments

with the hardware side.

 It is possible, but not ideal, to use this to bridge cycle accurate simulation environments.

 This standard is best used for bridging an un-timed simulation environment with a cycle-accurate

simulation environment.

Note: There are many references in the document to SystemC (see Section 2 – References [4]) as the modeling environment for

un-timed software models. This is because, although SystemC is capable of modeling at the cycle accurate RTL abstraction level,

it is also considered ideally suited for un-timed modeling. As such, it has been chosen for use in many of the examples in this

document. However it should not be inferred that the only possible environment that SCE-MI supports is SystemC and could

equally be ANSI C, C++, or a number of other languages.

1.4 Performance Goals

While software side of the described interface is generic in its ability to be used in any C/C++ modeling

environment, it is designed to integrate easily with non-preemptive multi-threaded C/C++ modeling

environments, such as SystemC. Similarly, its hardware side is optimized to prevent undue throttling of an

emulator during a co-modeling session run.

Throughout this document the term emulation or emulator is used to denote a structural or RTL model of a

DUT running in an emulator, rapid prototype, or other simulation environment, including software HDL

simulators.

That said, the focus of this interface is to avoid communication bottlenecks that might become apparent when

interfacing software models to an emulator as compared to interfacing them to a slower software HDL

simulator or even an HDL accelerator. Such bottlenecks can severely compromise the performance of an

emulator, which is otherwise very fast. Although some implementations of the interface can be more inefficient

than others, it is a requirement of this standard that nothing in the specification of the interface itself renders it

inherently susceptible to such bottlenecks.

For this reason, the communication channels described herein are message- or transaction-oriented, rather than

event-oriented, with the idea that a single message over a channel originating from a software model can

trigger dozens to hundreds of clocked events in the hardware side of the channel. Similarly, it can take

SCE-MI 2.4 3

thousands of clocked events on the hardware side to generate the content of a message on a channel originating

from the hardware which is ultimately destined for an un-timed software model.

1.5 Document Conventions

This standard uses the following documentation notations.

 Any references to actual literal names that can be found in source code, identifiers that are part of the

API, file names, and other literal names are represented in courier font.

 Key concept words or phrases are in bold type. See Chapter five for further definitions of these terms.

 In this document, informative and normative text is intermixed to allow easier understanding of the

concepts. The normative text is shown in regular types, and the informative is shown in blue italicized

type.

 Note sections are included as informative material and are meant to provide the reader with an

understanding of the reasoning behind certain standardization choices.

1.6 Contents of this Standard

The organization of the remainder of this standard is as follows:

 Chapter 2 provides references to other applicable standards that are assumed or required for this

standard.

 Chapter 3 defines terms used throughout this standard.

 Chapter 4 provides an overall description and use models for the SCE Modeling Interface (SCE-

MI).

 Chapter 5 is a formal functional specification of the APIs themselves.

 Appendix A provides an example using dynamic callbacks to implement a user-defined blocking

send function on top of the non-blocking functions.

 Appendix B provides a VHDL package which can be used to supply SCE-MI macro component

declarations to an application.

 Appendix C provides a simple multi-clock, multi-transactor schematic example and its VHDL

code listing.

 Appendix D provides an example demonstrating transaction pipe compatibly with Accellera

Systems Initiative’s SystemC-TLM applications.

 Appendix E (Sample header files for the SCE-MI) provides headers for both C and C++

implementations.

 Appendix F Provides a sample Header File for Basic Transaction Pipes C-Side API.

 Appexdix G Sample header file for the Direct Memory Interface.

 Appendix H Bibliography - provides additional documents, to which reference is made only for

information or background purposes.

SCE-MI 2.4 4

2. References

This standard shall be used in conjunction with the following publications.

[1] IEEE Std 1076-2002, IEEE Standard VHDL Language Reference Manual.

[2] IEEE Std 1364-2005, IEEE Standard for Verilog Hardware Description Language. Superseded by [3]

[3] IEEE Std 1800-2012: IEEE Standard for SystemVerilog.

[4] IEEE Std 1666-2011: IEEE Standard for SystemC.

SCE-MI 2.4 5

3. Definitions

For the purposes of this standard, the following terms and definitions apply. The IEEE Standard Dictionary of

Electrical and Electronics Terms (see Bibliography [B1]) should be referenced for terms not defined in this

standard.

3.1 Terminology

This section defines the terms used in this standard.

3.1.1 abstraction bridge:

A collection of abstraction gasket components that disguise a bus-cycle accurate, register transfer level, device

under test (BCA RTL DUT) model as a purely untimed model. The idea is that to the untimed testbench

models, the DUT itself appears untimed (see Figure 4.3) when, in fact, it is a disguised BCA model (see Figure

4.4).

3.1.2 abstraction gasket:

A special model that can change the level of abstraction of data flowing from its input to output and vice versa.

For example, an abstraction gasket might convert an un-timed transaction to a series of cycle accurate events.

Or, it might assemble a series of events into a single message. BCASH (bus-cycle accurate shell) models and

transactors are examples of abstraction gaskets.

3.1.3 behavioral model:

See: untimed model.

3.1.4 bridge netlist:

The bridge netlist is the top level of the user-supplied netlist of components making up the hardware side of a

co-modeling process. The components typically found instantiated immediately under the bridge netlist are

transactors and the DUT. By convention, the top level netlist module the user supplies to the infrastructure

linker is called Bridge and, for SystemVerilog (see Reference [3])
1
 models, is placed in a file called Bridge.v.

3.1.5 co-emulation:

A shorthand notation for co-emulation modeling, also known as co-modeling. See also: co-modeling.

3.1.6 co-modeling:

Although it has broader meanings outside this document, here co-modeling specifically refers to transaction-

oriented co-modeling in contrast to a broader definition of co-modeling which might include event-oriented co-

modeling. Also known as co-emulation modeling, transaction-oriented co-modeling describes the process of

modeling and simulating a mixture of software models represented with an un-timed level of abstraction,

simultaneously executing and inter-communicating through an abstraction bridge, with hardware models

represented with the RTL level of abstraction, and running on an emulator or a simulator. Figure 3.1 depicts

such a configuration, where the Standard Co-Emulation API - Modeling Interface (SCE-MI) is being used as

the abstraction bridge. See section 3.2 for the definitions of the acronyms used here.

1
 For more information on references, see Chapter 2.

SCE-MI 2.4 6

ISS

B

F

M

BCASH

RTC

SCE-MI gate
netlist

Hardware

Emulator

Software
Models

Abstraction
Bridge Models

Figure 3.1 Using the SCE-MI as an abstraction bridge

Another illustration can be seen in Figure 4.2.

3.1.7 controlled clock (cclock):

A clock defined in the macro-based interface that drives the DUT and can be disabled by any transactor during

operations that, if clocked, would result in erroneous operation of the DUT. When performing such operations,

any transactor can “freeze” controlled time long enough to complete the operation before allowing clocking of

the DUT to resume. The term cclock is often used throughout this document as a synonym for controlled clock.

3.1.8 controlled time:

Time defined in the macro-based interface which is advanced by the controlled clock and frozen when the

controlled clock is suspended by one or more transactors. Operations occurring in uncontrolled time, while

controlled time is frozen, appear between controlled clock cycles.

3.1.9 co-simulation:

The execution of software models with different levels of abstraction that interact with each other through

abstraction gaskets similar to BCASH (bus-cycle accurate shell) models. Figure 3.2 illustrates such a

configuration. (See section 3.2 for definitions of the acronyms used here.)

ISS

B

F

M

BCASH UTC BCASH RTC

HDL

C-algorithm

Figure 3.2 Modeling abstraction gaskets

The key difference between co-simulation and co-emulation is the former typically couples software models to

a traditional HDL simulator interface through a proprietary API, whereas the latter couples software models to

an emulator through an optimized transaction oriented interface, such as SCE-MI.

3.1.10 cycle stamping:

A process defined in the macro-based interface where messages are tagged with the number of elapsed counts

of the fastest controlled clock in the hardware side of a co-modeled design.

SCE-MI 2.4 7

3.1.11 don’t care duty cycle:

A posedge active don’t care duty cycle is a way of specifying a duty cycle in the macro-based interface where

the user only cares about the posedge of the clock and does not care about where in the period the negedge

falls, particularly in relation to other cclocks in a functional simulation. In such a case, the DutyHi parameter is

given as a 0. The DutyLo can be given as an arbitrary number of units which represent the whole period such

that the Phase offset can still be expressed as a percentage of the period (i.e., DutyHi+DutyLo). See 5.2.4.1 for

more details. A negedge active don’t care duty cycle is a way of specifying a duty cycle in the macro-based

interface where the user only cares about the negedge of the clock and does not care about where in the period

the posedge falls, particularly in relation to other cclocks in a functional simulation. In such a case, the DutyLo

parameter is given as a 0. The DutyHi can be given as an arbitrary number of units that represent the whole

period such that the Phase offset can still be expressed as a percentage of the period (i.e., DutyHi+DutyLo).

See 5.2.4.1 for more details.

3.1.12 device or design under test (DUT):

A device or design under test that can be modeled in hardware and stimulated and responded to by a software

testbench through an abstraction bridge such as the SCE-MI shown in Figure 4.2.

Figure 3.3 Modeling a DUT via an abstraction bridge

3.1.13 DUT proxy:

A model or collection of models that presents (to the rest of the system) an interface to the design under test

which is un-timed. This is accomplished by a translation of un-timed messages to cycle-accurate pin activity. A

DUT proxy contains one or more abstraction bridges which perform this function. If the abstraction bridge is

SCE-MI, the un-timed communication is handled by message port proxy interfaces to the message channels.

See Figure 4.4 for an illustration of DUT proxies.

3.1.14 fastest clock:

If the user instantiates a 1/1 cclock without a don't care duty cycle in the macro-based interface, then that

becomes the fastest clock in the system, although it limits performance to be only half as fast as the uclock,

since in this case, both edges must be scheduled on posedges of uclock.

3.1.15 hardware model:

A model of a block that has a structural representation (i.e., as a result of synthesis or a gate netlist generated

by an appropriate tool) which is mapped onto the hardware side of a co-modeling process (i.e., an emulator,

other hardware simulation platform or a simulator). It can also be real silicon (i.e., a CPU core or memory

chip) plugged into an emulator or simulation accelerator.

3.1.16 hardware side:

See: software side.

SW model

(testbench)

In

file

Out

file

Emulator / Simulator

DUT

CPU

core
IP

Mem

SCE-MI

SCE-MI 2.4 8

3.1.17 infrastructure linkage process:

The process defined in the macro-based interface that reads a user description of the hardware, namely the

source or bridge netlist describing the interconnect between the transactors, the DUT, and the SCE-MI

interface components, and compiles that netlist into a form suitable for executing in a co-modeling session.

Part of this compile process can include adding more structure to the bridge netlist it properly interfaces the

user-supplied netlist to the SCE-MI infrastructure implementation components.

3.1.18 macros:

These are implementation components provided by a hardware emulator solution to implement the hardware

side of the SCE-MI infrastructure in the macro-based interface, examples include: SceMiMessageInPort,

SceMiMessageOutPort, SceMiClockControl, and SceMiClockPort.

3.1.19 message:

A data unit of arbitrary size and abstraction that is to be transported over a channel. Messages are generally not

associated with specific clocked events, but can trigger or result from many clocks of event activity. For the

most part, the term message can be used interchangeably with transaction. However, in some contexts,

transaction could be thought of as including infrastructure overhead content in addition to user payload data

(and handled at a lower layer of the interface), whereas the term message denotes only user payload data.

3.1.20 message channel:

A two-ended conduit of messages between the software and hardware sides of an abstraction bridge.

3.1.21 message port:

The hardware side of a message channel. Transactors use these ports to gain access to messages being sent

across the channel to or from the software side.

3.1.22 message port proxy:

The software side of a message channel. DUT proxies or other software models use these proxies to gain

access to messages being sent across the channel to or from the hardware side.

3.1.23 negedge:

This refers to the falling edge of a clock in the macro-based interface.

3.1.24 posedge:

This refers to the rising edge of a clock in the macro-based interface.

3.1.25 service loop:

This function or method call in the macro-based interface allows a set of software models running on a host

workstation to yield access to the SCE-MI software side so any pending input or output messages on the

channels can be serviced. The software needs to frequently call this throughout the co-modeling session in

order to avoid backup of messages and minimize the possibility of system deadlock. In multi-threaded

environments, place the service loop call in its own continually running thread. See 5.4.3.7 for more details.

3.1.26 software model:

A model of a block (hardware or software) that is simulated on the software side of a co- modeling session

(i.e., the host workstation). Such a model can be an algorithm (C or C++) running on an Instruction Set

Simulator (ISS), a hardware model that is modeled using an appropriate language environment, such as

SystemC, or an HDL simulator.

3.1.27 software side:

This term refers to the portion of a user’s design which, during a co-modeling session, runs on the host

workstation, as opposed to the portion running on the emulator (which is referred to as the hardware side). The

SCE-MI infrastructure itself is also considered to have software side and hardware side components.

SCE-MI 2.4 9

3.1.28 structural model:

A netlist of hardware models or other structural models. Because this definition is recursive, by inference,

structural models have hierarchy.

3.1.29 transaction:

See: message.

3.1.30 transactor:

A form of abstraction gasket. A transactor decomposes an un-timed transaction to a series of cycle-accurate

clocked events, or, conversely, composes a series of clocked events into a single message.

3.1.31 uncontrolled clock (uclock):

A free-running system clock defined in the macro-based interface, generated internally by the SCE-MI

infrastructure, which is used only within transactor modules to advance states in uncontrolled time. The term

uclock is often used throughout this document as a synonym for uncontrolled clock.

3.1.32 uncontrolled reset:

This is the system reset defined in the macro-based interface, generated internally by the SCE-MI

infrastructure, which is used only with transactor modules. This signal is high at the beginning of simulated

time and transitions to low an arbitrary (implementation-dependent) number of uclocks later. It can be used to

reset a transactor. The controlled reset is generated exactly once by the SCE-MI hardware side infrastructure at

the very beginning of a co- modeling session.

3.1.33 uncontrolled time:

Time defined in the macro-based interface that is advanced by the uncontrolled clock, even when the

controlled clock is suspended (and controlled time is frozen).

3.1.34 untimed model:

A block that is modeled algorithmically at the functional level and exchanges data with other models in the

form of messages. An un-timed model has no notion of a clock. Rather, its operation is triggered by arriving

messages and it can, in turn, trigger operations in other un-timed models by sending messages.

3.2 Acronyms and abbreviations

This section lists the acronyms and abbreviations used in this standard.

API Application Programming Interface

BCA Bus-Cycle Accurate model - sometimes used interchangeably with RTL model

BCASH Bus-Cycle Accurate SHell model

BFM Bus Functional Model

BNF extended Backus-Naur Form

DPI SystemVerilog Direct Programming Interface

DUT Device or Design Under Test

EDA Electronic Design Automation

HDL Hardware Description Language

HVL Hardware Verification Language

 High-level Verification Language

IP Intellectual Property

SCE-MI 2.4 10

ISS Instruction Set Simulator

PLI Programmable Language Interface

RTC Register Transfer Level C model

RTL Register Transfer Level

SCE-API Standard Co-Emulation API

SCE-MI Standard Co-Emulation API - Modeling Interface

UT or UTC Untimed C model

VHDL VHSIC Hardware Description Language

SCE-MI 2.4 11

4. Use models

SCE-MI directly supports three primary use models for connecting a model written in HDL to a model running

on a workstation. Each of these use-models is enabled by a corresponding interface. The software side of the

interface allows access from the workstation side, while the hardware side of the interface allows access from

the HDL side. The three interfaces are a (message-passing) macro-based interface which was standardized in

the previous SCE-MI 1.1 version of this standard and has been updated and extended in the SCE-MI 2 release,

secondly a new function-based interface based on the SystemVerilog DPI (see section 4.7) and thirdly, a new

pipes-based interface (see section 4.8). These are shown in Figure 4.1.

Untimed transactions between TB and/or

optional proxy models and transactors

SCE-MI 2

Interfaces

C/C++ Testbench side HDL side

Proxy

Model

Proxy

Model

Testbench

Model

DUT
Transactor

Transactor

Transactor

Host Workstation Emulator/Accelerator or Simulator

Pipes-Based

Transaction Pipes

Macro-Based

Message Passing

Function-Based

SystemVerilog

DPI

Timed events between

transactors and DUT

Choice of 3 transaction

transport use models

Proxy

Model

Figure 4.1 Three Interfaces

Each of these three interfaces are self-contained such that a model that utilizes any one of them will be able to

communicate with a model on the other side of an interface so long as the implementation of the interface also

supports that interface. Models that use multiple interfaces will require complete support for each interface

plus any additional requirements brought about by the interface compatibility issues.

A significant difference between the function-based interface and the two others is that an implementation

running on a simulator (or on an emulator) that supports a larger subset of DPI than the one defined by SCE-

MI 2 function-based interface is still compatible with the function-based interface standard. In addition, the

function-based implementation on a simulator is not required to flag errors as long as it is compliant with DPI

as defined by the SystemVerilog LRM (see Section 2 References[3]). This is contrary to the macro-based and

pipe-based interfaces when all implementations must support the same set of features define by these interfaces

on any implementation. For SCE-MI 2 a subset of the DPI was chosen that is more easily synthesized to

support current emulation technology. As time goes on, it may become feasible for emulators to support a

broader subset of the DPI and the standard may be expanded. The standard thus defines the minimum sub-set

of DPI features that should be supported by the SCE-MI 2 function-based interface to be deemed SCE-MI 2

compliant, but each implementation is free to add additional features of the SystemVerilog DPI standard to

their function-based interface implementation.

However, this impacts what it means for a model to be portable and SCE-MI 2 function-based compliant. To

be portable, the model can only utilize the function-based DPI features defined in this standard. Using any

additional features assumed to be available by a specific implementation make it non-portable to other

SCE-MI 2.4 12

implementations. It also impacts model compliance with SCE-MI 2 function-based interface as a model that

uses the additional DPI features makes it SCE-MI 2 function-based non-compliant model.

Each of the three interfaces constitutes a corresponding use model carrying the same name described in the

subsequent sections of the SCE-MI 2 specification.

4.1 Macro-based Message Passing Interface

This section of the document will describe the macro-based message passing environment. The description of

the function call mechanism will be given in section 4.7 and the pipes-based interface in section 4.8. This

message passing interface is intended to be used in several different use models and by several different groups

of users.

4.1.1 High-level description

Figure 4.2 shows a high-level view of how SCE-MI interconnects untimed software models to structural

hardware transactor and DUT models.

DUT

C/C++ kernel

UTC Model

UTC Model

RTC Model

UTC Model

Software Side (host workstation) Hardware Side (emulator)

SCE-MI Infrastructure

Message Port
Proxy 1

Message Port
Proxy 2

Message Port
Proxy 3

Transactor 2

Transactor 1Message
Port 1

Message
Port 2

Message
Port 3

Clock/Reset
Generation
and Control

such as SystemC

Figure 4.2 High-level view of run-time components

The SCE-MI provides a transport infrastructure between the emulator and host workstation sides of each

channel, which interconnects transactor models in the emulator to C (untimed or RTL) models on the

workstation. For purposes of this document, the term emulator can be used interchangeably with any simulator

capable of executing RTL or gate-level models, including software HDL simulators.

These interconnects are provided in the form of message channels that run between the software side and the

hardware side of the SCE-MI infrastructure. Each message channel has two ends. The end on the software side

is called a message port proxy, which is a C++ object or C function that gives API access to the channel. The

end on the hardware side is a message port, which is instantiated inside a transactor and connected to other

components in the transactor. Each message channel is either an input or an output channel with respect to the

hardware side.

Note: While all exposition in this standard is initially given using C++, C equivalents exist for all functionality. See Chapter 5 for

more details.

Message channels are not unidirectional or bidirectional busses in the sense of hardware signals, but are more

like network sockets that use message passing protocols. It is the job of the transactors to serve as abstraction

SCE-MI 2.4 13

gaskets and decompose messages arriving on input channels from the software side into sequences of cycle-

accurate events which can be clocked into the DUT. For the other direction of flow, transactors recompose

sequences of events coming from the DUT back into messages to be sent via output channels to the software

side.

In addition, the SCE-MI infrastructure provides clock (and reset) generation and shared clock control using

handshake signals with the transactor in the macro-based use model. This allows the transactor to “freeze”

controlled time while performing message composition and decomposition operations.

4.2 Support for environments

The SCE-MI provides support for both single and multi-threaded environments.

4.2.1 Multi-threaded environments

The SCE-MI is designed to couple easily with multi-threaded environments, such as SystemC, yet it also

functions just as easily in single-threaded environments, such as simple C programs. SCE-MI macro-based

interface provides a special service loop function (see 5.4.3.7), which can be called from an application to give

the SCE-MI infrastructure an opportunity to service its communication channels. Calls to service loop result in

the sending of queued input messages to hardware and the dispatch of arriving output messages to the software

models.

While there is no thread-specific code inside the service loop function (or elsewhere in the SCE-MI), this

function is designed to be called periodically from a dedicated thread within a multi-threaded environment, so

the interface is automatically serviced while other threads are running.

When only using the function-based or pipes-based use model, calling the service loop is not required.

4.2.2 Single-threaded environments

In a single-threaded environment, calls to the service loop function in the macro-based use model can be

“sprinkled” throughout the application code at strategically placed points to frequently yield control of the

CPU to the SCE-MI infrastructure so it can service its messages channels.

4.3 Users of the interface

A major goal of this specification is to address the needs of three target audiences, each with a distinct interest

in using the interface. The target audiences are:

 end-user

 transactor implementor

 SCE-MI infrastructure implementor

4.3.1 End-user

The end-user is interested in quickly and easily establishing a bridge between a software testbench which can

be composed of high-level, untimed, algorithmic software models, and a hardware DUT which can be modeled

at the RTL, cycle-accurate level of abstraction.

While end-users might be aware of the need for a “gasket” that bridges these two levels of abstraction, they

want the creation of these abstraction bridges to be as painless and automated as possible. Ideally, the end-

users are not required to be familiar with the details of SCE-MI API. Rather, on the hardware side, they might

wish to rely on the transactor implementer (see 4.3.2) to provide predefined transactor models which can

directly interface to their DUT. This removes any requirement for them to be familiar with any of the SCE-MI

hardware-side interface definitions. Similarly, on the software side, the end-users can also rely on the

transactor implementers to furnish them with plug-and-play software models, custom-tailored for a software

modeling environment, such as SystemC. Such models can encapsulate the details of interfacing to the SCE-

MI software side and present a fully untimed, easy- to-use interface to the rest of the software testbench.

SCE-MI 2.4 14

4.3.2 Transactor implementer

The transactor implementer is familiar with the SCE-MI, but is not concerned with its implementation. The

transactor implementer provides plug-and-play transactor models on the hardware side and proxy models on

the software side which end-users can use to easily bridge their untimed software models with their RTL-

represented DUT. Additionally, the transactor implementer can supply proxy models on the software side

which provide untimed “sockets” to the transactors.

Using the models is like using any other stand-alone IP models and the details of bridging not only two

different abstraction levels, but possibly two different verification platforms (such as SystemC and an

emulator), is completely hidden within the implementations of the models which need to be distributed with

the appropriate object code, netlists, RTL code, configuration files, and documentation.

4.3.3 SCE-MI infrastructure implementor

The SCE-MI infrastructure implementer is interested in furnishing a working implementation of an SCE-MI

that runs on some verification platform, including both the software side and the hardware side components of

the SCE-MI. For such a release to be complaint, it needs to conform to all the requirements set forth in this

specification.

4.4 Bridging levels of modeling abstraction

The central goal of this specification is to provide an interface designed to bridge two modeling environments,

each of which supports a different level of modeling abstraction.

4.4.1 Untimed software level modeling abstraction

Imagine a testbench consisting of several, possibly independent models, that stimulate and respond to a DUT at

different interface points (as depicted in Figure 4.3). This configuration can be used to test a processor DUT

which has some communications interfaces that can include an Ethernet adapter, a PCI interface, and a USB

interface. The testbench can consist of several models that independently interact with these interfaces, playing

their protocols and exchanging packets with them. These packets can be recoded as messages with the intent of

verifying the processor DUT’s ability to deal with them. Initially, the system shown in Figure 4.3 might be

implemented fully at the untimed level of abstraction by using the SystemC software modeling environment.

Suppose the ultimate desire here is to create a cycle-accurate RTL model of a design and eventually synthesize

this model to gates that can be verified on a high speed emulation platform. Afterwards, however, they might

also be tested with the unaltered, untimed testbench models. To do all of this requires a way of somehow

bridging the untimed level of abstraction to the bus-cycle accurate (BCA) level.

SCE-MI 2.4 15

Figure 4.3 Untimed software testbench and DUT models

4.4.2 Cycle-accurate hardware level modeling abstraction

Take the purely untimed system shown in Figure 4.3, “pry apart” the direct coupling between the testbench

models and the untimed DUT model, and insert an abstraction bridge from the still untimed system testbench

model to what is now a emulator resident, RTL-represented DUT. This bridge consists of a set of DUT proxy

models, SCE-MI message input and output port proxies, a set of message channels which are transaction

conduits between the software simulator and the emulator, message input and output ports, and a set of user

implemented transactors. Figure 4.4 depicts this new configuration.

The SCE-MI infrastructure performs the task of serving as a transport layer that guarantees delivery of

messages between the message port proxy and message port ends of each channel. Messages arriving on input

channels are presented to the transactors through message input ports. Similarly, messages arriving on output

channels are dispatched to the DUT proxy software models via message output port proxies which present

them to the rest of the testbench as if they had come directly from the original untimed DUT model (shown in

Figure 4.3). In fact, the testbench models do not know the messages have actually come from and gone to a

totally different abstraction level.

The DUT input proxies accept untimed messages from various C models and send them to the message input

port proxies for transport to the hardware side. The DUT output proxies establish callbacks or provide

functions that monitor the message output port proxies for arrival of messages from the hardware side. In other

words, the SCE-MI infrastructure dispatches these messages to the specific DUT proxy models to which they

are addressed. Taking this discussion back to the context of users of the interface described in Figure 4.3, the

end-user only has to know how to interface the DUT proxy models on the software side of Figure 4.4 with the

transactor models on the hardware side; whereas, the transactor implementer authors the proxy and transactor

models using the SCE-MI message port (and clock control components between them in the macro-based use

model), and provides those models to the end-user.

SCE-MI 2.4 16

User-Defined DUT

Proxy

Abstraction Bridge

Untimed

Testbench Models

SCE-MI Infrastructure User-Defined

Transactors

DUT Model

(RTL, BCA)

Message Input

Port Proxy 0

T
B

 M
o
d

el
 0

T
B

 M
o
d

el
 1

T
B

 M
o
d

el
 N

-1

Message Output

Port Proxy 0

Message Input

Port Proxy 1

Message Output

Port Proxy N-1

X
a
ct

o
r

0
X

a
ct

o
r

1

Message Output

Port 0

Message Input

Port 0

Message Input

Port 1

Message Output

Port N-1

X
a
ct

o
r

N
-1

Message Channels

DUTDUT

Proxy

Hardware SideSoftware Side

Figure 4.4 Multi-channel abstraction bridge architecture

4.4.3 Messages and transactions

In a purely untimed modeling environment, messages are not associated with specific clocks or events. Rather,

they can be considered arbitrary data types ranging in abstraction from a simple bit, Boolean, or integer, on up

to something as complex as a C++ class or even some aggregate of objects. It is in this form that messages can

be transported either by value or by reference over abstract ports between fully untimed software models of the

sort described in Figure 4.4 (and, in substantially more detail, in bibliography [B2]).

However, before messages can be transported over an SCE-MI message channel, they need to be serialized

into a large bit vector by the DUT proxy model. Conversely, after a message arrives on a message output

channel and is dispatched to a DUT output proxy model, it can be de-serialized back into an abstract C++ data

type. At this point, it is ready for presentation at the output ports of the DUT proxy to the connected software

testbench models.

Meanwhile, on the hardware side, a message arriving on the message input channel can trigger dozens to

hundreds of clocks of event activity. The transactor decomposes the message data content to sequences of

clocked events that are presented to the DUT hardware model inputs. Conversely, for output messages, the

SCE-MI 2.4 17

transactor can accept hundreds to thousands of clocked events originating from the DUT hardware model and

then assemble them into serialized bit streams which are sent back to the software side for de-serialization back

into abstract data types.

For the most part, the term message can be used interchangeably with transaction. However, in some contexts,

transaction can be thought of as including infrastructure overhead content, in addition to user payload data

(and handled at a lower layer of the interface), whereas the term message denotes only user payload data.

4.4.4 Controlled and uncontrolled time

One of the implications of converting between message bit streams and clocked events in the macro-based use

model is the transactor might need to “freeze” controlled time while performing these operations so the

controlled clock that feeds the DUT is stopped long enough for the operations to occur. In the other use modes,

time on the HW side is frozen implicitly when the SW side is called.

Visualizing the transactor operations strictly in terms of controlled clock cycles, they appear between edges of

the controlled clock, as shown in the controlled time view within Figure 4.5. But if they are shown for all

cycles of the uncontrolled clock, the waveforms would appear more like the uncontrolled time view shown in

Figure 4.5. In this view, the controlled clock is suspended or disabled and the DUT is “frozen in controlled

time.”

Now, suppose a system has multiple controlled clocks (of possibly differing frequencies) and multiple

transactors controlling them. Any one of these transactors has the option of stopping any clock. If this happens,

all controlled clocks in the system stop in unison. Furthermore, all other transactors, which did not themselves

stop the clock, shall still sense the clocks were globally stopped and continue to function correctly even though

they themselves had no need to stop the clock. In this case, they might typically idle for the number of

uclocks during which the cclocks are stopped, as illustrated in Figure 4.5.

SCE-MI 2.4 18

cclock

Controlled Time View

uclock

cclock

uclock

Transactor operation occurs

while controlled time is

suspended by using extra

uncontrolled clock cycles.

Transactor operation occurs

between edges of controlled clock.

Uncontrolled Time View

Figure 4.5 Controlled and uncontrolled time views

In the SCE-MI macro-based interface, the semantics of clock control can be described as follows.

Any transactor can instruct the SCE-MI infrastructure to stop the controlled clock and thus cause controlled

time to freeze.

 All transactors are told by the SCE-MI infrastructure when the controlled clock is stopped.

 Any transactor shall function correctly if controlled time is stopped due to operations of another

transactor, even if the transactor in question does not itself need to stop the clock.

 A transactor might need to stop the controlled clock when performing operations that involve

decomposition or composition of transactions arriving from or going to a message channel.

 The DUT is always clocked by one or more controlled clocks which are controlled by one or more

transactors.

 A transactor shall sample DUT outputs on valid controlled clock edges. The transactor can use a clock

control macro to know when edges occur.

 All transactors are clocked by a free running uncontrolled clock provided by the SCE-MI hardware

side infrastructure.

4.5 Work flow

There are four major aspects of work flow involved in constructing system verification with the SCE-MI

environment:

 software model compilation

 infrastructure linkage

 hardware model elaboration

SCE-MI 2.4 19

 software model construction and binding

4.5.1 Software model compilation

The models to be run on the workstation are compiled using a common C/C++ compiler or they can be

obtained from other sources, such as third-party vendors in the form of IP, ISS simulators, etc. The compiled

models are linked with the software side of the SCE-MI infrastructure to form an executable program.

4.5.2 Infrastructure linkage

Infrastructure linkage is the process used by in the macro-based use model that reads a user description of the

hardware, namely the source or bridge netlist which describes the interconnect between the transactors, the

DUT, and the SCE-MI interface components, and compiles that netlist into a form suitable for emulation. Part

of this compile process can involve adding additional structure to the bridge netlist that properly interfaces the

user-supplied netlist to the SCE-MI infrastructure implementation components. Put more simply, the

infrastructure linker is responsible for providing the core of the SCE-MI interface macros on the hardware side.

As part of this process, the infrastructure linker also looks at the parameters specified on the instantiated

interface macros in the user-supplied bridge netlist and uses them to properly establish the dimensions of the

interface, including the:

 number of transactors

 number of input and output channels

 width of each channel

 number of clocks

 clock ratios

 clock duty cycles

Once the final netlist is created, the infrastructure linker can then compile it for the emulation platform and

convert it to a form suitable to run on the emulator.

The Infrastructure linkage process is optional as when only the function-based and pipes-based use models are

used as this step is provided natively by the interfaces for these two use models.

4.5.3 Hardware model elaboration

The compiled netlist is downloaded to the emulator, elaborated, and prepared for binding to the software.

4.5.4 Software model construction and binding

The software executable compiled and linked in the software compilation phase is now executed, which

constructs all the software models in the workstation process image space. Once construction takes place, the

software models bind themselves to the message port proxies using special calls provided in the API.

Parameters passed to these calls establish a means by which specific message port proxies can rendezvous with

its associated message port macro in the hardware. Once this binding occurs, the co-modeling session can

proceed.

4.6 Macro-based SCE-MI interface components

The SCE-MI run-time environment consists of a set of interface components on both the hardware side and the

software side of the interface, each of which provides a distinct level of functionality. Each side is introduced

in this section and detailed later in this document (see Chapter 5).

4.6.1 Hardware side interface components

The interface components presented by the SCE-MI hardware side consist of a small set of macros which

provide connection points between the transactors and the SCE-MI infrastructure. These compactly defined

and simple-to-use macros fully present all necessary aspects of the interface to the transactors and the DUT.

These macros are simply represented as empty SystemVerilog or VHDL models with clearly defined port and

parameter interfaces. This is analogous to a software API specification that defines function prototypes of the

API calls without showing their implementations.

SCE-MI 2.4 20

Briefly stated, the four macros present the following interfaces to the transactors and DUT:

 message input port interface

 message output port interface

 controlled clock and controlled reset generator interface

 uncontrolled clock, uncontrolled reset, and clock control logic interface

4.6.2 Software side interface components

The interface presented by SCE-MI infrastructure to the software side consists of a set of C++ objects and

methods which provide the following functionality:

 version discovery

 parameter access

 initialization and shutdown

 message input and output port proxy binding and callback registration

 rendezvous operations with the hardware side

 infrastructure service loop polling function

 message input send function

 message output receive callback dispatching

 message input-ready callback dispatching

 error handling

In addition to the C++ object oriented interface, a set of C API functions is also provided for the benefit of pure

C applications.

4.7 Function-based interface

4.7.1 Overview

This section describes some of the attributes of the function-based interface based on SystemVerilog DPI.

These attributes are listed follows:

 The DPI is API-less

 Define a function in one language, call it from the other - universal programming concept, easy to

learn

 The function call is the transaction

 Function calls provide mid-level of abstraction - not too high, not too low

 SystemVerilog DPI is already a standard

These attributes are discussed in more detail in the following sections.

4.7.2 The DPI is API-less

The SystemVerilog DPI was designed to provide an easy to use inter-language communication mechanism

based on simple function calls. The idea is, rather than providing an API, simply allow the user to create his or

her own API by defining functions in one language and calling them from the other.

4.7.3 Define a function in one language, call it from the other

Functions are defined and called in their native languages. This requires very little training for a user to

understand. The “golden principle” of DPI is, on each side, the calls look and behave the same as native

function calls for that language.

The following figures depict this simple principle both for the C-to-HDL and HDL-to-C directions:

SCE-MI 2.4 21

module MyTransactor

...

reg [7:0] currentState;

reg isParityEnabled;

export “DPI-C” function configQuery;

function bit [7:0] configQuery;

input enableParity;

begin

isParityEnabled = enableParity;

configQuery = currentState;

end

endfunction

void MyModel::SetParity(int enableParity){

svBitVecVal transactorState;

svSetScope(dHdlContext);

transactorState = configQuery(

(svBit)enableParity);

if(transactorState == ERROR_STATE)

logError(“...”);

}

C Side
HDL Side

Figure 4.6 Define a function in HDL, call it from C

svBitVecVal PortID(svBitVecVal32 *destAddr){

svBitVecVal ret;

ret = RouterTables.Lookup(destAddr);

return ret;

}

C Side

import “DPI-C” function [15:0] PortID(

input bit [47:0] destAddr);

always @(posedge cclock)

begin

...

if (state == S1) begin

portID <= PortID(destAddr);

else

...

end

HDL Side

Figure 4.7 Define a function in C, call it from HDL

The DPI SystemVerilog layer is described in detail in the SystemVerilog LRM (see Reference [3]).

The DPI SystemVerilog layer is designed to allow imported and exported function calls to be used with

identical semantics to plain SystemVerilog functions. This means that argument passing and calling

conventions remain identical.

In addition, all scoping considerations remain identical. For example the calling scope of a call to any

SystemVerilog function call is the scope where the function is defined and not the caller site. In the case of an

imported function, special function declaration syntax serves as a place holder for where the function would

actually be defined if it were a plain SystemVerilog function. That placeholder represents a declaration of the

actual function definition itself which is on the C side. As with plain SystemVerilog functions, the calling

scope of this function is considered to be the scope of this import declaration rather than the caller site. This

becomes important when understanding calling scope for purposes of context handling as described in section

4.7.8.

Here is an example of an imported function declaration in SystemVerilog:

// Declare an imported context sensitive C function with cname "MyCFunc"

import "DPI-C" context MyCFunc = function integer MapID(int portID);

This declaration is telling the SystemVerilog side that, “there’s a C function called MyCFunc() that can be

called directly from SystemVerilog as the aliased SystemVerilog name MapID()”.

When the SystemVerilog code makes a call to MapID(), this results in the C function MyCFunc() being

called. This is very useful when resolving incompatibilities in legal names between the C language and the

SystemVerilog language. For example a SystemVerilog name could be an escaped identifier that is illegal in C.

This can be easily fixed by choosing a legal C name and using aliasing in the import declaration.

SCE-MI 2.4 22

For exported functions, the entire function body is defined in some module scope in SystemVerilog. Special

additional declaration syntax is used to declare that function is allowed to be called from the C side, for

example,

export “DPI-C” SetParityGetConfig = function configQuery;

function int configQuery;

 input bit enableParity;

 begin

 isParityEnabled = enableParity;

 configQuery = currentState;

 end

endfunction

In this example the variables isParityEnabled and currentState are defined in the same module scope

as the function configQuery() and can thus be accessed freely by the function itself.

Like imported functions, C-name aliasing works for exported functions as well. In this case, when the C side

calls the function SetParityGetConfig() the HDL function configQuery() will actually get called.

4.7.4 The function call is the transaction

 The function call itself is the transaction and the function call arguments (input plus output) comprise

the transaction’s named data members - this avoids having to use slices and bit fields of a single big

vector

 Function calls can have individually named input args, or output args, or both, or neither

 In SystemVerilog a wide range of data types can be used for function arguments but for SCE-MI 2 it is

restricted to a useful subset consisting of bit vectors and integers

4.7.5 Function calls provide mid level of abstraction - not to high, not to low

Function calls provide a good "lowest common denominator" mid level abstraction for transporting simple

transactions across language domains.

Low enough abstraction for:

 synthesizeability

 use with legacy ANSI C.

High enough abstraction for:

 building user defined simple transactor applications

 building simulation-oriented, reusable verification IP

 providing a good base upon which users can build higher abstraction interfaces (such as TLM,

SystemVerilog mailboxes)

 optimal implementation for targeted verification engine (simulation or acceleration)

 providing a deterministic programming interface

 avoiding the need to be aware of uncontrolled time and clock control in HDL.

4.7.6 SystemVerilog DPI is already a standard

SCE-MI 2 is leveraging the fact that the SystemVerilog DPI:

 Has been a standard since 2007. It went through a thorough development process and has been proven

in several arenas. It has also had significant industry exposure (see bibliography [B4], [B5] and [B6]).

 Clearly defined syntax of function declarations in SystemVerilog.

 Clearly defined argument data type mappings between SystemVerilog and C (see section 5.6.1.3).

 Clearly and rigidly defined semantics of calling functions in terms of argument passing conventions,

time consumption of the function (0-time vs. time consuming - see section 5.6.2.2), and other details.

 Is explicitly designed to be binary compatible across implementation for any given C host platform and

compiler tool (such as GNU gcc-3.2).

SCE-MI 2.4 23

4.7.7 DPI datatypes

The philosophy that was used in the development of the DPI was to make the type mappings between C and

SystemVerilog as common sense and simple as possible and to minimize the requirements for special helper

functions that are used to convert from one type to the other. In other words, define a type in SystemVerilog,

define the same type in C the way your common sense would tell you to, and the two will match.

Basic C scalar types, structures, and unpacked arrays of such types, will map directly to equivalent

SystemVerilog types almost literally. There are some caveats to this however:

 SystemVerilog integer types are specified to be of fixed size regardless of the inherent data width of

a given machine architecture. For example the SystemVerilog types byte, shortint, int, and longint

specifically have widths of 8, 16, 32, and 64 bits respectively.

 Unfortunately, by contrast in ANSI C, integer types do not have widths that are as cast in stone as

the corresponding types in SystemVerilog (see Wikipedia reference for ANSI C data types). What

this means is that even though there is a fixed correspondence between fixed sized SystemVerilog

integer types and non-fixed sized ANSI C integer types, it will be up to the user to understand which

bits of data passed between SystemVerilog and C are significant and where padding/masking is

implied/required. Despite this caveat, the use of scalar types to pass small data values by value back

and forth between the language domains is extremely useful and thus supported to the extent

possible in the SCE-MI 2 standard (see proposed type support for SCE-MI 2 below).

Additional complexities arise with bit vector (packed array) types and open arrays. For these, great care was

taken to make their mappings as easy to use and intuitive as possible.

4.7.8 Context handling

Context handing in DPI is the term used to refer to the mapping of an imported function call to an instance of

user C data (such as an object pointer) that was previously associated with the SystemVerilog caller module

instance.

This is useful for maintaining an association between, for example, a pointer to a SystemC proxy module and

the instance of the SystemVerilog transactor associated with it. Because an imported function call is just a C

function, by definition, it has no context as would say a method or member function of a C++ class. Context

handling in SystemVerilog DPI is very similar to context handling for receive callbacks in the SCE-MI macro-

based interface (see 5.4.7.1). In the case of SCE-MI macro-based interface, the Context data member of the

SceMiMessageOutPortBinding struct is used to pass a user model context to the receive callback function

that can be associated with an instance of an output message port, as shown in Figure 4.8.

SCE-MI 2.4 24

// Define the function and model class on the C++ side:

class MyCModel {

 private:

 int locallyMaped (int portID); // Does something interesting…

 sc_event notifyPortIdRequest;

 int portID;

 pPublic:

 // Constructor

 MyCModel (const char * instancePath) {

 SceMiMessageOutPortBinding outBinding =

 = { this, myCFunc, NULL }

 SceMiMessageOutPortProxy outPort = outPort->BindMessageOutPort (

 instancePath, “SceMiMessageOutPort”, outBinding);

 }

 friend int myCFunc (int portID);

};

// Implementations of receive callback function SCE-MI

void MyCFunc (void *context, const SceMiMessageData *data) {

 MyCModel* me = (MyCModel*)context;

 me->portID = data->Get(0);

 me->notifyPortIdRequest.notify();

}

Figure 4.8 Context handling in SCE-MI Macro-based interface

In SCE-MI 2 function-based interface, context binding is similarly established at initialization time by storing a

context pointer with a SystemVerilog module instance scope and later retrieving it via svGetScope() and

svGetUserData().

Figure 4.9 shows an example of context handing in SCE-MI 2 function-based interface:

SCE-MI 2.4 25

SV Side:

 // Declare an imported context sensitive C function with name “MyCFunc”

 import “DPI-C” context MyCFunc = function integer MapID (int portID);

C Side:

 // Define the function and model class on the C++ side:

 class MyCModel {

 private:

 int locallyMapped (int portID); // Does something interesting…

 public:

 // Constructor

 MyCModel (const char* instancePath) {

 svScope scope = svGetScopeFromName (instancePath);

 // Associate “this” with the corresponding SystemVerilog scope

 // for fast retrieval during runtime.

 svPutUserData (svScope, (void*) MyCFunc, this);

 }

 Friend int MyCFunc (int portID);

 };

 // Implementation of imported context function callable in SV

 Int MyCFunc (int portID) {

 // Retrieve SV instance scope (i.e. this function’s context).

 svScope = svGetScope();

 // Retrieve and make use of user data stored in SV scope.

 MyCModel* me = (MyCModel*)svPutUserData (svScope, (void*) MyCFunc);

 Return me->locallyMapped (portID);

 }

Figure 4.9 Context handling in SCE-MI 2 function-based interface

In this example notice that because functions can have both input and output arguments, the return argument

can be sent directly out of the function return argument. In the SCE-MI macro-based interface, the receive

callback must notify another thread to send the mapped portID.

4.7.9 SV-Connect – Using DPI with SystemVerilog HVL

This section will discuss usage of a DPI function-based interface that can be used to connect SystemVerilog

HVL testbenches to SCE-MI compliant DPI-based HDL-side transactors. This interfacing mechanism is

referred to as SV-Connect and its architecture is depicted in Figure 4.10.

SCE-MI 2.4 26

Figure 4.10 SV-Connect architecture

4.7.9.1 HDL-side commonality between C and SystemVerilog testbenches

In the SV-Connect architecture, there are no differences between the SCE-MI standard for the HDL-side of the

DPI and for usage with SystemVerilog HVL testbenches. Effectively, a SCE-MI compliant HDL-side

(everything in the rightmost block of Figure 4.10) is 100% portable between C testbenches and SystemVerilog

HVL testbenches.

The remaining discussion in this section applies in its entirety to SystemVerilog HVL testbenches.

4.7.9.2 The implied C layer

DPI is inherently a cross-language function call-based interface between C and SystemVerilog. When using

DPI to interface SystemVerilog HVL to SystemVerilog HDL, there must be a C layer in between as depicted in

the middle block of Figure 4.10. The implementation details of the C layer are left to EDA vendors as long as

the SystemVerilog HVL-side and SystemVerilog HDL-side are compliant with the SystemVerilog DPI

standard.

DPI imported function calls in SystemVerilog call C function implementations. DPI exported function calls in

C call SystemVerilog implementations. Therefore, the function calling chain for communication in either

direction is:

 SystemVerilog (HDL or HVL) calls an imported function.

 The imported function implementation is in the C layer. It calls an exported function.

 The exported function implementation is in SystemVerilog (HVL or HDL).

The functionality of the C layer is limited to passing data through the function calling chain and some minimal

scope handling as discussed in 5.6.3.4 Binding and scope handling.

4.7.9.2.1 Automatic generation of the implied C layer

It is the intent of this standard to allow and encourage EDA vendors to produce C layer implementations that

are transparent to the user and which can be automatically generated. It is possible to derive all information

needed to generate a C layer by utilizing the SystemVerilog standard VPI interface to examine HVL-side

import DPI-C function declarations and HVL-side export DPI-C function definitions matching the default

prefix or a specified prefix (see section 5.6.3.1.1 Naming convention), and exact function name and argument

profile information.

SCE-MI 2.4 27

Providers of IP models shall be able to auto-generate separately linkable C layer packages for each of their

models or model families.

An example of a C layer that can be automatically generated as described above is shown in section 4.7.9.4

Example of thin C code “middleman” layer.

4.7.9.3 Complete examples of SV-Connect based function calls

The following examples demonstrate a complete SV-Connect based calling flow for supporting DPI calls in

both directions:

 “Inbound” SV HVL-to-HDL function calls

 “Outbound” HDL-to-SV HVL function calls

4.7.9.3.1 Example of Inbound (HVL-to-HDL) function call

package HvlToolsPkg;

import svdpi::*; // Import standardized SV-Connect package name ‘svdpi’

// Inbound HVL-to-HDL DPI function

import "DPI-C" context function void svcServiceIngressTransaction(

 input chandle scope,

 input bit [31:0] count,

 input bit [63:0] data,

 input bit [31:0] status);

class PipelineIngressProxy extends uvm_driver #(MyType);

 `uvm_component_utils(PipelineIngressProxy)

 local string hdlPath; // Hierarchical path to this proxy’s associated HDL-side

 // transactor module

 local chandle hdlScope; // The scope of this proxy object’s HDL-side

 // transactor module

 function void build_phase(uvm_phase phase);

 if(!uvm_config_db #(string)::get(this, "", "HDL_PATH", hdlPath))

 uvm_report_fatal("build_phase", "Failed to get string HDL path");

 hdlScope = svGetScopeFromName(hdlPath);

 endfunction

 task run_phase(uvm_phase phase);

 MyType request;

 forever begin

 seq_item_port.get(request);

 svcServiceIngressTransaction(hdlScope, request.Count, request.Data,

 request.Status);

 // Wait for confirmation of receipt from egress proxy ...

 @(dTransactionServicedEvent);

 end

 endtask

endclass

endpackage

In this example the build_phase() function does a one-time setup of the DPI scope which is stored in the

chandle hdlScope variable after calling the import “DPI-C” DPI utility function,

svGetScopeFromName(). This scope handle is passed as the required first argument to any inbound DPI

function such as the svcServiceIngressTransaction()HVL-to-HDL function shown above.

The paired HDL-side export function that gets called is simply a SCEMI compliant export “DPI-C” function

with exactly the same name and argument profile as the HVL-side import “DPI-C” function above except

without the prefix and without the first chandle scope argument as is shown in the following example,

SCE-MI 2.4 28

export "DPI-C" function ServiceIngressTransaction;

function void ServiceIngressTransaction(

 input bit [31:0] countIn,

 input bit [63:0] dataIn,

 input bit [31:0] statusIn);

 holdingCount = countIn;

 receivedCount = countIn;

 receivedData = dataIn;

 receivedStatus = statusIn;

 ->serviceCallDetected;

endfunction

4.7.9.3.2 Example of outbound (HDL-to-HVL) function call

When the HDL-side makes an outbound call to its paired HVL proxy, an imported function call is made into

the thin C layer which, in turn calls an exported function implemented in a package in HVL.

In the thin C layer svGetScope() is called to retrieve the HDL-side caller scope. This scope is passed into the

exported function call and is used on the HVL side to look up the proxy object paired with the HDL-side caller.

The lookup is done using a static associative array containing proxy handles keyed by the caller’s scope.

During some initialization phase, prior to the onset of any DPI function calls, each proxy object handle is

added to the associative array, keyed by the scope of its paired HDL-side module. Here is an example to

demonstrate this concept. This class is assumed to be contained in the same package HvlToolsPkg shown in

the previous section.

SCE-MI 2.4 29

class PipelineEgressProxy extends uvm_monitor;

 `uvm_component_utils(PipelineEgressProxy)

 uvm_analysis_port #(MyType) analysisPort;

 local MyType rsp;

 local string hdlPath;

 local chandle hdlScope;

 static PipelineEgressProxy userData[chandle];

 function new(string nm, uvm_component p);

 super.new (nm, p);

 analysisPort = new("analysisPort", this);

 rsp = new;

 endfunction

 function void build_phase(uvm_phase phase);

 if(!uvm_config_db #(string)::get(this, "", "HDL_PATH", hdlPath))

 uvm_report_fatal("build_phase", "Failed to get string HDL path");

 hdlScope = svGetScopeFromName(hdlPath);

 svcSetScope_HvlToolsPkg();

 userData[hdlScope] = this;

 endfunction

 // Callback from HDL: uart has received character

 function void serviceEgress;

 input bit [31:0] count;

 input bit [63:0] dataOut;

 input longint unsigned statusOut;

 rsp.Count = count;

 rsp.Data = dataOut;

 rsp.Status = statusOut;

 analysisPort.write(rsp);

 endfunction

endclass

export "DPI-C" function svcUploadEgressTransaction;

function void svcUploadEgressTransaction;

 input chandle scope;

 input bit [31:0] count;

 input bit [63:0] dataOut;

 input bit [31:0] statusOut;

 automatic PipelineEgressProxy me = PipelineEgressProxy::userData[scope];

 uvm_report_info("export DPI-C function", $psprintf(

 "svcUploadEgressTransaction() called from scope '%s'",

 svGetNameFromScope(scope)));

 me.serviceEgress(count, dataOut, statusOut);

endfunction

Using the scope table (associative “userData” array above), outbound HVL-side exported DPI function

implementations can now look up the handle of the proxy to which they are associated using the HDL scope

passed in from the C layer as illustrated in the export “DPI-C” function

svcUploadEgressTransaction() above.

Things to note in the above example:

 The associative array “userData” is a non-local static member of the proxy class. So, there is only

one such array for all class objects and it is accessible from outside the class.

 Scopes are of type chandle in SystemVerilog HVL

 The SystemVerilog keyword “this” is a proxy handle to the object being constructed

SCE-MI 2.4 30

 Any DPI function implementation must be outside of a SystemVerilog class but local to the package

scope shared by that class.

 The input chandle scope argument must be the first argument passed into an SV-Connect

outbound exported DPI function implementation. It is the chandle for the caller’s HDL-side

transactor module instance scope passed in from the thin C layer.

 A handle to the proxy paired with the caller HDL BFM is looked up in the userData associative

array using the scope as a key

 A proxy class method is then called, passing along function arguments omitting the scope, which has

served its purpose.

The paired HDL-side import function that gets called is simply a SCEMI compliant import “DPI-C” function

with the exactly the same name and argument profile as the HVL-side export “DPI-C” function above except

without the prefix and without the first input chandle scope argument as is shown in the following example,

import "DPI-C" context function void UploadEgressTransaction(

 input bit [31:0] countOut,

 input bit [63:0] dataOut,

 input bit [31:0] statusOut);

always @(posedge Clock) begin

 if(Reset != 1 && TokenOut != 0)

 // Send egress transaction to consumer model.

 UploadEgressTransaction(

 TokenOut[31:0], // countOut

 TokenOut[95:32], // dataOut

 TokenOut[127:96]); // statusOut

end

4.7.9.4 Example of thin C code “middleman” layer

For the inbound and outbound examples shown above the following listing shows the thin C code layer that

couples the paired HVL and HDL functions. As mentioned in section 4.7.9.2.1 Automatic generation of the

implied C layer, vendors are encouraged to automatically generate this C layer.

SCE-MI 2.4 31

// SV-Connect Thin C Layer File

#include "svdpi.h"

#include <stdio.h>

extern "C" {

//----------------------------------

// SV-Connect C layer for package HvlToolsPkg

//----------------------------------

static svScope HvlToolsPkg_scope;

void svcSetScope_HvlToolsPkg() {

 HvlToolsPkg_scope = svGetScope();

}

// Inbound function

void svcServiceIngressTransaction(

 void *ARG0, svBitVecVal *ARG1, svBitVecVal *ARG2, svBitVecVal *ARG3) {

 svSetScope((svScope)ARG0);

 ServiceIngressTransaction(ARG1, ARG2, ARG3);

}

// Outbound function

void UploadEgressTransaction(svBitVecVal * ARG0, svBitVecVal * ARG1, svBitVecVal *

ARG2) {

 svScope scope = svGetScope();

 svSetScope(HvlToolsPkg_scope);

 svcUploadEgressTransaction((void *)scope, ARG0, ARG1, ARG2);

}

The inbound import “DPI-C” function svcServiceIngressTransaction() relays calls from the

HVL side to the actual export “DPI-C” function ServiceIngressTransaction() on the HDL

side.

Conversely the outbound import “DPI-C” function UploadEgressTransaction() relays calls

from the HDL side to the actual export “DPI-C” function svcUploadEgressTransaction() on

the HVL side.

Note: the statically stored svScope HvlToolsPkg_scope which is set up from the HVL side once at init time by calling

the function svcSetScope_HvlToolsPkg(). This variable is referenced by the outbound function

UploadEgressTransaction() to set the HVL-side package scope.

4.8 Pipe-based interface

4.8.1 Overview

As currently defined, the DPI standard handles strict reactive semantics for function calls. There are no

extensions for variable length messaging and streaming data.

The SCE-MI 2 supports constructs called transaction pipes which can be implemented as built- in library

functions. Transaction pipes can potentially be implemented with reference source code that uses basic DPI

functions, or can be implemented in an optimized implementation specific manner.

A transaction pipe is a construct that is accessed via function calls that provides a means for streaming

transactions to and from the HDL side.

Two operation modes are defined for transaction pipes that enable different data visibility semantics. They are

called deferred visibility and immediate visibility modes.

Generally speaking, in deferred visibility mode, there is a precisely defined lag between when elements are

written to pipe by the producer side and when they are actually visible and available for consumption by the

SCE-MI 2.4 32

consumer side. In this mode a pipe may absorb one or more elements when non-blocking send calls are made

but the consumer will not see these elements until the pipe either fills or is flushed.

Whereas, in immediate visibility mode, any elements written by the producer side are immediately visible by

the consumer side that next time it gains execution control for any reason.

Transaction pipes are as easy to use as simple function calls, yet have semantics that can be thought of as a

hybrid between UNIX sockets, UNIX file streams and UNIX named pipes.

 Like UNIX sockets, transaction pipes provide a facility for sending one-way message passing through

simple function calls. Transaction pipes are composed of send and receive calls that look very much

like write and read calls to UNIX sockets (but are much easier to create and bind endpoints).

 Like UNIX file streams, items written to the pipe can be buffered by the infrastructure which allows

for more optimal streaming throughput. Pipes leverage the fact that in some cases round trip latency

issues can be avoided by using pipelining, and therefore more effective throughput of streamed

transactions can be realized.

 Like UNIX file streams, transaction pipes can be flushed. Flushing a transaction pipe has the effect of

guaranteeing to the writer of the transaction that the reader of the transaction at the other end has

consumed it. This is useful for providing synchronization points in streams.

 Like UNIX named pipes, each transaction pipe is uniquely identified with a name. In the case of

transaction pipes, that name is the hierarchical path to the interface instance of the HDL endpoint of

the pipe.

Transaction pipes are unidirectional meaning that in any given pipe, the transactions only flow in one direction.

The data sent by the producer is guaranteed to be received by the consumer in the same order when the

consumer asks for the data (by calling a function). However, the data is not guaranteed to be available to the

consumer immediately after it was sent depending on how buffering is used. That is, if the pipe has some

amount of buffering, that could continue to be filled by a producer thread as long as there is room. The

consumer would not see it until control is yielded to the consumer. This could happen if either the pipe filled

while being written to, thus suspending the producer, or via a flush operation initiated by the producer. See

5.8.4.3 for more information on flush operations.

Transaction pipes that pass one-way transactions from the C side to the HDL side are called input pipes. Pipes

that pass transactions from the HDL side to the C side are called output pipes.

Unlike normal DPI calls, in which one end calls and the other end is called, models on both ends of a

transaction pipe call into the pipe, with one end calling the send function and the other calling the receive

function.

4.8.2 Streaming pipes vs. TLM FIFOs

A blocking interface is well suited to true streaming applications and follows the easy use model of UNIX

streams as discussed previously.

It is useful to compare and contrast the semantics of streaming pipes to those of FIFOs - particularly the FIFOs

that follow the semantics of TLM FIFOs described in the Accellera Systems Initiative’s SystemC-TLM

standard. A possible reason for confusion when discussing issues like user vs. implementation specified buffer

depth, its effect on determinism, etc. is due to people thinking of a FIFO model rather than a pipe model.

Both pipes and FIFOs are deterministic and have similar functions in term of providing buffered data

throughput capability. But they have different basic semantics.

Here is a small listing that tries to compare and contrast the semantics of FIFOs vs. pipes:

FIFOs

 Follow classical Accellera Systems Initiative’s SystemC-TLM like FIFO model

 User specified fixed sized buffer depth

 Automatic synchronization

 Support blocking and non-blocking put/get operations

 "Under the hood" optimizations possible - batching

SCE-MI 2.4 33

 No notion of a flush

Pipes

 Follows Unix stream model (future/past/present semantics)

 Implementation specified buffer depth

 User controlled synchronization

 Makes concurrency optimization more straightforward

 Support only blocking operations (for determinism)

 "Under the hood" optimizations possible - batching, concurrency

 More naturally supports data shaping, vlm, eom, flushing

One could argue that we may wish to entertain the notion of a "SCE-MI_FIFO" reference library to augment

the "SCE-MI_PIPE" reference library currently proposed and thus provide two alternative DPI extension

libraries that are part of the SCE-MI 2 proposal that address different sets of user needs.

But it is useful to make the clear distinction between FIFOs and pipes and, for now, at least converge on the

semantics of proposed pipes and making sure they address the original requirements of variable length

messaging.

Pipes are intended for streaming, batching, variable length messages, and potentially can be used even for more

exotic purposes if the modeling subset allows it. Given that pipes can be implemented at the application layer,

the choice between using pipes and DPI is one of convenience in many cases. However, since an

implementation can choose to provide an optimized version of the pipes, this would be a factor as well in the

choice to use them.

In order to facilitate this FIFO model, the following chapter proposes TLM compatible, thread-neutral

transaction FIFO interface.

4.8.3 Reference vs. optimized implementations of transaction pipes

The HDL-side API can be implemented as a built-in library, but it must allow the user to use the API with a

syntax that is exactly compatible with the SystemVerilog interface declarations as described above.

On the C-side, the transaction pipes API might be used to build a higher level C++ object oriented interfaces to

pipes that may provide a more user friendly object oriented interface to basic pipes.

The C-side transaction pipes API could also conceivably be used to build alternative native HVL object-

oriented interfaces such as Accellera Systems Initiative’s SystemC-TLM interfaces.

While not required, it is possible to implement pipes as a reference model of library functions of source code

built over basic DPI function calls. As such they can be made to run on any DPI compliant software simulator.

It is an absolute requirement however that DPI based implementations and built-in implementations of pipes

must have identical deterministic behavior and must strictly adhere to the semantics defined in this

specification.

4.8.3.1 Implementation of pipes in multi-threaded C environments

Pipes blocking access functions does not have a thread-neutral API that can be used to aid in adapting the

implementations of user friendly (but thread-aware) blocking pipe functions to arbitrary threading systems on

the C side.

To satisfy this requirement the pipes interface was designed to address the following needs:

 A user-friendly, but thread-aware pipe interface (which the blocking pipe functions already provide).

 A lower level implementation-friendly, but thread-neutral pipe interface - essentially implementation

API and callback functions to facilitate easy creation of adapters that allow implementation of the user-

friendly API in selected C threading environments.

Transaction pipes provide a solution to the second requirement. It provides:

 Easy-to-use blocking pipe access API at the user level.

SCE-MI 2.4 34

 Thread neutral API and callback functions that implementations can choose to use to create adapter

layers that implement pipes over a selected threading system.

 Easy to demonstrate reference implementation of the blocking pipe calls that uses the pipe API and

callback functions in their implementation. The example below shows a working reference model of

such an implementation for the HDL side.

In summary, the non-blocking calling and callback functions for pipes described in section 5.8.2 provide

thread-neutral functions that can be used by any implementation to implement the thread-aware blocking pipe

access calls.

4.8.4 Deadlock avoidance

SCE-MI pipe implementations are in no way expected to guard against application induced deadlocks.

Note: An example of an application induced deadlock is the case where an HDL-side process is blocking while waiting for data

on an empty input pipe, a yield to the C-side producer thread occurs, but the C-side never feeds more data into the pipe. In this

case, this specific HDL-side process would never advance (deadlock). Another example is in the output direction where an HDL-

side process is blocking while trying to feed data to a full output pipe, a yield to the C-side consumer thread occurs, but the C-

side never drains data from the pipe. In this case, this specific HDL-side process would never advance (deadlock). In both of

these cases it is up to the application to be properly designed to avoid such deadlocks.

4.8.5 Input pipe

Figure 4.11 shows an example of the use of an input pipe on both the C and HDL sides:

SCE-MI 2.4 35

C-Side

void serviceThread(){

 void *pipe_handle = scemi_pipe_c_handle(

 "top.ingress.p0");

 for(;;){

 svBitVecVal pipeData[4];

 pipeData[0] = localIngress.Count;

 pipeData[1] = localIngress.Data;

 pipeData[2] = 0;

 pipeData[3] = localIngress.Status;

 scemi_pipe_c_send(pipe_handle,

 4, pipeData, (localIngress.Status==0));

 if(localIngress.Status == 0)

 scemi_pipe_c_flush(pipe_handle);

 }

}

 On the writing end (C-side), the pipe is written to by

calling the scemi_pipe_c_send() function.
 On the reading end (HDL side, the pipe is read from by

calling the receive() task of the pipe interface instance.

 When the last transaction is sent, the end-of-message

(eom) argument is set to 1. This is followed by

scemi_pipe_c_flush().
 On the HDL-side, the pipe is instantiated with statically

specified parameters for bytes per element and payload

width (in bits) of 4 and 128 respectively.

 On the C-side, the pipe is constructed with a bytes per

element of 4 that must match the HDL side.

HDL-Side

module PipelineIngressTransactor(

 Clock, Reset, TokenIn);

 output [127:0] TokenIn;

 input Clock, Reset;

 // FSM States

 parameter int GetNextInput = 3'h1;

 parameter int HoldInput = 3'h2;

 parameter int Done = 3'h3;

 reg [2:0] state;

 scemi_input_pipe #(4, 128) p0();

 reg [127:0] pipeData;

 reg lastData;

 integer numRead;

 always @(posedge Clock) begin

 if(Reset) begin

 ...

 end

 else begin

 case(state)

 GetNextInput: begin

 p0.receive(

 4, numRead, pipeData, lastData);

 ...

 end

 ...

 endcase

 end

 end

endmodule

Basic Input

Pipe

HDL

PipeIf

Figure 4.11 Example of Input Pipe

4.8.6 Output pipe

Figure 4.12 shows an example of the use of an output pipe on both the C and HDL sides:

SCE-MI 2.4 36

Figure 4.12 Example of output pipe

4.8.7 Implementation defined buffer depth for pipes, user defined buffer depth for FIFOs

For a typical streaming use model, a user may instantiate a pipe with the BYTES_PER_ELEMENT and/or

PAYLOAD_MAX_ELEMENTS specified but the BUFFER_MAX_ELEMENTS left alone, for example,

 scemi_input_pipe #(

 .BYTES_PER_ELEMENT(32),

 .PAYLOAD_MAX_ELEMENTS(16)) p0(...);

By not specifying depth, pipes used in streaming applications can benefit from pipe depths that are optimal for

a given implementation. This will allow streaming of transactions in an optimal manner for each

implementation. This use model may typically choose to use a flush/eom mechanism with the pipe as well to

define proper synchronization points between producer and consumer.

For a typical FIFO oriented use model (such as TLM FIFOs), a user will explicitly want to specify the pipe to

be a specific depth which will facilitate consistent behavior in terms of how long threads continue to write to or

read from pipes before yielding.

Such a use model may typically choose not to use a flush mechanism.

4.8.8 Variable length messaging

In addition to providing a means of highly optimizing streaming performance, transaction pipes can be a

natural mechanism to implement variable length messaging.

HDL Side

module PipelineEgressTransactor(

 TokenOut, Clock, Reset);

 input [127:0] TokenOut;

 input Clock, Reset;

 wire [31:0] countOut, statusOut;

 wire [63:0] dataOut;

 // FSM States

 parameter GetNextOutput = 3'h0;

 parameter Done = 3'h1;

 reg [2:0] state;

 assign countOut = TokenOut[31:0];

 assign dataOut = TokenOut[95:32];

 assign statusOut = TokenOut[127:96];

 scemi_output_pipe #(4, 128) p0();

 always @(posedge Clock) begin

 if(Reset)

 state <= GetNextOutput;

 else begin

 case(state)

 GetNextOutput: begin

 if(TokenOut != 0) begin

 p0.send(4,

 {statusOut, dataOut, countOut},

 (statusOut==0));

 if(statusOut == 0) begin

 state <= Done;

 p0.flush();

 end

 end

 end

 ...

 endcase

 end

 end

endmodule

C Side

void serviceEgressThread(){

 void *pipe_handle = scemi_pipe_c_handle(

 top.egress.p0");

 svBitVecVal pipeData[4];

 svBit lastData;

 int numRead;

 for(;;){

 scemi_pipe_c_receive(pipe_handle,

 4, &numRead, pipeData, &lastData);

 assert(numRead == 4);

 ...

 localEgress.Count = pipeData[0];

 ...

 if(lastData)

 printf(

 "PipelineEgressProxy: last data received.\n");

 }

}

 On the writing end (HDL-side), the pipe is written to by

calling the send() task.

 On the reading end (C-side, the pipe is read from by calling

the scemi_pipe_c_receive() function of the pipe

interface object.

 When the last transaction is sent, the end-of-message
(eom) argument is set to 1. This is followed by flush().

 On the HDL-side, the pipe is instantiated with statically

specified parameters for bytes per element and payload

width (in bits) of 4 and 128 respectively.

 On the C-side, the pipe is constructed with a bytes per

element of 4 that must match the HDL side.

Basic Output

Pipe

HDL

PipeIf

SCE-MI 2.4 37

Consider the case of the transmission of an Ethernet frame transaction. As per the IEEE 802.3 Ethernet

standard, a frame can be anywhere up to 1500 bytes (although there is some disagreement if this is data

payload size or total frame size). However, in some applications, typical frames may be far smaller. This is a

classic example of where a variable length transaction would be useful as it saves the overhead of transmitting

a fixed width 1500 byte transaction every time regardless of actual length.

Using pipes one could implement this example as follows. Let’s assume for the sake of simplicity that we are

transmitting frames from the C side to the HDL side:

 The HDL side declares an input pipe with BYTES_PER_ELEMENT statically specified as 1 (i.e. the

default value) in its transactor module scope and makes calls to it with a num_elements = 1.

 Using the data shaping capability, each time the C side calls the send function it sends an array of bytes

with num_elements set to whatever the desired number of bytes is which can vary from call to call

(hence variably sized messages)

 On each send call, the C side sets eom to 1 since it is sending all the bytes at once

 Because the receive side is only reading a byte at a time, it will not see the eom indication until the last

byte is received.

Because pipes can, at the option of the implementer, be optimized for streaming, one can imagine that if there

are several such interfaces generating traffic simultaneously (say with a multi-port Ethernet packet router) the

benefit from concurrency of execution (between the multiple threads on the workstation and the emulator)

within the transmission of each frame could be appreciable.

One can also envision another scenario where a sequence of several sequential frames could be sent before an

actual flush is performed. This would support streaming of multiple sequential variable length frames before

synchronization is required.

One can also consider a pure streaming data thread to be one long variable length message (or sequence of

them) that lasts the entire simulation, essentially requiring no synchronizations in the interim, such as feeding

the entire contents of a file as traffic for an interface with a flush only occurring at the very end.

4.8.8.1 Variable length messaging features of transaction pipes

Three areas have been identified that are desirable to support with transaction pipes:

 Data shaping

 End-of-message <eom> marking mechanism

 Support for multiple pipe transactions in 0-time

4.8.8.1.1 Data shaping

Data shaping is a concept that addresses the need for random access to variable length messages. Data shaping

simply allows a transaction pipe to have a different width at one end than the other.

For example suppose a frame of 100 elements of data is desired to be sent over an input pipe 1 element at a

time but the consumer of the frame wants random access to the entire variable length message of 100 elements.

The consumer could read the entire 100 elements in one call. The producing end could write 1 element per call.

In this case transmission of the elements would be buffered but time would be stopped on the reading end until

all 100 elements are received since, the read is blocking. Once received, any or all elements could be accessed

as desired.

In this case the send end of the pipe is narrower than the receive end. One can refer to such a pipe as a nozzle.

Conversely suppose the producer wished to send the frame of 100 elements of data all at once but the

consumer only wanted to read 1 element at a time. The producer could send all 100 elements in a single call.

The producer end of the pipe could receive only one element with each read call.

In this case, transmission of the elements would be buffered but time could advance on the reading end

between each element read since each is a separate call that can be separated by @(posedge clock)

statements for example.

In this case the send end of the pipe is wider than the receive end. One can refer to such a pipe as a funnel.

SCE-MI 2.4 38

4.8.8.1.2 End-of-message <eom> marking mechanism

Using the eom the user can mark the end of a message or “last data”.

This flag can be queried at the receive end to know if it is the end of the message. The infrastructure does

nothing with this flag (unless autoflush is enabled – see section 5.8.4.3.3), it is simply passed as received.

However, if data shaping is involved, the infrastructure does not pass the eom flag until the last element is read

by the consumer, regardless of the shape of the data.

So for example, in the case of a funnel, if the sender sends 100 elements all at once and sets the eom flag to 1

and the receiver only reads one element at a time, it will not see the eom set to 1 until the last element.

Conversely, in the case of a nozzle, if the sender sends 1 element at a time and only sets the eom flag to 1 on

the last one, and the receiver reads 100 elements at a time, the receiver will see the eom flag set to 1 on the first

read of the message.

Special considerations must be made if a producer endpoint of a nozzle does a data send operation with a

smaller num_elements than that requested by the subsequent data receive operation at the consumer endpoint

of that nozzle. If an eom is specified on that send operation, in order to satisfy its request the consumer will see

a return of num_elements_valid that is smaller than its requested num_elements. This is because, in order

to satisfy the producer's eom condition, the consumer's blocking receive call must have satisfactorily returned

from its read operation even if that read operation was asking for a larger number of elements than had been

sent as of the time of the eom.

So, referring back to the nozzle example above where the consumer reads 100 elements, if the producer only

sends 75 elements before setting eom, the request to read 100 elements will return with the eom bit set but with

a num_elements_valid of only 75.

4.8.8.1.3 Support for multiple pipe transactions in 0-time

Operation of pipes is identical whether successive access operations (sends or receives) are done in 0-time or

over user clock time, i.e. 1 access per clock. It is strictly a function of modeling subset as to whether 0-time

operations are supported or not. But the pipe interface itself does nothing to preclude transmission of multiple

transactions in 0-time without requiring the need for user awareness of uncontrolled time. This is true whether

the transactions are variable or fixed length messages transmitted through a pipe or whether they are just

simple DPI.

4.8.9 Clocked pipes

Digital systems include many interfaces to a DUT and each interface may have different clocking

requirements. A C testbench modeled on the SCE-MI paradigms may provide streaming data to one interface

of a DUT based on some reactive signal coming from another interface on the DUT. The reactive signal may

come in the form of a DPI import call and the streaming data may go in as data pushed into an input SCE-MI

pipe. This will lead to a modeling situation of the kind where the model surrounding the SCE-MI pipe instance

will have to be prepared for timing behavior that is not aligned to a clock known to that interface.

This behavior is not confined to the outputs of the pipe call only. Any register assignments right after the call

to the pipe now have this ambiguous timing behavior depending on when the pipe call wakes up. Any reads of

values after the pipe call have the ambiguous behavior that they might be reading some values too early at

some times but not at other times. The behavior and the problems are similar to poorly written RTL code

where not all signals are assigned in a non-blocking manner. The problems range from un-expected modeling

behavior to mismatches between simulation and synthesis behavior.

When using SCE-MI pipes, special considerations need to be made to support RTL clocked semantics.

Often times, the pipe's blocking interface may need to be used in the context of an RTL style of finite state

machine (FSM). In this case there can be a slight conflict between the statements which block on the RTL

clock vs. the statements which block on the pipe. The pipe itself may unblock at some time other than the

relevant edge of the RTL clock, in which case the RTL clocked semantic structure of the state machine is

invalidated.

One solution to this problem is to use only the 0-time non-blocking API to the pipes as depicted in the

following example:

SCE-MI 2.4 39

scemi_input_pipe #(...) input_pipe();

always @(posedge clock)begin

 if(input_pipe.try_receive(0,1,data,eom) == 0) begin

 while(input_pipe.try_receive(0,1,data,eom) == 0) @(posedge clock);

 end

 <process received data>

end

However, this solution is not always practical when using the pipe with data shaping (see section 4.8.8.1.1) or

other such complex use models that make calls with multiple elements at a time and involve managing the

byte_offset argument of the pipe.

As such, the SCE-MI standard supports the notion of a clocked pipe in addition to the unclocked pipe

described previously. In the clocked pipe usage, the pipe itself has an optional port to which a clock can be

connected. The following example shows how the example above can be rewritten using a clocked input pipe:

scemi_input_pipe #(..., .IS_CLOCKED_INTF=1) input_pipe(clock);

always @(posedge clock)begin

 input_pipe.receive(0,1,data,eom);

 <process received data>

end

This simpler blocking interface will achieve the same function as the original example that used the non-

blocking call in a clocked loop. The receive will unblock synchronously to edges of the clock attached to the

pipe rather than at any arbitrary time and will thus be timing consistent with the surrounding RTL compliant

always block. The blocking interface is also easier to use with more complex data shaping operations because

all housekeeping associated with data shaping management is kept internal to the call.

See section 5.8.5.4.1 for details about how to parameterize and use a clocked pipe.

4.9 Backward compatibility and coexistence of function- and

pipes-based applications with macro-based applications

The SCE-MI 2 standard enables new use models that allows higher modeling abstraction and improved

modeling ease-of-use over the original macro-based standard. This improvement is embodied mainly in the

DPI specification and the capabilities of transaction pipes.

At the same time however, one requirement of the SCE-MI 2 standard is backward compatibility with and

coexistence with macro-based applications defined by the SCE-MI 1 standard. The main idea is that pure DPI

applications can run in either a simulator that natively supports the SystemVerilog DPI or in a simulator or

emulator platform that supports SCE-MI 2 standard (which implies that it also supports SCE-MI 1).

The following sections provide more detail on how the two interfaces can co-exist.

4.9.1 What does not change?

Aside from guaranteeing compatibility with legacy macro-based models, the SCE-MI 2 interface specifically

does not change the following:

 The SCE-MI Initialization/Shutdown API

 SceMiClockPort Support for Clock Definitions

SCE-MI 2.4 40

4.9.2 Error handling, initialization, and shutdown API

SCE-MI 2 function and pipe-based applications can continue to use the macro-based initialization and

shutdown API functions without changes:

SceMi::RegisterErrorHandler()

SceMi::RegisterInfoHandler()

SceMi::Version()

class SceMiParameters

SceMi::Init()

SceMi::Shutdown()

The following rules dictate the use of these macro-based calls:

 They are only required for applications that use macro models.

 They are optional for applications that use purely function or pipe models (see definitions of Macro-

based vs. Function-based models in section 4.9.4).

Applications with only function or pipe models that choose not to use the error handling, initialization, and

shutdown functions above will run on any simulator that supports DPI but does not necessarily support the

SCE-MI macro-based initialization and shutdown API standard functions.

4.9.3 Requirements and limitations for mixing macro-based models with function- and

pipe-based models

This section describes the formal requirement for preventing mixes of macro constructs with function and pipe

constructs in the same transactor and C models.

Macro models can co-exist in an application with function and pipe models but conceptually the following

requirements must generally be followed:

 Macro models would be ported as a whole and would not be allowed to intermix function (DPI) and

pipe constructs with macro constructs.

 function- and pipe-based models would not be allowed to use macro constructs within the calling

hierarchy. In other words, mixing of uncontrolled time interactions with controlled time interactions

within the same model would not be allowed (see section 5.6.2.2).

 Legacy macro-based models and function- and pipe-based models would be allowed to co-exist in a

single simulated environment.

 These models can share clocks (SceMiClockPorts), but only macro-based models are allowed to use

SceMiClockControls)

 On the C side imported DPI functions cannot be called from macro callbacks.

 On the C side macro message input port ::Send() functions cannot be called from DPI imported

functions.

 In multi-threaded C environments, calls to ::ServiceLoop() would be restricted to one thread that could

be embedded in an implementation’s infrastructure so as to hide this detail from users.

 Macro-based callbacks and function-based imported functions alike would be serviced by this same

thread.

 For single threaded HVL, use of ::ServiceLoop() would not change.

The following sections present a more formal specification of how the above constraints for model and

construct mixing are enforced.

4.9.4 Definition of macro-based vs. function- and pipe-based models

For purposes of describing requirements of model mixing, the following definitions are given.

The uses of the term model here are somewhat arbitrary but convenient. A model is some level of hierarchy

and all its descendants.

A Macro-based HDL model is defined as a hierarchy with the following properties:

SCE-MI 2.4 41

 At least one macro-based message port or clock control macro (but not clock port macro) is

instantiated at the highest level of the hierarchy within the model.

 More macro-based message ports or clock controls may be instantiated at lower sub-hierarchies of the

model.

A Function or pipe-based HDL model is defined as a hierarchy with the following properties:

 At least one DPI function call or pipe-based function call is declared at the highest level of the

hierarchy within the model.

 More DPI function calls or pipe-based function calls may be declared at lower sub-hierarchies of the

model.

4.9.5 Requirements for a function- or pipe-based model

 On the HDL side, no macro-based models as defined above can contain any function- or pipe-based

call declarations or calls anywhere in their hierarchy.

 On the HDL side, no function- or pipe-based models as defined above can contain any macro-based

message port or clock control macros anywhere in their hierarchy.

 On the C side, no macro-based callback functions can make direct calls to exported DPI function of

pipe-based function calls .

 On the C side, no imported DPI function call or pipe-based call can make calls to the macro-based

service loop or to send messages on any of the macro-based input ports.

The above requirements force macros and their proxies to only exist in disjoint hierarchies from DPI and pipe-

based functions.

4.9.6 Subset of DPI for SCE-MI 2

SCE-MI uses a subset of DPI that is restricted in such a way as to provide a nice balance between usability,

ease of adoption and implementation. The subset includes:

 Data types used with DPI functions are limited as detailed in section 5.6.1.3

 Certain restrictions on calling imported functions from exports and vice versa (see 5.6.2.3 for more

details)

4.9.7 Use of SCE-MI DPI subset with Verilog and VHDL

The SCE-MI standard does not support using the SCE-MI 2 DPI subset for Verilog 2001 and VHDL 1993.

Verilog and VHDL users who prefer not using SystemVerilog can use the SCE-MI macro-based interface

defined in section 4. SCE-MI 2 also supports mixed usage of Verilog and VHDL SCE-MI macro-based

transactors with SCE-MI function and pipe-based transactors following the use model guidelines descried in

the Mixed Usage section 4.9.

4.9.8 Support for multiple messages in 0-time

DPI places no restrictions on the number of imported function calls made in the same block of code without

intervening time advancement.

One important point to make about the SCE-MI 2 function-based approach is that it does not preclude the

ability to support transmission of multiple messages in 0-time either by calling the same function or by calling

multiple functions in the same timestep.

This interfacing feature is fundamentally missing from SCE-MI macro-based interface where macros

supporting controlled time interfacing are fed with user clocks. The only way of accomplishing this is to use

some sort of over-clocking scheme in which the message clock (still a controlled clock) has a frequency that is

some multiple of the main clock being used in the transactor.

For example, if I am using a message macro that is clocked by transactor_clock and I wish to send 3 messages

between posedges of transactor_clock, I must define essentially a message_clock that is at least 3 times the

frequency of transactor_clock. Short of this over-clocking there is no other way to fundamentally accomplish

transmission of multiple messages between clocks.

SCE-MI 2.4 42

With the SCE-MI 2 function-based approach, multiple messaging is possible. Take the following code

example:

always @(posedge transactor_clock) begin

 if(reset == 1) begin

 // Do the reset thing ...

 else switch (fsm_state) begin

 case ‘FSM_STATE_1: begin

 ...

 c_function1(data1, data2);

 c_function1(data2, data3);

 c_function2(data3, data4);

 end

 ...

 end

 ...

end

In this case, there are two consecutive calls to c_function_1(). The first takes data1 as the input and

returns data2 as the output. The second takes data2 as the input and returns data3 as the output. The third

call is actually a call to a different function (which could be to different SCE-MI 1 message ports underneath).

4.10 Scope of calling DPI exported functions

Assume a DPI context imported function is called and triggers (or notifies) a thread in the calling application

that calls an exported function via the SCE-MI 2 C side. Such a call from a different thread is considered

outside a DPI context imported function call chain as defined by the SystemVerilog LRM (see Reference [3]),

and thus its result is undefined. However SCE-MI 2 allows calls from other threads to be made subject to

meeting certain requirements for each of the following defined use models.

The SystemVerilog LRM (see Reference [3]) states that the behavior of DPI utility functions that manipulate

context is undefined when they are invoked by any function or task that is not part of a DPI context call chain

(see H.9). SCE-MI function-based use model allows calling DPI exported functions and DPI utility functions

from an application linked with the C side which is considered by the SystemVerilog LRM being “outside a

DPI context imported function call chain”.

SCE-MI supports two use cases differentiated by whether the application calling DPI exported functions is

linked or is not linked with the SystemVerilog simulation kernel. Each use case will describe the assumption

and the constraints.

This section only applies to DPI exported functions and does not apply to DPI exported tasks.

4.10.1 The calling application is linked with the simulation kernel:

This use case applies to standard languages on the C-side that are linked with a simulation kernel running on

the HDL-side. The term ‘linked with’ implies that the language is either simulated directly by the simulator or

is handled by the simulation kernel as a direct extension to the simulator running the HDL-side. Examples for

such languages are SystemC, SystemVerilog and Specman e that are ‘tightly integrated or running natively on

the SystemVerilog simulator.

DPI exported functions can be invoked by C code called from an application linked with a simulation kernel,

and outside a DPI context imported function call chain as long as the calling application is triggered (or

notified) from a DPI context imported function call chain initiated by a DPI context imported function or 0-

time task call defined per the SystemVerilog LRM, and executed in zero simulation time or delta simulation

time from when the imported DPI context function was invoked.

The key constraints when calling exported functions from an application linked with the simulation kernel are:

a) The context of the DPI exported function must be known before its being called.

b) Only DPI exported functions (that do not consume time) can be called. Calling DPI exported tasks will

result in undefined behavior.

SCE-MI 2.4 43

c) There is no control in which order events get processed on both the calling application and the HDL side

during the zero or delta simulation time period.

d) The imported DPI context function call initiating the DPI call chain cannot return arguments that are

dependent on the exported function calls.

e) DPI imported task calls cannot be time consuming and must return in zero simulation time or delta

simulation time from when the imported DPI task was invoked regardless of whether that task calls a DPI

exported function or not.

Note that any calls to DPI exported functions during any other time not covered by the above may result in

undefined behavior. These include calling DPI exported functions during HDL side compilation, by C code

called by PLI, VPI, VHPI callbacks or from a SystemVerilog system task. It also includes any calls from C

code executing concurrently with the SystemVerilog code running on an emulator.

4.10.2 Calling application is not linked with the simulation kernel:

This use case applies to applications that are not linked with a simulation kernel running on the HDL-side. The

term ‘not linked with’ implies that the application is linked to the C software side, but that HDL side is not

aware of the linked application. Examples for such languages are C/C++ programs using Pthreads or even

the Accellera Systems Initiative’s SystemC reference implementation simulator linked with SCE-MI 2 SW side.

DPI exported functions can be invoked by C code called from an application that is not linked with a

simulation kernel if the calling application is triggered (or notified) from a DPI context imported function or 0-

time task call chain before the imported function returns.

The key constraints when calling exported DPI functions from an application not linked with the simulation

kernel are:

 The context of the DPI exported function must be known before its being called.

 Only exported functions (that do not consume time) can be called. Calling DPI exported tasks will

result in undefined behavior.

 DPI imported task calls cannot be time consuming and must return in zero simulation time or delta

simulation time from when the imported DPI task was invoked regardless of whether that task calls a

DPI exported function or not.

In this case, the simulation is not aware of the calling application running on the SW side and therefore the

simulation kernel doesn’t suspend its execution to let the calling application external to the simulation kernel

to run and furthermore to call the DPI exported function. In other words, if the DPI imported function

returned, the simulator will proceed and none of the external threads of the calling application will ever wake

up.

However assuming that the C code is running under the control of a foreign threading package, then the

imported C function can suspend itself allowing other threads of the application to run and call DPI exported

functions, and then resume before returning. In this case, the call to a DPI exported function is considered as

being made from a Context DPI imported function call chain given that SystemVerilog simulation kernel is not

aware of any context switching that is taking place. Furthermore, it really doesn’t matter if the external calling

application is a simulator that consumes time, and calls the simulator after waiting on time. Until the imported

C function called from by the HDL side returns, the simulator kernel on the HDL side is not aware that the

imported function was suspended and that an exported function is being called from another thread. Therefore,

the imported DPI function call can return arguments that are dependent on the exported function calls and

event ordering is defined, meaning that the exported function returns before the DPI imported function returns.

4.10.3 DPI function calls are deterministic

In either of the configurations mentioned in sections 4.10.1 and 4.10.2 it is the case that fundamentally

determinism must be guaranteed by the implementation of SCE-MI 2 on a hardware engine, just as it is

implicitly guaranteed in software simulator implementations of DPI.

SCE-MI 2.4 44

This means that, for a given design, assuming there are no race conditions in that design, that not only must it

be guaranteed that simulation results are identical from run to run or even from compile to compile where no

design changes occur, but that those results are identical to results of running the same design on a software

simulator, in terms of the timing of when SCE-MI compliant DPI calls are made.

In other words, all SCE-MI compliant imported and exported DPI calls must occur in the same time slots

during the simulation of a given design whether that design is simulated on a DPI compliant software simulator

or a hardware simulator.

4.11 Backdoor memory and register APIs

The standard provides two APIs for backdoor memory and register access. These are separate and distinct from

the macro-based interface components, the function-based interface, and the pipe-based interface.

The backdoor memory API is called the direct memory interface (DMI). All of the API calls have

scemi_mem_ prefix and are detailed in section 5.9 Direct Memory Interface. This API provides a non-intrusive

C-side interface to directly access an HDL-side memory at a single instance in simulation time. The calls allow

writing or reading an arbitrarily sized block of data to or from an arbitrary memory address respectively. The

data buffer is given as a C-side memory byte array pointer that can be passed to the API calls.

The register access API provides a C-API to access HDL-side registers which can include single or multi-bit

registers. Like the backdoor memory API, the register access API provides a non-intrusive way of accessing

HDL-side registers at any single instance in simulation time. It supports set/get/force/release semantics for

register updates. Specifically the register access API leverages the existing, standardized register API that is

currently part of the Accellera Universal Verification Methodology (UVM) standard cited in reference [B7] of

Appendix H. The SCE-MI standard leverages this existing and well defined standard API for register access.

See section 5.10 Register Access Interface for more details.

SCE-MI 2.4 45

5. Formal Specification

This chapter defines the API calls and macros that make up the entire SCE-MI

5.1 General

This section contains items that relate to all aspects of the specification.

5.1.1 Reserved namespaces

Prefixes beginning with the three letter sequence s, c, e, or the four letter sequence s, c, e, _ (underscore), in

any case combination, are reserved for use by this standards group.

Prefixes beginning with the five-letter sequence s, c, e, m, i, or the six-letter sequence s, c, e, _ (underscore), m,

i, in any case combination, are reserved for use by SCE-MI and SCE-MI related specifications.

5.1.2 Header files

The ANSI-C and C++ API’s shall be declared in a header file with the name

scemi.h

Note: the name is all lowercase, and the same for both API’s. Examples of the header files are given in Appendix D and E.

Where any discrepancy exists between this specification and the included header file, the specification should be the one that is

used.

5.1.3 Const argument types

All input arguments whose types are pointers with 'const' qualifier should be strictly honored as read-only

arguments. Attempts to cast away 'constness' and alter any of the data denoted or pointed to by any of these

arguments is prohibited and may lead to unpredictable results.

5.1.4 Argument lifetimes

The lifetime of any input pointer argument passed from the SCE-MI infrastructure into a SCE-MI callback

function (such as input ready callback or receive callback) shall be assumed by the application to be limited to

the duration of the callback. Once the callback returns, the application cannot assume that such pointer

arguments remain valid. So, for example it would lead to undefined behavior for an application receive

callback to cache the SceMiMessageData * pointer and refer to it at some point in time after the callback

returns.

Conversely, the lifetime of any input pointer argument passed from an application into a SCE-MI API call

shall be assumed by the SCE-MI infrastructure to be limited to the duration of the API call. Once the API call

returns, the infrastructure cannot assume that such pointer arguments remain valid.

5.1.5 SCE-MI compliance

SCE-MI defines three interfaces, namely: macro-based, function-based and pipes-based interfaces. SCE-MI

implementation providers must qualify their level of compliance if their implementation does not support all

three SCE-MI interfaces.

A SCE-MI implementation that is only compliant with SCE-MI {Macro-based and/or Function-based and/or

Pipes-based} interface must be stated as "compliant with SCE-MI {Macro-based and/or Function-based and/or

Pipes-based} interface(s) only".

5.2 Macro-based hardware side interface macros

This section contains the macros that need to be implemented on the hardware side of the interface.

SCE-MI 2.4 46

5.2.1 Dual-ready protocol

The message port macros on the hardware side use a general PCI-like dual-ready protocol, which is explained

in this section. Briefly, the dual-ready handshake works as follows.

The transmitter asserts TransmitReady on any clock cycle when it has data and de-asserts when it does not.

The receiver asserts ReceiveReady on any cycle when it is ready for data and de-asserts when it is not.

In any clock cycle in which TransmitReady and ReceiveReady are both asserted, data “moves”, meaning it

is taken by the receiver.

Note:

1) After a ready request (TransmitReady or ReceiveReady) has been asserted, it cannot be removed until a

data transfer has taken place.

2) After TransmitReady has been asserted, the data must be held constant otherwise the result is undefined.

The waveforms in Figure 5.1 depict several dual-ready handshake scenarios.

uclock

TransmitReady

Rece iveReady

urese t

d6 arrives and moves

receiver ready and d5 moves
d5 arrives

 receiver ready for d1 1st

clock after reset

d1 arrives and moves

receiver ready for d2

receiver ready and d3 arrives and moves
 d4 arrives

d2 arrives and moves

receiver ready for d6

receiver ready for d7

d1 d2 d3 d5 d6Message

receiver ready and d4 moves

d4

Figure 5.1 Dual-ready handshake protocol

The dual-ready protocol has the following two advantages.

a) Signals are level-based; therefore, they are easily sampled by posedge clocked logic.

b) If both TransmitReady and ReceiveReady stay asserted, sequences of data can still move every clock cycle;

therefore, the same performance can be realized as, for example, a toggle-based protocol.

5.2.2 SceMiMessageInPort macro

The SceMiMessageInPort macro presents messages arriving from the software side of a channel to the

transactor. The macro consists of two handshake signals which play a dual-ready protocol and a data bus that

presents the message itself. Figure 5.2 shows the symbol for the SceMiMessageInPort macro, as well as

SystemVerilog and VHDL source code for the empty macro wrappers.

SCE-MI 2.4 47

Figure 5.2 SceMiMessageInPort macro

5.2.2.1 Parameters and signals

PortWidth

The message width in bits is derived from the setting of this parameter.

PortName

The port’s name is derived from its instance label.

TransmitReady

A value of one (1) on this signal sampled on any posedge of the uclock indicates the channel has message

data ready for the transactor to take. If ReceiveReady is not asserted, the TransmitReady remains asserted

until and during the first clock in which ReceiveReady finally becomes asserted. During this clock, data

moves and if no more messages have arrived from the software side, the TransmitReady is de-asserted.

ReceiveReady

A value of one (1) on this signal indicates the transactor is ready to accept data from the software. By asserting

this signal, the hardware indicates to the software that it has a location into which it can put any data that might

arrive on the message input port. When a new message arrives, as indicated by the TransmitReady and

ReceiveReady both being true, that location is consumed (see Figure 5.1). When this happens, a notification

is sent to the software side that a new empty location is available and this triggers an input-ready callback to

occur on the software side. (5.2.2.2 explains in detail when input-ready propagation notifications are done with

respect to the timing of the TransmitReady and ReceiveReady handshakes.)

Transactors do not need to utilize ReceiveReady and the input-ready callback. If this is the case, the

ReceiveReady input needs to be permanently asserted (i.e., “tied high”) and, on the software side, no input-

ready callback is registered. In this case, TransmitReady merely acts as a strobe for each arriving message.

The transactor needs to be designed to take any arriving data immediately, as it is not guaranteed to be held for

subsequent uclock cycles.

Message

This vector signal constitutes the payload data of the message.

5.2.2.2 Input-ready propagation

The SCE-MI provides a functionality called input-ready propagation. This allows a transactor to communicate

(to the software) it is ready to accept new input on a particular channel. When the transactor asserts the

SCE-MI 2.4 48

ReceiveReady input, the IsReady callback on that port is called during the next call to the

::ServiceLoop().

If the software client code registers an input-ready callback when it first binds to a message input port proxy

(see 5.4.3.5), the hardware side of the infrastructure shall notify the software side each time it is ready for more

input. Each time it is so notified, the port proxy on the software side makes a call to the user registered input-

ready callback. This mechanism is called input-ready propagation.

Input-ready propagation shall happen:

1) On the first rising edge of uclock after reset at which ReceiveReady is asserted, and

2) On the first rising edge of uclock after a message transferred at which ReceiveReady is asserted,

when an IsReady() callback is registered. Case 1 covers the input-ready propagation for d1 in Figure 5.3.

Case 2 covers the others (d2, d3, and d4).

The prototype for the input-ready callback is:

void (*IsReady)(void *context);

When this function is called, a software model can assume that a message can be sent to the message input port

proxy for transmission to the message input port on the hardware side. The context argument can be a pointer

to any user-defined object, presumably the software model that bound the proxy.

The application needs to follow the protocol that if the transactor is not ready to receive input, the software

model shall not do a send. The software model knows not to send if it has not received an input-ready callback.

The SCE-MI infrastructure does not enforce this.

Note: An application can service as many output callbacks as is desired while pending an input callback. In other words, the

software model can have an outer loop which checks the status of an application-defined OKToSend flag on each iteration and

skips the send if the flag is false.

So, suppose an application has an outer loop that repeatedly calls ::ServiceLoop() and checks for arriving output messages

and input-ready notifications. Each callback function sets a flag in the context that the outer loop uses to know if an output

message has arrived and needs processing, or an input port needs more input. It is possible that, before an input-ready callback

gets called, the outer loop called ::ServiceLoop() 50 times and each call results in an output message callback and the

subsequent processing of that output message. Finally, on the 51'st time ::ServiceLoop() is called, the input-ready callback

is called, which sets the OKToSend flag in its context, and then the outer loop detects the new flag status and initiates a send on

that input channel.

The handshake waveforms in Figure 5.3 are intended purely to illustrate the semantics of the dual-ready protocol. There can be a

couple of reasons why these waveforms might not be realistic in an actual implementation of a SceMiMessageInPort macro.

The waveforms shown in Figure 5.3 show what typically occurs when input-ready callbacks are enabled. It shows four possible

scenarios where an input-ready notification occurs.

SCE-MI 2.4 49

“input-ready” for

d3 propagates

uclock

TransmitReady

Rece iveReady

urese t

“input-ready” for d4 propagates

d3 arrives and moves

 1st “input-ready” for d1

propagates after reset

d1 arrives and moves

“input-ready” for d2 propagates
d2 arrives and moves

d1 d2 d3Message

Figure 5.3 SceMiMessageInPort handshake waveforms with input-ready propagation

In the depicted scenarios, an input-ready notification is propagated to the software if:

 the ReceiveReady from a transactor is asserted in the first clock following a reset or

 the ReceiveReady from a transactor transitions from a 0 to a 1 or

 the ReceiveReady from a transactor remains asserted in a clock following one where a transfer occurred due to

assertions on both TransmitReady and ReceiveReady.

5.2.3 SceMiMessageOutPort macro

The SceMiMessageOutPort macro sends messages to the software side from a transactor. Like the

SceMiMessageInPort macro, it also uses a dual-ready handshake, except in this case, the transmitter is the

transactor and the receiver is the SCE-MI interface. A transactor can have any number of

SceMiMessageOutPort macro instances. Figure 5.4 shows the symbol for the SceMiMessageOutPort

macro, as well as SystemVerilog and VHDL source code for the empty macro wrappers.

SCE-MI 2.4 50

TransmitReady
ReceiveReady

Message []

SceMiMessageOutPort

#(<PortWidth> ,<PortPriority>) <PortName>

Verilog Macro Wrapper:

module SceMiMessageOutPort(

 //inputs outputs

 TransmitReady, ReceiveReady,

 Message);

 //------------------------ ------------------------------

 parameter PortWidth = 1 ;

 parameter PortPriority; // Parameter no longer used

 input TransmitReady; output ReceiveReady;

 input [PortWidth-1:0] Message ;

endmodule

VHDL Macro Wrapper:

entity SceMiMessageOutPort is

 generic(PortWidth: natural; PortPriority: natural := 10);

 port(

 TransmitReady: in std_logic; ReceiveReady: out std_logic;

 Message: in std_logic_vector(PortWidth-1 downto 0));

end;

architecture EmptyMacro of SceMiMessageOutPort is begin end;

Figure 5.4 SceMiMessageOutPort macro

5.2.3.1 Parameters

PortWidth

The message width in bits is derived from the setting of this parameter.

PortPriority

The parameter is no longer in use.

PortName

The port’s name is derived from its instance label.

5.2.3.2 Signals

TransmitReady

A value of one (1) on this signal indicates the transactor has message data ready for the output channel to take.

If ReceiveReady is not asserted, the TransmitReady shall remain asserted until and during the first clock in

which ReceiveReady finally becomes asserted. During this clock, data moves and if the transactor has no

more messages for transmission, it de-asserts the TransmitReady.

ReceiveReady

A value of one (1) on this signal sampled on any uclock posedge indicates the output channel is ready to

accept data from the transactor. By asserting this signal, the SCE-MI hardware side indicates to the transactor

the output channel has a location where it can put any data that is destined for the software side of the channel.

In any cycle during which both the TransmitReady and ReceiveReady are asserted, the transactor can

assume the data moved. If, in the subsequent cycle, the ReceiveReady remains asserted, this means a new

empty location is available which the transactor can load any time by asserting TransmitReady again.

Meanwhile, the last message data, upon arrival to the software side, triggers a receive callback on its message

output port proxy (see 5.4.7.1).

Message

This vector signal constitutes the payload data of the message originating from the transactor, to be sent to the

software side of the channel.

SCE-MI 2.4 51

5.2.3.3 Message ordering

The idea of ordering message delivery to software arises from the fact that there is a global time order defined

in the hardware domain by the order of cclock edges. The delivery of messages from hardware to software

respects this ordering. In particular, the delivery of messages from hardware to software is ordered using the

following rules:

a) Messages from a single message out port are delivered to software in the same time order in which

they are delivered to the port.

b) Messages from different ports which complete the dual-ready protocol on different cclocks are

delivered to software in the time order in which the receive ready signals are asserted. In the case

that two message ports accomplish the dual-ready protocol and have data move in the same

cclock cycle, the order of delivery of the messages to the software is undefined.

5.2.4 SceMiClockPort macro

The SceMiClockPort macro supplies a controlled clock to the DUT. The SceMiClockPort macro is

parameterized so each instance of a SceMiClockPort fully specifies a controlled clock of a given frequency,

phase shift, and duty cycle. The SceMiClockPort macro also supplies a controlled reset whose duration is the

specified number of cycles of the cclock.

Figure 5.5 shows the symbol for the SceMiClockPort macro, as well as SystemVerilog and VHDL source

code for the empty macro wrappers.

Figure 5.5 SceMiClockPort macro

All of the clock parameters have default values. In simpler systems where only one controlled clock is needed,

exactly one instance of a SceMiClockPort can be instantiated at the top level with no parameters specified.

This results in a single controlled clock with a ratio of 1/1, a don’t care duty cycle (see 5.2.4.3), and a phase

shift of 0. Ideally, this clock’s frequency matches that of the uclock during cycles in which it is enabled.

The SCE-MI infrastructure always implicitly creates a controlled clock with a 1/1 ratio, which is the highest

frequency controlled clock in the system. Whether or not it is visible to the user’s design depends on whether a

SceMiClockPort with a 1/1 ratio and a don’t care duty cycle is explicitly declared (instantiated).

In more complex systems that require multiple clocks, a SceMiClockPort instance needs to be created for

each required clock. The clock ratio in the instantiation parameters always specifies the frequency of the clock

as a ratio relative to the fastest controlled clock in the system (whose ratio is always 1/1).

Cclock
Creset

SceMiClockPort

#(<ClockNum>,
 <RatioNumerator>,
 <RatioDenominator>,
 <DutyHi>, <DutyLo>, <Phase>,
 <ResetCycles>) <ClockName>

Verilog Macro Wrapper:

module SceMiClockPort(
 //inputs outputs
 Cclock, Creset);
 //------------------------ ------------------------------
 parameter ClockNum=1;
 parameter RatioNumerator= 1, RatioDenominator= 1;
 parameter DutyHi= 0,

 DutyLo= 100 , Phase=0;
 parameter ResetCycles=8;
endmodule

VHDL Macro Wrapper:

entity SceMiClockPort is
 generic(ClockNum: natural := 1;
 RatioNumerator: natural := 1; R atioDenominator: natural := 1;
 DutyHi: natural := 0; DutyLo: natural := 100 ;
 Phase: natural := 0; R esetCycles: natural := 8);
 port(Cclock: out std_logic; Creset: out std_logic);
end;

architecture EmptyMacro of SceMiClockPort is begin end;

SCE-MI 2.4 52

For example, if a cclock is defined with a ratio of 4/1 this is interpreted as, “for every 4 edges of the 1/1

cclock there is only 1 edge of this cclock”. This defines a “divide-by-four” clock.

It is sometimes necessary to establish a timebase which is associated with the fastest clock (the 1/1 clock) in

the system. An implementation should provide a mechanism by which this can be done.

5.2.4.1 Parameters and signals

ClockNum=1

This parameter assigns a unique number to a clock which is used to differentiate it from other

SceMiClockPort instances. It shall be an error (by the infrastructure linker) if more than one

SceMiClockPort instances share the same ClockNum. The default ClockNum is 1.

RatioNumerator=1, RatioDenominator=1

These parameters constitute the numerator and denominator, respectively, of this clock’s ratio. The numerator

always designates the number of cycles of the fastest controlled clock that occur during the number of cycles

of “this” clock specified in the denominator. For example, RatioNumerator=5 and RatioDenominator=2

specifies a 5/2 clock, which means for every five cycles of the 1/1 clock that occur, only two cycles of this

clock occur. The default clock ratio is 1/1. For more information refer to section 5.2.4.

DutyHi=0, DutyLo=100, Phase=0

The duty cycle is expressed with arbitrary integers which are normalized to their sum, such that the sum of

DutyHi and DutyLo represent the number of units for a whole cycle of the clock. For example, when

DutyHi=75 and DutyLo=25, the high time of the clock is 75 out of 100 units or 75% of the period. Similarly,

the low time would be 25% of the period. The phase shift is expressed in the same units; if Phase=30, the

clock is shifted by 30% of its period before the first low to high transition occurs.

The default duty cycle shown in the macro wrappers within Figure 5.6 is a don’t care duty cycle of 0/100 (see

5.2.4.3).

ResetCycles=8

This parameter specifies how many cycles of this controlled clock shall occur before the controlled reset

transitions from its initial value of 1 back to 0.

ClockName

The clock port’s name is derived from its instance label.

Cclock

This is the controlled clock signal the SCE-MI infrastructure supplies to the DUT. This clock’s characteristics

are derived from the parameters specified on instantiation of this macro.

Creset

This is the controlled reset signal the SCE-MI infrastructure supplies to the DUT.

5.2.4.2 Deriving clock ratios from frequencies

Another way to specify clock ratios is enter them directly as frequencies, all normalized to the clock with the

highest frequency. To specify ratios this way requires the following.

Make each ratio numerator equal to the highest frequency.

Use consistent units for all ratios.

Omit those units and simply state them as integers.

For example, suppose a system has 100Mhz, 25Mhz, and 10Mhz, 7.5 Mhz, and 32kHz clocks. To specify the

ratios, the frequencies can be directly entered as integers, using kHz as the unit (but omitting it!):

SCE-MI 2.4 53

100000 / 100000 - the fastest clock

100000 / 25000

100000 / 10000

100000 / 7500

100000 / 32

Users who like to think in frequencies rather than ratios can use this simple technique.

Note: An implementor of the SCE-MI macro-based interface may wish to provide a tool to assist in deriving clock ratios from

frequencies. Such a tool could allow a user to enter clock specifications in terms of frequencies and then generate a set of

equivalent ratios. In addition, this tool could be used to post process waveforms (such as .vcd files) generated by the simulation

so the defined clocks appear in the waveform display to be the exact same frequencies given by the user.

5.2.4.3 Don’t care duty cycle

The default duty cycle shown within the macro wrappers in Figure 5.6 is a don’t care duty cycle. Users can

specify they only care about posedges of the cclock and do not care where the negedge falls. This is known

as a posedge active don’t care duty cycle. In such a case, the DutyHi is given as a 0. The DutyLo can be

given as an arbitrary number of units, such that the Phase offset can still be expressed as a percentage of the

whole period (i.e., DutyHi+DutyLo).

For example, this combination:

DutyHi=0, DutyLo=100, Phase=30

means the following:

a) I don’t care about the duty cycle. Specifically, I don’t care where the negedge of the clock falls.

b) If the total period is expressed as 100 units (0+100), the phase should be shifted by 30 of those

units. This represents a phase shift of 30%.

Another example:

DutyHi=3, DutyLo=1, Phase=2

means:

a) I care about both intervals of the duty cycle. The duty cycle is 75%/25%.

b) The phase shift is 50% of period (expressed as 3+1 units).

It is also possible to have a negedge active don’t care duty cycle. In this case, the DutyLo parameter is given

as a 0 and the DutyHi is given as a positive number (> 0).

For example:

DutyHi=1, DutyLo=0, Phase=0

means:

a) I don’t care about the duty cycle. Specifically, I don’t care where the posedge of a clock falls.

b) The phase shift is 0.

In any clock specification, it shall be an error if Phase >= DutyHi + DutyLo.

Note: The intent of the don't care duty cycle is to relax the requirement that each edge of a controlled clock must coincide with a

rising edge of uclock. A controlled clock with a posedge active don't care duty cycle, i.e., with DutyHi given as 0, is not

required to have its falling edge coincide with a rising edge of uclock. Similarly, a controlled clock with a negedge active

don't care duty cycle, i.e., with DutyLo given as 0, is not required to have its rising edge coincide with a rising edge of uclock.

Hence, the don't care duty cycle enables controlled clocks to be the same frequency of the uclock. Conversely, the maximum

possible frequency of a non-don't care duty cycle controlled clock is 1/2 the frequency of the uclock. Since the implicit 1/1

controlled clock is specified to have posedge active don't care duty cycle, it may be as fast as uclock.

SCE-MI 2.4 54

5.2.4.4 Controlled reset semantics

The Creset output of the SceMiClockPort macro shall obey the following semantics:

Creset will start low (de-asserted) and transition to high one or more uclock cycles later. It then remains

high (asserted) for at least the minimum duration specified by the ResetCycles parameter adorning the

SceMiClockPort macro. This duration is expressed as a number of edges of associated Cclock. Following

the reset duration, the Creset then goes low (de-asserted) and remains low for the remaining duration of the

simulation. Some applications require 2-edged resets at the beginning of a simulation.

For multiple cclocks, the reset duration shall have a minimum length so it is guaranteed to span the

ResetCycles parameter of any clock. In other words, the minimum controlled reset duration for all clocks

shall be:

max(ResetCycles for cclock1, ResetCycles for cclock2, ...)

Some implementations can use a reset duration that is larger than the quantity shown above to achieve proper

alignment of multiple cclocks on the edges of the controlled reset, as described in 5.2.4.5.

During the assertion of Creset, Cclock edges shall be forced, regardless of the state of the

ReadyForCclock inputs to the SceMiClockControl macros. Once the reset duration completes, the

Cclock will be controlled by the ReadyForCclock inputs.

Note: The operation of controlled reset just described provides the default controlled reset behavior generated by the

SceMiClockPort macro. If more sophisticated reset handling is required, use a specially written reset transactor in lieu of the

simpler controlled resets that come from the SceMiClockPort instances. For example, if a software controlled reset is

required, an application needs to create a reset transactor which responds to a special software originated reset command that

arrives on its message input port.

5.2.4.5 Multiple cclock alignment

In general, all cclocks need to align on the first rising uclock edge following the trailing edge of the

creset. This uclock edge is referred to as the point of alignment. For cclocks with phases of 0, this means

rising edges of these clocks shall coincide with the point of alignment. For cclocks with phases > 0, those

edges occur at some time after the point of alignment. Every cclock edge must occur on a uclock edge.

Figure 5.6 shows an assortment of cclocks with the uclock and creset. It also shows how those cclocks

behave at the point of alignment.

In Figure 5.6, cclock1, cclock2, and cclock3 have phases of 0 and, therefore, have rising edges at the point

of alignment. cclock4 has the same duty cycle as cclock2, but a phase shift of 50%. Therefore, its rising

edge occurs two uclocks (1/2 cycle) after the point of alignment. Its starting value at the point of alignment is

still 0.

cclock5 has the same duty cycle as cclock3, but a phase of 50%. Again, its rising edge occurs 1/2 cycle

after the point of alignment. But notice its starting value at the point of alignment is 0. This can be alternatively

thought of as an inverted phase. Anytime the phase is greater than the high duty cycle interval, the starting

value at the point of alignment is a 0. In the case where the phase equals the high duty cycle, a falling edge

occurs at the point of alignment.

SCE-MI 2.4 55

uclock

cclock1

creset

point of alignment

cclock2

cclock3

cclock4

cclock5

ratio: 4/1 duty cycle : 50/50 phase : 0

ratio: 4/1 duty cycle : 25/75 phase : 0

ratio: 4/1 duty cycle : 75/25 phase : 0

ratio: 4/1 duty cycle : 25/75 phase : 50

ratio: 4/1 duty cycle : 75/25 phase : 50

Figure 5.6 Multi-clock alignment

5.2.5 SceMiClockControl macro

For every SceMiClockPort macro instance there must be at least one counterpart SceMiClockControl

macro instance presumably encapsulated in a transactor. The SceMiClockControl macro is the means by

which a transactor can control a DUT’s clock and by which the SCE-MI infrastructure can indicate to a

transactor on which uclock cycles that controlled clock have edges.

Figure 5.7 shows the symbol for the SceMiClockControl macro as well as SystemVerilog and VHDL source

code for the empty macro wrappers.

SCE-MI 2.4 56

Uclock

Ureset

SceMiClockControl

#<ClockNum> c1

Verilog Macro Wrapper:

module SceMiClockControl(

 //inputs outputs

 Uclock, Ureset;

 ReadyForCclock, CclockEnabled,

 ReadyForCclockNegEdge, CclockNegEdgeEnabled);

 //------------------------ ------------------------------

 parameter ClockNum = 1;

 output Uclock, Ureset;

 input ReadyForCclock; output CclockEnabled;

 input ReadyForCclockNegEdge, output CclockNegEdgeEnabled;

endmodule

VHDL Macro Wrapper:

entity SceMiClockControl is

 generic(ClockNum: natural := 1);

 port(

 Uclock, Ureset: out std_logic;

 ReadyForCclock: in std_logic;

 CclockEnabled: out std_logic;

 ReadyForCclockNegEdge: in std_logic;

 CclockNegEdgeEnabled: out std_logic;

);

end;

architecture EmptyMacro of SceMiClockControl is begin end;

ReadyForCclock

CclockEnabled

CclockNegEdgeEnabled

ReadyForCclockNegEdge

Figure 5.7 SceMiClockControl macro

For each SceMiClockPort defined in the system, typically one corresponding SceMiClockControl macro

is instantiated in one or more transactors. If no clock controls are associated with a given controlled clock, it is

assumed there is an implicit clock control which is always enabling that clock so the controlled clock simply

runs free. In addition to providing uncontrolled clocks and resets, this macro also provides handshakes that

provide explicit control of both edges of the generated cclock.

5.2.5.1 Parameters

ClockNum=1

This is the only parameter given to the SceMiClockControl macro. This parameter is used to associate a

SceMiClockControl instance with its counterpart SceMiClockPort instance defined at the top level. The

default ClockNum is 1.

There shall be exactly one instance of SceMiClockPort associated with each instance of

SceMiClockControl in the system. But there can be one or more instances of SceMiClockControl for

each instance of SceMiClockPort. A SceMiClockControl instance identifies its associated

SceMiClockPort by properly specifying a ClockNum parameter matching that of its associated

SceMiClockPort.

5.2.5.2 Signals

Uclock

This is the uncontrolled clock signal generated by the SCE-MI infrastructure.

Ureset

This is the uncontrolled reset generated by the SCE-MI infrastructure. This signal is high at the beginning of

simulated time and transitions to a low an arbitrary (implementation-dependent) number of uclocks later. It

can be used to reset the transactor.

SCE-MI 2.4 57

The uncontrolled reset shall have a duration spanning that of the longest controlled reset (Creset output from

each SceMiClockPort; see 5.2.4.4) as measured in uclocks. This guarantees all DUTs and transactors

properly wake up in an initialized state the first uclock following expiration of the last controlled reset.

ReadyForCclock

This input to the macro indicates to the SCE-MI infrastructure that a transactor is willing to allow its associated

DUT clock to advance. One of the most useful applications of this feature is to perform complex algorithmic

operations on the data content of a transaction before presenting it to the DUT.

If this input to one of the SceMiClockControl instances associated with a given controlled clock is de-

asserted, the next posedge of that cclock will be disabled. In reacting to a ReadyForCclock of a slower

clock, the infrastructure must not prematurely disable active edges of other faster clocks that occur prior to the

last possible uclock preceding the edge to be disabled. In other words, that edge is disabled just in time so as

to allow faster clock activity to proceed until the last moment possible. Once the edge is finally disabled, all

active edges of all controlled clocks are also disabled. This is referred to as just in time clock control

semantics.

Note: It may sometimes be desired for a transactor to stop all clocks in the system immediately. This is referred to as emergency

brake clock control semantics. This can simply be done by instantiating a SceMiClockControl associated with the fastest

clock in the system and applying normal clock control to it. See Section 5.2.4 for more information.

CclockEnabled

This macro output signals the transactor, that on the next posedge of uclock, there is a posedge of the

controlled clock. The transactor can thus sample this signal to know if a DUT clock posedge occurs. It can

also use this signal as a qualifier that says it is okay to sample DUT output data. Transactors shall only sample

DUT outputs on valid controlled clock edges. The SCE-MI infrastructure looks at the ReadyForCclock

inputs from all the transactors and asserts CclockEnabled only if they are all asserted. This means any

transactor can stop all the clocks in the system by simply de-asserting ReadyForCclock.

For a negedge active don’t care duty cycle (see 5.2.4.3), since the user does not care about the posedge, the

CclockEnabled shall always be 0.

ReadyForCclockNegEdge

Similarly, for negedge control, if this input to one of the SceMiClockControl instances that are associated

with a given controlled clock is de-asserted, the next negedge of that clock will be disabled. In reacting to a

ReadyForCclockNegEdge of a slower clock, the infrastructure must not prematurely disable active edges of

other faster clocks that occur prior to the last possible uclock preceding the edge to be disabled. In other

words, that edge is disabled just in time so as to allow faster clock activity to proceed until the last moment

possible. Once the edge is finally disabled, all active edges of all controlled clocks are also disabled. This is

referred to as just in time clock control semantics.

Note: Support for explicit negedge control is needed for transactors that use the negedge of a controlled clock as an active

edge. Transactors that do not care about controlling negedges (such as the one shown in Figure A.1) need to tie this signal

high.

CclockNegEdgeEnabled

This signal works like CclockEnabled, except it indicates if the negedge of a controlled clock occurs on the

next posedge of the uclock. This can be useful for transactors that control double pumped DUTs.

Transactors that do not care about negedge control can ignore this signal.

For a posedge active don’t care duty cycle (see 5.2.4.3), since the user does not care about the posedge, the

CclockNegEdgeEnabled shall always be 0.

SCE-MI 2.4 58

clkfast

clkfast_enabled

uclock

ready_for_clkfast

clkfast_negedge

clkfast_negedge_enabled

clkslow

ready_for_clkfast_negedge

clkslow_enabled

clkslow_negedge_enabled

ready_for_clkslow

ready_for_clkslow_negedge

“just in time”

Figure 5.8 Example of Clock Control Semantics

5.2.5.3 Example of clock control semantics

Figure 5.8 shows an example of clock control for two fast clocks (clkfast, clkfast_negedge) that use

don’t care duty cycle semantics and one slow clock (clkslow) that uses a 50/50 duty cycle. clkfast uses

posedge active don’t care duty cycle and clkfast_negedge uses negedge active don’t care duty cycle.

The effect of the 4 respective clock control signals ready_for_clkfast, ready_for_clkfast_negedge,

ready_for_clkslow, and ready_for_clkslow_negedge can be seen.

De-assertion of ready_for_clkfast prevents subsequent posedges of clkfast, negedges of

clkfast_negedge, and all edges of clkslow from occurring on subsequent posedges of uclock. Once re-

asserted, all these edges are allowed to occur on the subsequent uclock posedges where relevant.

De-assertion of ready_for_clkfast_negedge prevents subsequent negedges of clkfast_negedge,

posedges of clkfast, and all edges of clkslow from occurring on subsequent posedges of uclock. Once

re-asserted, all these edges are allowed to occur on the subsequent uclock posedges where relevant.

De-assertion of ready_for_clkslow prevents subsequent posedges of clkslow. But notice that this

happens just in time for the next scheduled posedge clkslow. Prior to this, edges of faster clocks or the

negedge of the same clock are allowed to occur. Once the edge is finally disabled, all edges of other clocks

are disabled as well. Once re-asserted, all these edges are allowed to occur on the subsequent uclock

posedges where relevant.

De-assertion of ready_for_clkslow_negedge prevents subsequent negedges of clkslow. But notice that

this happens just in time for the next scheduled negedge clkslow. Prior to this, edges of faster clocks or the

posedge of the same clock are allowed to occur. Once the edge is finally disabled, all edges of other clocks are

disabled as well. Once re-asserted, all these edges are allowed to occur on the subsequent uclock posedges

where relevant.

Note: that all of the clock enabled signals, clkfast_enabled, clkfast_negedge_enabled, clkslow_enabled, and

clkslow_negedge_enabled are shown to transition on uclock posedges. The implementation can also choose to

SCE-MI 2.4 59

transition them on negedges. The only hard requirement is that their values can be sampled on the uclock posedge at which the

associated controlled clock edge will occur.

5.2.6 SCE-MI 2 support for clock definitions

The SceMiClockPort continues to be supported in SCE-MI 2 and can be used to provide clocks to SCE-MI

function and pipe-based models.

Although clock port macros continue to be supported, SCE-MI 2 makes no requirement that clocks must be

specified using only clock ports. Alternative clock specifications are allowed such as simple behavioral clock

generation blocks that are traditionally used with HDL languages. The SCE-MI 2 standard does not preclude

use of such specifications in place of clock port macros.

Additionally, although there are no changes to clock ports for definitions of clocks, it is recognized that with

the SCE-MI 2 function and pipes-based approach no clock control is needed as there is no explicit notion of

uncontrolled time in SCE-MI 2 models.

Use of the SceMiClockControl macro is only needed for clock control in legacy macro-based transactor

models.

5.3 Macro-based infrastructure linkage

This section is strictly the concern of the infrastructure implementer class of user, as defined in 4.3.3. End-

users and transactor implementers can assume the operations described herein are automatically handled by the

infrastructure linker.

As described in section 4.5.2, infrastructure linkage is the process which analyzes the user’s bridge netlist on

the hardware side and compiles it into a form suitable to run on the emulator. This may involve expanding the

interface macros into infrastructure components that are added to the existing structure, as well as to generate

parameter information which is used to bind the hardware side to the software side. In order to determine this

information, the infrastructure linker analyzes the netlist and searches for instances of the SCE-MI hardware

side macros, reads the parameter values from those instances, and generates a parameter file that can be read

during software side initialization to properly bind message port proxies to the hardware side.

Typically, the infrastructure linker provides options in the form of switches and/or an input configuration file

which allows a user to pass along or override implementation-specific options. A well crafted infrastructure

linker, however, needs to maximize ease-of-use by transparently providing the end-user with a suitable set of

default values for implementation-specific parameters, so that most, if not all, of these parameters need not be

overridden.

5.3.1 Parameters

The following set of parameters define the minimum set that is needed for all implementations of the SCE-MI

standard. Specific implementations might require additional parameters.

Number of transactors

The number of transactors shall be derived by counting the number of modules in the user’s design that qualify

as transactors. Any one of 3 conditions can qualify a module as a transactor:

1. The module has a SceMiClockControl macro instantiated immediately inside it, or,

2. The module has the following parameter defined within its scope:

Verilog:

parameter SceMiIsTransactor = 1;

VHDL:

generic(SceMiIsTransactor: boolean := true);

or,

SCE-MI 2.4 60

3. The module has at least one SCE-MI message port instantiated immediately inside it and neither that module

nor any of its enclosing parent modules has otherwise been defined as a transactor.

Nested transactors are allowed. A message port's owning transactor is defined to be the lowest module in that

port's enclosing hierarchical scope that qualifies as a transactor based on the definition above.

Transactor name

The transactor name shall be derived from the hierarchical path name to an instance of a module that qualifies

as a transactor (as per the above definition). Naturally, if there are multiple instances of a given type of

transactor, they shall be uniquely distinguished by their instance path names. The syntax used to express the

path name shall be that of the bridge netlist’s HDL language.

Number of message input or output channels

The infrastructure linker derives the number of message input and output ports by counting instances of the

SceMiMessageInPort and SceMiMessageOutPort macros.

Port name

The name of each port shall be derived from the relative instance path name to that port, relative to its

containing transactor module. For example, if the full path name to a message input port macro instance is

(using SystemVerilog notation) Bridge.u1.tx1.ip1 and the transactor name is Bridge.u1.tx1, then the

port name is ip1. If an output port is instantiated one level down from the input port and its full path is

Bridge.u1.tx1.m1.op1, then its port name is m1.op1, since it is instantiated a level down relative to the

transactor root level.

The full pathname to a port can be derived by concatenating the transactor name to the port name (with a

hierarchical separator inserted between).

Message input or output port width

The width of a port in bits shall be derived from the PortWidth parameter defined in the message port macro.

This width defaults to 1, but is almost always overridden to a significantly larger value at the point of

instantiation.

Number of controlled clocks

This number shall be derived by counting all instances of the SceMiClockPort macro.

Controlled clock name

The name of a controlled clock is derived from the instance label (not path name) of its SceMiClockPort

instance, necessarily instantiated at the top level of the user’s bridge netlist and unique among all instances of

SceMiClockPort.

Controlled clock ratio

The clock ratio is determined from the RatioNumerator and RatioDenominator parameters of the

SceMiClockPort macro. The RatioNumerator designates the number of cycles of the 1/1 controlled clock

that occur during the number of cycles of “this” clock specified in RatioDenominator. See 5.2.4 for more

details about the clock ratio.

Controlled clock duty cycle and phase

The duty cycle is determined from the DutyHi, DutyLo, and Phase parameters of the SceMiClockPort

macro. The duty cycle is expressed as a pair of arbitrary integers: DutyHi and DutyLo interpreted as follows:

if the sum of DutyHi and DutyLo represents the number of units in a period of the clock, then DutyHi

represents the number of units of high time and DutyLo represents the number of units of low time. Similarly,

Phase represents the number of units the clock is phase shifted relative to the reference 1/1 cclock. A user can

also specify a don’t care duty cycle. See 5.2.4 for more details about the duty cycle and phase.

Controlled reset cycles

SCE-MI 2.4 61

The duration of a controlled reset expressed in terms of cclock cycles is determined from the ResetCycles

parameter of the ClockPort macro.

Parameter file

The infrastructure linker needs to automatically generate a parameter file after analyzing the user-supplied

netlist and determining all the parameters identified in 5.3.1. The parameter file can be read by the software

side of the SCE-MI infrastructure to facilitate binding operations that occur after software model construction.

Because it is automatically generated, the content and syntax of the parameter file is left to specific

implementers of the SCE-MI. The content itself is not intended to be portable.

However, on the software side, the infrastructure implementer needs to provide a parameter access API that

conforms to the specification in 5.4.4. This access block shall support access to a specifically named set of

parameters required by the SCE-MI, as well as an optional, implementation specified set of named parameters.

All SCE-MI required parameters are read-only, because their values are automatically determined by the

infrastructure linker by analyzing the user-supplied netlist. Implementation-specific parameters can be read-

only or read-write as the implementation requires.

5.4 Macro-based software side interface - C++ API

To gain access to the hardware side of the SCE-MI, the software side shall first initialize the SCE-MI software

side infrastructure and then bind to port proxies representing each message port defined on the hardware side.

Part of initializing the SCE-MI involves instructing the SCE-MI to load the parameter file generated by the

infrastructure linker. The SCE-MI software side can use this parameter file information to establish rendezvous

with the hardware side in response to port binding calls from the user’s software models. Port binding

rendezvous is achieved primarily name association involving transactor names and port names.

Note: Clock names and properties identified in the parameter file are of little significance during the binding process although

this information is procedurally available to applications that might need it through the parameter file API (see 5.4.4).

Access to the software side of the interface is facilitated by a number of C++ classes:

class SceMiEC

class SceMi

class SceMiMessageInPortProxy

class SceMiMessageOutPortProxy

class SceMiParameters

class SceMiMessageData

5.4.1 Primitive data types

In addition to C data types, such as integer, unsigned, and const char *, many of the arguments to the

methods in the API require unsigned data types of specific width. To support these, SCE-MI implementations

need to provide two primitive unsigned integral types: one of exactly 32 bits and the other exactly 64 bits in

width. The following example implementation works on most current 32-bit compilers.

Example:

typedef unsigned int SceMiU32; //unsigned 32-bit integral type

typedef unsigned long long SceMiU64; //unsigned 64-bit integral type

5.4.2 Miscellaneous interface issues

In addition to the basic setup, teardown, and message-passing functionality, the SCE-MI provides error

handling, warning handling, and memory allocation functionality. These verbatim API declarations are

described here.

SCE-MI 2.4 62

5.4.2.1 Class SceMiEC - error handling

Most of the calls in the interface take an SceMiEC * ec as the last argument. Because the usage of this

argument is consistent for all methods, error handling semantics are explained in this section rather than

documenting error handling for each method in the API.

Error handling in SCE-MI is flexible enough to either use a traditional style of error handling where an error

status is returned and checked with each call or a callback based scheme where a registered error handler is

called when an error occurs.

enum SceMiErrorType {

 SceMiOK,

 SceMiError

};

struct SceMiEC {

 const char *Culprit;

 const char *Message;

 SceMiErrorType Type;

 int Id;

};

typedef void (*SceMiErrorHandler)(void *context, SceMiEC *ec);

static void

SceMi::RegisterErrorHandler(

 SceMiErrorHandler errorHandler,

 void *context);

This method registers an optional error handler with the SCE-MI that is called when an error occurs.

When any SCE-MI operation encounters an error, the following procedure is used:

If the SceMiEC * pointer passed into the function was non-NULL, the values of the SceMiEC structure are

filled out by the errant call with appropriate information describing the error and control is returned to the

caller. This can be thought of as a traditional approach to error handling, such as done in C applications. It is

up to the application code to check the error status after each call to the API and take appropriate abortive

action if an error is detected.

Else if the SceMiEC * pointer passed to the function is NULL (or nothing is passed since the default is NULL

in each API function) and an error handler was registered, that error handler is called from within the errant

API call. The error handler is passed an internally allocated SceMiEC structure filled out with the error

information. In this error handler callback approach, the user-defined code within the handler can initiate abort

operations. If it is a C++ application, a catch and throw mechanism can be deployed. A C application can

simply call the abort() or exit() function after printing out or logging the error information.

Else if the SceMiEC * pointer passed to the function is NULL and no error handler is registered, an SceMiEC

structure is constructed and passed to a default error handler. The default error handler attempts to print a

message to the console and to a log file and then calls abort().

This error handling facility only supports irrecoverable errors. This means if an error is returned through the

SceMiEC object, either via a handler or a return object, there is no point in continuing with the co-modeling

session. Any calls that support returning a recoverable error status need to return that status using a separate,

dedicated return argument.

Also, the Message text filled out in the error structure is meant to fully describe the nature of the error and can

be logged or displayed to the console verbatim by the application error handling code. The Culprit text is the

name of the errant API function and can optionally be added to the message that is displayed or logged.

Because every API call returns a success or fatal error status and the detailed nature of errors is fully described

within the returned error message, the SceMiErrorType enum has only two values pertaining to success:

(SceMiOK) or failure (SceMiError). The SceMiEC::Type returned from API functions to the caller can be

either of these two values, depending on whether the call was a success or a failure. However the

SCE-MI 2.4 63

SceMiEC::Type passed into an error handler shall, by definition, always have the value SceMiError;

otherwise the error handler would not have been called. In addition, the optional Id field can be used to further

classify different major error types or tag each distinct error message with a unique integer identifier.

5.4.2.2 Class SceMiIC - informational status and warning handling (info handling)

The SCE-MI also provides a means of conveying warnings and informational status messages to the

application. Like error handling, info handling is done with callback functions and a special structure that is

used to convey the warning information.

enum SceMiInfoType {

 SceMiInfo,

 SceMiWarning,

 SceMiNonFatalError

};

struct SceMiIC {

 const char *Originator;

 const char *Message;

 SceMiInfoType Type;

 int Id;

};

typedef void (*SceMiInfoHandler)(void *context, SceMiIC *ic);

static void

SceMi::RegisterInfoHandler(

 SceMiInfoHandler infoHandler,

 void *context);

This method registers an optional info handler with the SCE-MI that is called when a warning or informational

status message occurs. This method must only be used for message reporting or logging purposes and must not

abort the simulation (unless there is an application error). Only SceMiEC error handlers are reserved for that

purpose.

When any SCE-MI operation encounters a warning or wishes to issue an informational message, the following

procedure is used:

If an info handler was registered, it is called from within the API call that wants to issue the warning. The info

handler is passed an internally allocated SceMiIC structure filled out with the warning information. In this info

handler callback approach, the user-defined code within the handler can convey the warning to the user in a

manner that is appropriate for that application. For example, it can be displayed to the console, logged to a file,

or both.

Else if no info handler is registered, a SceMiIC structure is constructed and passed to a default,

implementation-defined error handler. The default error handler can attempt to print a message to the console

and/or to a log file in an implementation-specific format.

The Message text filled out in the error structure is meant to fully describe the nature of the info message and

can be logged or displayed to the console verbatim by the application’s warning and info handling code. The

Originator text is the name of the API function that detected the message and can optionally be added to the

message that is displayed or logged. The SceMiInfoType is an extra piece of information which indicates if

the message is a warning or just some informational status.

An additional category, called SceMiNonFatalError, can be used to log all error conditions leading up to a

fatal error. The final fatal error message shall always be logged using a SceMiEC structure and

SceMiErrorHandler function so an abort sequence is properly handled (see 5.4.2.1). In addition, the info

message can optionally be tagged with a unique identifying integer specified in the Id field.

5.4.2.3 Memory allocation semantics

The following rules apply to SCE-MI memory allocation semantics.

SCE-MI 2.4 64

Anything constructed by the user is the user’s responsibility to delete.

Anything constructed by the API is the API’s responsibility to delete.

Thus any object, such as SceMiMessageData, that is created by the application using that object’s

constructor, shall be deleted by the application when it is no longer in use. Some objects, such as

SceMiMessage[In/Out]PortProxy objects, are constructed by the API and then handed over to the

application as pointers. Those objects shall not be deleted by the application. Rather, they are deleted when the

entire interface is shut down during the call to SceMi::ShutDown().

Similarly, non-NULL SceMiEC structures that are passed to functions are assumed to be allocated and deleted

by the application. If a NULL SceMiEC pointer is passed to a function and an error occurs, the API allocates

the structure to pass to the error handler and, therefore, is responsible for freeing it.

5.4.3 Class SceMi - SCE-MI software side interface

This is the singleton object that represents the software side of the SCE-MI infrastructure itself. Global

interface operations are performed using methods of this class.

5.4.3.1 Version discovery

static int

SceMi::Version(

 const char *versionString);

This method allows an application to make queries about the version prior to initializing the SCE-MI that gives

it its best chance of specifying a version to which it is compatible. A series of calls can be made to this function

until a compatible version is found. With each call, the application can pass version numbers corresponding to

those it knows and the SCE-MI can respond with a version handle that is compatible with the queried version.

This handle can then be passed onto the initialization call described in 5.4.3.2.

If the given version string is not compatible with the version of the SCE-MI used as the interface, a -1 is

returned. At this point, the application has the option of aborting with a fatal error or attempting other versions

it might also know how to use.

This process is sometimes referred to as mutual discovery.

versionString

This argument is of the form “<majorNum>.<minorNum>.<PatchNum>” and can be obtained by the

application code from the header file of a particular SCE-MI installation.

The following macros are defined

#define SCEMI_MAJOR_VERSION 2

#define SCEMI_MINOR_VERSION 1

#define SCEMI_PATCH_VERSION 0

#define SCEMI_VERSION_STRING “2.1.0”

Note: the version mapping shown above is for example purposes only and should always be set to match the actual version of the

document that the implementation adheres to.

5.4.3.2 Initialization

static SceMi *

SceMi::Init(

 int version,

 SceMiParameters *parameters,

 SceMiEC *ec=NULL);

This call is the constructor of the SCE-MI interface. It gives access to all the other global methods of the

interface.

The return argument is a pointer to an object of class SceMi on which all other methods can be called.

SCE-MI 2.4 65

version

This input argument is the version number returned by the ::Version() method described in 5.4.3.1. An

error results if the version number is not compatible with the SCE-MI infrastructure being accessed.

parameters

This input argument is a pointer to the parameter block object (class SceMiParameters) initialized from

the parameter file generated by the infrastructure linker. See 5.4.4 for a description of how this object is

obtained.

5.4.3.3 SceMi Object Pointer Access

static SceMi *

SceMi::Pointer(

 SceMiEC *ec=NULL);

This accessor returns a pointer to the SceMi object constructed in a previous call to SceMi::Init. The return

argument is a pointer to an object of class SceMi on which all other methods can be called.

If the SceMi::Init method has not yet been called, SceMi::Pointer will return NULL.

5.4.3.4 Shutdown

static void

SceMi::Shutdown(

 SceMi *sceMi,

 SceMiEC *ec=NULL);

This is the destructor of the SCE-MI infrastructure object which shall be called when connection to the

interface needs to be terminated. This call is the means by which graceful decoupling of the hardware side and

the software side is achieved. Termination (Close()) callbacks registered by the application are also called

during the shutdown process.

5.4.3.5 Message input port proxy binding

SceMiMessageInPortProxy *

SceMi::BindMessageInPort(

 const char *transactorName,

 const char *portName,

 const SceMiMessageInPortBinding *binding = NULL,

 SceMiEC *ec=NULL);

This call searches the list of input ports learned from the parameter file, which is generated during

infrastructure linkage, for one whose names match the transactorName and portName arguments. If one is

found, an object of class SceMiMessageInPortProxy is constructed to serve as the proxy interface to that

port and the pointer to the constructed object is returned to the caller to serve all future accesses to that port. It

shall be an error if no match is found.

The implementation shall copy the contents of the object pointed to by the binding argument, to an internal

implementation specific location.

Note: The application is free to de-allocate and/or modify the binding object at any time after calling message input port proxy

binding. Since the binding object is copied, the binding itself will not change as a result of this.

transactorName, portName

These arguments uniquely identify a specific message input port in a specific transactor on the hardware side to

which the caller wishes to bind. These names need to be the path names (described in 5.3.1) expressed in the

hardware side bridge’s netlist HDL language syntax.

binding

The binding argument is a pointer to an object, defined as follows:

SCE-MI 2.4 66

struct SceMiMessageInPortBinding {

 void *Context;

 void (*IsReady)(void *context);

 void (*Close)(void *context);

};

whose data members are used for the following:

Context

The application is free to use this pointer for any purposes it wishes. Neither class SceMi nor class

SceMiMessageInPortProxy interpret this pointer, other than to store it and pass it when calling either the

IsReady() or Close() callbacks.

IsReady()

This is the function pointer for the callback used whenever an input-ready notification has been received from

the hardware side. This call signals that it is okay to send a new message to the input port. If this pointer is

given as a NULL, the SCE-MI assumes this port does not need to deploy input-ready notification on this

particular channel. See 5.2.2.2 for a detailed description of the input-ready callback.

Close()

This is a termination callback function pointer. It is called during destruction of the SCE-MI. This pointer can

also be optionally specified as NULL.

If the binding argument is given as a NULL, the SCE-MI assumes that each of the Context, IsReady(), and

Close() data members all have NULL values.

Note: This call

inProxy = scemi->BindMessageInPort("Transactor","Port");

is equivalent to this code

SceMiMessageInPortBinding inBinding;

inBinding.Context = NULL;

inBinding.IsReady = NULL;

inBinding.Close = NULL;

inProxy = scemi->BindMessageInPort("Transactor", "Port",&inBinding);

5.4.3.6 Message output port proxy binding

SceMiMessageOutPortProxy *

SceMi::BindMessageOutPort(

 const char *transactorName,

 const char *portName,

 const SceMiMessageOutPortBinding *binding,

 SceMiEC *ec=NULL);

This call searches the list of output ports learned from the parameter file, which was generated during

infrastructure linkage, for one whose names match the transactorName and portName argument. If one is

found, an object of class SceMiMessageOutPortProxy is constructed to serve as the proxy interface to that

port and the handle to the constructed object is returned to the caller to serve all future accesses to that port. It

shall be an error if no match is found.

The implementation shall copy the contents of the object pointed to by the binding argument to an internal,

implementation specific location.

Note: The application is free to de-allocate and/or modify the binding object at any time after calling message output port proxy

binding. Since the binding object is copied, the binding itself will not change as a result of this.

SCE-MI 2.4 67

transactorName, portName

These arguments uniquely identify a specific message output port in a specific transactor on the hardware side

to which the caller wishes to bind. These names must be the path names (described in 5.3.1) expressed in the

hardware side bridge’s netlist HDL language syntax.

binding

The binding argument is a pointer to an object, defined as follows:

struct SceMiMessageOutPortBinding {

 void *Context;

 void (*Receive)(

 void *context,

 const SceMiMessageData *data);

 void (*Close)(void *context);

 };

whose data members are used for the following:

Context

The application is free to use this pointer for any purposes it wishes. Neither class SceMi nor class

SceMiMessageOutPortProxy interpret this pointer other than to store it and pass it when calling either the

IsReady() or Close() callbacks.

Receive()

This is the function pointer for the receive callback used whenever an output message arrives on the port. If

this function pointer is set to NULL, it indicates that any messages from the output port should be ignored. See

5.4.7.1 for more information about how receive callbacks process output messages.

Close()

This is a termination callback function pointer. It is called during destruction of the SCE-MI. This pointer can

also be optionally specified as NULL.

5.4.3.7 Service loop

typedef int (*SceMiServiceLoopHandler)(void *context, bool pending);

int

SceMi::ServiceLoop(

 SceMiServiceLoopHandler g=NULL,

 void *context=NULL,

 SceMiEC *ec=NULL);

This is the main workhorse method that yields CPU processing time to the SCE-MI. In both single-threaded

and multi-threaded environments, calls to this method allow the SCE-MI to service all its port proxies, check

for arriving messages or messages which are pending to be sent, and dispatch any input-ready or receive

callbacks that might be needed. The underlying transport mechanism that supports the port proxies needs to

respond in a relatively timely manner to messages queued on the input or output port proxies. Since these

messages cannot be handled until a call to ::ServiceLoop() is made, applications need to call this function

frequently.

The return argument is the number of service requests that arrived from the HDL side and were processed

since the last call to ::ServiceLoop().

The ::ServiceLoop() first checks for any pending input messages to be sent and sends them.

g()

If g is NULL, ::ServiceLoop() checks for pending service requests and dispatches them, returning

immediately afterwards. If g() is non-NULL, ::ServiceLoop() enters a loop of checking for pending

service requests, dispatching them, and calling g() for each service request. A service request is defined to be

one of the following:

SCE-MI 2.4 68

An arriving message in a SCE-MI message output port that will result in a receive callback being called.

An input ready notification that will result in an input ready callback being called.

When g() returns 0, control returns from the loop. When g() is called, it is passed a pending flag of 1 or 0

indicating whether or not there is at least one service request pending.

context

The context argument to ::ServiceLoop is passed as the context argument to g().

The following pseudo code illustrates implementation of the ::ServiceLoop() according to the semantics

described above:

int SceMi::ServiceLoop(

 SceMiServiceLoopHandler g, void* context, SceMiEC* ec)

{

 bool exit_service_loop = false;

 int service_request_count = 0;

 while(input messages pending) Send them to HDL side.

 while(exit_service_loop == false) {

 if(input ready notifications pending){

 Dispatch input ready callback;

 service_request_count++;

 if(g != NULL && g(context, 1) == 0)

 exit_service_loop = true;

 }

 else if(output messages pending){

 Dispatch message to appropriate receive callback.

 service_request_count++;

 if (g != NULL && !g(context, 1))

 exit_service_loop = true;

 }

 // if(g is not specified) We kick out of the loop.

 // else we stay in as long as g returns non-zero.

 else if (g == NULL || g(context, 0) == 0)

 exit_service_loop = true;

 }

 return service_request_count;

}

5.4.3.7.1 Example of using the g() function to return on each call to ::ServiceLoop()

There are several different ways to use the g() function.

Some applications do force a return from the ::ServiceLoop() call after processing each message. The

::ServiceLoop() call always guarantees a separate call is made to the g() function for each message

processed. In fact, it is possible to force ::ServiceLoop() to return back to the application once per message

by having the g() function return a 0.

So even if all g() does is return 0, as follows,

int g(void */*context*/, bool /*pending*/){ return 0; }

the application forces a return from ::ServiceLoop() for each processed message.

Note: In this case, the ::ServiceLoop() does not block because it also returns even if no message was found (i.e., pending

== 0). Basically ::ServiceLoop() returns no matter what in this case with zero or one message.

5.4.3.7.2 Example of using the g() function to block ::ServiceLoop() until exactly one message

occurs

An application can use the g() function to put ::ServiceLoop() into a blocking mode rather than its default

polling mode. The g() function can be written to cause ::ServiceLoop() to block until it gets one message,

then return on the message it received. This is done by making use of the pending argument to the g()

function. This argument simply indicates if there is a message to be processed or not, for example:

SCE-MI 2.4 69

int g(void */*context*/, bool pending){

 return pending == true ? 0 : 1 }

This blocks until a message occurs, then returns on processing the first message.

5.4.3.7.3 Example of using the g() function to block ::ServiceLoop() until at least one message occurs

Alternatively, suppose the application wants ::ServiceLoop() to block until at least one message occurs,

then return only after all the currently pending messages have been processed.

To do this, the application can define a haveProcessedAtLeast1Message flag as follows:

int haveProcessedAtLeast1Message = 0;

Call ::ServiceLoop() giving the g() function and this flag's address as the context:

...

haveProcessedAtLeast1Message = 0;

sceMi->ServiceLoop(g, &haveProcessedAtLeast1Message);

...

Now define the g() function as follows:

int g(void *context, bool pending){

 int *haveProcessedAtLeast1Message = (int *)context;

 if(pending == 0)

 // If no more messages, kick out of loop if at least

 // one previous message has been processed, otherwise

 // block until the first message arrives.

 return *haveProcessedAtLeast1Message ? 0 : 1;

 else {

 *haveProcessedAtLeast1Message = 1;

 return 1;

 }

}

In conclusion, depending on precisely what type of operation of ::ServiceLoop() is desired, the g()

function can be tailored accordingly.

5.4.4 Class SceMiParameters - parameter access

This class provides a generic API which can be used by application code to access the interface parameter set

described in 5.3.1. It is basically initialized with the contents of the parameter file generated during

infrastructure linkage. It provides accessors that facilitate the reading and possibly overriding of parameters

and their values.

All SCE-MI required parameters are read-only, because their values are automatically determined by the

infrastructure linker analyzing the user-supplied netlist. Implementation-specific parameters can be read-only

or read- write as required by the implementation. All parameters in a SceMiParameters object shall be

overridden before that object is passed to the SceMi::Init() call to construct the interface (see 5.4.3.2

Overriding parameters afterwards has no effect.

5.4.4.1 Parameter set

While the format of the parameter file is implementation-specific, the set of parameters required by the SCE-

API and the methods used to access them shall conform to the specifications described in this section. For

purposes of access, the parameter set shall be organized as a database of attributed objects, where each object

instance is decorated with a set of attributes expressed as name/value pairs. There can be zero or more

instances of each object kind. The API shall provide a simple accessor to return the number of objects of a

given kind, and read and write accessors (described in Table 5.1) to allow reading or overriding attribute values

of specific objects.

The objects in the database are composed of the set of necessary interfacing components that interface the

SCE- MI infrastructure to the application. For example, there is a distinct object instance for each message port

and a distinct object instance representing each defined clock in the system. Attributes of each of the objects

SCE-MI 2.4 70

then represent, collectively, the parameters that uniquely characterize the dimensions and constitution of the

interface components needed for a particular application.

So, for example, a system that requires one input port, two output ports, and two distinct clocks is represented

with five objects, parameterized such that each port object has name and width attributes, each clock object has

ratio and duty cycle attributes, etc. These objects and their attributes precisely and fully describe the interfacing

requirements between that application and the SCE-MI infrastructure.

Table 5.1 gives the minimal, predefined set of objects and attributes required by the SCE-MI. Additional

objects and attributes can be added by implementations. For example, there can be a single, implementation-

specific object representing the entire SCE-MI infrastructure facility itself. The attributes of this singleton

object can be the set of implementation-specific parameters an implementer of the SCE-MI needs to allow the

user to specify.

For more details on attribute meanings, see 5.3.1.

Object kind Attribute name Attribute value

type

Meaning

MessageInPort TransactorName String Name of the transactor enclosing the message input port.

 PortName String Name of the message input port.

 PortWidth Integer Width of the message input port in bits.

MessageOutPort TransactorName String Name of the transactor enclosing the message output port.

 PortName String Name of the message output port.

 PortWidth Integer Width of the message output port in bits.

Clock ClockName String Name of the clock.

 RatioNumerator Integer Numerator (“fast” clock cycles) of clock ratio.

 RatioDenominator Integer Denominator (“this” clock cycles) of clock ratio.

 DutyHi Integer High cycle percentage of duty cycle.

 DutyLo Integer Low cycle percentage of duty cycle.

 Phase Integer Phase shift as percentage of duty cycle.

 ResetCycles Integer Number of controlled clock cycles of reset.

ClockBinding TransactorName String Name of the transactor that contributes to the control of this

clock.

 ClockName String Name of the clock that this transactor helps control.

Table 5.1: Minimum set of predefined objects and attributes, continued

For simplicity, values can be signed integer or string values. More complex data types can be derived by the

application code from string values. Each attribute definition of each object kind implies a specific value type.

5.4.4.2 Parameter set semantics

Although the accessors provided by the SceMiParameters class directly provide the information given in

Table 1, other implied parameters can be easily derived by the application. Following are some of the implied

parameters and how they are determined:

ClockBinding objects indicate the total number of transactor - clock control macro combinations. The number

of distinct contributors to the control of a given clock, as well as the number of distinct transactors in the

system, can be ascertained via the ClockBinding objects.

The number of transactors in the system is determined by counting the number of distinct TransactorName’s

encountered in the ClockBinding objects.

SCE-MI 2.4 71

The number of controlled clocks is determined by reading the number of Clock objects (using the

::NumberOfObjects() accessor described below).

The number of input and output ports is determined by reading the number of MessageInPort and

MessageOutPort objects, respectively.

In addition, the following semantics characterize the parameter set.

a) Transactor names are absolute hierarchical path names and shall conform to the bridge’s netlist

HDL language syntax.

b) Port names are relative hierarchical path names (relative to the enclosing transactor) and shall

conform to the bridge’s netlist HDL language syntax.

c) Clock names are identifiers, not path names, and shall conform to the bridge’s netlist HDL

language identifier naming syntax.

5.4.4.3 Constructor

SceMiParameters::SceMiParameters(

 const char *paramsFile,

 SceMiEC *ec=NULL);

The constructor constructs an object containing all the default values of parameters and then overrides them

with any settings it finds in the specified parameter file. All parameters, whether specified by the user or not

shall have default values. Once constructed, parameters can be further overridden procedurally.

paramsFile

This is the name of the file generated by the infrastructure linker which contains all the parameters derived

from the user’s hardware side netlist. This name can be a full pathname to a file or a pathname relative to the

local directory.

5.4.4.4 Destructor

SceMiParameters::~SceMiParameters()

This is the destructor for the parameters object.

5.4.4.5 Accessors

unsigned int

SceMiParameters::NumberOfObjects(

 const char *objectKind,

 SceMiEC *ec=NULL) const;

This accessor returns the number of instances of objects of the specified objectKind name.

int

SceMiParameters::AttributeIntegerValue(

 const char *objectKind,

 unsigned int index,

 const char *attributeName,

 SceMiEC *ec=NULL) const;

const char *

SceMiParameters::AttributeStringValue(

 const char *objectKind,

 unsigned int index,

 const char *attributeName,

 SceMiEC *ec=NULL) const;

The implementation guarantees the pointer is valid until Shutdown() is called for read-only attributes. For

non- read-only attributes, the implementation guarantees the pointer is valid until Shutdown() or

OverrideAttributeStringValue() of the attribute whichever comes first.

Note: If the application needs the string value for an extended period of time, it may copy the string value to a privately managed

memory area.

SCE-MI 2.4 72

These two accessors read and return an integer or string attribute value.

void

SceMiParameters::OverrideAttributeIntegerValue(

 const char *objectKind,

 unsigned int index,

 const char *attributeName,

 int value,

 SceMiEC *ec=NULL);

void

SceMiParameters::OverrideAttributeStringValue(

 const char *objectKind,

 unsigned int index,

 const char *attributeName,

 const char *value,

 SceMiEC *ec=NULL);

These two accessors override an integer or string attribute value. It shall be an error to attempt to override any

of the object attributes shown in Table 1, any implementation-specific attributes designated as read-only or any

attribute that is not already in the parameter database.

The following argument descriptions generally apply to all the accessors shown above.

objectKind

Name of the kind of object for which an attribute value is being accessed. It shall be an error to pass an

unrecognized objectKind name to any of the accessors.

index

Index of the instance of the object for which an attribute value is being accessed. It shall be an error if the

index >= the number returned by the ::NumberOfObjects() accessor.

attributeName

Name of the attribute whose value is being read or overwritten. It shall be an error if the attributeName does

not identify one of the attributes allowed for the given objectKind.

value

Returned or passed in value of the attribute being read or overridden respectively. Two overloaded variants of

each accessor are provided: one for string values and one for integer values.

5.4.5 Class SceMiMessageData - message data object

The class SceMiMessageData represents the vector of message data that can be transferred from a

SceMiMessageInPortProxy on the software side to its associated SceMiMessageInPort on the hardware

side or from a SceMiMessageOutPort on the hardware side to its associated SceMiMessageOutPortProxy

on the software side. The message data payload is represented as a fixed-length array of SceMiU32 data words

large enough to contain the bit vector being transferred to or from the hardware side message port. For

example, if the message port had a width of 72 bits, Figure 5.9 shows how those bits are organized in the data

array contained inside the SceMiMessageData object.

SCE-MI 2.4 73

31 … 1,0

63 … 33,32

71 … 65,64

SceMiMessage[In/Out]Port.Message[] bits:

SceMiMessageData word 0

SceMiMessageData word 1

SceMiMessageData word 2

Figure 5.9 Organizing 72 bits in a data array

5.4.5.1 Constructor

SceMiMessageData::SceMiMessageData(

 const SceMiMessageInPortProxy &messageInPortProxy,

 SceMiEC *ec=NULL);

This constructs a message data object whose size matches the width of the specified input port. The

constructed message data object can only be used for sends on that port (or another of identical size) or an error

will result.

Destructor

SceMiMessageData::~SceMiMessageData()

This destructs the object and frees the data array.

5.4.5.2 Accessors

unsigned int

SceMiMessageData::WidthInBits() const;

This returns the width of the message in terms of number of bits.

unsigned int

SceMiMessageData::WidthInWords() const;

This returns the size of the data array in terms of number of SceMiU32 words.

void

SceMiMessageData::Set(unsigned int i, SceMiU32 word, SceMiEC *ec = NULL);

This sets word element i of the array to word.

void

SceMiMessageData::SetBit(unsigned int i, int bit, SceMiEC *ec = NULL);

This sets bit element i of the message vector to 0 if bit == 0, otherwise to 1. It is an error if i >=

::WidthInBits().

void

SceMiMessageData::SetBitRange(

 unsigned int i, unsigned int range, SceMiU32 bits, SceMiEC *ec = NULL);

This sets range bit elements whose LSB’s start at bit element i of the message vector to the value of bits. It is

an error if i+range >= ::WidthInBits().

SceMiU32

SceMiMessageData::Get(unsigned int i, SceMiEC *ec = NULL) const;

This returns the word at slot i in the array. It is an error if i >=

::WidthInWords().

int

SceMiMessageData::GetBit(unsigned int i, SceMiEC *ec = NULL) const;

This returns the value of bit element i in the message vector. It is an error if i >= ::WidthInBits().

SceMiU32

SceMiMessageData::GetBitRange(unsigned int i, unsigned int range, Sce¬MiEC *ec

SCE-MI 2.4 74

= NULL) const;

This returns the value of range bit elements whose LSB’s start at i of the message vector. It is an error if
i+range >= ::WidthInBits().

SceMiU64

SceMiMessageData::CycleStamp() const;

The SCE-MI supports a feature called cycle stamping. Each output message sent to the software side is

stamped with the number of cycles of the 1/1 controlled clock since the end of creset at the time the message

is accepted by the infrastructure. The cycle stamp shall be 0 while creset is asserted and 1 at the point of

alignment. This is shown diagrammatically in Figure 5.10. The cycle stamp provides a convenient way for

applications to keep track of elapsed cycles in their respective transactors as the simulation proceeds. The

returned value is an absolute, 64-bit unsigned quantity. For more information on the point of alignment, refer

to 5.2.4.5.

7

1/1 cclock

cycle stamp

crese t

point of alignment

0 1 2 3 4 5 6 8 9 10 11 12 13 14

Figure 5.10 Cycle Stamps

Note: It is suggested that messages should not be sent during the reset period. If they are sent they will all have a cycle stamp of

zero irrespective of the actual clock cycle that they occur on.

5.4.6 Class SceMiMessageInPortProxy

The class SceMiMessageInPortProxy presents to the application a proxy interface to a transactor message

input port.

5.4.6.1 Sending input messages

void

SceMiMessageInPortProxy::Send(

 const SceMiMessageData &data,

 SceMiEC *ec=NULL);

This method sends a message to the message input channel. This message appears on the hardware side as a bit

vector presented to the transactor via the SceMiMessageInPort macro (see 5.2.2), instance-bound to this

proxy.

data

This is a message data object containing the message to be sent. This object may be arbitrarily modified after

Send() and used for an arbitrary number of sends to the same and other message ports.

SCE-MI 2.4 75

5.4.6.2 Replacing port binding

void ReplaceBinding(

 const SceMiMessageInPortBinding* binding = NULL,

 SceMiEC* ec=NULL);

This method replaces the SceMiMessageInPortBinding object originally furnished to the

SceMi::BindMessageInPortProxy() call that created this port proxy object (see 5.4.3.5). This can be

useful for replacing contexts or input-ready callback functions some time after the input message port proxy

has been established.

The implementation shall copy the contents of the object pointed to by the binding argument to an internal,

implementation specific location.

Note: The application is free to deallocate and/or modify the binding object at any time after calling replace port binding. Since

the binding object is copied, the binding itself will not change as a result of this.

binding

This is new callback and context information associated with this message input port proxy.

If the binding argument is given as a NULL, the SCE-MI assumes that each of the Context, IsReady(), and

Close() data members have NULL values.

Note: The ReplaceBinding() call below

 SceMiMessageInPortProxy *inProxy;

 // ...

 inProxy->ReplaceBinding();

 is equivalent to this code

 SceMiMessageInPortProxy *inProxy;

 // ...

 SceMiMessageInPortBinding inBinding;

 inBinding.Context = NULL;

 inBinding.IsReady = NULL;

 inBinding.Close = NULL;

 inProxy->ReplaceBinding(&inBinding);

5.4.6.3 Accessors

const char *

SceMiMessageInPortProxy::TransactorName() const;

This method returns the name of the transactor connected to the port. This is the absolute hierarchical path

name to the transactor instance expressed in the netlist’s HDL language syntax.

const char *

SceMiMessageInPortProxy::PortName() const;

This method returns the port name. This is the path name to the SceMiMessageInPort macro instance

relative to the containing transactor netlist’s HDL language syntax.

unsigned

SceMiMessageInPortProxy::PortWidth() const;

This method returns the port width. This is the value of the PortWidth parameter that was passed to the

associated SceMiMessageInPort instance on the hardware side.

SCE-MI 2.4 76

5.4.6.4 Destructor

There is no public destructor for this class. Destruction of all message input ports shall automatically occur

when the SceMi::ShutDown() function is called.

5.4.7 Class SceMiMessageOutPortProxy

The class MessageOutPortProxy presents to the application a proxy interface to the transactor message

output port.

5.4.7.1 Receiving output messages

There are no methods on this object specifically for reading messages that arrive on the output port proxy.

Instead, that operation is handled by the receive callbacks. Receive callbacks are registered with an output port

proxy when it is first bound to the channel (see 5.4.3.6). The prototype for the receive callback is:

void (*Receive)(void *context, const SceMiMessageData *data);

When called, the receive callback is passed a pointer to a class SceMiMessageData object (see 5.4.5), which

contains the content of the received message, and the context pointer. The context pointer is typically a pointer

to the object representing the software model interfacing to the port proxy.

Use this callback to process the data quickly and return as soon as possible. The reference to the

SceMiMessageData is of limited lifetime and ceases to exist once the callback returns and goes out of scope.

Typically in a SystemC context, the callback does some minor manipulation to the context object, then

immediately returns and lets a suspended thread resume and do the main processing of the received transaction.

No SceMiEC * error status object is passed to the call, because if an error occurs within the

SceMi::ServiceLoop() function (from which the receive callback is normally called), the callback is never

called and standard error handling procedures (see 5.4.2.2) are followed by the service loop function itself. If

an error occurs inside the receive callback, by implication it is an application error, not an SCE-MI error, and

thus is the application’s responsibility to handle (perhaps setting a flag in the context object before returning

from the callback).

It shall be an error if the class SceMiMessageData object passed to the receive callback is passed as the class

SceMiMessageData argument of the SceMiMessageInPortProxy::Send() method. Modifying the class

SceMiMessageData object by casting away const leads to undefined behavior. This is in addition to any

compiler/run-time problems that may be generated by doing this.

5.4.7.2 Replacing port binding

void ReplaceBinding(

 const SceMiMessageOutPortBinding* binding,

 SceMiEC* ec=NULL);

This method replaces the SceMiMessageOutPortBinding object originally furnished to the

SceMi::BindMessageOutPortProxy() call that created this port proxy object (see 5.4.3.6). This can be

useful for replacing contexts or receive callback functions some time after the output message port proxy has

been established. Setting the receive callback to a NULL value indicates that any message from the output can

be ignored.

The implementation shall copy the contents of the object pointed to by the binding argument to an internal,

implementation specific location.

Note: The application is free to deallocate and/or modify the binding object at any time after calling replace port binding. Since

the binding object is copied, the binding itself will not change as a result of this.

binding

This is new callback and context information associated with this message output port proxy.

SCE-MI 2.4 77

5.4.7.3 Accessors

const char *

SceMiMessageOutPortProxy::TransactorName() const;

This method returns the name of the transactor connected to the port. This is the absolute hierarchical path

name to the transactor instance expressed in the netlist’s HDL language syntax.

const char *

SceMiMessageOutPortProxy::PortName() const;

This method returns the port name. This is the path name to the SceMiMessageOutPort macro instance

relative to the containing transactor expressed in the netlist’s HDL language syntax.

unsigned

SceMiMessageOutPortProxy::PortWidth() const;

This method returns the port width. This is the value of the PortWidth parameter that was passed to the

associated SceMiMessageOutPort instance on the hardware side.

5.4.7.4 Destructor

There is no public destructor for this class. Destruction of all message output ports shall automatically occur

when the SceMi::ShutDown() function is called.

5.5 Macro-based software side interface - C API

The SCI-MI software side also provides an ANSI standard C API. All of the following subsections parallel

those described in the C++ API. The C API can be implemented as functions that wrap calls to methods

described in the C++ API. The prototypes of those functions are shown in this section. For full documentation

on a function, see its corresponding subsection in 5.4.

5.5.1 Primitive data types

The C API has its own header file with the following minimum content:

SCE-MI 2.4 78

typedef unsigned SceMiU32;

typedef unsigned long long SceMiU64;

typedef void SceMi;

typedef void SceMiParameters;

typedef void SceMiMessageData;

typedef void SceMiMessageInPortProxy;

typedef void SceMiMessageOutPortProxy;

typedef int (*ServiceLoopHandler)(void *context, int pending);

typedef enum {

 SceMiOK,

 SceMiError,

} SceMiErrorType;

typedef struct {

 const char *Culprit;

 const char *Message;

 SceMiErrorType Type;

 int Id;

} SceMiEC;

typedef void (*SceMiErrorHandler)(void *context, SceMiEC *ec);

typedef enum {

 SceMiInfo,

 SceMiWarning

} SceMiInfoType;

typedef struct {

 const char *Culprit;

 const char *Message;

 SceMiInfoType Type;

 int Id;

} SceMiIC;

typedef void (*SceMiInfoHandler)(void *context, SceMiIC *ic);

typedef struct {

 void *Context;

 void (*IsReady)(void *context);

 void (*Close)(void *context);

} SceMiMessageInPortBinding;

typedef struct {

 void *Context;

 void (*Receive)(

 void *context,

 const SceMiMessageData *data);

 void (*Close)(void *context);

} SceMiMessageOutPortBinding;

An application shall include either the C API header or the C++ API header, but not both.

Note: Because ANSI C does not support default argument values, the last SceMiEC *ec argument to each function must be

explicitly passed when called, even if only to pass a NULL.

5.5.2 Miscellaneous interface support issues

The C miscellaneous functions have semantics like the corresponding C++ methods (shown within 5.4).

SCE-MI 2.4 79

SceMiEC - error handling

void

SceMiRegisterErrorHandler(

 SceMiErrorHandler errorHandler,

 void *context);

5.5.2.1 SceMiIC - informational status and warning handling (info handling)

void

SceMiRegisterInfoHandler(

 SceMiInfoHandler infoHandler,

 void *context);

5.5.3 SceMi - SCE-MI software side interface

See also 5.4.3.

SCE-MI 2.4 80

5.5.3.1 Version discovery

int

SceMiVersion(const char *versionString);

1.1.4.18 Initialization

SceMi *

SceMiInit(

 int version,

 const SceMiParameters *parameterObjectHandle,

 SceMiEC *ec);

5.5.3.2 SceMi Object Pointer Access

SceMi *

SceMiPointer(

 SceMiEC *ec);

5.5.3.3 Shutdown

void

SceMiShutdown(

 SceMi *sceMiHandle,

 SceMiEC *ec);

5.5.3.4 Message input port proxy binding

SceMiMessageInPortProxy *

SceMiBindMessageInPort(

 SceMi *sceMiHandle,

 const char *transactorName,

 const char *portName,

 const SceMiMessageInPortBinding *binding,

 SceMiEC *ec);

5.5.3.5 Message output port proxy binding

SceMiMessageOutPortProxy *

SceMiBindMessageOutPort(

 SceMi *sceMiHandle,

 const char *transactorName,

 const char *portName,

 const SceMiMessageOutPortBinding *binding,

 SceMiEC *ec);

5.5.3.6 Service loop

int

SceMiServiceLoop(

 SceMi *sceMiHandle,

 SceMiServiceLoopHandler g,

 void *context,

 SceMiEC *ec);

5.5.4 SceMiParameters - parameter access

See also 5.4.4.

5.5.4.1 Constructor

SceMiParameters *

SceMiParametersNew(

 const char *paramsFile,

 SceMiEC *ec);

This function returns the handle to a parameters object.

SCE-MI 2.4 81

5.5.4.2 Destructor

void

SceMiParametersDelete(

 SceMiParameters *parametersHandle);

5.5.4.3 Accessors

unsigned int

SceMiParametersNumberOfObjects(

 const SceMiParameters *parametersHandle,

 const char *objectKind,

 SceMiEC *ec);

int

SceMiParametersAttributeIntegerValue(

 const SceMiParameters *parametersHandle,

 const char *objectKind,

 unsigned int index,

 const char *attributeName,

 SceMiEC *ec);

const char *

SceMiParametersAttributeStringValue(

 const SceMiParameters *parametersHandle,

 const char *objectKind,

 unsigned int index,

 const char *attributeName,

 SceMiEC *ec);

void

SceMiParametersOverrideAttributeIntegerValue(

 SceMiParameters *parametersHandle,

 const char *objectKind,

 unsigned int index,

 const char *attributeName,

 int value,

 SceMiEC *ec);

void

SceMiParametersOverrideAttributeStringValue(

 SceMiParameters *parametersHandle,

 const char *objectKind,

 unsigned int index,

 const char *attributeName,

 const char *value,

 SceMiEC *ec);

5.5.5 SceMiMessageData - message data object

See also 5.4.5.

5.5.5.1 Constructor

SceMiMessageData *

SceMiMessageDataNew(

 const SceMiMessageInPortProxy *messageInPortProxyHandle,

 SceMiEC *ec);

This function returns the handle to a message data object suitable for sending messages on the specified input

port proxy.

SCE-MI 2.4 82

5.5.5.2 Destructor

void

SceMiMessageDataDelete(

 SceMiMessageData *messageDataHandle);

5.5.5.3 Accessors

unsigned int

SceMiMessageDataWidthInBits(

 const SceMiMessageData *messageDataHandle);

unsigned int

SceMiMessageDataWidthInWords(

 const SceMiMessageData *messageDataHandle);

void

SceMiMessageDataSet(

 SceMiMessageData *messageDataHandle,

 unsigned int i,

 SceMiU32 word,

 SceMiEC *ec);

void

SceMiMessageDataSetBit(

 SceMiMessageData *messageDataHandle,

 unsigned int i,

 int bit,

 SceMiEC *ec);

void

SceMiMessageDataSetBitRange(

 SceMiMessageData *messageDataHandle,

 unsigned int i,

 unsigned int range,

 SceMiU32 bits,

 SceMiEC *ec);

SceMiU32

SceMiMessageDataGet(

 const SceMiMessageData *messageDataHandle,

 unsigned int i

 SceMiEC *ec);

int

SceMiMessageDataGetBit(

 const SceMiMessageData *messageDataHandle,

 unsigned int i,

 SceMiEC *ec);

SceMiU32

SceMiMessageDataGetBitRange(

 const SceMiMessageData *messageDataHandle,

 unsigned int i,

 unsigned int range,

 SceMiEC *ec);

SceMiU64

SceMiMessageDataCycleStamp(

 const SceMiMessageData *messageDataHandle);

5.5.6 SceMiMessageInPortProxy - message input port proxy

See also 5.4.6.

SCE-MI 2.4 83

5.5.6.1 Sending input messages

void

SceMiMessageInPortProxySend(

 SceMiMessageInPortProxy *messageInPortProxyHandle,

 const SceMiMessageData *messageDataHandle,

 SceMiEC *ec);

5.5.6.2 Replacing port binding

void SceMiMessageInPortProxyReplaceBinding(

 SceMiMessageInPortProxy *messageInPortProxyHandle,

 const SceMiMessageInPortBinding* binding,

 SceMiEC* ec);

5.5.6.3 Accessors

const char *

SceMiMessageInPortProxyTransactorName(

 const SceMiMessageInPortProxy *messageInPortProxyHandle);

const char *

SceMiMessageInPortProxyPortName(

 const SceMiMessageInPortProxy *messageInPortProxyHandle);

unsigned

SceMiMessageInPortProxyPortWidth(

 const SceMiMessageInPortProxy *messageInPortProxyHandle);

5.5.7 SceMiMessageOutPortProxy - message output port proxy

See also 5.4.7.

5.5.7.1 Replacing port binding

void SceMiMessageOutPortProxyReplaceBinding(

 SceMiMessageOutPortProxy *messageOutPortProxyHandle,

 const SceMiMessageOutPortBinding* binding,

 SceMiEC* ec);

5.5.7.2 Accessors

const char *

SceMiMessageOutPortProxyTransactorName(

 const SceMiMessageOutPortProxy *messageOutPortProxyHandle);

const char *

SceMiMessageOutPortProxyPortName(

 const SceMiMessageOutPortProxy *messageOutPortProxyHandle);

unsigned

SceMiMessageOutPortProxyPortWidth(

 const SceMiMessageInPortProxy *messageOutPortProxyHandle);

5.6 Function-based interface

5.6.1 The DPI C-layer

This section defines the C side of DPI.

5.6.1.1 Compliant subset of the SystemVerilog DPI C Layer

The SCE-MI 2 standard defines a subset of a DPI compliant SystemVerilog / C Layer and a subset of DPI data

types supported by the SCE-MI 2 standard. That subset conforms to the DPI C Layer as described in the "DPI

C layer" annex of the SystemVerilog LRM (see Reference [3]).

SCE-MI 2.4 84

5.6.1.2 Binding is automatic - based on static names

SCE-MI 2 function-based interface supports binding between where the DPI functions are defined and from

where they are called based on static C symbol names. The user needs to define a function on one side and call

it from the other side. A SCE-MI 2 implementation will ensure that wrappers with matching symbol names are

provided where appropriate.

All C DPI symbol names conform to ANSI-C naming conventions and linkage. This provides a C symbol

linkage mechanism that is adaptable to the HVL environment used on the software side.

5.6.1.3 Supported types, static mapping

The SystemVerilog LRM IEEE Std. 1800-2012 annex titled "DPI C layer" defines the mapping between the

basic SystemVerilog data types and the corresponding C types.

DPI supports a variety of flexible data types ranging from simple scalar types such as integers to bit vectors to

complex structures and dynamic arrays and the mapping between C data types and SystemVerilog DPI types.

Table 5.3 lists the subset of those mappings between SystemVerilog and C supported for SCE-MI 2.

DPI formal argument types Corresponding types mapped to C

Scalar basic types:

 byte

 byte unsigned

 shortint

 shortint unsigned

 int

 int unsigned

 longint

 longint unsigned

Scalar basic types:

 char

 unsigned char

 short int

 unsigned short int

 int

 unsigned int

 long long

 unsigned long long

scalar values of type bit unsigned char (with specifically defined

values)

packed one-dimensional arrays

of type bit and logic

canonical arrays of svBitVecVal

and svLogicVecVal

Constant string type:

 string

Constant string type:

 const char *

packed struct types C structs

packed multi-dimensional arrays

of type bit and logic

Canonical arrays of svBitVecVal and

svLogicVecVal

Table 5.3: Subset of DPI mapping supported in SCE-MI 2 function-based interface

Note: Integer types, although supported, come with the caveat described above that for C their widths are not cast in stone but for

SystemVerilog they are. As a result, the user will have to be aware of this when using these types in terms of knowing when

padding is implied and when masking is required. That said, scalar data types that can be passed by value are extremely useful

and are supported in SCE-MI 2. It shall of course be assumed that the fixed sizes of these types on the HDL side will be

maintained and will always synthesize to the same number of bits.

SCE-MI 2.4 85

5.6.1.3.1 4-State logic types

SCE-MI 2 supports conveying both 2 state and 4 state logic types from the HDL side to the C side and vice

versa. SCE-MI 2 implementations can handle 4 state logic types as follows:

 No coercion – the HDL side natively supports 4 state types

 No coercion – from HDL to C as the HDL will convey either 2 state types or 4 state types depending

on whether the HDL side supports 2 stated or 4 state types.

 Coercion – from C to HDL if the HDL side only supports 2 state types. In this case X will be coerced

to 1 and Z will be coerced to 0.

Note: Implementations can provide additional coercion options including warnings when coercion takes place.

Note: The above allows models using 4 state logic types to run on SCE-MI 2 compliant implementation without code

modification. Support of 4 states types using coercion, while allowing 4 state types to run on 2 state HDL engines (such as 2 sates

emulators) does not imply that models using 4 states types will provide results consistent with 4 state HDL engines (such as 4

state simulators) or even correct results. It is up to the modeler/user to decide whether to keep the modes unchanged or remodel

the types to 2 state types.

5.6.1.3.2 Constant string literal types

The SystemVerilog standard supports arguments of type input string for both export "DPI-C" and import

"DPI-C" functions. Such arguments map to type const char * on the C side.

For the SCE-MI standard DPI subset, passing of strings shall be allowed for import “DPI-C” functions only. It

shall also be required that any string values passed are const strings, string literals, statically specified

parameters of type string that can be passed down from higher levels of the HDL-side hierarchy.

Example: Passing a string to an import “DPI-C” function:

C-side implementation of import “DPI-C” function:

 extern "C" void identifyMyself(const char *myId){

 MyContext *me =

 (MyContext *)svGetUserData(svGetScope(), (void *)(&identifyMyself));

 me->setMyId(myId);

 }

HDL-side declaration and calling of import “DPI-C” function:

 import "DPI-C" function void identifyMyself(input string myId);

 ...

 const string localId = “MyId”; // Could also be a string parameter.

 identifyMyself(localId); // Could also be direct literal

 // or string parameter.

 ...

5.6.1.3.3 Packed struct types

The SCE-MI 2 DPI subset also supports packed struct argument types.

According to IEEE Std. 1800 (Reference [3] - SystemVerilog), a packed struct type is a convenient way to

arrange an aggregate set of bit fields but it has the same basic layout and arithmetic bit equivalency as a 1-d

packed array.

To quote the IEEE Std. 1800 from the Structures section of the Aggregate data types chapter:

“A packed structure is a mechanism for subdividing a vector into subfields, which can be conveniently

accessed as members. Consequently, a packed structure consists of bit fields, which are packed together in

memory without gaps.”

...

SCE-MI 2.4 86

“A packed structure can be used as a whole with arithmetic and logical operators. The first member specified

is the most significant and subsequent members follow in decreasing significance.”

Additionally, in the DPI C layer annex of the IEEE Std. 1800, it is stated that packed structs are supported

as valid DPI argument types and they are, for all practical purposes, treated as 1-dimensional packed arrays and

thus the C-side canonical representation applies for packed structs as well.

To quote IEEE Std. 1800, from the DPI C layer annex:

“In addition to declaring DPI formal arguments of packed bit and logic arrays, it is also possible to

declare formal arguments of packed struct and union types. DPI handles these types as if they were

declared with equivalent one-dimensional packed array syntax.”

This means that on the C side all packed struct arguments are mapped to either svBitVecVal arrays or

svLogicVecVal arrays just as packed arrays are.

Additionally, it should be noted that, according to IEEE Std. 1800, if any field of a packed struct is a 4-state

data type, the C canonical representation will also be a 4-state svLogicvecVal array.

Whereas if all fields of a packed struct are 2-state data types then the C canonical representation can be the

more optimal svBitVecVal array.

Example: Passing a packed struct to an export “DPI-C” function:

HDL-side implementation of export "DPI-C" function:

 typedef struct packed {

 byte unsigned idNum;

 int unsigned value;

 } TransactionType;

 TransactionType localTransaction;

 export "DPI-C" function passTransaction;

 function void passTransaction(input TransactionType transactionIn);

 localTransaction = transactionIn;

 $display("idNum=%0d value=x%0x",

 localTransaction.myId,

 localTransaction.value);

 endfunction

C-side declaration and calling of export "DPI-C" function:

 struct TransactionType {

 unsigned char idNum;

 unsigned value;

 };

 extern "C" void passTransaction(const svBitVecVal *transactionIn);

 ...

 TransactionType myTransaction = { 1, 0xbeefcafe };

 svBitVecVal myTransactionVec[2];

 svPutPartselBit(myTransactionVec, myTransaction.idNum, 32, 8);

 svPutPartselBit(myTransactionVec, myTransaction.value, 0, 32);

 svSetScope(hdlScope);

 passTransaction(myTransactionVec);

 ...

SCE-MI 2.4 87

Note that because of the above-cited rules in SystemVerilog dictating mapping of packed structs to DPI

canonical array representation, the above C example can be conveniently simplified to,

 struct TransactionType { // Note reversal of fields from above.

 unsigned value;

 unsigned char idNum;

 };

 extern "C" void passTransaction(const svBitVecVal *transactionIn);

 ...

 TransactionType myTransaction = { 0xbeefcafe, 1 };

 svSetScope(hdlScope);

 passTransaction((const svBitVecval *)(&myTransaction));

 ...

But only provided that the field mappings in the C definition of TransactionType are reversed from those in

HDL. The reason, again, is that in SystemVerilog the first member specified is the most significant and

subsequent members follow in decreasing significance, as mentioned 2nd quoted paragraph above. Yet in the C

language's binary layout, the first member is the least significant. This lack of correspondence is a unique

feature of the SystemVerilog language specification for packed struct semantics - to support direct

arithmetic manipulation of aggregate packed structs.

Example: Passing a packed struct from an import “DPI-C” function:

C-side implementation of import "DPI-C" function:

 struct TransactionType {

 unsigned char idNum;

 unsigned value;

 }

 extern "C" void receiveTransaction(svBitVecVal *transactionOut){

 TransactionType *me =

 (TransactionType *)svGetUserData(

 svGetScope(), (void *)(&receiveTransaction));

 svPutPartselBit(transactionOut, me->idNum, 32, 8);

 svPutPartselBit(transactionOut, me->value, 0, 32);

 }

HDL-side declaration and calling of import "DPI-C" function:

 typedef struct packed {

 byte unsigned idNum;

 int unsigned value;

 } TransactionType;

 import "DPI-C" function void receiveTransaction(

 output TransactionType transactionOut);

 TransactionType localTransaction;

 ...

 receiveTransaction(localTransaction);

 ...

5.6.1.4 Multidimensional bit and logic array argument types

The SCE-MI 2 DPI subset supports multidimensional bit and logic array argument types for import and

export DPI-C functions.

Note: As a pretext to understanding the examples of multidimensional bit argument types for DPI functions, a review of IEEE

Std. 1800 (Reference [B3] - SystemVerilog) for handling multidimensional arrays is provided.

SCE-MI 2.4 88

According to IEEE Std. 1800, multidimensional arrays in SystemVerilog are linearized equivalents of one dimensional arrays in

C. To quote the LRM from the Data types section of the annex on the DPI C layer:

“Packed arrays can have an arbitrary number of dimensions although they are eventually always equivalent to a one-

dimensional packed array and treated as such. If the packed part of an array in the type of a formal argument in

SystemVerilog is specified as multidimensional, the SystemVerilog compiler linearizes it.”

Additionally,

“Linearizing a SystemVerilog array with multiple packed dimensions consists of treating an array with dimension sizes

(i, j, k) as if it had a single dimension with size (i * j * k) and had been stored as a one-dimensional array. The one-

dimensional array has the same layout as the corresponding multidimensional array stored in row-major order.”

And the following rules are stated for mapping between SystemVerilog ranges and C ranges:

“For all types of formal argument other than open arrays, the SystemVerilog ranges are defined in the corresponding

SystemVerilog import or export declaration. Normalized ranges are used for accessing such arguments in C code. C

ranges for multiple packed dimensions are linearized and normalized. The mapping between SystemVerilog ranges and

C ranges is defined as follows:

a) If a packed part of an array has more than one dimension, it is linearized as specified by the equivalence

of packed types (see H.7.5 and 6.22.2).

b) A packed array of range [L:R] is normalized as [abs(L-R):0]; its MSB has a normalized index abs(L-R)

and its LSB has a normalized index 0.

c) The natural order of elements for each dimension in the layout of an unpacked array shall be used, i.e.,

elements with lower indices go first. For SystemVerilog range [L:R], the element with SystemVerilog index

min(L,R) has the C index 0 and the element with SystemVerilog index max(L,R) has the C index abs(L-R).

The above range mapping from SystemVerilog to C applies to calls made in both directions, i.e., SystemVerilog calls to

C and C calls to SystemVerilog.

For example, if logic [2:3][1:3][2:0] b [1:10] [31:0] is used in SystemVerilog, it needs to be defined in C as if it were

declared in SystemVerilog in the following normalized form: logic [17:0] b [0:9] [0:31].”

To summarize , the normalized ranges of multidimensional SystemVerilog arrays of bit or logic will map to a single linear

range of canonical DPI svBitVecVals or svLogicVecVals respectively.

Example: Passing a multidimensional array to an export “DPI-C” function:

HDL-side implementation of export "DPI-C" function:

SCE-MI 2.4 89

 bit [15:0] localArray [0:9];

 export "DPI-C" function passArray;

 function void passArray(input bit [2:3][1:2][3:0] arrayIn [1:10]);

 localArray = arrayIn;

 assert(

 localArray[0] = 0 &&

 localArray[1] = 1 &&

 localArray[2] = 2 &&

 localArray[3] = 3 &&

 localArray[4] = 4 &&

 localArray[5] = 5 &&

 localArray[6] = 6 &&

 localArray[7] = 7 &&

 localArray[8] = 8 &&

 localArray[9] = 9);

 endfunction

C-side declaration and calling of export "DPI-C" function:

 extern "C" void passArray(const svBitVecVal *arrayIn);

 ...

 svBitVecVal myArray[5];

 for(i=0; i<10; i++)

 svPutPartselBit(myArray, i, i*16, 16);

 svSetScope(hdlScope);

 passArray(myArray);

 ...

Example: Passing a multidimensional array from an import “DPI-C” function:

C-side implementation of import "DPI-C" function:

 extern "C" void receiveArray(svBitVecVal *arrayOut){

 for(i=0; i<10; i++)

 svPutPartselBit(arrayOut, i, i*16, 16);

 }

HDL-side declaration and calling of import "DPI-C" function:

SCE-MI 2.4 90

 import "DPI-C" function void receiveArray(

 output bit [2:3][1:2][3:0] arrayOut [1:10]);

 bit [15:0] localArray [0:9];

 ...

 receiveArray(localArray);

 assert(

 localArray[0] = 0 &&

 localArray[1] = 1 &&

 localArray[2] = 2 &&

 localArray[3] = 3 &&

 localArray[4] = 4 &&

 localArray[5] = 5 &&

 localArray[6] = 6 &&

 localArray[7] = 7 &&

 localArray[8] = 8 &&

 localArray[9] = 9);

 ...

5.6.2 The DPI SystemVerilog layer

This section defines the SystemVerilog side of DPI.

5.6.2.1 Functions and tasks

The SystemVerilog DPI supports both functions and tasks. An imported or exported DPI function always

executes in 0-time. An exported or imported DPI task, by contrast, can execute in 0-time or can consume time.

SCE-MI function-based interface supports exported or imported DPI functions and supports exported and

imported DPI tasks. Unless explicitly mentioned in the SCE-MI spec, references to exported and imported DPI

functions will also relate to exported and imported DPI tasks. Any subsets and restrictions defined for exported

or imported DPI functions also apply to exported or imported DPI tasks.

SCE-MI only supports calling exported tasks from a context DPI imported task call chain. It does not allow

calling it from outside a context DPI imported function or task call chain. No DPI imported task calls, and, by

implication, call tasks for functions in an imported task call chain, can be time consuming. As such, they must

execute in zero simulation time or delta simulation time from when the imported DPI task was invoked. Any

use of imported and exported DPI task which is not allowed by the SystemVerilog LRM or is considered

unpredictable or undefined, is not supported by SCE-MI.

Note: Section 4.10 extends the scope of calling DPI exported functions to applications linked with the C side considered by the

SystemVerilog LRM “outside a context DPI imported function call chain”. This extension only applies to DPI exported functions

and does not apply to DPI exported tasks.

5.6.2.2 Support for multiple messages in 0-time

DPI places no restrictions on the number of imported function calls made in the same block of code without

intervening time advancement. Implementations must support the ability to transmit multiple messages in 0-

time either by calling the same function or by calling multiple functions in the same time step.

5.6.2.3 Rules for DPI function call nesting

SCE-MI 2 compliant implementation must support two levels of nesting meaning that the HDL side can call an

imported function or 0-time task that can call an exported function. Once the exported function returns, it can

yield control back to the imported function or 0-time task. Supporting more than two levels of nesting is

allowed by SystemVerilog DPI but considered undefined in SCE-MI 2 meaning it can result in undefined

behavior.

Note: SCE-MI does not impose any restrictions on SCE-MI implementations supporting additional levels of nesting. An example

for additional levels of nesting is when the exported function (called from an imported function) calls another imported function

that calls another exported function establishing a call chain that is 4 levels deep.

SCE-MI 2.4 91

5.6.2.4 DPI utility functions supported by SCE-MI 2

DPI defines a small set of functions to help programmers work with DPI context tasks and functions. The term

scope is used in the task or function names for consistency with other SystemVerilog terminology. The terms

scope and context are equivalent for DPI tasks and functions.

There are functions that allow the user to retrieve and manipulate the current operational scope. There are

also functions to associate an opaque user data pointer with an HDL scope. This pointer can then later be

retrieved when an imported DPI function is called from that scope.

SCE-MI 2 supports two types of DPI Utility functions, those that involve manipulation of scope (to be called

scope-related DPI utility Functions) and additional helper functions that can be used for bit vector

manipulation, version query, etc.

The scope-related DPI utility functions are:

 svScope svGetScope(void)

 svScope svSetScope(const svScope scope)

 void svPutUserData(const svScope scope, void *userKey, void *userData)

 void *svGetUserData(const svScope scope, void *userKey)

 const char *svGetNameFromScope(const svScope scope)

 svScope svGetScopeFromName(const char *scopeName)

 int svGetCallerInfo(char **fileName, int *lineNumber)

The helper DPI utility functions are:

 const char *svDpiVersion(void)

 svBit svGetBitselBit(const svBitVecVal *s, int i)

 void svPutBitselBit(svBitVecVal *d, int i, svBit s)

 void svGetPartselBit(svBitVecVal *d, const svBitVecVal *s, int i, int w)

 void svPutPartselBit(svBitVecVal *d, const svBitVecVal s, int i, int w)

Note: There is a restriction on when scope related functions can be called. They cannot be called at any time in the simulation

prior to completion of design elaboration as it is possible that not all scopes are defined before this point. Helper utility functions

can be called at any time.

5.6.3 SV-Connect – Using DPI with SystemVerilog HVL

This section presents the formal requirements of the function based SV-Connect interface with SystemVerilog

HVL testbenches.

5.6.3.1 Rules for DPI functions on the SystemVerilog HVL-side

Each DPI imported function declared on the HDL-side requires a DPI exported function implementation on the

SystemVerilog HVL-side. Similarly, each DPI imported function declared on the SystemVerilog HVL-side

requires a DPI exported function implementation on the HDL-side. The combination of the imported function

and the exported function which together are two parts of a single data path is referred to as paired functions.

The rules for SystemVerilog testbench DPI calls are meant to guarantee a one-to-one correspondence between

the two paired functions so that when one is parsed, the other can be inferred. This means that the return type,

name, and function arguments of both of the paired functions can be ascertained from examining just one of

them. This is critical for allowing auto-generation of the C layer.

5.6.3.1.1 Naming convention

The default naming convention is for every HVL-side DPI function name is to have a prefix placed in front of

the name of its paired HDL-side function name. The text of the prefix string can be specified by the user,

however, absent such a specification, the default prefix shall be “svc_”.

For example, assuming a user specified prefix of ”svc_”, the function xyz_master_configure() on the

HDL-side is paired with svc_xyz_master_configure() on the HVL-side.

Or, assuming the default prefix of svc, the function XyzMasterConfigure() on the HDL-side is paired with

svcXyzMasterConfigure() on the HVL-side.

SCE-MI 2.4 92

Vendor implementations must provide a mechanism to override the default prefix shown above so that the user

may specify an alternate prefix for the HVL-side function when doing auto-generation of the C layer.

Whatever prefix is chosen must be consistently used for all functions that are intended to be paired in any

given automatically generated C layer (see section 5.6.3.2.1 Example of inbound (HVL to HDL) function pair)

5.6.3.1.2 Return type

The return types of the HVL-side and HDL-side paired functions shall match.

5.6.3.1.3 Function arguments

The function arguments of the HVL-side and HDL-side paired functions are the same, and in the same order,

except that the HVL-side function must have one additional argument – SystemVerilog type chandle – as its

first argument.

5.6.3.1.4 Functions only

SV-Connect is defined for functions only. The equivalent of time consuming tasks can be accomplished with

function calls in the inbound (HVL to HDL) direction to initiate a time consuming operation on the HDL side

followed later by function calls in the outbound (HDL to HVL) direction to announce completion of that time

consuming operation.

This rule is consistent with existing SCE-MI DPI usage as well. To be SCE-MI compliant, SV-Connect HDL-

side DPI calls should observe all HDL-side rules as stated in section 5.6.2 The DPI SystemVerilog layer.

5.6.3.2 SV-Connect examples

5.6.3.2.1 Example of inbound (HVL to HDL) function pair

HDL-side: export “DPI-C” function xyz_master_configure;

 function bit xyz_master_configure;

 input int unsigned val;

 config_reg = val;

 if (bus_active) return 1;

 else return 0;

 endfunction

HVL-side: import “DPI-C” context function bit svc_xyz_master_configure (

 input chandle scope,

 input int unsigned val);

5.6.3.2.2 Example of outbound (HDL to HVL) function pair

HDL-side: import “DPI-C” context function bit xyz_master_interrupt (

 input int unsigned icode);

HVL-side: export “DPI-C” function svc_xyz_master_interrupt;

 function void svc_xyz_master_interrupt;

 input chandle scope;

 input int unsigned icode;

 XYZMaster_Proxy me = XYZMaster_Proxy::userData[scope];

 me.interrupt(icode);

 endfunction

5.6.3.3 SystemVerilog HVL-side DPI package rules

All SystemVerilog HVL-side DPI imported function declarations and exported DPI function implementations

shall be inside packages.

Each package that contains DPI functions that pair with HDL-side DPI functions shall declare a special

imported DPI function used to set package scope within the C layer using the following construction of its

name:

SCE-MI 2.4 93

import “DPI-C” context function void svcSetScope_<package name>();

Again, note use of default svc prefix which can be overridden with user-specified prefix as mentioned in

section 5.6.3.1.1 Naming convention.

This svcSetScope_<package name>() imported DPI function is void and has no arguments. It must be

called before any outbound (HDL-side to HVL-side) calls to any of that package’s DPI exported functions are

made. The C layer must provide the implementation of this imported function. It gets and stores within the C

layer the calling scope of the svcSetScope_<package name>() imported DPI function which is the scope

of the package. Whenever an outbound call to the package’s DPI exported functions is made, this package

scope shall be used to set the scope of the exported function call.

5.6.3.4 Binding and scope handling

The HVL-side testbench includes the destination scope of exported DPI functions on the HDL-side that it calls

as the first argument of its paired imported functions. Scopes in SystemVerilog are stored as type chandle

which is the DPI equivalent of the C void * type. In C, scopes returned and input to DPI utility functions such

as svGetScope() are of type svScope (part of SystemVerilog LRM for DPI interface) which is a typedef

of void *.

To assist in mapping DPI scopes to path names and vice versa SV-Connect utilizes direct calling of the

standard SystemVerilog DPI C utility functions as imported DPI functions,

svScope svGetScopeFromName(const char *name);

const char *svGetNameFromScope(svScope scope);

NOTE: Because these two functions are automatically provided by any SystemVerilog compliant simulator that supports the DPI

standard and they have ANSI C (a.k.a. extern “C”) symbol linkage, they can be directly declared in SV-HVL code as

import “DPI-C” functions. This can be quite useful for determining scope handles at initialization time that can be

subsequently and repeatedly passed to the user defined API functions.

A package svdpi.sv shall be provided by the EDA tool which declares svGetScopeFromName() and

svGetNameFromScope() as import “DPI-C” functions. So, HVL packages implementing SV-Connect

transactors can import this package as follows:

import svdpi::*;

5.7 Time access

5.7.1.1 Time access from the C side

To access current simulation time on the C side two calls from SystemVerilog standard VPI interface API can

be used to get current time and global precision. In any SCE-MI 2 implementation that already supports VPI,

no additional work is needed on the part of the implementation to support time access. In SCE-MI 2 function

and pipe feature sets, the two calls must be implemented at least as described below at a minimum, to provide

time access capability.

The vpi_get_time() call can be used to obtain current time expressed in simulation units:

void vpi_get_time(vpiHandle obj, s_vpi_time *time_p);

Specifically for SCE-MI 2 compliance the vpi_get_time() call does not need to be implemented in its

entirety. The only minimum requirement is that vpi_get_time() accepts a NULL value for the obj argument

and a valid pointer to an s_vpi_time structure for the time_p argument.

The vpi_get() call can be used to obtain the global precision units in which current time is expressed:

SCE-MI 2.4 94

int vpi_get(int prop, vpiHandle obj);

Specifically for SCE-MI 2 compliance the vpi_get() call does not need to be implemented in its entirety.

The only minimum requirement is that vpi_get() accepts a value of vpiTimePrecision for the prop

argument and a value of NULL for the obj argument.

Given the ability to obtain current time in simulation units and the precision of those simulation units, one can

easily derive current time expressed in any units desired.

Here is an example of a small “reference code library" that can return current time in NS in any environment

that supports the two VPI calls in the manner described above:

static uint64_t timescaleFactorForNs;

static bool useMultiplyForNs;

static uint64_t precisionConverterForNs[] = {

 1000000000LL, // 0 1 s

 100000000LL, // -1 100 ms

 10000000LL, // -2 10 ms

 1000000LL, // -3 1 ms

 100000LL, // -4 100 us

 10000LL, // -5 10 us

 1000LL, // -6 1 us

 100LL, // -7 100 ns

 10LL, // -8 10 ns

 1LL, // -9 1 ns

 10LL, // -10 100 ps

 100LL, // -11 10 ps

 1000LL, // -12 1 ps

 10000LL, // -13 100 fs

 100000LL, // -14 10 fs

 1000000LL // -15 1 fs

};

//--

// Call this at init time.

void initialize(){

 timescaleFactorForNs =

 precisionConverterForNs[-vpi_get(vpiTimePrecision,NULL)];

 useMultiplyForNs = vpi_get(vpiTimePrecision,NULL) >= -9 ? true : false;

}

//--

// Call this whenever you want time in NS

uint64_t timeInNs() const {

 static s_vpi_time vtime = { vpiSimTime, 0, 0, 0.0 };

 vpi_get_time(NULL, &vtime);

 uint64_t vtime64 = (((uint64_t)vtime.high) << 32) | vtime.low;

 useMultiplyForNs == true ?

 vtime64 * timescaleFactorForNs :

 vtime64 / timescaleFactorForNs ;

}

In an emulation environment it will be up to the implementer's infrastructure to keep the C side's internal

notion of time properly updated with the emulator's notion.

SCE-MI 2.4 95

For streaming threads, the current time access would only be guaranteed at "synchronization points" defined by

flushes of DPI pipes.

Note: Support for this is required by both the function call interface and the pipes-based interface.

5.8 Pipes-based interface: transaction pipes

5.8.1 SCE-MI 2 pipes compliance

Implementation providers stating compliance with SCE-MI pipes-based interface must provide at least one

implementation of C-side Pipes blocking semantics compliant with “Transaction Pipes API: Blocking, Thread-

Aware Interface” specification as defined in section 5.8.4.

SCE-MI 2 C-side Pipes blocking semantics are intended to be implemented using a thread aware application to

be determined by the EDA vendor or the end user. This implies that C-side Pipes blocking calls may be

implemented by an EDA vendor using their threaded application of choice, or by an end user using their

threaded application of choice. SCE-MI 2 defines the interface and the semantics of SCE-MI 2 C-side

Transaction Pipes API: blocking, Thread-Aware interface in section 5.8.4.

SCE-MI 2 requires that EDA vendors implementing C-side Pipes blocking interface will allow end users

implementing their C-side Pipes blocking interface to use their C-side Pipes blocking implementation together

with the EDA vendor C-side Pipes non-blocking interface.

The above specification does not define which threaded applications EDA vendors should use for

implementing SCE-MI 2 C-side Pipes blocking interface. This decision is left to the EDA vendor.

The above specification requires the EDA vendor to allow end users to use the EDA vendor provided Pipes C-

side non-blocking interface for implementing their thread-aware blocking interface.

The above specification allows using both end-user C-side Pipes blocking interface and EDA vendor C-side

Pipes non-blocking interfaces together if end users choose to do so.

The mechanism by which EDA vendor allows end users to choose between their own implementation of Pipes

C-side blocking interface and EDA vendor provided C-side Pipes blocking interface is left to the EDA vendor.

5.8.2 Transaction pipes

Transaction pipes are implemented using an API. On the C-side, the transaction pipes API consists of ANSI C

functions. On the HDL side the API consists of functions and tasks defined in a SystemVerilog interface.

There is also an API to access pipes from SystemVerilog HVL testbenches. It has semantics very similar to the

C-side API however, it is a SystemVerilog class based API which is described in more detail in section5.8.2.3.

C++ HVL testbenches can be used also. C++ class based API is described in section 5.8.2.4

5.8.2.1 C-Side transaction pipes API

The C-side transaction pipes API consists entirely of the following set of function declarations:

Configuration, query functions:

SCE-MI 2.4 96

void *scemi_pipe_c_handle(// return: pipe handle

 const char *endpoint_path); // input: path to HDL endpoint instance

svBit scemi_pipe_set_eom_auto_flush(

 void *pipe_handle, // input: pipe handle

 svBit enabled); // input: 1=enable autoflush; 0=disable autoflush

typedef void (*scemi_pipe_notify_callback)(

 void *context); // input: C model context

typedef void *scemi_pipe_notify_callback_handle;

 // Handle type denoting registered notify callback.

scemi_pipe_notify_callback_handle scemi_pipe_set_notify_callback(

 void *pipe_handle, // input: pipe handle

 scemi_pipe_notify_callback notify_callback,

 // input: notify callback function

 void *notify_context, // input: notify context

 int callback_threshold); // input: threshold for notify callback function

void scemi_pipe_clear_notify_callback(

 scemi_pipe_notify_callback_handle notify_callback_handle);

 // input: notify callback handle

void *scemi_pipe_get_notify_context(//return: notify context object pointer

 scemi_pipe_notify_callback_handle notify_callback_handle);

 // input: notify handle

void scemi_pipe_put_user_data(

 void *pipe_handle, // input: pipe handle

 void *user_key, // input: user key

 void *user_data); // input: user data

void *scemi_pipe_get_user_data(

 void *pipe_handle, // input: pipe handle

 void *user_key); // input: user key

int scemi_pipe_get_bytes_per_element(// return: bytes per element

 void *pipe_handle); // input: pipe handle

svBit scemi_pipe_get_direction(//return: 1 for input pipe, 0 for output pipe

 void *pipe_handle); // input: pipe handle

int scemi_pipe_get_depth(// return: current depth (in elements) of the pipe

 void *pipe_handle); // input: pipe handle

Input pipe interface:

SCE-MI 2.4 97

void scemi_pipe_c_send(

 void *pipe_handle, // input: pipe handle

 int num_elements, // input: #elements to be written

 const svBitVecVal *data, // input: data

 svBit eom); // input: end-of-message marker flag

void scemi_pipe_c_send_bytes(

 void *pipe_handle, // input: pipe handle

 int num_elements, // input: #elements to be written

 const char *data, // input: data

 svBit eom); // input: end-of-message marker flag

void scemi_pipe_c_flush(

 void *pipe_handle); // input: pipe handle

int scemi_pipe_c_try_send(// return: #requested elements

 // that are actually sent

 void *pipe_handle, // input: pipe handle

 int byte_offset, // input: byte offset into data, below

 int num_elements, // input: #elements to be sent

 const svBitVecVal *data, // input: data

 svBit eom); // input: end-of-message marker flag

int scemi_pipe_c_try_send_bytes(// return: #requested elements

 // that are actually sent

 void *pipe_handle, // input: pipe handle

 int byte_offset, // input: byte offset into data, below

 int num_elements, // input: #elements to be sent

 const char *data, // input: data

 svBit eom); // input: end-of-message marker flag

int scemi_pipe_c_try_flush(// return: indication of flush success

 void *pipe_handle); // input: pipe handle

int scemi_pipe_c_can_send(// return: #elements that can be sent

 void *pipe_handle): // input: pipe handle

Output pipe interface:

SCE-MI 2.4 98

void scemi_pipe_c_receive(

 void *pipe_handle, // input: pipe handle

 int num_elements, // input: #elements to be read

 int *num_elements_valid, // output: #elements that are valid

 svBitVecVal *data, // output: data

 svBit *eom); // output: end-of-message marker flag

void scemi_pipe_c_receive_bytes(

 void *pipe_handle, // input: pipe handle

 int num_elements, // input: #elements to be read

 int *num_elements_valid, // output: #elements that are valid

 char *data, // output: data

 svbit *eom); // output: end-of-message marker flag

int scemi_pipe_c_try_receive(// return: #requested elements

 // that are actually received

 void *pipe_handle, // input: pipe handle

 int byte_offset, // input: byte offset into data, below

 int num_elements, // input: #elements to be read

 svBitVecVal *data, // output: data

 svBit *eom); // output: end-of-message marker flag

int scemi_pipe_c_try_receive_bytes(// return: #requested elements

 // that are actually received

 void *pipe_handle, // input: pipe handle

 int byte_offset, // input: byte offset into data, below

 int num_elements, // input: #elements to be read

 char *data, // output: data

 svBit *eom); // output: end-of-message marker flag

svBit scemi_pipe_c_in_flush_state(// return: whether pipe is in Flush state

 void *pipe_handle); // input: pipe handle

int scemi_pipe_c_can_receive(// return: #elements that can be received

 void *pipe_handle); // input: pipe handle

5.8.2.2 HDL-side API

The HDL-side API is fully defined by the following two SystemVerilog interface declarations.

Input pipe interface:

SCE-MI 2.4 99

interface scemi_input_pipe();

 parameter BYTES_PER_ELEMENT = 1;

 parameter PAYLOAD_MAX_ELEMENTS = 1;

 parameter BUFFER_MAX_ELEMENTS = <implementation specified>;

 parameter VISIBILITY_MODE = 0; // must be set to either 1 or 2

 // set to 1 for immediate visibility

 // set to 2 for deferred visibility

 parameter NOTIFICATION_THRESHOLD = BUFFER_MAX_ELEMENTS;

 // Can have a value = 1 or

 // BUFFER_MAX_ELEMENTS

 localparam PAYLOAD_MAX_BITS

 = PAYLOAD_MAX_ELEMENTS * BYTES_PER_ELEMENT * 8;

 task receive(

 input int num_elements, // input: #elements to be read

 output int num_elements_valid, // output: #elements that are valid

 output bit [PAYLOAD_MAX_BITS-1:0] data, // output: data

 output bit eom, // output: end-of-message marker flag

 input int sync_control = IS_CLOCKED_INTF);

 // input: Sync control kind:

 // 0 - block asynchronously

 // 1 - sync on clock posedge

 // 2 - sync on clock negedge

 <implementation goes here>

 endtask

 function int try_receive(// return: #requested elements

 // that are actually received

 input int byte_offset, // input: byte_offset into data, below

 input int num_elements, // input: #elements to be read

 output bit [PAYLOAD_MAX_BITS-1:0] data, // output: data

 output bit eom); // output: end-of-message marker flag

 <implementation goes here>

 endfunction

 function int can_receive(); // return: #elements that can be received

 <implementation goes here>

 endfunction

 modport receive_if(import receive, try_receive, can_receive);

endinterface

Output pipe interface:

SCE-MI 2.4 100

interface scemi_output_pipe();

 parameter BYTES_PER_ELEMENT = 1;

 parameter PAYLOAD_MAX_ELEMENTS = 1;

 parameter BUFFER_MAX_ELEMENTS = <implementation specified>;

 parameter VISIBILITY_MODE = 0; // must be set to either 1 or 2

 // set to 1 for immediate visibility

 // set to 2 for deferred visibility

 parameter NOTIFICATION_THRESHOLD = BUFFER_MAX_ELEMENTS;

 // Can have a value = 1 or

 // BUFFER_MAX_ELEMENTS

 localparam PAYLOAD_MAX_BITS = PAYLOAD_MAX_ELEMENTS * BYTES_PER_ELEMENT * 8;

 task send(

 input int num_elements, // input: #elements to be written

 input bit [PAYLOAD_MAX_BITS-1:0] data, // input: data

 input bit eom, // input: end-of-message marker flag

 input int sync_control = IS_CLOCKED_INTF);

 // input: Sync control kind:

 // 0 - block asynchronously

 // 1 - sync on clock posedge

 // 2 - sync on clock negedge

 <implementation goes here>

 endtask

 task flush (

 input int sync_control = IS_CLOCKED_INTF);

 // input: Sync control kind:

 // 0 - block asynchronously

 // 1 - sync on clock posedge

 // 2 - sync on clock negedge

 <implementation goes here>

 endtask

 function int try_send(// return: #requested elements

 // that are actually sent

 input int byte_offset, // input: byte_offset into data, below

 input int num_elements, // input: #elements to be sent

 input bit [PAYLOAD_MAX_BITS-1:0] data, // input: data

 input bit eom); // input: end-of-message marker flag

 <implementation goes here>

 endfunction

 function int try_flush(); // return: 1 if pipe is successfully flushed

 // i.e. an empty pipe

 <implementation goes here>

 endfunction

 function int can_send(); // return: #elements that can be sent

 <implementation goes here>

 endfunction

 modport send_if(import send, flush, try_send, can_send);

endinterface

5.8.2.3 SystemVerilog HVL-side transaction pipes API

The SystemVerilog HVL-side transaction pipes API follows the C-side API very closely except that all the

API functions are encapsulated as methods of a SystemVerilog class which is itself defined in a package.

The entire SystemVerilog HVL-side API package is listed below. The functions and tasks in the class

definitions are declared as extern. Their contents are defined by the implementer of the standard API.

SCE-MI 2.4 101

There is a common base class scemi_pipe which contains all functions common to both input and output

pipes. For send interfaces, class scemi_dynamic_input_pipe extends class scemi_pipe with send-

related functions to transport dynamic byte arrays and class scemi_static_input_pipe further extends

class scemi_dynamic_input_pipe with send-related functions to transport packed bit vectors. For receive

interfaces, class scemi_dynamic_output_pipe extends class scemi_pipe with receive-related

functions to transport dynamic byte arrays and class scemi_static_output_pipe further extends class

scemi_dynamic_output_pipe with receive-related functions to transport packed bit vectors.

The SCE-MI SystemVerilog HVL-side API package given below should be contained in a file called

scemi_pipes_pkg.sv.

SCE-MI 2.4 102

//_________________________

// package scemi_pipes_pkg __

//

// This package contains the SystemVerilog HVL-side API class definition

// for SCE-MI 2 pipes.

//--

package scemi_pipes_pkg; // {

`ifndef SCEMI_PAYLOAD_MAX_BYTES

`define SCEMI_PAYLOAD_MAX_BYTES 512

`endif

//__________________________________

// class scemi_pipe_notify_callback ___

//

// This is a small helper class to assist in the handling of notify callbacks

// whenever the HVL side of the pipe is notified as per the semantics of

// the pipe state diagrams.

//

// SV notify callbacks work very similarly to C API notify callbacks.

//

// The base class version of this notify callback function does nothing.

// However, because it is virtual, it can be overridden by any application

// callback handler class derived from this class scemi_pipe_notify_callback.

//

// A callback object then can be registered with the pipe API using

// the scemi_pipe::set_notify_callback() shown in the class scemi_pipe

// API below.

//--

class scemi_pipe_notify_callback; // {

 virtual function void notify();

 // Do nothing.

 endfunction

endclass // }

//__________________

// class scemi_pipe ___

//

// Common API functions.

//--

class scemi_pipe; // {

 //---

 // Constructor

 //

 // This is the constructor for the pipes API class. It is passed the

 // pathname to the HDL-side endpoint of the pipe instance to which it

 // should bind.

 //---

 extern function new(

 input string hdl_path); // input: Path to HDL-side pipe instance.

 //---

 // ::get_direction()

 // ::get_depth()

 // ::bytes_per_element()

SCE-MI 2.4 103

 //

 // These functions return the direction, depth, and bytes-per-element

 // respectively of this pipe instance. These parameters are statically

 // determined by parameterizations of the HDL side interface of the pipe.

 //---

 extern function bit get_direction();

 // return: 1 for input pipe, 0 for output pipe

 extern function int get_depth();

 // return: current depth (in elements) of the pipe

 extern function int get_bytes_per_element(); // return: bytes-per-element

 //---

 // ::set_eom_auto_flush()

 //

 // This function configures the pipe to either enable or disable

 // eom auto-flush mode.

 //---

 extern function bit set_eom_auto_flush(

 // return: Current eom auto-flush configuration

 input bit enable); // input: 1 to enable / 0 to disable

 //---

 // ::in_flush_state()

 //---

 extern function bit in_flush_state();

 // return: 0 if pipe is not in flush state,

 // 1 if pipe is in flush state.

 //---

 // ::set_notify_callback()

 // ::clear_notify_callback()

 //

 // Register(deregister) a notify callback object.

 //---

 extern function void

 set_notify_callback(

 scemi_pipe_notify_callback notify_callback,

 // input: notify callback object

 int callback_threshold = 0);

 // input: threshold for notify callback

 extern function void

 clear_notify_callback(scemi_pipe_notify_callback notify_callback);

endclass // }

//________________________________

// class scemi_dynamic_input_pipe ___

//

// Input pipe API functions. This variation of input pipe takes dynamic byte

// array payload arguments to the ::send() and ::try_send() functions.

//--

class scemi_dynamic_input_pipe extends scemi_pipe; // {

 extern function new(

 input string hdl_path); // input: Path to HDL-side pipe instance.

SCE-MI 2.4 104

 //---

 // ::send_bytes()

 //

 // This is the basic blocking send function for a transaction input pipe.

 // The passed in data is sent to the pipe. If necessary the calling thread

 // is suspended until there is room in the pipe.

 //

 // The data payload is represented as a dynamic array of bytes.

 //

 // The eom argument is a flag which is used for the user specified

 // end-of-message (eom) indication. It can be used for example to mark the

 // end of a frame containing a sequence of transactions.

 //---

 extern task send_bytes(

 input int num_elements, // input: #elements to be written

 const ref byte unsigned data[], // input: data payload

 input bit eom); // input: end-of-message marker flag

 //---

 // ::flush()

 //

 // Flush pipe data. This function will cause the calling thread to suspend

 // until the last element sent to the pipe is confirmed to have been

 // received on the HDL side.

 //---

 extern task flush();

 //---

 // ::try_send_bytes()

 //

 // This is the basic non-blocking send function for a transaction

 // input pipe.

 //

 // The data payload is represented as a dynamic array of bytes.

 //

 // The number of elements actually sent is returned. It is possible

 // that there is not enough room in the pipe for the entire set of

 // requested elements to be sent. In this case the number of elements

 // returned will be less than the number requested to be sent, and

 // the application may wish continue to retry the send at future points

 // in time until all the desired elements are sent. It is possible for

 // it to do so without changing the input payload reference by simply

 // bumping the byte_offset argument in each new call attempt by the amount

 // successfully sent in the previous call.

 //---

 extern function int try_send_bytes(// return: number of elements

 // actually sent

 input int byte_offset, // input: byte offset within data array

 input int num_elements, // input: #elements to be sent

 const ref byte unsigned data[], // input: data payload

 input bit eom); // input: end-of-message marker flag

 //---

 // ::try_flush()

 //

 // This is the basic non-blocking flush function for a transaction

 // input pipe. A flush is successful if the last element sent to the

 // pipe is confirmed to have been received on the HDL side.

 //---

SCE-MI 2.4 105

 extern function bit try_flush();

 // return: 0 if flush is not successful, 1 if flush is successful

 //---

 // ::can_send()

 //

 // This function returns the maximum number of elements that would

 // currently fit in the pipe. This number could be passed immediately to a

 // call to any blocking send function and it would be guaranteed to return

 // immediately without requiring a block. Similarly if it is passed

 // immediately to a call to any non-blocking send function it would be

 // guaranteed to return the same number of elements requested indicating

 // a successful send of that full number of elements.

 //---

 extern function int can_send();

 // return: #elements that would fit in the pipe

endclass // }

//_________________________________

// class scemi_dynamic_output_pipe __

//

// Output pipe API functions. This variation of output pipe takes dynamic byte

// array payload arguments to the ::receive() and ::try_receive() functions.

//--

class scemi_dynamic_output_pipe extends scemi_pipe; // {

 extern function new(

 input string hdl_path); // input: Path to HDL-side pipe instance.

 //---

 // ::receive_bytes()

 //

 // This is the basic blocking receive function for a transaction

 // output pipe.

 //

 // The data payload is represented as a dynamic array of bytes.

 //

 // The eom argument for this call is an output argument. It is set to the

 // same setting of the flag passed on the ::send() call by the producer

 // endpoint of the pipe as described in the standard. Thus it can be used

 // by the caller to query whether the current read is one for which an eom

 // was specified when the data was sent on the producer endpoint.

 //---

 extern task receive_bytes(

 input int num_elements, // input: #elements to be read

 output int num_elements_valid, // output: #elements that are valid

 ref byte unsigned data[], // output: data payload

 output bit eom); // output: end-of-message marker flag

 //---

 // ::try_receive_bytes()

 //

 // This is the basic non-blocking receive function for a transaction

 // output pipe.

 //

 // The data payload is represented as a dynamic array of bytes.

 //

 // The number of elements actually received is returned. It is possible

SCE-MI 2.4 106

 // there are not enough elements in the pipe to satisfy the request.

 // In this case the number of elements returned will be less than the

 // number requested to be received, and the application may wish continue

 // to retry the receive at future points in time until all the desired

 // elements are received. It is possible for it to do so without changing

 // the output payload reference by simply bumping the byte_offset argument

 // in each new call attempt by the amount successfully received in the

 // previous call.

 //---

 extern function int try_receive_bytes(

 // return: # of elements actually received

 input int byte_offset, // input: byte offset within data array

 input int num_elements, // input: #elements to be received

 ref byte unsigned data[], // output: data payload

 output bit eom); // output: end-of-message marker flag

 //---

 // ::can_receive()

 //

 // This function returns the maximum number of elements are currently

 // visible in the pipe. This number could be passed immediately to a

 // call to any blocking receive() function and it would be guaranteed to

 // return immediately without requiring a block. Similarly if it is passed

 // immediately to a call to any non-blocking receive function it would be

 // guaranteed to return the same number of elements requested indicating

 // a successful receive of that full number of elements.

 //---

 extern function int can_receive(); // return: #elements visible in the pipe

endclass // }

//_______________________________

// class scemi_static_input_pipe __

//

// Input pipe API functions. This variation of input pipe takes static bit

// vector payload arguments to the ::send() and ::try_send() functions.

//--

class scemi_static_input_pipe #(int STATIC_PAYLOAD_MAX_BYTES =

 `SCEMI_PAYLOAD_MAX_BYTES) extends scemi_dynamic_input_pipe; // {

 extern function new(

 input string hdl_path); // input: Path to HDL-side pipe instance.

 //---

 // ::send_bits()

 //

 // This is the basic blocking send function for a transaction input pipe.

 // The passed in data is sent to the pipe. If necessary the calling thread

 // is suspended until there is room in the pipe.

 //

 // The data payload is represented as a statically sized bit vector.

 //

 // The eom argument is a flag which is used for the user specified

 // end-of-message (eom) indication. It can be used for example to mark the

 // end of a frame containing a sequence of transactions.

 //---

 extern task send_bits(

 input int num_elements, // input: #elements to be written

 input bit [STATIC_PAYLOAD_MAX_BYTES*8-1:0] data,

SCE-MI 2.4 107

 // input: data payload

 input bit eom); // input: end-of-message marker flag

 //---

 // ::try_send_bits()

 //

 // This is the basic non-blocking send function for a transaction

 // input pipe.

 //

 // The data payload is represented as a statically sized bit vector.

 //

 // The number of elements actually sent is returned. It is possible

 // that there is not enough room in the pipe for the entire set of

 // requested elements to be sent. In this case the number of elements

 // returned will be less than the number requested to be sent, and

 // the application may wish continue to retry the send at future points

 // in time until all the desired elements are sent. It is possible for

 // it to do so without changing the input payload reference by simply

 // bumping the byte_offset argument in each new call attempt by the amount

 // successfully sent in the previous call.

 //---

 extern function int try_send_bits(

 // return: number of elements actually

sent

 input int byte_offset, // input: byte offset within data array

 input int num_elements, // input: #elements to be sent

 input bit [STATIC_PAYLOAD_MAX_BYTES*8-1:0] data,

 // input: data payload

 input bit eom); // input: end-of-message marker flag

endclass // }

//________________________________

// class scemi_static_output_pipe ___

//

// Output pipe API functions. This variation of output pipe takes static bit

// vector payload arguments to the ::receive() and ::try_receive() functions.

//--

class scemi_static_output_pipe #(int STATIC_PAYLOAD_MAX_BYTES =

 `SCEMI_PAYLOAD_MAX_BYTES)

 extends scemi_dynamic_output_pipe; // {

 extern function new(

 input string hdl_path); // input: Path to HDL-side pipe instance.

 //---

 // ::receive_bits()

 //

 // This is the basic blocking receive functions for a transaction

 // output pipe.

 //

 // The data payload is represented as a statically sized bit vector.

 //

 // The eom argument for this call is an output argument. It is set to the

 // same setting of the flag passed on the ::send() call by the producer

 // endpoint of the pipe as described in the standard. Thus it can be used

 // by the caller to query whether the current read is one for which an eom

 // was specified when the data was sent on the producer endpoint.

 //---

 extern task receive_bits(

 input int num_elements, // input: #elements to be read

SCE-MI 2.4 108

 output int num_elements_valid, // output: #elements that are valid

 output bit [STATIC_PAYLOAD_MAX_BYTES*8-1:0] data,

 // output: data payload

 output bit eom); // output: end-of-message marker flag

 //---

 // ::try_receive_bits()

 //

 // These are the basic non-blocking receive functions for a transaction

 // output pipe.

 //

 // The data payload is represented as a statically sized bit vector.

 //

 // The number of elements actually received is returned. It is possible

 // there are not enough elements in the pipe to satisfy the request.

 // In this case the number of elements returned will be less than the

 // number requested to be received, and the application may wish continue

 // to retry the receive at future points in time until all the desired

 // elements are received. It is possible for it to do so without changing

 // the output payload reference by simply bumping the byte_offset argument

 // in each new call attempt by the amount successfully received in the

 // previous call.

 //---

 extern function int try_receive_bits(

 // return: # of elements actually received

 input int byte_offset, // input: byte offset within data array

 input int num_elements, // input: #elements to be received

 output bit [STATIC_PAYLOAD_MAX_BYTES*8-1:0] data,

 // output: data payload

 output bit eom); // output: end-of-message marker flag

endclass // }

endpackage : scemi_pipes_pkg // }

Note the following points:

 Notably missing are the SystemVerilog HVL-side API equivalents of the following calls found in the

C API:

 scemi_pipe_c_handle()

o This is not needed because its equivalent purpose, which is to bind the HVL-side to the

HDL-side endpoint of the pipe, is handled by the ::new() constructor in the API class. As

with the C API function, scemi_pipe_c_handle(), the ::new() constructor takes the

pathname to the HDL-side pipe interface endpoint to establish the binding.

 scemi_pipe_set_notify_context()

 scemi_pipe_get_notify_context()

 scemi_pipe_set_user_data()

 scemi_pipe_get_user_data()

o These are not needed because they were originally intended to accommodate any type of

threading system that might be needed for a C testbench modeling environment in order to

adapt the thread neutral API to the thread aware blocking API. That is not necessary for the

SystemVerilog HVL-side API since SystemVerilog has its own implied threading system.

o There is a need for notify callback mechanism to allow for a use model where the HVL side

endpoint can feed or unload the pipe completely inside the notify callback without the

requirement for any thread synchronization. The C/SystemC API will already support this

capability with the above calls. However, for the SV API, this is handled with a notify

callback object function called class scemi_pipe_notify_callback described below.

SCE-MI 2.4 109

 The remaining calls have identical semantics to the C API therefore no further explanation is needed

above what is seen in the sections describing the C API.

 For input and output pipes there are two variations of each: dynamic and static. The main difference is

that classes scemi_dynamic_input_pipe and scemi_dynamic_output_pipe take dynamic byte

array data payload arguments, whereas classes scemi_static_input_pipe and

scemi_static_output_pipe take static bit vector data payload arguments.

An end user wishing to use the either of the static variations of the pipes will also be able to use the

send and receive functions with dynamic byte payloads since the static pipe variants derive from the

dynamic variants. End users wishing to only use the dynamic pipes can use those classes directly.

 For classes scemi_dynamic_input_pipe and scemi_dynamic_output_pipe all data payload

arguments in the ::send_bytes(), ::receive_bytes(), ::try_send_bytes(), and

::try_receive_bytes() methods are references (ref's) to open arrays of unsigned byte. This

gives the maximum flexibility in terms of generalizing the API to leave payload sizes unspecified, yet

use ref's to facilitate the most efficient data payload transfers that minimize the need for memory-to-

memory copying.

 For classes scemi_static_input_pipe and scemi_static_output_pipe all data payload

arguments in the ::send_bits(), ::receive_bits(), ::try_send_bits(), and

::try_receive_bits() methods are fixed size packed bit vectors. This provides an alternative use

model that may need to work with packed bit vectors rather than unsigned byte arrays. This use model

does have the restriction that the payload sizes cannot exceed the STATIC_PAYLOAD_MAX_BYTES

parameter specified in the class definition.

 For classes scemi_dynamic_input_pipe and scemi_dynamic_output_pipe because data

payload arguments in the ::send_bytes(), ::receive_bytes(), ::try_send_bytes(), and

::try_receive_bytes() methods are references (ref's) to open arrays of unsigned byte it is

necessary to clearly define a position mapping between a byte at a given index into the HVL-side

array and its corresponding slice position in the HDL-side data payload bit vector. Assuming an HVL-

side byte index i this mapping is specified as follows:

HVL-side data[i] maps to HDL-side data[i*8+7 : i*8]

If data shaping is deployed the ordering above will still be followed but will be mapped out over multiple

pipe calls in either direction.

The class scemi_pipe_notify_callback has a virtual function that does nothing. However, it can be

overridden if an application wants to be notified at notification points indicated on the pipe state diagram.

Implementations of this function then can be used to service the pipe and allow for an HVL-side callback

based use model that does not require thread synchronization.

To take advantage of this capability, the application can register callback objects by calling the pipe's

::set_notify_callback() function and register notify callback objects by calling the pipe's

::clear_notify_callback() function. This is consistent with the usage in the C API. See section 5.8.2.1

for more details.

5.8.2.4 C++ HVL-side transaction pipes API

The C++ HVL-side transaction pipes API follows the C-side API very closely except that all the API functions

are encapsulated as methods of a C++ class.

The entire C++ HVL-side API package is listed below. The functions are empty. Their contents are defined

by the implementer of the standard API.

SCE-MI 2.4 110

#include ”svdpi.h”

/*

 * class scemi_pipe

 * This class defines members and methods that are used both in input pipe

 * and output pipe.

 */

class scemi_pipe {

 //---

 // Constructor

 //---

 scemi_pipe (

 const char *hdl_path); // input: Path to HDL endpoint instance

 //---

 // Destructor

 //---

 ~scemi_pipe();

 //---

 // Common API functions

 //---

 svBit get_direction(); // return: 1 for input pipe, 0 for output pipe

 int get_depth(); // return: current depth (in elements) of the pipe

 int get_bytes_per_element(); // return: bytes per element

 scemi_pipe_notify_callback_handle set_notify_callback (

 // return: notify callback handle

 scemi_pipe_notify_callback notify_callback,

 // input: notify callback function

 void *notify_context, // input notify_context

 int callback_threshold = 0);

 // input: threshold for notify callback function

 void clear_notify_callback (

 scemi_pipe_notify_callback_handle notify_callback_handle);

 // input: notify callback handle

 void *get_notify_context(

 scemi_pipe_notify_callback_handle notify_callback_handle);

 // input: notify callback handle

 int put_user_data(// return: 0 if successful, 1 if not

 void *user_key, // input: user key

 void *user_data); // input: user data

 void *get_user_data(// return: user data

 void *user_key); // input: user key

 svBit set_eom_auto_flush(

 // return: current eom auto-flush configuration

 svBit enable); // input: 1=enable autoflush

 // 0=disable autoflush

};

/*

 * class scemi_input_pipe

SCE-MI 2.4 111

 * This class defines methods that are used explicitly in input pipe

 */

class scemi_input_pipe: public scemi_pipe {

 //---

 // Constructor

 //---

 scemi_input_pipe(

 const char *hdl_path); // input: Path to HDL endpoint instance

 //---

 // Destructor

 //---

 ~scemi_input_pipe();

 //---

 // API functions for input pipe

 //---

 void send(

 int num_elements, // input: #elements to be written

 const svBitVecVal *data, // input: data

 svBit eom); // input: end-of-message marker flag

 void flush();

 int try_send(// return: #requested elements that are

 // actually sent

 int byte_offset, // input: byte offset into data, below

 int num_elements, // input: #elements to be sent

 const svBitVecVal *data, // input: data

 svBit eom); // input: end-of-message marker flag

 int try_flush(); // return: indication of flush success

 int can_send(); // return: #elements that can be sent

};

/*

 * class scemi_output_pipe

 * This class defines methods that are used explictly in output pipe.

 */

class scemi_output_pipe: public scemi_pipe {

 //---

 // Constructor

 //---

 scemi_output_pipe(

 const char *hdl_path); // input: Path to HDL endpoint instance

 //---

 // Destructor

 //---

 ~scemi_output_pipe();

 //---

 // API functions for output pipe

 //---

SCE-MI 2.4 112

 void receive(

 int num_elements, // input: #elements to be read

 int *num_elements_valid, // output: #elements that are valid

 svBitVecVal *data, // output: data

 svBit eom); // output: end-of-message marker flag

 int try_receive(// return: #requrested elements

 // that are actually received

 int byte_offset, // input: byte offset into data, below

 int num_elements, // input: #elements to be read

 svBitVecVal *data, // output: data

 svBit *eom); // output: end-of-message marker flag

 svBit pipe_in_flush_state(); // return: whether pipe is in Flush

state

 int can_receive(); // return: #elements that can be

received

};

5.8.3 Pipe handles

On the HDL side, a pipe interface endpoint is defined using the SystemVerilog interface construct.

Once the HDL side has instantiated a pipe interface, all pipe operations in the HDL code are done by calling

functions and tasks defined within that interface.

The path to this endpoint interface instance uniquely identifies a specific pipe endpoint in an HDL hierarchy to

which the C-side can bind. Using this path, the C application can derive a handle that is used in all operations

involving the C-side endpoint of the pipe by calling the following function:

void *scemi_pipe_c_handle(// return: pipe handle

 const char *endpoint_path); // input: path to HDL endpoint instance

Note: The pipe handle can be derived once at initialization time and reused many times without having to set scope each time and

requiring the internal implementation to do a lookup based on the scope and the pipe ID to retrieve the internal data structure

associated with a pipe on each and every pipe operation.

Once a pipe handle is derived, it can be used as the handle argument for all the function calls described in the

following sections to perform operations to the C-side endpoint of the designated pipe.

The arguments consist of:

 endpoint_path – the hierarchical path to the interface instance representing the opposite HDL

endpoint of the pipe

5.8.4 Transaction pipes API: blocking, thread-aware interface

5.8.4.1 Transaction input pipes – blocking operations

5.8.4.1.1 Blocking input pipe access functions

The bold text in the input pipe SystemVerilog interface declaration below shows the blocking receive function:

SCE-MI 2.4 113

interface scemi_input_pipe();

 ...

 task receive(

 input int num_elements, // input: #elements to be read

 output int num_elements_valid, // output: #elements that are valid

 output bit [PAYLOAD_MAX_BITS-1:0] data, // output: data

 output bit eom, // output: end-of-message marker flag

 input int sync_control = IS_CLOCKED_INTF);

 // input: Sync control kind:

 // 0 - block asynchronously

 // 1 - sync on clock posedge

 // 2 - sync on clock negedge

 <implementer supplied implementation goes here>

 endtask

 ...

endinterface

The infrastructure will supply the implementation of this task - essentially it is a built-in function and its

declaration can be placed in an implementation provided file that defines the interface which can be compiled

as a separate unit along with all of the user's other modules, packages and interfaces.

The arguments consist of:

 num_elements - number of elements to be read on this receive operation - can vary from call to call

which again, facilitates data shaping

 num_elements_valid - number of read elements that are valid - in the case of data shaping or

flushing this can be less than the requested number of bytes read if the eom and/or flush comes at some

residual number of elements that does not fill out an entire request (see section 5.8.4.3.4).

 data - a user supplied target bit vector to which the requested num_elements will be deposited

 eom - a flag that can serve as an end-of-message marker on a variably sized message transmitted as a

sequence of transactions

 The data and eom arguments always have an output direction when receiving from a pipe.

On the C side endpoint of an input pipe, two blocking send functions that differ only in the data type used to

represent the pipe payload are provided by the infrastructure. The blocking send function that accepts an

svBitVecVal array is declared as follows:

void scemi_pipe_c_send(

 void *pipe_handle, // input: pipe handle

 int num_elements, // input: #elements to be written

 const svBitVecVal *data, // input: data

 svBit eom); // input: end-of-message marker flag

The blocking send function that accepts a byte array is declared as follows:

void scemi_pipe_c_send_bytes(

 void *pipe_handle, // input: pipe handle

 int num_elements, // input: #elements to be written

 const char *data, // input: data

 svbit eom); // input: end-of-message marker flag

Note the following properties:

 pipe_handle -– the handle identifying the specific pipe as derived from the unique path to the HDL

endpoint of the pipe (see section 5.8.3).

 num_elements -– number of elements to be sent on this send operation - can vary from call to call

which again, facilitates data shaping

SCE-MI 2.4 114

 data -– in the case of scemi_pipe_c_send() a user supplied bit vector from which the requested

num_elements will be obtained and sent to the pipe; in the case of scemi_pipe_c_send_bytes() a user

supplied byte array from which the requested num_elements will be obtained and sent to the pipe

 eom -– a flag that can serve as an end-of-message marker on a variably sized message transmitted as a

sequence of transactions

Bit ordering of the payload conveyed by the data argument is defined as follows. In the case of

scemi_pipe_c_send() bit ordering is fixed by the SystemVerilog definition of svBitVecVal. In

the case of scemi_pipe_c_send_bytes() the bits are ordered such that the byte with the lowest

index in the byte array, i.e., data[0], map to the least significant bits of the bit vector on the

SystemVerilog side. In general, bits 7 down to 0 of data[n] map to bits 8n + 7 down to 8n of the bit

vector on the SystemVerilog side.

 The data and eom arguments always have an input direction when sending to a pipe.

 The eom flag is a user defined flag. Whatever value is passed to the send endpoint of the pipe will be

received at the receive endpoint. This is useful for creating end-of-message markers in variable length

messages or indicating flush points to the other end. In certain cases it can also be used to force flushes

on a pipe (see description of autoflush in section 5.8.4.3.3).

On the C-side endpoint of an input pipe, the flush function provided by the infrastructure is declared as

follows:

void scemi_pipe_c_flush(

 void *pipe_handle) // input: pipe handle

Note the following properties:

 pipe_handle - the handle identifying the specific pipe as derived from the unique path to the HDL

endpoint of the pipe (see section 5.8.3).

5.8.4.2 Transaction output pipes – blocking operations

5.8.4.2.1 Blocking output pipe access functions

The bold text in the output pipe SystemVerilog interface declaration below shows the send and flush functions

which make up the API for the blocking operations of the HDL endpoint of an output pipe:

interface scemi_output_pipe();

 ...

 task send(

 input int num_elements, // input: #elements to be written

 input bit [PAYLOAD_MAX_BITS-1:0] data, // input: data

 input bit eom); // input: end-of-message marker flag

 < implementer supplied implementation goes here>

 endtask

 task flush;

 < implementer supplied implementation goes here>

 endtask

 ...

endinterface

The infrastructure will supply the implementation of these tasks - essentially they are built-in functions and

their declarations can be placed in an implementation provided file that defines the interface which can be

compiled as a separate unit along with all of the user's other modules, packages and interfaces.

The arguments for the send() task consists of:

 num_elements - number of elements to be sent on this send operation - can vary from call to call

which again, facilitates data shaping

SCE-MI 2.4 115

 data - a user supplied bit vector from which the requested num_elements will be obtained and sent

to the pipe

 eom - a flag that can serve as an end-of-message marker on a variably sized message transmitted as a

sequence of transactions

 The data and eom arguments always have an input direction when sending to a pipe.

On the C side endpoint of an output pipe, two blocking receive functions that differ only in the data type used

to represent the pipe payload are provided by the infrastructure. The blocking receive function that accepts an

svBitVecVal array is declared as follows:

void scemi_pipe_c_receive(

 void *pipe_handle, // input: pipe handle

 int num_elements, // input: #elements to be read

 int *num_elements_valid, // output: #elements that are valid

 svBitVecVal *data, // output: data

 svBit *eom);

The blocking receive function that accepts a byte array is declared as follows:

void scemi_pipe_c_receive_bytes(

 void *pipe_handle, // input: pipe handle

 int num_elements, // input: #elements to be read

 int *num_elements_valid, // output: #elements that are valid

 char *data, // output: data

 svbit *eom);

Note the following properties:

 pipe_handle - the handle identifying the specific pipe as derived from the unique path to the HDL

endpoint of the pipe (see section 5.8.3).

 num_elements - number of elements to be read on this receive operation - can vary from call to call

which again, facilitates data shaping

 num_elements_valid - number of read elements that are valid - in the case of data shaping this can

be less than the requested number of bytes read if the eom and/or flush comes at some residual number

of elements that does not fill out an entire request (see section 5.8.4.3.4).

 data – in the case of scemi_pipe_c_receive() a user supplied target bit vector to which the

requested num_elements will be deposited; in the case of scemi_pipe_c_receive_bytes() a

user supplied target byte array to which the requested num_elements will be deposited. It is the

responsibility of the user to ensure the memory allocated for data is large enough to accept the

requested data.

 eom - a flag that can serve as an end-of-message marker on a variably sized message transmitted as a

sequence of transactions

Bit ordering of the payload conveyed by the data argument is defined as follows. In the case of

scemi_pipe_c_receive() bit ordering is fixed by the SystemVerilog definition of svBitVecVal.

In the case of scemi_pipe_c_receive_bytes() the bits are ordered such that the byte with the

lowest index in the byte array, i.e., data[0], map to the least significant bits of the bit vector on the

SystemVerilog side. In general, bits 7 down to 0 of data[n] map to bits 8n + 7 down to 8n of the bit

vector on the SystemVerilog side.

 The num_elements_valid, data and eom arguments always have an output direction when

receiving from a pipe.

5.8.4.3 Flush semantics

The SCE-MI transaction pipes API supports two types of flushing operations for pipes:

 explicit flushing

 implicit flushing

SCE-MI 2.4 116

5.8.4.3.1 Explicit flushing of pipes

When an explicit flush occurs on a pipe, it allows the producer of transactions previously sent on that pipe to

suspend execution until all in-transit messages have been consumed by the consumer. The

scemi_pipe_c_flush() call (see section 5.8.5.5.2) is used to flush transaction input pipes. The flush()

task (see section 5.8.4.3.1) is used to flush transaction output pipes.

5.8.4.3.2 Implicit flushing of pipes

Transaction pipes also support implicit flushing. If a pipe is enabled for implicit flushing, flushes will

automatically occur on end-of-message (eom). This mode is called autoflush.

If a pipe has autoflush mode enabled, when a blocking send is performed on that pipe with the end-of-

message (eom) flag set, the effect is as if an explicit blocking flush was combined with that send. The blocking

send will not return until the consumer has fully received all messages in the pipe up to and including the eom

tagged message being passed to it.

Producers of transactions to pipes can still call the explicit pipe flush functions at any time even on pipes that

have autoflush mode enabled.

5.8.4.3.3 Enabling autoflush

The following call lets an application indicate that autoflush mode is enabled or disabled for a pipe designated

by a given handle. This configuration call is always initiated only from the C side for both input and output

pipes.

For any given pipe on which this mode is enabled, a scemi_pipe_c/hdl_send() call with an eom value of 1

will have the same effect as if a scemi_pipe_c/hdl_flush() call was made following that data send call.

svBit scemi_pipe_set_eom_auto_flush(

 void *pipe_handle, // input: pipe handle

 svBit enabled); // input: enable/disable

Note the following properties:

 pipe_handle - the handle identifying the specific pipe as derived from the unique path to the HDL

endpoint of the pipe (see section 5.8.3).

 enabled - flag that indicates enable (1) or disable (0) this mode.

 The call returns the previous mode setting

 The pipe will remain in its current mode until any subsequent call to this function that changes the

mode.

 By default, pipes are not in autoflush mode.

 If a call is made to scemi_pipe_set_eom_auto_flush() to enable autoflush mode when the pipe

is not empty, the new setting will go into effect only on the next pipe operation and will not cause a

flush of any existing elements in transit through the pipe. For example, if a pipe with a capacity of 10

contains 5 elements and a scemi_pipe_set eom_auto_flush() call then enables autoflush mode,

no flush is performed even if 1 or more of those 5 elements has eom set. However, if a call is

subsequently made to send 1 more element with the eom bit set, all 6 elements are then flushed.

 The return value is the previous setting of eom autoflush mode (1 if enabled, 0 if not).

If autoflush mode is enabled and a call is made to one of the non-blocking pipe send functions (C-side

scemi_pipe_c_try_send() or HDL-side try_send()) with the eom bit enabled, it will have the same

effect on the internal state of the pipe as if the corresponding non-blocking flush function (C-side

scemi_pipe_c_try_flush() or HDL-side try_flush() respectively), was called immediately after the

send call.

5.8.4.3.4 Using flushing with data shaping

When a flush (either implicit or explicit) occurs on a pipe used for data shaping, special considerations must be

made if a producer endpoint of a pipe does data send operation with a smaller num_elements than that

requested by the subsequent data receive operation at the consumer endpoint of that pipe. If the pipe is flushed

on that send operation, in order to satisfy the flush the consumer will see a return of num_elements_valid

that is smaller than its requested num_elements. This is because, in order to satisfy the producer's flush

SCE-MI 2.4 117

condition, the consumer's blocking receive call must have satisfactorily returned from its read operation even if

that read operation was asking for a larger number of elements than had been sent as of the time of the flush.

A similar issue applies when specifying a pre-mature eom as explained in section 4.8.8.1. Using the nozzle

example from that section, if a consumer requests 100 elements, but the producer only sends 75 elements

before flushing (either implicitly using eom or explicitly), the request to read 100 elements will return with a

num_elements_valid of only 75 thus leaving the pipe empty as required by the flush and/or eom.

5.8.4.4 Blocking pipes co-existance model

SCE-MI requires that implementer provided C-side pipes blocking interface shall not prevent user provided C-

side pipes blocking interface from co-existing with the implementer C-side pipes non-blocking interface.

Note: SCE-MI C-side Pipes blocking semantics are intended to be implemented using a thread aware application to be

determined by either the implementer or the end user. This implies that C-side Pipes blocking calls may be implemented in a tool

using their threaded application of choice, and by an end user using their threaded application of choice. SCE-MI defines the

interface and the semantics of SCE-MI C-side Transaction Pipes API: blocking, Thread-Aware interface in section 5.8.4.

SCE-MI requires that a tool implementing C-side Pipes blocking interface will allow end users implementing

their C-side Pipes blocking interface to use their C-side Pipes blocking implementation together with the tool

implementer C-side Pipes non-blocking interface.

Note: The above specification does not define which threaded applications implementers should use for implementing SCE-MI

C-side Pipes blocking interface. This decision is left to the implementer. The above specification requires the implementer to

allow end users to use the implementer provided Pipes C-side non-blocking interface for implementing their thread-aware

blocking interface. The above specification also allows using both end-user SCE-MI C-side Pipes blocking interface and

implementer C-side Pipes non-blocking interfaces together if end users choose to do so.

The mechanism by which implementers allows end users to choose between their own implementation of Pipes

C-side blocking interface and implementer provided C-side Pipes blocking interface is left to the implementer.

5.8.5 Basic transaction pipes API: non-blocking, thread-neutral interface

Everything described so far has pertained to the blocking pipes. Additionally it is desirable to support a non-

blocking pipes interface that can be used in thread-neutral implementations.

The non-blocking pipe interface calls have the following semantics.

 Thread-neutral - no thread-awareness required in the implementation

 Is sufficiently compatible with the Accellera Systems Initiative’s SystemC-TLM interface model that it

can be directly used to implement Accellera Systems Initiative’s SystemC-TLM compliant interfaces

 Support user configuration and query of buffer depth

 Provide primitive non-blocking operations which can be used to build higher level interfaces that have

blocking operations implemented in selected threading systems

5.8.5.1 Pipe semantics

5.8.5.1.1 Visibility modes

Transaction pipes support two modes of operations:

 deferred visibility

 immediate visibility

In deferred visibility mode, there is a defined lag between when elements are written to a pipe by the producer

and when they are actually visible and available for consumption by the consumer. In this mode, while the

producer has execution control, it may place one or more elements in the pipe via send operations, but the

consumer cannot see any of the elements until it has been notified that the pipe is either filled or flushed.

Conversely, once a pipe is filled or flushed, the producer cannot place any new elements in the pipe until it has

been notified that all the previously added elements were consumed by the consumer via receive operations.

In immediate visibility mode, any elements written by the producer are immediately visible and are available

for consumption whenever the consumer gains execution control even if notification has not occurred. In this

SCE-MI 2.4 118

mode, while the producer has execution control, it may place one or more elements in the pipe via send

operations. Even without the producer filling or flushing the pipe, the consumer can consume any of the

elements in the pipe when it has execution control. Conversely, when execution control is switched from the

consumer back to the producer, the producer may add new elements to the pipe even when previously added

elements in the pipe have not been completely consumed by the consumer via receive operations.

To place a pipe in immediate visibility mode, the fourth VISIBILITY_MODE parameter of the pipe interface

must be set to the value 1. To place a pipe in deferred visibility mode, the VISIBILITY_MODE parameter of the

pipe interface must be set to the value 2. By default, this parameter is set to 0, denoting an illegal pipe

interface with unspecified mode of operation.

5.8.5.1.2 Notifications

As described in Section 5.8.2.1, the scemi_pipe_set_notify_callback()function is used to register user-

defined notify callback functions for pipes. There are two types of programmable callback functions, a user

defined "notify ok to send" function for an input pipe, and a user defined "notify ok to receive" function for

an output pipe. The "notify operations" shown above correspond to calling these programmable functions from

within the infrastructure to notify the application C-side that it has become serviceable. A producer becomes

serviceable when it can place elements in the pipe via send operations; while a consumer becomes serviceable

when it can consume elements from the pipe via receive operations.

For the deferred visibility mode, even if a consumer gains execution control, it will not have access to any

elements in the pipe until it has been notified that the producer has filled or flushed the pipe. Similarly, even if

a producer gains execution control, it will not have access to any empty space in the pipe until it has been

notified that the consumer has emptied the pipe. Notification callback conditions must be met before exclusive

access to pipe elements (or empty space) is allowed to switch between producer and consumer. For the

immediate visibility mode, whenever a consumer gains execution control, it is always free to access any

elements in the pipe and is not required to wait for notification. Similarly, whenever a producer gains execution

control, it is always free to access any empty space in the pipe and is not required to wait for notification.

If any of the notify operations occur on the C-side of a pipe (i.e. notify of an input pipe's producer side or

notify of an output pipe's consumer side), the registered notify callback functions of that pipe (if any) would be

called immediately. In this case "immediately" means that the semantics of the notify callback has identical

semantics to an HDL process calling an imported pure DPI function.

More specifically "immediately" means that the notify callback must occur at the same instant in simulation

time as the non-blocking try_send()or try_receive()call that triggers it. However, there are two differing

semantics governing when a pipe's notify callback is called depending on whether it is an unclocked pipe or a

clocked pipe (see section 5.8.5.4.1 for a detailed description of the difference between a clocked pipe and an

unclocked pipe).

 For clocked pipes: the term "immediately" above means that the notify callback on the C-side

must be called within the same call chain as the HDL-side try_send(), try_receive()or

try_flush()call that triggered it. The term call chain, in this case, has the same meaning as the

call chain of an import DPI call - rooted on HDL SystemVerilog code and spanning into C-code. It

is possible that the notify callback on the C-side may itself update the pipe using a non-blocking

pipe call in response to the notify. However, the HDL-side try_send(), try_receive()or

try_flush() call will not see the updated state before it returns. This insures that the number of

elements sent returned by the try_send() call is consistent with the number that would have

been indicated with can_send(), and that the number of elements received returned by the

try_receive() call is consistent with the number that would have been indicated with

can_receive(). This also maintains consistency with the semantics of the state diagram in

figure Figure 5.11 of section 5.8.5.4.1.

 For unclocked pipes: the term "immediately" above means that the notify callback on the C-side

is not called within the same call chain as the HDL-side try_send(), try_receive()or

try_flush() call that triggered it. Rather it is called from a separate process triggered from a

local SystemVerilog event in the HDL-side pipe interface implementation. And this local event

SCE-MI 2.4 119

itself is triggered just prior to the return the try_send(), try_receive(), or try_flush()

call.

5.8.5.1.3 General concepts and semantic definitions for pipes

 Buffer Capacity (BUFFER_MAX_ELEMENTS): Buffer capacity is defined as the maximum

number of elements that can exist in the buffer before a blocking send will block or a non-

blocking send will fail. Buffer capacity is the same as the static BUFFER_MAX_ELEMENTS

parameter defined in the SystemVerilog pipe interface definition. The default value of

BUFFER_MAX_ELEMENTS is implementation defined but can be overridden by the user. If specified

it must be greater than PAYLOAD_MAX_ELEMENTS or an error will occur.

 Notification Threshold: The notification threshold defines the minimum number of elements that

must be added to an empty pipe before a consumer is notified or removed from a full pipe before a

producer is notified. The notification threshold can be specified via the static parameter,

NOTIFICATION_THRESHOLD. It can be set to either 1 or BUFFER_MAX_ELEMENTS. All other

values will result in an error. The default notification threshold for a pipe is

BUFFER_MAX_ELEMENTS. When the notification threshold is set to BUFFER_MAX_ELEMENTS,

notifications due to send and receive operations that occur when the pipe becomes full or empty,

i.e. after adding BUFFER_MAX_ELEMENTS elements to an empty pipe or removing

BUFFER_MAX_ELEMENTS elements from a full pipe. When the notification threshold is set to 1,

notifications due to send and receive operations occur immediately, i.e. after adding at least one

element to an empty pipe or removing at least one element from a full pipe. Notifications due to

flush operations are not affected by the notification threshold setting. The state diagram in the next

section will describe the precise semantics of when notifications occur with respect to threshold

settings.

 Producer, consumer: The state diagram shown in the next section is generalized to refer to the

producer side and the consumer side without referring specifically to input pipes or output pipes.

In this way, the same diagram can generically and symmetrically describe either pipe direction.

This implies the following:

o For an input pipe, the producer side is the C-side and the consumer side is the HDL-side

o For an output pipe, the producer side is the HDL-side and the consumer side is the C-side

 Serviceable: A pipe endpoint becomes serviceable if the pipe enters a state where that endpoint

can successfully move elements to or from the pipe. Of course, execution control must first be

acquired before elements can be added by a producer or removed by a consumer from the pipe.

For a pipe in deferred visibility mode:

o The producer side is serviceable only for the states within the left bounded box in the

state diagram:

Empty/Buffering, Empty/Pending Receive

o The consumer side is serviceable only for the states within the right bounded box in the

state diagram:

Full/Buffering, Full/Pending Send, Flush

For a pipe in immediate visibility mode:

o The producer side is serviceable whenever there is room to add at least one more element

to the pipe, except when the pipe is in the Flush state.

o The consumer side is serviceable whenever there is at least one element in the pipe. The

pipe can be in any state in the state diagram.

 Input actions / output consequences: Each pipe transition is caused by an input action and may

involve an output consequence.

Here are the possible input actions:

SCE-MI 2.4 120

o prod.try_send()[adds] – producer adds one or more elements to the pipe but does

not fill it.

o prod.try_send()[fills] – producer adds elements and fills the pipe but does not

fail.

o prod.try_send()[fails] – producer attempts to add more elements than can be

placed in the pipe (i.e. exceeds buffer capacity) and thus fills the pipe before the request

can be satisfied.

o prod.try_flush() – producer attempts to flush the pipe.

o cons.try_receive()[removes] – consumer removes one or more elements from the

pipe but does not empty it.

o cons.try_receive()[empties] – consumer removes elements and empties the pipe

but does not fail.

o cons.try_receive()[fails] – consumer attempts to remove more elements than

can be provided by the pipe and thus empties the pipe before the request can be satisfied.

The only possible output consequences of a pipe state transition are notify operations which can

only occur in the specific pipe transitions that go from one side being notified to the other side

being notified (i.e. transitions crossing the bounded box boundaries in the state diagrams):

o /notify prod – the consumer side notifies the producer side.

o /notify cons – the producer side notifies the consumer side.

In the state diagram, an additional modifier indicates how an input action's behavior depends on

the notification threshold. If a send operation is performed, the number of elements that will be in

the pipe after the send operation is compared to the threshold. If a receive operation is performed,

the number of empty element space that will be in the pipe after the receive operation is compared

to the threshold.

A '>=' modifier denotes the state transition that will occur if the indicated action occurs when the

number of elements or empty space in the pipe after a send or receive operation is greater than or

equal to the notification threshold.

A '<' modifier denotes the state transition that will occur if the indicated action occurs when the

number of elements or empty space in the pipe after a send or receive operation is less than the

notification threshold.

For the prod.try_send()[adds] action described above, an annotation with a threshold

modifier has the following modified meanings:

o prod.try_send()[adds>=] – producer adds one or more elements to the pipe but

does not fill it, and the number of elements that will be in the pipe after the send

operation is greater than or equal to the threshold.

o prod.try_send()[adds<] – producer adds one or more elements to the pipe but does

not fill it, and the number of elements that will be in the pipe after the send operation is

less than the threshold.

For the cons.try_receive()[remove] action described above, an annotation with a threshold

modifier has the following modified meanings:

o cons.try_receive()[removes>=] – consumer removes one or more elements from

the pipe but does not empty it, and the number of empty space that will be in the pipe

after the receive operation is greater than or equal to the threshold.

o cons.try_receive()[removes<] – consumer removes one or more elements from

the pipe but does not empty it, and the number of empty space that will be in the pipe

after the receive operation is less than the threshold.

SCE-MI 2.4 121

If a pipe transition is annotated with a mode of operation, such as immediate visibility mode or

deferred visibility mode, that transition applies only for that specified mode. If an action is shown

on a transition with no threshold modifier, that transition applies regardless of the notification

threshold setting.

Note: Notifications to the C-side will result in callback functions being called only when a non-

NULL callback function pointer is currently registered.

 Blocking vs. non-blocking operations: All pipe operations in the state diagram are shown in

terms of non-blocking operations. However, semantics of blocking operations can be inferred from

this since it is possible to describe blocking operations in terms of non-blocking operations For

example, the same condition that causes a non-blocking operation to fail will cause a blocking

operation to block. A blocking operation can be thought of as a loop of a non-blocking operation

and a wait on an implied event until the condition for unblocking is satisfied. Update of the event

is implied to occur on the notify operation. Examples of C-side reference implementations of

blocking operations built from non-blocking API calls are shown in section 5.8.5.3.

 Push/pull operation: This is used to describe behavior of a pipe when a producer is trying to push

data through a pipe or a consumer is trying to pull data through a pipe. Push/pull operation has

slightly different behaviors depending on the current number of elements in a pipe compared to its

notification threshold setting.

If a producer send operation is successful and it fills the pipe (i.e. the action of

prod.try_send()[fills]), this will not trigger a notify to the consumer side unless there is a

pending receive in effect (i.e. the pipe is in the empty/pending receive state). In this case the

pending receive is attempting to "pull" data from the pipe and therefore wants to be notified as

soon as the pipe becomes full.

Similarly, if a consumer receive operation is successful and it empties the pipe (i.e. the action of

cons.try_receive()[empties]), this will not trigger a notify to the producer side unless

there is a pending send in effect (i.e. the pipe is in the full/pending send state). In this case the

pending send is attempting to "push” data to the pipe and therefore wants to be notified as soon as

the pipe becomes empty.

Note the following additional property of push/pull operation:

For deferred mode only, if a pipe is in the empty/buffering state and the consumer requests data,

this will cause a transition to the empty/pending receive state since the request fails and there is

now a pending receive. This is true regardless of the number of elements that may have been

added to the pipe up to this point while it was in the empty/buffering state.

However, there is a slight difference in operation between the following two scenarios while the

pipe is in the empty/buffering state just prior to the point at which the consumer receive operation

occurs:

1. Pipe is in the empty/buffering state and the pipe is not full

2. Pipe is in the empty/buffering state and the pipe is full

In scenario #1, the transition to the empty/pending receive state still occurs and, as shown in the

diagram, no notification occurs. From this point if the producer then precisely fills the pipe (i.e.

does not fail) a notification will occur to the consumer and the pipe will transition to the

full/buffering state.

In scenario #2, the transition to the empty/pending receive state still occurs and, as shown in the

diagram, no notification occurs. However in this case the notification will occur only when the

producer does yet another send, causing a fail. In this case the pipe would transition to the

full/pending send state.

So, as can be seen from above description, slightly different notification behavior will occur

depending on which of the above two scenarios is in effect at the time the consumer makes its

receive request.

SCE-MI 2.4 122

Coherency of pipe states is expected to be maintained by the implementation identically on both sides of the

pipe. That is, the producer side's view of the pipe state must be identical to the consumer side's view at all

times. Notify operations only occur on transitions to different states and never to the same state. Therefore

maintaining this coherency across the two sides is practical and efficient. It also guarantees minimal notifies

across the C-side/HDL-side boundary and prevents an "oscillation" of repeated "try" operations such as a

polling operation, causing excessive notifies across the link in cases where the pipe remains in the same state.

5.8.5.1.4 Pipe states

Figure 5.11 below specifies the precise operation of a transaction pipe. The formal definitions of the states and

the actions and consequences associated with the state transactions are described in the text that follows.

Figure 5.11 Pipe State Diagram

† Note: In this diagram, states from which input actions occur with [fails]† notations indicate that special semantics need to

be considered depending on whether the pipe is in deferred visibility mode or immediate visibility mode.

 For deferred visibility mode, from these states, only a [fails] is possible for the indicated action type. If

prod.try_send() operation is attempted from the flush state, full/buffering state or full/pending

send state, [adds] or [fills] actions are not applicable (they will always fail). Similarly, if

cons.try_receive() operation is attempted from the empty/pending and empty/pending receive

state, [removes] or [empties] actions are not applicable.

 For immediate visibility mode, if prod.try_send() operation is attempted from the flush state,

[adds] or [fills] actions are not applicable (they will always fail). However, from the empty/buffering

state and empty/pending receive state, [removes] and [empties] actions are possible if the pipe is not

empty. Similarly from the full/buffering state and full/pending send state, [adds] and [fills] actions are

possible if the pipe is not full.

The following are descriptions of the pipe states:

SCE-MI 2.4 123

 Empty/Buffering state:

A pipe in deferred visibility mode transitions to the empty/buffering state from the full/pending

send state or the flush state when a consumer receive operation empties the pipe. The pipe remains

in this state as long as the producer is able to successfully send its requested number of elements.

Even when BUFFER_MAX_ELEMENTS elements are added, the elements are still not visible to

the consumer, thus the pipe remains “empty” from the consumer's point of view. Only when a

failed operation occurs will there be a change of pipe state. A failed receive operation causes the

pipe to transition to the empty/pending receive state. A failed send operation causes the pipe to

transition to the full/pending send state where only the consumer is serviceable.

A pipe in immediate visibility mode can transition to the empty/buffering state from three different

pipe states. From the flush state, the transition occurs when a consumer receive operation empties

the pipe. From the full/pending send state, the transition occurs when the consumer empties the

pipe or removes enough elements to meet the notification threshold. From the empty/pending

receive state, the transition occurs when there is no longer a pending receive, that is, when a

consumer receive operation is successful in removing its requested number of elements from the

pipe. Identical to deferred visibility mode, the pipe remains in this state as long as the producer is

able to successfully send its requested number of elements. Once elements are added to the pipe

by the producer, the consumer also becomes serviceable in this “buffering” state and can remove

the added elements at any time.

 Full/Buffering state:

A pipe in deferred visibility mode transitions to the full/buffering state from the empty/pending

receive state when a producer send operation fills the pipe. The pipe remains in this state as long

as the consumer is able to successfully receive its requested number of elements. Even when all

the elements are removed, the empty pipe is still not visible to the producer, thus the pipe remains

“full” from the producer’s point of view. Only when a failed operation occurs will there be a

change of pipe state. A failed send operation causes the pipe to transition to the full/pending send

state. A failed receive operation causes the pipe to transition to the empty/pending receive state

where only the producer is serviceable.

A pipe in immediate visibility mode transitions to the full/buffering state from the empty/pending

receive state when the producer fills the pipe or adds enough elements to meet the notification

threshold. In addition, it also transitions to the full/buffering state from the full/pending send state

when there is no longer a pending send. That is, when a producer send operation is successful in

adding its requested number of elements to the pipe. Identical to deferred visibility mode, the pipe

remains in this state as long as the consumer is able to successfully receive its requested number of

elements. Once elements are removed from the pipe by the consumer, the producer also becomes

serviceable in this “buffering” state and can add new elements to the empty space of the pipe at

any time.

 Empty/Pending receive state:

A pipe transitions to the empty/pending receive state when a consumer receive operation fails.

This occurs when the consumer attempts to receive more elements than what is available in the

pipe, thus causing the pipe to become empty before satisfying the receive request. The pipe

remains in this state as long as the producer is able to successfully send its requested number of

elements without filling the pipe or meeting the notification threshold. Unlike the empty/buffering

state, in this “pending” state, it does not require a failed operation for a change of pipe state. Just

filling the pipe or meeting the notification threshold is enough. This constitutes a pull operation

where the consumer tries to "pull" data from the pipe and wants to be notified when the pipe

becomes full or meets the notification threshold (see push/pull description above).

 Full/Pending send state:

A pipe transitions to the full/pending send state when a producer send operation fails, unless the

pipe is in the flush state. This occurs when the producer attempts to send more elements than the

available empty space in the pipe, thus causing the pipe to become full before satisfying the send

SCE-MI 2.4 124

request. The pipe remains in this state as long as the consumer is able to successfully receive its

requested number of elements without emptying the pipe or meeting the notification threshold.

Unlike the full/buffering state, in this “pending” state, it does not require a failed operation for a

change of pipe state. Just emptying the pipe or meeting the notification threshold is enough. This

constitutes a push operation where the producer tries to "push" data through the pipe and wants to

be notified when the pipe becomes empty or meets the notification threshold (see push/pull

description above).

 Flush state:

A pipe transitions to the flush state when a producer flush operation is called on a non-empty pipe.

The pipe remains in this state until all elements are removed by the consumer.

5.8.5.2 General application use models for pipes

Threshold and visibility settings can be combined to configure 3 useful transaction pipe models:

 NOTIFICATION_THRESHOLD=BUFFER_MAX_ELEMENTS, VISIBILITY_MODE=2

(deferred visibility): This is a pipe configuration where notify callbacks occur only when a pipe is

empty, full or flushed, and producer and consumer would alternately granted exclusive access to

the pipe via notification. This is useful for implementing pipelined or streaming semantics similar

to how Unix named pipes or file streams work. Data written by the producer is not visible to the

consumer until it is pushed through by becoming full or flushed. Transaction pipes that are

configured with this setting shall be referred to as deferred pipes.

 NOTIFICATION_THRESHOLD=BUFFER_MAX_ELEMENTS, VISIBILITY_MODE=1

(immediate visibility): This is a pipe configuration where notify callbacks occur only when a pipe

is empty, full or flushed while allowing shared access to the pipe for the consumer and producer.

This provides applications the flexibility to overlap send and receive operations while limiting

notification frequency for performance. Transaction pipes that are configured with this setting

shall be referred to as immediate pipes.

 NOTIFICATION_THRESHOLD=1, VISIBILITY_MODE=1 (immediate visibility): This is a

pipe configuration where notify callbacks occur when a pipe is empty, full or flushed as well as

when elements are added to an empty pipe or removed from a full pipe. This is useful for

implementing fifo semantics similar to how tlm_fifo's work in the Accellera Systems Initiative’s

TLM standard. Data written by the producer is immediately visible to the consumer and any

consumer doing a blocking get will be immediately notified. Transaction pipes that are configured

with this setting shall be referred to as fifos.

No other combinations of NOTIFICATION_THRESHOLD and VISIBILITY_MODE are defined and will result in

an error.

5.8.5.2.1 Deferred pipe semantics

The following paragraph explains how the pipe can be configured for use model #1 above (deferred pipe

semantics). These semantics are in effect when a pipe has been configured for deferred visibility

(VISIBILITY_MODE = 2). In this visibility mode, the threshold setting is automatically set to

BUFFER_MAX_ELEMENTS regardless of the user-specified parameter value.

For deferred pipe semantics only one side of the pipe can be serviceable at one time. The goal of deferred pipe

semantics is to defer notification and visibility (or data transfer) as long as possible to promote buffered data

aggregation and streaming.

Initially the pipe is in an Empty/Buffering state. This means that from the point of view of the consumer, the

pipe is empty. From the point of view of the producer, the pipe is also empty after initialization but it is

serviceable in the sense that at any time it is free to start at adding elements.

Consider two possible scenarios starting from the initial Empty/Buffering state:

1. The producer takes the first action of adding elements to the pipe.

2. The consumer takes the first action of attempting to remove elements from the pipe.

SCE-MI 2.4 125

In scenario #1, as long as the producer continues to add elements up to and including the point of filling the

pipe, the pipe remains in the Empty/Buffering state. This is because from the consumer's point of view the pipe

is still empty since it has not been notified otherwise – that is, its notification is deferred. Once the pipe is

filled, if the producer attempts to send another element to the pipe, this attempt will fail since the pipe is full.

At this point a notification is finally sent to the consumer and the pipe enters the Full/Pending send state since

it assumes that the producer now has a pending send that it wishes to make. At this point, the pipe is only

serviceable by the consumer and not the producer.

As long as consumer continues to successfully remove elements without emptying the pipe, the pipe remains in

the Full/Pending Send state. If, on a last successful receive operation, the pipe is finally emptied, a notification

is immediately sent to the producer since it had been in a pending send and wishes to be notified as soon as the

pipe is emptied. At this point the pipe returns to the Empty/Buffering state and is serviceable only by the

producer.

In scenario #2 above, when the pipe is initially in the Empty/Buffering state, suppose the consumer takes the

first action of attempting to remove an element from the pipe. But this attempt will fail since the pipe is empty.

However because the attempt was made, the pipe assumes that a pending receive is in effect by the consumer

and so the pipe enters the Empty/Pending Receive state.

As long as the producer continues to successfully add elements without filling the pipe, the pipe remains in the

Empty/Pending Receive state. This is because from the consumer's point of view the pipe is still empty since it

has not been notified otherwise – that is, again, its notification is deferred. If, on a last successful send

operation the pipe is finally filled, a notification is immediately sent to the consumer side since it had a

pending receive in effect and wishes to be notified as soon as the pipe is filled. At this point the pipe enters the

Full/Buffering state and is serviceable only by the consumer.

The difference between the Full/Buffering state and the Full/Pending Send state is that in the Full/Buffering

state, when the pipe first becomes empty, this still does not trigger a notification to the producer, since the pipe

assumes that because there is no pending send the producer is not pushing data to the pipe (see push/pull

operation described above) and therefore it does not wish to be notified right away when the pipe becomes

empty. Whereas in the Full/Pending Send state the producer is indeed pushing data to the pipe and wishes to be

notified right way when the pipe becomes empty, so when the pipe first becomes empty, this does trigger a

notification to the producer.

Conversely difference between the Empty/Buffering state and the Empty/Pending Send state is that in the

Empty/Buffering state, when the pipe first becomes full, this still does not trigger a notification to the

consumer, since the pipe assumes that because there is no pending receive the consumer is not pulling data

from the pipe (see push/pull operation described above) and therefore it does not wish to be notified right away

when the pipe becomes full. Whereas in the Empty/Pending Receive state the consumer is indeed pulling data

from the pipe and wishes to be notified right way when the pipe becomes full, so when the pipe first becomes

full, this does trigger a notification to the consumer.

Given the above definitions, and the state diagram in Figure 5.11, here is a list of conditions that cause pipes

with deferred pipe semantics to become serviceable:

 The consumer side of a pipe will become serviceable under the following conditions (corresponding

to yellow box states in Figure 5.11)

o if a producer-side blocking send operation is blocked or a non-blocking send operation

failed to add all requested elements because the pipe became full (i.e. a

prod.try_send()[fails] action), or

o if the pipe is in an empty/pending receive state and a producer-side blocking or non-

blocking send operation successfully adds enough elements to fill the pipe (i.e. a

prod.try_send()[fills] action), or

o if pipe goes into flush state because of a flush call from the producer-side.

 The producer side of a pipe will become serviceable under the following conditions (corresponding

to blue box states in Figure 5.11):

SCE-MI 2.4 126

o if a consumer-side blocking receive operation was blocked or a non-blocking receive

operation failed to remove all requested elements because the pipe became empty (i.e. a

cons.try_receive()[fails] action), or

o if the pipe is in a flush state and a consumer-side blocking or non-blocking receive

operation successfully empties it, or

o if the pipe is in a full/pending send state and a consumer-side blocking or non-blocking

receive operation successfully consumes all BUFFER_MAX_ELEMENTS elements (i.e. a

cons.try_receive()[empties] action).

5.8.5.2.2 Immediate pipe semantics

An immediate pipe, designated as use model #2 above, is a transaction pipe with immediate visibility and

default pipe notifications (empty, full, or flushed). This pipe configuration provides applications the flexibility

to overlap send and receive operations while limiting the number or frequency of notifications for

performance.

In this pipe model, there is a single shared view of the pipe for both the producer and the consumer. The

producer can send elements to the pipe as long as it is not full. When the pipe becomes full while the producer

is still attempting to send more data, the producer is no longer serviceable. The producer will become

serviceable again when elements are removed from the pipe by the consumer. When the producer fails to send,

the producer application can choose to block waiting for (1) pipe notification, or (2) events such as time events,

DPI events, and host-emulator synchronization events. A failed blocking send operation would always be

blocked waiting for the pipe (empty) notification. For a failed non-blocking try_send, the producer

application chooses the means of waiting. It can be the same pipe notification for minimal notification

overhead, or it can leverage other events to implement finer flow control of the data between producer and

consumer to meet its specific needs without incurring performance overheads from frequent notifications.

Similarly, the consumer can receive elements from the pipe as long as it is not empty. When the pipe becomes

empty while the consumer is still attempting to receive more data, the consumer is no longer serviceable. The

consumer will become serviceable again when elements are added to the pipe by the producer. When the

consumer fails to receive, the consumer application can also choose to block waiting for (1) pipe notification,

or (2) events such as time events, DPI events, and host-emulator synchronization events. A failed blocking

receive operation would always be blocked waiting for the pipe (full or flushed) notification. For a failed

non-blocking try_receive, the consumer application chooses the means of waiting. It can be the same pipe

notification for minimal notification overhead, or it can leverage other events to implement finer flow control

of the data between producer and consumer to meet its specific needs without incurring performance overheads

from frequent notifications.

Let’s take a brief look at the specific states and transitions for an immediate pipe:

 Empty/Buffering and Full/Buffering: Consider a newly created immediate pipe. Initially, the pipe is

empty and is placed in the Empty/Buffering state. The pipe would remain in this state as long as there

is no failed send or receive operation. That is, as long as (1) the producer does not try to send more

elements than the pipe can hold and (2) the consumer does not try to receive more elements than the

producer has already placed in the pipe, data can continue to be transferred smoothly from producer to

consumer without requiring any pipe notifications. Likewise, a pipe that has been transitioned to the

Full/Buffering state would remain in that state as long as there is no failed send or receive operation,

allowing efficient data transfer without notification.

 Full/Pending Send: Consider the scenario when the pipe becomes full while the producer is still trying

to send more data. This failed send operation causes the pipe to transition to the Full/Pending Send

state. At this point, the producer is no longer serviceable and is typically suspended waiting for some

trigger events. If the producer is waiting for pipe notification, then it will not wake up until the pipe is

completely emptied by the consumer. A pipe that is emptied transitions to the Empty/Pending Receive

state if the consumer is still trying to receive more data; otherwise, it transitions to the

Empty/Buffering state. On the other hand, if the producer is waiting for a trigger event other than the

pipe notification, it can wake up prior to the pipe becoming empty. If the producer is successful in

sending the pending number of elements to the pipe, the pipe transitions to the Full/Buffering state,

reflecting that there is no longer any pending send.

SCE-MI 2.4 127

 Empty/Pending Receive: Consider the scenario when the pipe becomes empty while the consumer is

still trying to receive more data. This failed receive operation causes the pipe to transition to the

Empty/Pending Receive state. At this point, the consumer is no longer serviceable and is typically

suspended waiting for some trigger events. If the consumer is waiting for pipe notification, then it will

not wake up until the pipe is completely filled by the producer. A pipe that is filled transitions to the

Full/Pending Send state if the producer is still trying to send more data; otherwise, it transitions to the

Full/Buffering state. On the other hand, if the consumer is waiting for a trigger event other than the

pipe notification, it can wake up prior to the pipe becoming full. If the consumer is successful in

receiving the pending number of elements from the pipe, the pipe transitions to the Empty/Buffering

state, reflecting that there is no longer any pending receive.

When using blocking pipe interface, both immediate pipes and deferred pipes (use model #1) behave the same

way as to when an operation is unblocked. The difference lies in as to when an operation is blocked. For the

deferred pipe, blocking occurs when the pipe is perceived to be full or empty. For the immediate pipe, blocking

only occurs when the pipe is actually full when sending and empty when receiving.

When using non-blocking interface, an immediate pipe behaves similarly to a FIFO (use model #3) as both

pipe transaction models are configured for immediate visibility, allowing overlapping send and receive

operations. The difference lies in as to when notification occurs when there is a pending receive or pending

send. For the FIFO, notification occurs as soon as an element is added to an empty pipe or an element is

removed from a full pipe. For the immediate pipe, notification only occurs when the pipe is filled before the

pending receive is satisfied or when the pipe is emptied before the pending send is satisfied.

5.8.5.2.3 FIFO semantics

The following paragraph explains how the pipe can be configured for use model #3 above (FIFO semantics).

These semantics are in effect when the threshold setting is 1 and the pipe has been configured for immediate

visibility (VISIBILITY_MODE = 1).

The easiest way to describe FIFO semantics to start with the assumption that there is some non-zero number of

elements in the pipe and it is in one of the two buffering states.

At this point both the producer and consumer are serviceable meaning that elements can be both added and

removed.

If the producer continues to add elements until the pipe fills, the next time it attempts to add an element, it will

fail and the pipe will transition to the Full/Pending Send state meaning that a send was attempted, failed, and

the producer is now assumed to have a pending send in effect. At this point, only the consumer is serviceable

since elements can only be removed, not added. Once the consumer has removed at least one element, a

notification is sent to the producer that indicates it can start adding elements again, and the pipe goes back to

one of the two buffering states (specifically in this case, to state empty/buffering).

So now the pipe is back in the empty/buffering state.

At this point if the consumer continues to remove elements until the pipe is empty, the next time it attempts to

remove an element, it will fail and the pipe will transition to the Empty/Pending Receive state meaning that a

receive was attempted, failed, and the consumer is now assumed to have a pending receive in effect. At this

point, only the producer is serviceable since elements can only be added, not removed. Once the producer has

added at least one element, a notification is sent to the consumer that indicates it can start removing elements

again, and the pipe goes back to one of the two buffering states (specifically in this case, to state full/buffering).

Given the above definitions, and the state diagram in Figure 5.11, here is a list of conditions that cause pipes

that have fifo semantics to become serviceable:

 Both the consumer side and the producer side of a pipe will become serviceable after any operation

that causes the pipe to go into one of the two buffering states,

 In addition to above, the consumer side is serviceable after any operation that causes the pipe to go

into the full/pending send or flush state,

 In addition to the above, the producer side becomes serviceable after any operation that causes the

pipe to go into the empty/pending send state.

SCE-MI 2.4 128

5.8.5.2.4 Visibility modes

The two different visibility modes of pipe operation described above together cover a wide range of use models

for co-emulation needs, offering interoperability without (1) sacrificing ease-of-use and performance and (2)

robbing application the flexibility to leverage other synchronization events, such as time events and DPI

events, to more effectively control data flow between producer and consumer. Table 5.2 gives a simple at-a-

glance comparison between the two modes.

 Deferred Visibility Mode Immediate Visibility Mode

Pipe view and

visibility

Split views between producer and

consumer. Producer’s perspective and

consumer’s perspective are synchronized

only at discrete notification point (empty,

full, flush).

A single shared pipe: Pipe view is the same

between producer and consumer, allowing

access to pipe elements at any time.

Sample use models Well defined “non-overlapped” or discrete

data movements between producer and

consumer: when notified pipe empty, full,

or flushed.

Non-blocking pipe interface allows

“overlapping” or continuous data movements

between producer and consumer: when

execution control is acquired.

Synchronization events other than pipe

notifications such as DPI events can be

leveraged to synchronize producer and

consumer to meet application-specific needs

(programmable granularity of synchronization

for performance).

Table 5.2: Comparison of deferred and immediate visibility modes

Given the above definitions, the number of notify callbacks is minimal and optimizes the performance by allowing

the HDL side to run as long as possible.

The above semantics can be implemented using standard DPI calls.

The semantics do not depend on any infrastructure level capabilities outside a SCE-MI 2 Pipes compliant

implementation.

The semantics of notify for a given pipe is only dependent on the state of the pipe that notify corresponds to.

The above semantics do not depend on whether a threaded application (such as SystemC) is used or not used on the

C-side and whether the threaded application is linked or not with the HDL side simulation kernel. The semantics do

not depend on whether the C side uses only non-blocking calls or if the C-side Pipes implemented blocking calls by

using Pipes C-side non blocking calls in conjunction with the notify callback calls.

An attempt to send the message from the C-side on an input pipe where the specified number of elements was not

entirely consumed by the pipe leaves a partial message on the C side. This message is recognized as “pending

message” and the input pipe is set to a “pending message state”. When the input pipe becomes empty, the notify

callback (for the input pipe) will be called. This allows the C side to send the rest of the pending message or

additional elements from the pending message into the pipe.

The C-side OK to send notify() callback will not be called when an input pipe becomes empty unless it is in a

pending message, in a flush state or if the pipe is empty at simulation start.. This allows the HDL side to request a

new message by using a blocking or non-blocking HDL side receive call or an empty pipe causing OK to send

notify() callback to be called. These semantics also avoids sending any excessive notifications when the transactor

consumed the pervious message and wishes to stay in idle state or when it knows that the test has ended.

The notify callback functions typically get registered at initialization time although they can be registered at any

time. Additionally, previously registered notify function pointer can, at any time, be replaced with another.

The notify_ok_to_send() and notify_ok_to_receive() functions are callbacks that can be called directly or indirectly

from within the thread-neutral implementation code to notify thread-aware application code on the C side when it is

OK to send or receive. By implementing the bodies of these functions a user can put in thread specific code that

takes some action such as posting to a SystemC sc_event.

SCE-MI 2.4 129

So the key here is that the data transfer and query functions have thread-neutral implementation. And the notify

functions are callbacks called from within thread-neutral code that can be filled in by some application wishing to

create a thread-aware adapter that implements blocking send() and receive() functions.

5.8.5.3 Transaction pipes - non-blocking operations

On the C side, the non-blocking pipe access interface consists of calling functions and callback functions

classified as data transfer operations, query operations, and notify operations for each pipe direction,

 Data transfer operations:

 scemi_pipe_c_try_send()

 scemi_pipe_c_try_receive()

 scemi_pipe_c_try_flush()

 Query operations:

 scemi_pipe_c_can_send()

 scemi_pipe_c_can_receive()

 scemi_pipe_c_in_flush_state()

 Notify operations:

(*scemi_pipe_c_notify_ok_to_send)()

(*scemi_pipe_c_notify_ok_to_receive)()

 User data storage and retrieval:

scemi_pipe_put_user_data()

scemi_pipe_get_user_data()

5.8.5.3.1 Non-blocking data transfer operations

These are the basic non-blocking send/receive functions to access a transaction pipe from the C side. The

send/receive functions are provided in pairs that differ only in the type of the data argument. The send

functions are called to attempt to send transactions to an input pipe. The receive functions are called to attempt

to receive transactions from an output pipe. The flush function is called to attempt to flush an input pipe.

SCE-MI 2.4 130

int scemi_pipe_c_try_send(// return: #requested elements

 // that are actually sent

 void *pipe_handle, // input: pipe handle

 int byte_offset, // input: byte offset into data, below

 int num_elements, // input: #elements to be sent

 const svBitVecVal *data, // input: data

 svBit eom); // input: end-of-message marker flag

int scemi_pipe_c_try_send_bytes(// return: #requested elements

 // that are actually sent

 void *pipe_handle, // input: pipe handle

 int byte_offset, // input: byte offset into data, below

 int num_elements, // input: #elements to be sent

 const char *data, // input: data

 svBit eom); // input: end-of-message marker flag

int scemi_pipe_c_try_receive(// return: #requested elements

 // that are actually received

 void *pipe_handle, // input: pipe handle

 int byte_offset, // input: byte offset into data, below

 int num_elements, // input: #elements to be read

 svBitVecVal *data, // output: data

 svBit *eom); // output: end-of-message marker flag

int scemi_pipe_c_try_receive_bytes(// return: #requested elements

 // that are actually received

 void *pipe_handle, // input: pipe handle

 int byte_offset, // input: byte offset into data, below

 int num_elements, // input: #elements to be read

 char *data, // output: data

 svBit *eom); // output: end-of-message marker flag

int scemi_pipe_c_try_flush(// indication of whether flush was successful

 void *pipe_handle); // input: pipe handle

Note: Take into account the following properties:

 The arguments, pipe_handle num_elements, data, and eom are identical to those described

for the blocking function, scemi_pipe_c_send(), scemi_pipe_c_send_bytes(),

scemi_pipe_c_receive(), and scemi_pipe_c_receive_bytes(), respectively described in

section 5.8.4.1.1.

 The byte_offset argument is the byte offset within the data buffer designated by data.

 The scemi_pipe_c_try_send(), /scemi_pipe_c_try_send_bytes(),

scemi_pipe_c_try_receive(), and scemi_pipe_c_try_receive_bytes() functions

return the number of elements actually transferred.

 The scemi_pipe_c_try_flush function returns 1 if flush successful, 0 if not

By using the byte_offset argument, it is possible to create blocking functions that operate on unlimited data

buffers on the C side. Despite the fact that pipe buffers are statically sized on the HDL-side with the

BUFFER_MAX_ELEMENTS parameter and HDL-side send()/try_send() and receive()/try_receive()

calls are limited to PAYLOAD_MAX_ELEMENTS elements per call (see section 5.8.5.1.3), on the C-side neither

limitation exists and calls to blocking/non-blocking send or receive can be made with buffers of any size. Even

if buffers in the internal implementation are of limited size, multiple calls to the non-blocking send/receive

functions can be made until all the data is transferred. This makes it easy to build blocking data transfer

functions that handle buffers of unlimited size on top of the non-blocking data transfer functions. Each call to

the non-blocking function is made with the same base data buffer pointer but an increasing byte offset. Each

call returns the actual number of elements transferred. This number can be translated to in increment amount

SCE-MI 2.4 131

for the byte offset to be passed to the next call in the loop - without changing the base svBitVecVal *data

or char *data pointer.

5.8.5.3.2 Non-blocking query operations

These are the status query functions for transaction pipes. They can be called by an application from the C side

to see if a send or receive operation can be performed on a pipe.

int scemi_pipe_c_can_send(// return: #elements that can be sent

 void *pipe_handle); // input: pipe handle

int scemi_pipe_c_can_receive(// return: #elements that can be received

 void *pipe_handle); // input: pipe handle

svBit scemi_pipe_c_in_flush_state(// return: whether pipe is in Flush state

 void *pipe_handle); // input: pipe handle

Note the following properties:

 The arguments, pipe_handle, and num_elements are identical to those described for the

blocking function, scemi_pipe_c_send() described in section 5.8.4.1.1.

 The functions return the number of elements that currently could be transferred in the pipe, i.e. the

amount of room in an input pipe or number of elements available in an output pipe.

 The scemi_pipe_c_in_flush_state() function returns 1 if the pipe is in the Flush state as

described in section 5.8.4.3. Note that this information is needed for determining the exit condition of a

blocking receive request.

5.8.5.3.3 Non-blocking notify operations

The following is a function declaration for notification callback functions that are used to notify the C side that

an operation is possible on an input or output transaction pipe.

typedef void (*scemi_pipe_notify_callback)(

 void *context); // input: C model context

The following is a type declaration of the notify callback handles.

typedef void * scemi_pipe_notify_callback_handle;

The notify callback handle type is opaque and the underlying type is implementation defined.

All notification callbacks must be registered using the following call:

scemi_pipe_notify_callback_handle scemi_pipe_set_notify_callback(

 void *pipe_handle, // input: pipe handle

 scemi_pipe_notify_callback notify_callback,

 // input: notify callback function

 void *notify_context, // input: notify context

 int callback_threshold);

 // input: threshold for invoking notify callback function

Note the following properties:

 pipe_handle - the handle identifying the specific pipe as derived from the unique combination of the

HDL scope and the pipe ID (see section 5.8.3)

 notify_callback - the name of the user callback function being registered.

 notify_context - the user-defined context object to be passed to the function whenever it is called.

 callback_threshold - the user-defined callback threshold that must be met whenever the function

is called.

 callback_threshold = 0: When a callback function is registered with

callback_threshold = 0, it corresponds to a persistent static callback.

SCE-MI 2.4 132

 Persistent: The callback function remains valid until it is explicitly de-registered by

calling scemi_pipe_clear_notify_callback as described below.

 Static Condition: The callback function is invoked called by the infrastructure only when

pipe notification occurs as dictated by the pipe state diagram in Section 5.8.5.1.4

 callback_threshold > 0: When a callback function is registered with

callback_threshold > 0, it corresponds to a one-time dynamic callback.

 One-time: The callback function remains valid only until it is invoked or it is explicitly

de-registered by calling scemi_pipe_clear_notify_callback. Once invoked, the

callback function is implicitly de-registered.

 Dynamic Condition: The callback function is invoked by the infrastructure only when the

callback_threshold condition is met or when an output pipe is flushed. This allows an

application to dynamically specify the minimal or ideal condition when the callback

should be invoked. The infrastructure is not required to invoke the callback function

immediately upon meeting the threshold condition and is allowed to delay the callback

until the next pipe notification. For an input pipe, dynamic callback can occur whenever

scemi_pipe_c_can_send() >= callback_threshold. For an output pipe,

dynamic callback can occur whenever scemi_pipe_c_can_receive() >=

callback_threshold or when the pipe is flushed. For example, if an application wants

to receive 10 elements from an immediate output pipe with buffer size = 50, it can simply

register a dynamic callback function with callback_threshold = 10. This gives the

infrastructure freedom to invoke the callback once the pipe contains 10 elements, which

can occur before pipe notification of a filled or flushed pipe. When the callback threshold

is met prior to pipe notification threshold, there is a range of time when the callback can

be invoked. The exact time of callback can vary from implementation to implementation,

but must be repeatable. To ensure identical implementation-independent callback timing,

callback_threshold should be set to the notification_threshold of the pipe.

The return value of scemi_pipe_set_notify_callback is a notify callback handle that uniquely identifies

the callback. Any number of callbacks can be registered for each pipe. On notify events, if more than one

callback is eligible to be called (as determined by the callback_threshold argument), the eligible callbacks

will be called in the order of registration.

If a callback modifies the pipe state in any way, e.g., by removing elements from the pipe, any downstream

callbacks will see the effect of this operation.

This handle can be used to remove a callback at any time using the following function:

void scemi_pipe_clear_notify_callback(

 scemi_pipe_notify_callback_handle notify_callback_handle);

 // input: notify callback handle

The scemi_pipe_clear_notify_callback() registers errors under the following conditions:

 The notify_handle value is not a value returned by a previous

scemi_pipe_set_notify_callback() call.

 The callback was already removed by a prior call of scemi_pipe_clear_notify_callback().

 The callback was registered with a callback_threshold value greater than 0 and the callback has expired

and been removed by the infrastructure.

The following call can be used to retrieve a notify context object for a given pipe:

void *scemi_pipe_get_notify_context(// return: notify context object pointer

 scemi_pipe_notify_callback_handle notify_callback_handle);

 // input: notify handle

This call is useful to determine whether or not a notify context object is being established for the first time. It is

guaranteed that this call will return a NULL if a notify context has not yet been established. This is useful for

performing first time initializations inside pipe operations rather than requiring initialization to be performed

outside of them. See the example of the blocking send function implementation in section 5.8.4.1.1 for an

SCE-MI 2.4 133

example of how this might be done.

Note the following properties:

 pipe_handle - the handle identifying the specific pipe as derived from the unique combination of the

HDL scope and the pipe ID (see section 5.8.3)

 notify_callback - the name of the user callback function being registered.

 notify_context - the user defined context object to be passed to the function whenever it is called

Appendix A: shows how dynamic callbacks can be used to implement a user defined blocking send function

on top of a non-blocking send function.

5.8.5.3.4 Non-blocking user data storage and retrieval

These are the functions for storing and retrieving user data for transaction pipes. These put and get functions

provide data storage on a per-pipe basis, controllable by a user-defined key. They can be called by an

application from the C side.

void scemi_pipe_put_user_data(

 void *pipe_handle, // input: pipe handle

 void *user_key, // input: user key

 void *user_data); // input: user data

void *scemi_pipe_get_user_data(

 void *pipe_handle, // input: pipe handle

 void *user_key); // input: user key

The scemi_pipe_put_user_data function is used to store a user data pointer for later retrieval by

scemi_pipe_get_user_data. The user_key is a user-defined key generated by the application. It should

be unique from all other user keys to guarantee unique data storage. It is recommended that the address of

static functions or variables in the application’s C code be used as the user key. It is important that general

applications should refrain from using NULL value as the user key. The NULL value user key is reserved for

use only by the infrastructure blocking API. It is an error to call scemi_pipe_put_user_data with an

invalid pipe_handle or with a NULL user_data.

The scemi_pipe_get_user_data function is used to retrieve a user data pointer that was previously stored

by a call to scemi_pipe_put_user_data. This function returns NULL when called with an invalid

pipe_handle or in the event that a prior call to scemi_pipe_put_user_data was never made with the

same pipe_handle and user_key arguments. Otherwise, the stored user data pointer is returned.

5.8.5.3.5 Query Functions

The following query functions can be used in either the non-blocking or blocking pipes.

The following call can be used to retrieve the bytes per element for a given pipe:

int scemi_pipe_get_bytes_per_element(// return: bytes per element

 void *pipe_handle); // input: pipe handle

The following call can be used to retrieve direction of a given pipe:

svBit scemi_pipe_get_direction(// return: 1 for input pipe, 0 for output pipe

 void *pipe_handle); // input: pipe handle

5.8.5.4 HDL side access

The bold text in the input and output pipe SystemVerilog interface declarations below shows declarations for

the non-blocking send and receive functions which make up the API for the non-blocking operations of the

HDL endpoint an input and output pipe:

SCE-MI 2.4 134

interface scemi_input_pipe();

 parameter BYTES_PER_ELEMENT = 1;

 parameter PAYLOAD_MAX_ELEMENTS = 1;

 parameter BUFFER_MAX_ELEMENTS = <implementation specified>;

 parameter VISIBILITY_MODE = 0;

 parameter NOTIFICATION_THRESHOLD = BUFFER_MAX_ELEMENTS;

localparam PAYLOAD_MAX_BITS = PAYLOAD_MAX_ELEMENTS * BYTES_PER_ELEMENT * 8;

 ...

function int try_receive(// return: #requested elements

 // that are actually received

 input int byte_offset, // input: byte_offset within data array

 input int num_elements, // input: #elements to be read

 output bit [PAYLOAD_MAX_BITS-1:0] data, // output: data

 output bit eom); // output: end-of-message marker flag

 <implementation goes here>

endfunction

function int can_receive(); // return: #elements that can be received

 <implementation goes here>

endfunction

 ...

endinterface

interface scemi_output_pipe();

 parameter BYTES_PER_ELEMENT = 1;

 parameter PAYLOAD_MAX_ELEMENTS = 1;

 parameter BUFFER_MAX_ELEMENTS = <implementation specified>;

 parameter VISIBILITY_MODE = 0;

 parameter NOTIFICATION_THRESHOLD = BUFFER_MAX_ELEMENTS;

 localparam PAYLOAD_MAX_BITS = PAYLOAD_MAX_ELEMENTS * BYTES_PER_ELEMENT * 8;

 ...

 function int try_send(// return: #requested elements

 // that are actually sent

 input int byte_offset, // input: byte_offset within data array

 input int num_elements, // input: #elements to be sent

 input bit [PAYLOAD_MAX_BITS-1:0] data, // input: data

 input bit eom); // input: end-of-message marker flag

 <implementation goes here>

 endfunction

 function int can_send(); // return: #elements that can be sent

 <implementation goes here>

 endfunction

 ...

endinterface

The parameters statically specified in both interfaces are, by definition, known at HDL compile time, and have

the following meanings:

 BYTES_PER_ELEMENT defaults to 1 and is used to specify the number of bytes in each

element of data that can be passed to the pipe.

 PAYLOAD_MAX_ELEMENTS defaults to 1 and is used to specify the number of elements that

can be passed in any single call to a pipe send(), receive(), try_send(), or

SCE-MI 2.4 135

try_receive() function. This limit pertains to the HDL-side only, not the C-side. It shall be

considered an error to pass a num_elements value to any of these calls that exceeds

PAYLOAD_MAX_ELEMENTS.

 BUFFER_MAX_ELEMENTS defaults to an implementation specified value and can be

overridden by the user to specify the maximum number of elements a pipe can contain at

compile time. In any pipe implementation, if a non-blocking try_send() operation is

attempted from either the C-side or the HDL-side on any pipe containing

BUFFER_MAX_ELEMENTS, that try_send() call must return a value of 0, indicating that no

elements were transferred.

 VISIBILITY_MODE is set to 1 to place a pipe in immediate visibility mode or to 2 to place a

pipe in deferred visibility mode. By default, this parameter is set to 0, denoting an illegal pipe

interface with unspecified mode of operation.

 NOTIFICATION_THRESHOLD can be set to either 1 or BUFFER_MAX_ELEMENTS. The default

notification threshold for a pipe is BUFFER_MAX_ELEMENTS. When the notification threshold

is set to BUFFER_MAX_ELEMENTS, notifications due to send and receive operations that occur

when the pipe becomes full or empty, i.e. after adding BUFFER_MAX_ELEMENTS elements to

an empty pipe or removing BUFFER_MAX_ELEMENTS elements from a full pipe. When the

notification threshold is set to 1, notifications due to send and receive operations occur

immediately.

The highlighted try_receive(), can_receive(), try_send() and can_send() functions in the

scemi_input_pipe and scemi_output_pipe SystemVerilog interface declarations shown above are the

non-blocking receive/send and query functions to access a transaction pipe from the HDL-side endpoint. The

try_receive() function is called to attempt to receive transactions from an input pipe. The try_send()

function is called to attempt to send transactions to an output pipe. The can_receive() function can be

called to query the number of receivable elements in an input pipe. The can_send() function can be called to

query the number of elements can could currently be taken by the pipe.

Note the following properties:

 The arguments, num_elements, data, and eom are identical to those described for the blocking

task, send() described in section. 5.8.4.2.1.

 The byte_offset argument is the byte offset within the data buffer designated by data.

 The try_send/try_receive functions return the number of elements actually transferred.

 The can_send/can_receive functions return the number of elements that could be potentially be

transferred.

By using the byte_offset argument, it is possible to create blocking functions that operate on large data

buffers on the HDL-side. Even if buffers in the internal implementation are of limited size, multiple calls to the

non-blocking send/receive functions can be made until all the data is transferred. This makes it easy to build

blocking data transfer functions that handle buffers of large size on top of the non-blocking data transfer

functions. Each call to the non-blocking function is made with the same base data buffer pointer but an

increasing byte offset. Each call returns the actual number of elements transferred. This number can be

translated to an increment amount for the byte offset to be passed to the next call in the loop - without changing

the base data vector.

Note: the HDL-side blocking send() and receive() functions do not implement the behavior described in the previous

paragraph. Each call to send() and receive() is limited to PAYLOAD_MAX_ELEMENTS.

5.8.5.4.1 Clocked vs unclocked pipe semantics

The IS_CLOCKED_INTF parameter of a pipe controls how whether or not clocking is used. This parameter can have the

following values:

 0 - clocking disabled

 1 - clocking enabled

SCE-MI 2.4 136

In the case of IS_CLOCKED_INTF == 0, the clock input to the pipe is completely ignored. In this case the pipe is an

unclocked pipe. It is acceptable in this case to completely omit the attachment of a clock where the pipe itself is instantiated.

In the case of IS_CLOCKED_INTF == 1, the clock input to the pipe is required. In this case the pipe is a clocked pipe. The

blocking calls in the pipe are either asynchronous, or synchronized to the posedge or negedge of the attached clock depending on

the setting of the sync_control code in any of the blocking calls.

In any of the blocking calls namely, receive() on an input pipe, and send() and flush() on an output pipe, the last

argument of the call is a flag indicating whether that call blocks asynchronously (if sync_control==0) or is to sync on the

posedge of the clock (if sync_control==1) or the negedge of the clock (if sync_control==0).

The default value of the sync_control argument is the value of the IS_CLOCKED_INTF parameter itself. That means that if

clocking is disabled (i.e. IS_CLOCKED_INTF==0), the blocking calls always block asynchronously. And if clocking is

enabled, then, by default, calls to the blocking calls sync on clock posedges.

It shall be considered an error if sync_control values are > 0 for a non-clocked pipe (one with IS_CLOCKED_INTF ==

0), since in this case it cannot be assumed that an input clock has been provided.

The following blocks of code can be considered a reference model for how the blocking pipe calls for a clocked and unclocked

pipe can be implemented from the non-blocking ones using loops. In the case of a clocked pipe, the loop synchronizes on a clock

event. In the case of an unclocked pipe, the loop synchronizes on an internally defined async

ok_to_<received|send>_event event which is updated from the C-side via an export "DPI-C" function call when a

notify occurs as per the semantics of the SCE-MI pipe state diagram.

Input pipe blocking receive() reference model:

SCE-MI 2.4 137

interface scemi_input_pipe(input bit pipe_clock);

 ... // Existing parameters

 parameter IS_CLOCKED_INTF = 0;

 ...

event ok_to_receive_event; // Used for unclocked pipe sync'ing only

 export "DPI-C" function scemi_pipe_hdl_notify_ok_to_receive;

 function void scemi_ref_pipe_hdl_notify_ok_to_receive();

 -> ok_to_receive_event;

 endfunction

 bit is_in_flush_state; // Updated by implementation when in flush state.

 task receive(

 input int num_elements, // input: #elements to be read

 output int num_elements_valid, // output: #elements that are valid

 output bit [PAYLOAD_MAX_BITS-1:0] data, // output: data

 output bit eom, // output: end-of-message marker

 input int sync_control = IS_CLOCKED_INTF);

 // input: Sync control kind:

 // 0 - block asynchronously

 // 1 - sync on clock posedge

 // 2 - sync on clock negedge

// {

 automatic int num_elements_required = num_elements;

 automatic int byte_offset = 0;

 automatic int local_num_elements_valid = 0;

 automatic int elements_received;

 automatic bit [PAYLOAD_MAX_BITS-1:0] tmp_data;

 automatic bit [PAYLOAD_MAX_BITS-1:0] out_data = 0;

 if(sync_control > 0) begin // { Implementation for clocked pipes

 assert(IS_CLOCKED_INTF != 0)

 else $error("SCEMI ASSERT: receive(%m): Attempt to sync on clock

edge of non-clocked pipe.");

 elements_received = try_receive(

 byte_offset, num_elements, tmp_data, eom);

 out_data |= tmp_data;

 num_elements_required -= elements_received;

 local_num_elements_valid += elements_received;

 while(!(eom||is_in_flush_state) &&

 num_elements_required > 0) begin

 if(sync_control == 1) @(posedge pipe_clock);

 else @(negedge pipe_clock);

 byte_offset += elements_received * BYTES_PER_ELEMENT;

 elements_received = try_receive(

 byte_offset, num_elements_required, tmp_data, eom);

 out_data |= tmp_data;

 local_num_elements_valid += elements_received;

 num_elements_required -= elements_received;

 end

 num_elements_valid = local_num_elements_valid;

 end // } Implementation for clocked pipes

SCE-MI 2.4 138

 else if(IS_CLOCKED_INTF == 0) begin

 // { Implementation for unclocked pipes.

 elements_received = try_receive(

 byte_offset, num_elements, tmp_data, eom);

 out_data |= tmp_data;

 num_elements_required -= elements_received;

 local_num_elements_valid += elements_received;

 while(!(eom||is_in_flush_state) &&

 num_elements_required > 0) begin

 @(ok_to_receive_event);

 byte_offset += elements_received * BYTES_PER_ELEMENT;

 elements_received = try_receive(

 byte_offset, num_elements_required, tmp_data, eom);

 out_data |= tmp_data;

 local_num_elements_valid += elements_received;

 num_elements_required -= elements_received;

 end

 num_elements_valid = local_num_elements_valid;

 end // } Implementation for unclocked pipes.

 else

 assert(0) else $display(

 "ERROR: scemi_input_pipe::receive() Invalid value of

IS_CLOCKED_INTF parameter (=%0d).",

 IS_CLOCKED_INTF);

 data = out_data;

endtask // }

 ...

endinterface

Output pipe blocking send() and flush() reference model:

SCE-MI 2.4 139

interface scemi_output_pipe(input bit pipe_clock);

 ... // Existing parameters

 parameter IS_CLOCKED_INTF = 0;

 ...

 event ok_to_send_event; // Used for unclocked pipe sync'ing only

 export "DPI-C" function scemi_pipe_hdl_notify_ok_to_send;

 function void scemi_pipe_hdl_notify_ok_to_send();

 ->ok_to_send_event;

 endfunction

 task send(

 input int num_elements, // input: #elements to be written

 input bit [PAYLOAD_MAX_BITS-1:0] data,

 // input: data

 input bit eom, // input: end-of-message marker

 input int sync_control = IS_CLOCKED_INTF);

 // input: Sync control kind:

 // 0 - block asynchronously

 // 1 - sync on clock posedge

 // 2 - sync on clock negedge

 if(sync_control > 0) begin // Implementation for clocked pipes

 int num_elements_required = num_elements;

 int bytes_offset = 0;

 int elements_sent;

 assert(IS_CLOCKED_INTF != 0)

 else $error("SCEMI ASSERT: send(%m): Attempt to sync on clock

edge of non-clocked pipe.");

 elements_sent = try_send(

 byte_offset, num_elements_required, data, eom);

 num_elements_required -= elements_sent;

 while(num_elements_required > 0) begin

 if(sync_control == 1) @(posedge pipe_clock);

 else @(negedge pipe_clock);

 byte_offset += elements_sent * BYTES_PER_ELEMENT;

 elements_sent = try_send(

 byte_offset, num_elements_required, data, eom);

 num_elements_required -= elements_sent;

 end

 end // Implementation for clocked pipes

 else if(IS_CLOCKED_INTF == 0) begin

 // Implementation for unclocked pipes.

 elements_sent = try_send(

 byte_offset, num_elements_required, data, eom);

 num_elements_required -= elements_sent;

 while(num_elements_required > 0) begin

 @(ok_to_send_event);

 byte_offset += elements_sent * BYTES_PER_ELEMENT;

SCE-MI 2.4 140

 elements_sent = try_send(

 byte_offset, num_elements_required, data, eom);

 num_elements_required -= elements_sent;

 end

 end // Implementation for unclocked pipes.

 else

 assert(0) else $display(

 "ERROR: scemi_output_pipe::send() Invalid value of

IS_CLOCKED_INTF parameter (=%0d).",

 IS_CLOCKED_INTF);

 endtask

 task flush(

 input int sync_control = IS_CLOCKED_INTF);

 // input: Sync control kind:

 // 0 - block asynchronously

 // 1 - sync on clock posedge

 // 2 - sync on clock negedge

 if(sync_control) begin // Implementation for clocked pipes

 int is_flushed;

 assert(IS_CLOCKED_INTF != 0)

 else $error("SCEMI ASSERT: send(%m): Attempt to sync on clock

edge of non-clocked pipe.");

 while(!try_flush()) begin

 if(sync_control == 1) @(posedge pipe_clock);

 else @(negedge pipe_clock);

 end

 end // Implementation for clocked pipes

 else if(IS_CLOCKED_INTF == 0) begin

 // Implementation for unclocked pipes.

 while(!try_flush()) @(ok_to_send_event);

 end // Implementation for unclocked pipes.

 else

 assert(0) else $display(

 "ERROR: scemi_output_pipe::flush() Invalid value of

IS_CLOCKED_INTF parameter (=%0d).",

 IS_CLOCKED_INTF);

 endtask

 ...

endinterface

5.8.5.5 Transaction pipes are deterministic

Transaction pipes are designed to guarantee deterministic time advance on the HDL side.

Determinism is guaranteed because consumption of data from an input pipe on the HDL side or production of

data to an output pipe will always occur on the same clock cycles from one simulation to another or even from

one implementation to another.

This property also holds true for all non-blocking pipe operations on the HDL side.

5.8.5.5.1 Repeatable behaviors for pipes

Section 5.8.5.2 describes how a transaction pipe must behave individually, but does not specify how events of

one pipe are processed with respect to events from other pipes and events from other sources such as time

SCE-MI 2.4 141

delay events, DPI events, and other synchronization events. When there are multiple events scheduled at the

same simulation time, possibly from different threads, the processing order of these simultaneous events is

unspecified but repeatable. Each implementation includes its own event scheduler which must produce

simulation results that are repeatable. For example, at any given simulation time, there can be:

 Events from multiple pipes

 Multiple DPI function calls

 Multiple pipe events and multiple DPI function calls

Although simulations must be repeatable for a particular implementation, user applications should not rely on a

particular processing order of simultaneous events to produce its desired/expected behavior.

5.8.5.6 Example reference implementations for building a complete blocking API from the non-blocking API

The examples below are just one possible implementation of a reference model of how blocking access

functions could be implemented in a given threading system. Implementations are not required to do it this way

as long as they accomplish exactly the same semantics and functional operation. This means that the timing of

notifications and returns from blocking calls must be identical for all implementations in accordance with the

notification semantics detailed in the state diagram in section 5.8.5.1.4.

The reference implementations below assume a SystemC threading system.

5.8.5.6.1 Blocking send reference implementation

The following example shows how this can be used to implement the blocking send function on top of the non-

blocking send function:

SCE-MI 2.4 142

static void notify_ok_to_send_or_receive(

 void *context) // input: notify context

{

 sc_event *me = (sc_event *)context;

 me->notify();

}

void scemi_pipe_c_send(

 void *pipe_handle, // input: pipe handle

 int num_elements, // input: #elements to be written

 const svBitVecVal *data, // input: data

 svBit eom) // input: end-of-message marker flag

{

 int byte_offset = 0, elements_sent;

 while(num_elements){

 elements_sent =

 scemi_pipe_c_try_send(

 pipe_handle, byte_offset, num_elements, data, eom);

 // if(pipe is full) wait until OK to send more

 if(elements_sent == 0){

 sc_event *ok_to_send = (sc_event *)

 scemi_pipe_get_user_data(pipe_handle, NULL);

 // if(notify ok_to_send context has not yet been set up) ...

 if(ok_to_send == NULL){

 ok_to_send = new sc_event;

 scemi_pipe_set_notify_callback(pipe_handle,

 notify_ok_to_send_or_receive,

 ok_to_send, 0 /*persistent callback*/);

 scemi_pipe_put_user_data(pipe_handle, NULL, ok_to_send);

 }

 wait(*ok_to_send);

 }

 else {

 byte_offset += elements_sent

 * scemi_pipe_get_bytes_per_element(pipe_handle);

 num_elements -= elements_sent;

 }

 }

}

The execution remains inside this send function repeatedly calling scemi_pipe_c_try_send() until all

elements in an arbitrarily sized user buffer have been transferred. Each call to scemi_pipe_c_try_send()

returns the number of elements transferred in that call.

That number is used to increment the byte_offset within the user’s data buffer.

Between the calls, the thread waits on the ok_to_send event and suspends execution until there is a

possibility of more room in the pipe for data.

If this event has not yet been created, it is created and passed as the context when the notify callback is

registered for the first time.

5.8.5.6.2 Blocking flush reference implementation

In a similar fashion, a blocking flush call can be implemented over the non-blocking flush call as follows:

SCE-MI 2.4 143

void scemi_pipe_c_flush(

 void *pipe_handle) // input: pipe handle

{

 sc_event *ok_to_flush

 = (sc_event *)scemi_pipe_get_user_data(pipe_handle, NULL);

 // if(notify ok_to_flush context has not yet been set up) ...

 if(ok_to_flush == NULL){

 ok_to_flush = new sc_event;

 scemi_pipe_set_notify_callback(pipe_handle,

 notify_ok_to_send_or_receive,

 ok_to_flush, 0 /*persistent callback*/);

 scemi_pipe_put_user_data(pipe_handle, NULL, ok_to_flush);

 }

 while(!scemi_pipe_c_try_flush(pipe_handle))

 wait(*ok_to_flush);

}

Note that for this implementation the notify callback function, notify_ok_to_send_or_receive() shown

in the previous section, can be reused without modification.

To understand better how scemi_pipe_c_try_flush() works it should be noted that this is not always

implicitly successful. By contrast, blocking scemi_pipe_c_flush() is always implicitly successful.

The whole purpose of non-blocking calls in general is to test for success within a blocking function and not

return if the success is not there.

The easiest way to look at flush is to look at send.

A blocking send is always implicitly successful. It can be implemented using a loop of non-blocking sends that

are not always implicitly successful. The example of an implementation of scemi_pipe_c_send() shown

above illustrates this.

The blocking flush works in exactly the same way.

The non-blocking flush is probably something users should never use. It is mainly there to complete the thread-

neutral API that provides full functionality for implementation of higher level thread-aware API calls that are

blocking.

5.8.5.6.3 Blocking receive reference implementation

Finally, to complete the full blocking API reference model, the blocking receive function can be implemented

over the non-blocking receive call as follows:

SCE-MI 2.4 144

void scemi_pipe_c_receive(

 void *pipe_handle, // input: pipe handle

 int num_elements, // input: #elements to be read

 int *num_elements_valid, // output: #elements that are valid

 svBitVecVal *data, // output: data

 svBit *eom) // output: end-of-message marker flag (and flush)

{

 int byte_offset = 0, elements_received;

 svBit is_in_flush_state = 0;

 *num_elements_valid = 0;

 *eom = 0;

 while(num_elements){

 is_in_flush_state = scemi_pipe_c_in_flush_state(pipe_handle);

 elements_received =

 scemi_pipe_c_try_receive(pipe_handle, byte_offset,

 num_elements, data, eom);

 *num_elements_valid += elements_received;

 if (*eom || is_in_flush_state)

 return;

 num_elements -= elements_received;

 if (num_elements > 0) { /* Wait until OK to receive more */

 byte_offset += elements_received

 * scemi_pipe_get_bytes_per_element(pipe_handle);

 sc_event *ok_to_receive

 = (sc_event *)scemi_pipe_get_user_data(pipe_handle, NULL);

 if(ok_to_receive == NULL){ /* set up ok_to_receive if NULL */

 ok_to_receive = new sc_event;

 scemi_pipe_set_notify_callback(pipe_handle,

 notify_ok_to_send_or_receive,

 ok_to_receive, 0 /*persistent callback*/);

 scemi_pipe_put_user_data(pipe_handle, NULL, ok_to_receive);

 }

 wait(*ok_to_receive);

 }

 }

}

The structure of the blocking receive call is similar to the blocking send except that special provision must be

made to properly update the num_elements_valid output argument which does not exist in the send call. As

described above, num_elements_valid can be less than num_elements requested in the case where the

producer has done a flush.

Additionally, it is necessary to detect a condition in which a flush has occurred but the pipe is empty. This can

happen if a producer wrote some elements to the pipe but did not flush until some clock cycles later.

Meanwhile, if control yielded to the C side and the C-side consumed those elements, it would not have known

yet that a flush was going to occur so it would have looped back around to execute the wait(

*ok_to_receive) statement. But when the flush finally does occur, the pipe would have been empty. In

this case the blocking receive function must return immediately since its original request has technically been

satisfied.

5.8.5.7 Query of buffer depth

By default, depth of a transaction pipe is assumed to be implementation defined. The user can query (but not

override) this default on any individual pipe with the following C-side calls:

int scemi_pipe_get_depth(// return: current depth (in elements) of the pipe

 void *pipe_handle); // input: pipe handle

Note the following properties:

SCE-MI 2.4 145

 The pipe_handle is the handle identifying the specific pipe as derived from the unique combination

of the HDL scope and the pipe ID (see section 5.8.2).

 The depth of any pipe is always expressed in elements. Each element's size is determined by the

statically defined BYTES_PER_ELEMENT in the HDL endpoint instantiation of a pipe.

5.9 Direct memory interface

The SCE-MI direct memory interface (SCE-MI DMI) provides a C-side interface to directly access an HDL-

side memory. This interface can increase the co-modeling efficiency by providing more controllability and

observability of HDL-side memories.

To directly access an HDL-side memory, a user needs to retrieve a handle to the memory. This handle can be

retrieved by the string path of the memory instance. The string path is the full path name containing the

memory array variable. Once the memory handle is retrieved, a user can access the memory either by blocks of

memory words or by a single memory word.

 Block Interface: get/put a block of aligned HDL memory words.

 Word Interface: read/write a memory word of an HDL memory.

 Block of Bytes Interface: get/put a number of bytes from HDL memory

 File Interface: read/write data from/to a file

 Pattern Fill Interface: Set memory locations to a desired pattern or clear a memory.

The C-side interface API consists entirely of the following set of function declarations.

Configuration and query functions:

void *scemi_mem_c_handle(// return : HDL-side memory handle

 const char *hdl_path); // input : path to the memory

void scemi_mem_get_size(

 woid *mem_handle, // input : HDL-side memory handle

 unsigned int *width, // output : bit-width of the memory

 unsigned long long *depth); // output : depth of the memory

Block interface:

void scemi_mem_get_block(

 void *mem_handle, // input : HDL-side memory handle

 unsigned long long mem_word_offset, // input : memory address (offset)

 unsigned long long num_words, // input : length of data

 void *data); // input : user data block

void scemi_mem_put_block(

 void *mem_handle, // input : HDL-side memory handle

 unsigned long long mem_word_offset, // input : memory address (offset)

 unsigned long long num_words, // input : length of data

 void *data); // input : user data block

Word interface:

SCE-MI 2.4 146

 void scemi_mem_write_word (

 void *mem_handle, // input : HDL-side memory handle

 unsigned long long mem_word_offset, // input : memory address (offset)

 const svBitVecVal *data, // input : memory word

 unsigned char *byte_enable_buf, // input : byte enable buffer

 unsigned int flush = 0); // input : flush write buffer

 void scemi_mem_read_word (

 void *mem_handle, // input : HDL-side memory handle

 unsigned long long mem_word_offset, // input : memory address (offset)

 svBitVecVal *data, // output : memory word

 unsigned long long pre_fetch); // input : number of words to pre-fetch

Block of Bytes Interface:

void scemi_mem_get_block_of_bytes(

 void *mem_handle, // input : HDL-side memory handle

 unsigned long long mem_byte_offset, // input : memory byte address

 unsigned long long num_bytes, // input : length of data in bytes

 void *data); // output : user data block

void scemi_mem_put_block_of_bytes(

 void *mem_handle, // input : HDL-side memory handle

 unsigned long long mem_byte_offset, // input : memory address (offset)

 unsigned long long num_bytes, // input : length of data

 void *data); // input : user data block

File Interface:

void scemi_mem_read_file(// $readmem(h/b) equivalent

 void *mem_handle, // input : HDL-side memory handle

 char *file_name, // input : content file

 bool is_data_hex, // input : hex vs binary data

 signed long long start_addr = -1, // input:starting word address of range

 signed long long end_addr = -1); // input:ending word address of range

void scemi_mem_write_file(// $readmem(h/b) equivalent

 void *mem_handle, // input : HDL-side memory handle

 char *file_name, // input : content file

 bool is_data_hex, // input : hex vs binary data

 signed long long start_addr = -1, // input:starting word address of range

 signed long long end_addr = -1); // input:ending word address of range

Pattern Fill Interface:

SCE-MI 2.4 147

void scemi_mem_pattern_fill(

 void *mem_handle, // input : HDL-side memory handle

 unsigned long long mem_word_offset, // input : memory address (offset)

 unsigned long long num_words, // input : # of words impacted

 const svBitVecVal *word_pattern); // input : pattern to be applied onto

 // each memory word

void scemi_mem_clear(

 void *mem_handle); // input : HDL-side memory handle

5.9.1 Block interfaces:

void scemi_mem_put_block (

 void *mem_handle, // input : HDL-side memory handle

 unsigned long long mem_word_offset, // input : memory address (offset)

 unsigned long long mem_words, // input : length of data

 void *data); // input : user data block

void scemi_mem_get_block(

 void *mem_handle, // input : HDL-side memory handle

 unsigned long long mem_word_offset, // input : memory address (offset)

 unsigned long long num_words, // input : length of data

 void *data); // input : user data block

These functions do not return any error status. The standard SCE-MI compliant error handling should be used

to report errors when there was an error (e.g. incorrect address, or length). These functions accesses HDL-side

memories with no simulation time.

The starting address in the HDL-side memory is a normalized memory address. For example, if the HDL-side

memory is defined as reg[31:0] mem [4:16] or reg [31:0] mem [16:4], the mem_offset for mem[4]

is 0.

The data type of user data should match the type of HDL memory. The implementation will interpret the void*

data pointer based on the word type from the HDL-side as defined in the following table:

SystemVerilog Type C Type

byte x [] char *data

shortint x [] short int *data

int x [] int *data

longint x [] long long *data

bit x [] unsigned char *data

bit [N:0] x []

unsigned char *data

data[0] is x[0][7:0],

data[1] is x[0][15:8]

…

If the word type of the HDL-side memory is of C-compatible types, then the C-side should have the

corresponding C-type layout.

If the word type of the HDL-side memory is of bit-vector type, then the C-side will be using byte-alignment

format with the LSB of the first memory word to be the first in the data byte array.

SCE-MI 2.4 148

5.9.2 Word interface

void scemi_mem_write_word (

 void *mem_handle, // input : HDL-side memory handle

 unsigned long long mem_word_offset, // input : memory address (offset)

 const svBitVecVal *data, // input : memory word

 unsigned char *byte_enable_buf, // input : byte enable buffer

 // byte_enable_buf == NULL, all bytes are enabled

 // byte_enable_buf != NULL, value 0xff in

 // byte_enable_buf[k] enables the kth byte of

 // memory word, value 0 disables the kth byte

 //k ==0 control LSB (bit [7:0])

 unsigned int flush); // input : 1: flush write buffer

void scemi_mem_read_word (

 void *mem_handle, // input : HDL-side memory handle

 unsigned long long mem_word_offset, // input : buffer address

 svBitVecVal *data, // output : memory word

 unsigned long long pre_fetch); // input : pre-fetch number of words

These functions do not return any error status. The standard SCE-MI compliant error handling should be used

to report errors when there was an error (e.g. incorrect address, or length).

Semantics of these functions are immediate without any delay. The implementation can take advantage of the

alternating SCE-MI semantics and do write buffering and read pre-fetching to improve performance. However,

the use of buffering and pre-fetching should not change the immediate semantics. A read transaction following

a write transaction to the same location should always get the latest value. The immediate semantics is also

applied to the block interface.

The user can use the flush argument in the write function to guide write buffer flushing. For example:

unsigned long long start_addr = 5000;

svBiVecVal bvec[10];

for (i=0; i< 1000; i++)

{

 generate_data(bvec);

 scemi_mem_write_word(hdl, start_addr + i, bvec, 0, (i==999));

}

In this example, the user writes 1000 words to the HDL-side memory and signals the flush at the end. The

flush is just a hint to the buffering. From the user’s point of view, all write transactions are executed at the

return of each call and will see no functional difference based on the value of this argument. An

implementation is free to ignore the argument.

The user can use the pre_fetch argument in the read function to hint about a sequential access to a memory

block. This is a guide to the implementation only. The implementation must guarantee that there will be no

change in functionality based on the value of the pre-fetch argument, and the user will never see any difference

except a potential change in performance. An implementation is free to ignore this argument. For example:

unsigned long long pre_fetch = 1000; //pre-fetch 1000 words

unsigned long long start_addr = 5000;

for (i=0; i< 1000; i++)

{

 scemi_mem_read_word(hdl, start_addr + i, bvec, pre_fetch);

 process (bvec);

 pre_fetch = 0;

}

In this example, the user reads 1000 words from a block of HDL-side memory and signals the intention with

the pre_fetch = 1000 at the first read transaction. After the first time around the loop, pre_fetch is reset.

SCE-MI 2.4 149

5.9.3 Block of bytes interface

void scemi_mem_get_block_of_bytes(

 void *mem_handle, // input : HDL-side memory handle

 unsigned long long mem_byte_offset, // input : memory byte address

 unsigned long long num_bytes, // input : length of data in bytes

 void *data); // output : user data block

void scemi_mem_put_block_of_bytes(

 void *mem_handle, // input : HDL-side memory handle

 unsigned long long mem_byte_offset, // input : memory address (offset)

 unsigned long long num_bytes, // input : length of data

 void *data); // input : user data block

These functions operate the same as the Word Interface except that they pertain to an arbitrary block of bytes

that can be read or written to the memory. They do not have pre_fetch or flush characteristics of the Word

interface.

The array passed in is assumed to be little endian and mapped to a memory with the data width that is a

multiple of bytes. In other cases, an error will be recorded. If those restrictions cannot be met, the word

interface should be used.

5.9.4 File interface

void scemi_mem_read_file(// $readmem(h/b) equivalent

 void *mem_handle, // input : HDL-side memory handle

 char *file_name, // input : content file

 bool is_data_hex, // input : hex vs binary data

 signed long long start_addr = -1, // input:starting word address of range

 signed long long end_addr = -1); // input:ending word address of range

void scemi_mem_write_file(// $readmem(h/b) equivalent

 void *mem_handle, // input : HDL-side memory handle

 char *file_name, // input : content file

 bool is_data_hex, // input : hex vs binary data

 signed long long start_addr = -1, // input:starting word address of range

 signed long long end_addr = -1); // input:ending word address of range

These functions are used to read and write the contents of memory from and to a file. They very closely follow

the SystemVerilog $readmemh(), $readmemb() functions as defined in the LRM. The functions execute in

zero simulation time and return no status.

The file_name argument is a null terminated string that provides a legal file name that conforms to the

limitations of the operating system the application is running on. The file will be opened for READ or WRITE

access depending on call.

The is_data_hex argument can be 1 or 0. A value of 1 indicates that the data in the file is to be interpreted as

having hexadecimal radix equivalent to $readmemh(), $writememh() semantics. A value of 0 indicates that

the data in the file is to be interpreted as having binary radix and equivalent to $readmemb(), $writememb()

semantics.

The arguments start_addr and end_addr denote the starting address and ending address respectively of the

memory range to be updated. The values of these parameters have exactly the same meaning as their

counterparts in the $readmem(h/b), $writemem(h/b) functions in the SystemVerilog LRM. If values of -1

are given for either parameter, this is equivalent to calling the variation $readmem(h/b), $writemem(h/b)

without these parameters supplied and thus has the same semantic meaning as described in the SystemVerilog

LRM.

SCE-MI 2.4 150

5.9.5 Pattern fill interface

void scemi_mem_pattern_fill(

 void *mem_handle, // input : HDL-side memory handle

 unsigned long long mem_word_offset, // input : memory address (offset)

 unsigned long long num_words, // input : # of words impacted

 const svBitVecVal *word_pattern); // input : pattern to be applied onto

 // each memory word

void scemi_scemi_mem_clear(

 void *mem_handle); // input : HDL-side memory handle

These functions are used to initialize a block of memory defined by mem_handle. They execute in zero time

and provide no return status.

If a particular pattern is desired in each word of the memory, the scemi_mem_pattern_fill function

deposits the pattern contained in word_pattern into the next num_words locations starting from

word_offset.

The word_pattern parameter is assumed to have a width exactly matching the data width of the memory to

be updated.

The scemi_mem_clear function sets all locations of the memory to zero.

5.10 Register access interface

The SCE-MI 2 standard provides a C-API to access HDL-side registers which can include single or multi-bit

registers.

Specifically the register access API leverages the existing, standardized register API that is currently part of the

UVM standard (see [B7] in Appendix H):

 The SCE-MI API will use, verbatim, the uvm_hdl_* calls defined in the UVM HDL back door

access-layer of the Accellera UVM standard for register access. This standard defines a set of DPI

based support routines for providing back door register access (see the section in the UVM standard

referring to “UVM HDL back door access support routines”).

 The UVM standard implements these functions using a reference implementation underneath based on

the standard VPI API. Therefore, by making the SCE-MI standard adopt this API verbatim, current

simulators that provide the UVM HDL back door access-layer will automatically be SCE-MI

compliant.

 For the SCE-MI version, vendors can substitute other implementations underneath the uvm_hdl_*

calls as an alternative to the VPI implementation that is there now while keeping the API function

definitions intact and allow existing applications to use them with no changes.

 Although originally designed to provide access to SystemVerilog HVL (SV-HVL) UVM testbenches,

the basic C API can also be used directly by C, C++, or SystemC HVL testbenches. This can be done

by linking a compiled C object file directly into C applications without using any other parts

of the UVM package. This object file shall contain the implementations of the DPI based register

access API as defined in the UVM standard and listed below.

 Note that even SV-HVL UVM applications can continue to work using the alternate implementations

of the underlying UVM HDL back door access-layer. Thus this API will support both C-HVL and

SV-HVL standardized register access.

SCE-MI 2.4 151

The register access functions are listed here:

//---

// Register access functions

//

// uvm_hdl_check_path() - Check if signal denoted by path is present

// uvm_hdl_read() - Get value of signal denoted by given path

// uvm_hdl_deposit() - Set value of signal denoted by given path

// uvm_hdl_force() - Force value of signal denoted by given path

// uvm_hdl_release() - Release signal denoted by given path

// uvm_hdl_release_and_read() - Release signal denoted by given path

// and read value

//

// Return value for all above functions: 0 unsuccessful, 1 successful

//---

extern "C" {

 int uvm_hdl_check_path(const char *path);

 int uvm_hdl_read(const char *path, p_vpi_vecval value);

 int uvm_hdl_deposit(const char *path, p_vpi_vecval value);

 int uvm_hdl_force(const char *path, p_vpi_vecval value);

 int uvm_hdl_release(const char *path);

 int uvm_hdl_release_and_read(const char *path, p_vpi_vecval value);

5.11 Stopping a simulation

SCE-MI allows the HVL-side application to stop a simulation. For any SCE-MI implementation that already

supports VPI, no additional work is needed to support stopping simulations.

For SCE-MI implementations that do not support VPI they must support at least the vpi_control() call as

defined in the SystemVerilog standard in at least the way described below.

The vpi_control() call can be used to stop a simulation:

 PLI_INT32 vpi_control(PLI_INT32 operation, varargs);

In the SystemVerilog standard, operation denotes the possible control operations as defined by #define

constants in vpi_user.h. These are vpiStop, vpiFinish, vpiReset, and vpiSetInteractiveScope.

For SCE-MI compliance, only vpiFinish needs to be supported. This operation will cause the simulation to

terminate.

For the vpiFinish operation, the varargs argument can be 0, 1, or 2 as described in SystemVerilog. This

argument specifies the type of information that is to be printed to the simulation transcript upon termination.

For SCE-MI compliance only value 0 needs to be supported which says to print nothing.

The vpi_control() call returns a PLI_INT32 value indicating the status of the operation which is 1 for

successful and 0 for failure.

The following is an example of a SCE-MI compliant vpi_control() call,

 PLI_INT32 status;

 status = vpi_control(vpiFinish, 0);

 ...

SCE-MI 2.4 152

Appendix A: Example using dynamic callbacks
(Informative)

The example below uses dynamic callbacks to implement a user-defined blocking send function on top of the non-

blocking scemi_pipe_c_try_send function.

static void notify_ok_to_send (

 void *context) // input: notify context

{

 sc_event *me = (sc_event *)context;

 me->notify();

}

void my_scemi_pipe_c_send(

 void *pipe_handle, // input: pipe handle

 int num_elements, // input: #elements to be written

 const svBitVecVal *data, // input: data

 svBit eom) // input: end-of-message marker flag

{

 int byte_offset = 0, elements_sent;

 int pipe_depth = scemi_pipe_get_depth(pipe_handle);

 while(num_elements){

 elements_sent =

 scemi_pipe_c_try_send(

 pipe_handle, byte_offset, num_elements, data, eom);

 num_elements -= elements_sent;

 if(elements_sent > 0){ /* wait till empty pipe or enough space */

 sc_event *ok_to_send = (sc_event *)

 scemi_pipe_get_user_data(pipe_handle, my_scemi_pipe_c_send);

 if(ok_to_send == NULL) {

 ok_to_send = new sc_event;

 scemi_pipe_put_user_data(pipe_handle, my_scemi_pipe_c_send,

 ok_to_send);

 }

 scemi_pipe_set_notify_callback(pipe_handle,

 notify_ok_to_send, ok_to_send,

 (num_elements > pipe_depth) ? pipe_depth : num_elements);

 byte_offset += elements_sent

 * scemi_pipe_get_bytes_per_element(pipe_handle);

 wait(*ok_to_send);

 }

 }

}

In my_scemi_pipe_c_send, when the pipe does not have enough room to fulfill the send request, a one-time

dynamic notification callback will be registered to specify the ideal callback condition. That is, when the pipe has

enough room to fulfill the send request, or when the pipe becomes empty for requests that are larger than the pipe

depth. This blocking send implementation allows an application to be notified whenever the callback condition is

met, possibly earlier and no later than the pipe state diagram dictates.

SCE-MI 2.4 153

Appendix B: VHDL SCE-MI macros package
(Informative)

The following package can be used to supply SCE-MI macro component declarations to an application. Compile

this package into the library SCE-MI and include it in the application code as:

library SceMi;

use SceMi.SceMiMacros.all;

Here is the source code for the package:

library ieee;

use ieee.std_logic_1164.all;

package SceMiMacros is

 component SceMiMessageInPort

 generic(PortWidth: natural);

 port(

 ReceiveReady : in std_logic;

 TransmitReady : out std_logic;

 Message : out std_logic_vector(PortWidth-1 downto 0));

 end component;

 component SceMiMessageOutPort

 generic(PortWidth: natural; PortPriority: natural:=10);

 port(

 TransmitReady : in std_logic;

 ReceiveReady : out std_logic;

 Message : in std_logic_vector(PortWidth-1 downto 0));

 end component;

 component SceMiClockPort

 generic(

 ClockNum : natural := 1;

 RatioNumerator : natural := 1;

 RatioDenominator : natural := 1;

 DutyHi : natural := 0;

 DutyLo : natural := 100;

 Phase : natural := 0;

 ResetCycles : natural := 8);

 port(

 Cclock : out std_logic;

 Creset : out std_logic);

 end component;

 component SceMiClockControl

 generic(ClockNum: natural := 1);

 port(

 Uclock,

 Ureset : out std_logic;

 ReadyForCclock : in std_logic;

 CclockEnabled : out std_logic;

 ReadyForCclockNegEdge : in std_logic;

 CclockNegEdgeEnabled : out std_logic);

 end component;

end SceMiMacros;

SCE-MI 2.4 154

Appendix C: Macro-based multi-clock hardware side interface
example
(Informative)

Figure C.1shows the top level structure of a simple multi-clock, multi-transactor example.

Figure C.1 Multi-clock, multi-transactor example

This design demonstrates the following points.

Three ClockPort instances define clocks named cclock, cclock2_1, and cclock4_1.

 Because no parameters are given with the SceMiClockPort instance cclock, all default parameters are

used. This means cclock has a ClockNum=1, a clock ratio of 1/1, a don’t care duty cycle, a phase shift of

0, and the controlled reset it supplies has an active duration of eight controlled clock cycles.

SCE-MI 2.4 155

 The cclock2_1 instance of SceMiClockPort overrides the first three parameters and leaves the rest at

their default values. This means cclock2_1 has a ClockNum=2, a clock ratio of 2/1 (i.e., a “divide-by-2”

clock), a duty cycle of 50%, a phase shift of 0, and an eight clock-cycle reset duration.

 The cclock4_1 instance of SceMiClockPort has a ClockNum=3, a clock ratio of 4/1 (i.e., a “divide-by-

4” clock), a duty cycle of 75%, a phase shift of 30% of the clock period, and an eight clock- cycle reset

duration.

 The TxTransactor transactor model, named Bridge.u1, controls clocks cclock and cclock2_1 since

its SceMiClockControl macro instances have ClockNum=1 and

ClockNum=2, respectively.

 This TxTransactor model interfaces to a message input port called p1 which is parametrized to a bit-

width of 64.

 The RxTransactor transactor model, named Bridge.u2, controls clock cclock4_1 since its

SceMiClockControl macro instance has ClockNum=3.

 This RxTransactor model interfaces to a message input port called p1 which is parametrized to a bit-

width of 128.

The following listing shows some of the VHDL source code for the above schematic.

SCE-MI 2.4 156

library ieee;

use ieee.std_logic_1164.all;

library SceMi;

use SceMi.SceMiMacros.all;

entity Bridge is end;

architecture Structural of Bridge is

 component TxTransactor is

 port(

 DutInCtrl: out std_logic;

 DutInData: out std_logic_vector(31 downto 0);

 DutOutCtrl: in std_logic;

 DutOutData: in std_logic_vector(31 downto 0));

 end component TxTransactor;

 component TxDUT is

 port(

 DutInCtrl: in std_logic;

 DutInData: in std_logic_vector(31 downto 0);

 DutOutCtrl: out std_logic;

 DutOutData: out std_logic_vector(31 downto 0);

 Clk, Rst, ClkDiv2: in std_logic);

 end component TxDUT;

 component RxTransactor is

 port(

 DutInCtrl: out std_logic;

 DutInData: out std_logic_vector(31 downto 0);

 DutOutCtrl: in std_logic;

 DutOutData: in std_logic_vector(31 downto 0));

 end component RxTransactor;

 component RxDUT is

 port(

 DutInCtrl: in std_logic;

 DutInData: in std_logic_vector(31 downto 0);

 DutOutCtrl: out std_logic;

 DutOutData: out std_logic_vector(31 downto 0);

 Clk, Rst: in std_logic);

 end component RxDUT;

 signal txDutInCtrl, txDutOutCtrl: std_logic;

 signal txDutInData, txDutOutData: std_logic_vector(31 downto 0);

 signal rxDutInCtrl, rxDutOutCtrl: std_logic;

 signal rxDutInData, rxDutOutData: std_logic_vector(31 downto 0);

 signal cclock, creset, clkDivideBy2, clkDivideBy4

 cresetDivideBy4: std_logic;

begin

 u1: TxTransactor port map(txDutInCtrl, txDutInData, txDutOutCtrl,

 txDutOutData);

 d1: TxDUT port map(txDutInCtrl, txDutInData, txDutOutCtrl,

 txDutOutData, cclock, creset, clkDivideBy2);

 cclock: SceMiClockPort port map(cclock, creset);

 cclock2_1: SceMiClockPort

 generic map(2, 2, 1, 50, 50, 0, 8)

 port map(clkDivideBy2, open);

 u2: RxTransactor port map(txDutInCtrl, txDutInData, txDutOutCtrl,

 txDutOutData);

 d2: RxDUT port map(txDutInCtrl, txDutInData, txDutOutCtrl,

 txDutOutData, clkDivideBy4, cresetDivideBy4);

 cclock4_1: SceMiClockPort

 generic map(3, 4, 1, 75, 25, 30, 8)

 port map(clkDivideBy2, open);

end;

library ieee;

use ieee.std_logic_1164.all;

SCE-MI 2.4 157

library SceMi;

use SceMi.SceMiMacros.all;

entity TxTransactor is

 port(

 DutInCtrl: out std_logic;

 DutInData: out std_logic_vector(31 downto 0);

 DutOutCtrl: in std_logic;

 DutOutData: in std_logic_vector(31 downto 0));

 end;

architecture Structural of TxTransactor is

 component TxTransactorCore is

 port(

 TxRdyIn: in std_logic; RxRdyIn: out std_logic;

 Message: in std_logic(63 downto 0);

 DutInCtrl: out std_logic;

 DutInData: out std_logic_vector(31 downto 0);

 DutOutCtrl: in std_logic;

 DutOutData: in std_logic_vector(31 downto 0));

 Uclk, Rst: in std_logic;

 ReadyForCclock: in std_logic;

 CclockEnabled: out std_logic;

 ReadyForCclockDiv2: in std_logic;

 CclockEnabledDiv2: out std_logic;

 end component TxTransactor;

 signal transmitReady, receiveReady: std_logic;

 signal message: std_logic_vector(63 downto 0);

 signal uclock, ureset: std_logic;

 signal readyForCclock, cclockEnabled: std_logic;

 signal readyForCclockDiv2, cclockEnabledDiv2;

begin

 t1: TxTransactorCore port map(

 transmitReady, receiveReady, message,

 DutInCtrl, DutInData, DutOutCtrl, DutOutData,

 uclock, ureset,

 readyForCclock, cclockEnabled, readyForCclockDiv2,

 cclockEnabledDiv2);

 p1: SceMiMessageInputPort

 generic map(64)

 port map(transmitReady, receiveReady, message);

 c1: SceMiClockControl

 port map(uclock, ureset, readyForCclock, cclockEnabled,

 ‘1’, open);

 c2: SceMiClockControl

 generic map(2)

 port map(open, open, readyForCclockDiv2, cclockEnabledDiv2,

 ‘1’, open);

end;

SCE-MI 2.4 158

Appendix D: Using transaction pipes compatibly with Accellera
Systems Initiative’s SystemC-TLM applications
(informative)

D.1 TLM interfaces

The transaction pipes described in this document are designed to dovetail cleanly with Accellera Systems

Initiative’s SystemC-TLM models. They support the following basic interface operations found in TLM put

interfaces and TLM get interfaces which are summarized in the following table:

Operations TLM Put Interfaces

(tlm_put_if<T>)

TLM Get Interfaces

(tlm_get_if<T>)

Blocking Ops

Data transfer ::put() ::get()

Non-Blocking Ops

Data transfer

Query

Notify

::nb_put()

::nb_can_put()

::ok_to_put()

::nb_get()

::nb_can_get()

::ok_to_get()

A typical TLM put interface is derived from the following abstract class tlm_put_if<T>:

template < typename T >

class tlm_blocking_put_if : public virtual sc_interface {

 public:

 virtual void put(const T &t) = 0;

};

template < typename T >

class tlm_nonblocking_put_if : public virtual sc_interface {

 public:

 virtual bool nb_put(const T &t) = 0;

 virtual bool nb_can_put(tlm_tag<T> *t = 0) const = 0;

 virtual const sc_event &ok_to_put(tlm_tag<T> *t = 0) const = 0;

};

template < typename T >

class tlm_put_if :

 public virtual tlm_blocking_put_if< T > ,

 public virtual tlm_nonblocking_put_if< T > {};

A typical TLM get interface is derived from the following abstract class tlm_get_if<T>:

SCE-MI 2.4 159

template < typename T >

class tlm_blocking_get_if : public virtual sc_interface {

 public:

 virtual T get(tlm_tag<T> *t = 0) = 0;

 virtual void get(T &t) { t = get(); }

};

template < typename T >

class tlm_nonblocking_get_if : public virtual sc_interface {

 public:

 virtual bool nb_get(T &t) = 0;

 virtual bool nb_can_get(tlm_tag<T> *t = 0) const = 0;

 virtual const sc_event &ok_to_get(tlm_tag<T> *t = 0) const = 0;

};

template < typename T >

class tlm_get_if :

 public virtual tlm_blocking_get_if< T > ,

 public virtual tlm_nonblocking_get_if< T > {};

D.2 Example of Accellera Systems Initiative’s SystemC-TLM compliant proxy

model that uses transaction pipes

This proxy class is a derivation of the basic TLM put interface class tlm_put_if<T> described in the previous

section. Implementations of the required functions of that interface are shown. The example shows how the SCE-

MI 2 transaction pipe access functions provide all the necessary functionality to interface this proxy model to the

HDL side.

SCE-MI 2.4 160

//____________________________ _______________

// class PipelineIngressProxy ______________________________/ johnS 2-5-2006

//

// The PipelineIngressProxy module consumes data received over a data channel

// from producer sends it to the Pipeline DUT on the SystemVerilog side by passing

// transactions over a transaction input pipe to the

// PipelineIngressTransactor.

//---

template< typename T, const int NUM_WORDS >

class PipelineIngressProxy :

 public sc_module,

 public virtual tlm_put_if<T>

{

 public:

 sc_export< tlm_put_if< T > > put_export;

 private:

 void *m_pipe_handle;

 sc_event m_ok_to_put;

 static void notify_ok_to_put(

 void *context){ // input: notify context

 sc_event *me = (sc_event *)context;

 me->notify();

 }

 void pack(const T &t, svBitVecVal pipe_data[]);

 public:

 PipelineIngressProxy(sc_module_name name,

 const char *transactor_name)

 : sc_module(name)

 {

 // Bind to channel.

 put_export(*this);

 // Establish binding to transaction input pipe.

 m_pipe_handle = scemi_pipe_c_handle(transactor_name);

 // Register notify "ok to put" callback

 scemi_pipe_set_notify_callback(

 m_pipe_handle, notify_ok_to_put, &m_ok_to_put);

 }

 void put(const T &t) {

 svBitVecVal pipe_data[SV_PACKED_DATA_NELEMS(NUM_WORDS*32)];

 pack(t, pipe_data);

 if(!nb_can_put())

 wait(m_ok_to_put);

 assert(

 scemi_pipe_c_try_send(m_pipe_handle, 0, 1, pipe_data, 0));

 }

 bool nb_put(const T &t) {

 if(!nb_can_put())

 return false;

 svBitVecVal pipe_data[SV_PACKED_DATA_NELEMS(NUM_WORDS*32)];

SCE-MI 2.4 161

 pack(t, pipe_data);

 assert(

 scemi_pipe_c_try_send(m_pipe_handle, 0, 1, pipe_data, 0));

 return true;

 }

 bool nb_can_put(tlm_tag<T> *t = 0) const {

 return scemi_pipe_c_can_send(m_pipe_handle) == 1; }

 const sc_event &ok_to_put(tlm_tag<T> *t = 0) const {

 return m_ok_to_put; }

};

void PipelineIngressProxy<MyType,MyType::NUM_WORDS>::pack(

 const MyType &t, svBitVecVal pipe_data[])

{

 pipe_data[0] = t.Count;

 // Coerce double to long long integer.

 long long ll_data = (long long)t.Data;

 pipe_data[1] = (svBitVecVal)ll_data;

 ll_data >>= 32;

 pipe_data[2] = (svBitVecVal)ll_data;

 pipe_data[3] = t.Status;

}

SCE-MI 2.4 162

Appendix E: Sample header files for the macro-based SCE-MI
(informative)

The ANSI-C file should be used without modification. For the C++ header, extensions are allowable but no

modifications can be made to any of the contents that are provided.

SCE-MI 2.4 163

E.1 C++

//

// Copyright © 2003-2007 by Accellera

// scemi.h - SCE-MI C++ Interface

//

#ifndef INCLUDED_SCEMI

#define INCLUDED_SCEMI

class SceMiParameters;

class SceMiMessageData;

class SceMiMessageInPortProxy;

class SceMiMessageOutPortProxy;

#define SCEMI_MAJOR_VERSION 2

#define SCEMI_MINOR_VERSION 0

#define SCEMI_PATCH_VERSION 0

#define SCEMI_VERSION_STRING "2.0.0"

/* 32 bit unsigned word type for building and reading messages */

typedef unsigned int SceMiU32;

/* 64 bit unsigned word used for CycleStamps */

typedef unsigned long long SceMiU64;

extern "C" {

typedef int (*SceMiServiceLoopHandler)(void* context, int pending);

};

/*

 * struct SceMiEC - SceMi Error Context

 */

typedef enum {

 SceMiOK,

 SceMiError

} SceMiErrorType;

typedef struct {

 const char* Culprit; /* The offending function */

 const char* Message; /* Descriptive message describing problem */

 SceMiErrorType Type; /* Error code describing the nature of the error */

 int Id; /* A code to uniquely identify each error */

} SceMiEC;

extern "C" {

typedef void (*SceMiErrorHandler)(void* context, SceMiEC* ec);

};

/*

 * struct SceMiIC - SceMi Informational Message Context

 */

typedef enum {

 SceMiInfo,

 SceMiWarning,

 SceMiNonFatalError

} SceMiInfoType;

typedef struct {

 const char* Originator;

 const char* Message;

SCE-MI 2.4 164

 SceMiInfoType Type;

 int Id;

} SceMiIC;

extern "C" {

typedef void (*SceMiInfoHandler)(void* context, SceMiIC* ic);

};

/*

 * struct SceMiMessageInPortBinding

 *

 * Description

 * -----------

 * This structure defines a tray of callback functions that support

 * propagation of message input readiness back to the software.

 *

 * If an input ready callback is registered (optionally) on a given

 * input port, the port will dispatch the callback whenever becomes

 * ready for more input.

 *

 * Note: All callbacks must take their data and return promptly as they

 * are called possibly deep down in a non-preemptive thread. Typically,

 * the callback might to some minor manipulation to the context object

 * then return and let a suspended thread resume and do the main process¬ing

 * of the received transaction.

 */

extern "C" {

typedef struct {

 /*

 * This is the user's context object pointer.

 * The application is free to use this pointer for any purposes it

 * wishes. Neither the class SceMi nor class MessageInputPortProxy do

 * anything with this pointer other than store it and pass it when

 * calling functions.

 */

 void* Context;

 /*

 * Receive a response transaction. This function is called when data

 * from the message output port arrives. This callback acts as a proxy

 * for the message output port of the transactor.

 */

 void (*IsReady)(

 void* context);

 /*

 * This function is called from the MessageInputPortProxy destructor

 * to notify the user code that the reference to the 'context' pointer

 * has been deleted.

 */

 int (*Close)(

 void* context);

} SceMiMessageInPortBinding;

};

/*

 * struct SceMiMessageOutPortBinding

 *

 * Description

 * -----------

SCE-MI 2.4 165

 * This structure defines a tray of callback functions are passed to the class

 * SceMi when the application model binds to a message output port proxy and

 * which are called on message receipt and close notification. It is the means

 * by which the MessageOutputPort forwards received transactions to the C model.

 *

 * Note: All callbacks must take their data and return promptly as they

 * are called possibly deep down in a non-preemptive thread. Typically,

 * the callback might to some minor manipulation to the context object

 * then return and let a suspended thread resume and do the main process¬ing

 * of the received transaction.

 *

 * Additionally, the message data passed into the receive callback is

 * not guaranteed to remain the same once the callback returns. All

 * data therein then must be processed while inside the callback.

 */

extern "C" {

typedef struct {

 /*

 * This is the user's context object pointer.

 * The application is free to use this pointer for any purposes it

 * wishes. Neither the class SceMi nor class SceMiMessageOutPortProxy do

 * anything with this pointer other than store it and pass it when

 * calling callback functions Receive and Close.

 */

 void* Context;

 /*

 * Receive a response transaction. This function is called when data

 * from the message output port arrives. This callback acts as a proxy

 * for the message output port of the transactor.

 */

 void (*Receive)(

 void* context,

 const SceMiMessageData* data);

 /*

 * This function is called from the MessageOutputPortProxy destructor

 * to notify the user code that the reference to the 'context' pointer

 * has been deleted.

 */

 int (*Close)(

 void* context);

} SceMiMessageOutPortBinding;

};

class SceMiParameters {

 public:

 // CREATORS

 //

 // This constructor initializes some parameters from the

 // parameters file in the config directory, and some other

 // parameters directly from the config file.

 //

 SceMiParameters(

 const char* paramsfile,

 SceMiEC* ec = 0);

 ~SceMiParameters();

SCE-MI 2.4 166

 // ACCESSORS

 //

 // This accessor returns the number of instances of objects of

 // the specified objectKind name.

 //

 unsigned int NumberOfObjects(

 const char* objectKind, // Input: Object kind name.

 SceMiEC* ec = 0) const; // Input/Output: Error status.

 //

 // These accessors return an integer or string attribute values of the

 // given object kind. It is considered an error if the index > number

 // returned by ::NumberOfObjects() or the objectKind and attributeName

 // arguments are unrecognized.

 //

 int AttributeIntegerValue(

 const char* objectKind, // Input: Object kind name.

 unsigned int index, // Input: Index of object instance.

 const char* attributeName, // Input: Name of attribute being read.

 SceMiEC* ec = 0) const; // Input/Output: Error status.

 const char* AttributeStringValue(

 const char* objectKind, // Input: Object kind name.

 unsigned int index, // Input: Index of object instance.

 const char* attributeName, // Input: Name of attribute being read.

 SceMiEC* ec = 0) const; // Input/Output: Error status.

 // MANIPULATORS

 //

 // These manipulators override an integer or string attribute values of the

 // given object kind. It is considered an error if the index > number

 // returned by ::NumberOfObjects(). or the objectKind and attribute¬Name

 // arguments are unrecognized.

 //

 void OverrideAttributeIntegerValue(

 const char* objectKind, // Input: Object kind name.

 unsigned int index, // Input: Index of object instance.

 const char* attributeName, // Input: Name of attribute being read.

 int value, // Input: New integer value of attribute.

 SceMiEC* ec = 0); // Input/Output: Error status.

 void OverrideAttributeStringValue(

 const char* objectKind, // Input: Object kind name.

 unsigned int index, // Input: Index of object instance.

 const char* attributeName, // Input: Name of attribute being read.

 const char* value, // Input: New string value of attribute.

 SceMiEC* ec = 0); // Input/Output: Error status.

};

//

// class SceMiMessageInPortProxy

//

// Description

// -----------

// The class SceMiMessageInPortProxy presents a C++ proxy for a transactor

// message input port. The input channel to that transactor is repre¬sented

// by the Send() method.

//

SCE-MI 2.4 167

class SceMiMessageInPortProxy {

 public:

 // ACCESSORS

 const char* TransactorName() const;

 const char* PortName() const;

 unsigned int PortWidth() const;

 //

 // This method sends message to the transactor input port.

 //

 void Send(

 const SceMiMessageData &data, // Message payload to be sent.

 SceMiEC* ec = 0);

 //

 // Replace port binding.

 // The binding argument represents a callback function and context

 // pointer tray (see comments in scemicommontypes.h for struct

 // SceMiMessageInPortBinding).

 //

 void ReplaceBinding(

 const SceMiMessageInPortBinding* binding = 0,

 SceMiEC* ec = 0);

};

//

// class SceMiMessageOutPortProxy

//

// Description

// -----------

// The class SceMiMessageOutPortProxy presents a C++ proxy for a transac¬tor

// message output port.

//

class SceMiMessageOutPortProxy {

 public:

 // ACCESSORS

 const char* TransactorName() const;

 const char* PortName() const;

 unsigned int PortWidth() const;

 //

 // Replace port binding.

 // The binding argument represents a callback function and context

 // pointer tray (see comments in scemicommontypes.h for struct

 // SceMiMessageOutPortBinding).

 //

 void ReplaceBinding(

 const SceMiMessageOutPortBinding* binding = 0,

 SceMiEC* ec = 0);

};

//

// class SceMiMessageData

//

// Description

// -----------

// The class SceMiMessageData represents a fixed length array of data which

// is transferred between models.

//

class SceMiMessageData {

 public:

SCE-MI 2.4 168

 // CREATORS

 //

 // Constructor: The message in port proxy for which

 // this message data object must be suitably sized.

 //

 SceMiMessageData(

 const SceMiMessageInPortProxy& messageInPortProxy,

 SceMiEC* ec = 0);

 ~SceMiMessageData();

 // Return size of vector in bits

 unsigned int WidthInBits() const;

 // Return size of array in 32 bit words.

 unsigned int WidthInWords() const;

 void Set(unsigned i, SceMiU32 word, SceMiEC* ec = 0);

 void SetBit(unsigned i, int bit, SceMiEC* ec = 0);

 void SetBitRange(

 unsigned int i, unsigned int range, SceMiU32 bits, SceMiEC* ec = 0);

 SceMiU32 Get(unsigned i, SceMiEC* ec = 0) const;

 int GetBit(unsigned i, SceMiEC* ec = 0) const;

 SceMiU32 GetBitRange(

 unsigned int i, unsigned int range, SceMiEC* ec = 0) const;

 SceMiU64 CycleStamp() const;

};

//

// class SceMi

//

// Description

// -----------

// This file defines the public interface to class SceMi.

//

class SceMi {

 public:

 //

 // Check version string against supported versions.

 // Returns -1 if passed string not supported.

 // Returns interface version # if it is supported.

 // This interface version # can be passed to SceMi::Init().

 //

 static int Version(

 const char* versionString);

 //

 // This function wraps constructor of class SceMi. If an instance

 // of class SceMi has been established on a prior call to the

 // SceMi::Init() function, that pointer is returned since a single

 // instance of class SceMi is reusable among all C models.

 // Returns NULL if error occurred, check ec for status or register

 // an error callback.

 //

SCE-MI 2.4 169

 // The caller is required to pass in the version of SceMi it is

 // expecting to work with. Call SceMi::Version to convert a version

 // string to an integer suitable for this version's "version" argu¬ment.

 //

 // The caller is also expected to have instantiated a SceMiParameters

 // object, and pass a pointer to that object into this function.

 //

 static SceMi*

 Init(

 int version,

 const SceMiParameters* parameters,

 SceMiEC* ec = 0);

 //

 // Shut down the SCEMI interface.

 //

 static void

 Shutdown(

 SceMi* mct,

 SceMiEC* ec = 0);

 //

 // Create proxy for message input port.

 //

 // Pass in the instance name in the bridge netlist of

 // the transactor and port to which binding is requested.

 //

 // The binding argument is a callback function and context

 // pointer tray. For more details, see the comments in

 // scemicommontypes.h by struct SceMiMessageInPortBinding.

 //

 SceMiMessageInPortProxy*

 BindMessageInPort(

 const char* transactorName,

 const char* portName,

 const SceMiMessageInPortBinding* binding = 0,

 SceMiEC* ec = 0);

 //

 // Create proxy for message output port.

 //

 // Pass in the instance name in the bridge netlist of

 // the transactor and port to which binding is requested.

 //

 // The binding argument is a callback function and context

 // pointer tray. For more details, see the comments in

 // scemicommontypes.h by struct SceMiMessageOutPortBinding.

 //

 SceMiMessageOutPortProxy*

 BindMessageOutPort(

 const char* transactorName,

 const char* portName,

 const SceMiMessageOutPortBinding* binding = 0,

 SceMiEC* ec = 0);

 //

 // Service arriving transactions from the portal.

 // Messages enqueued by SceMiMessageOutPortProxy methods, or which are

 // are from output transactions that pending dispatch to the

 // SceMiMessageOutPortProxy callbacks, may not be handled until

 // ServiceLoop() is called. This function returns the # of output

 // messages that were dispatched.

SCE-MI 2.4 170

 //

 // Regarding the service loop handler (aka "g function"):

 // If g is NULL, check for transfers to be performed and

 // dispatch them returning immediately afterwards. If g is

 // non-NULL, enter into a loop of performing transfers and

 // calling 'g'. When 'g' returns 0 return from the loop.

 // When 'g' is called, an indication of whether there is at

 // least 1 message pending will be made with the 'pending' flag.

 //

 // The user context object pointer is uninterpreted by

 // ServiceLoop() and is passed straight to the 'g' function.

 //

 int

 ServiceLoop(

 SceMiServiceLoopHandler g = 0,

 void* context = 0,

 SceMiEC* ec = 0);

 //

 // Register an error handler which is called in the event

 // that an error occurs. If no handler is registered, the

 // default error handler is called.

 //

 static void

 RegisterErrorHandler(

 SceMiErrorHandler errorHandler,

 void* context);

 //

 // Register an info handler which is called in the event

 // that a text message needs to be issued. If no handler

 // is registered, the message is printed to stdout in

 // Ikos message format.

 //

 static void

 RegisterInfoHandler(

 SceMiInfoHandler infoHandler,

 void* context);

};

#endif

SCE-MI 2.4 171

E.2 ANSI-C

/*

 * scemi.h

 *

 * Copyright © 2003-2007 by Accellera

 * This file is the header file for the SCEMI C API.

 */

#ifndef INCLUDED_SCEMI

#define INCLUDED_SCEMI

typedef void SceMi;

typedef void SceMiParameters;

typedef void SceMiMessageData;

typedef void SceMiMessageInPortProxy;

typedef void SceMiMessageOutPortProxy;

#define SCEMI_MAJOR_VERSION 2

#define SCEMI_MINOR_VERSION 0

#define SCEMI_PATCH_VERSION 0

#define SCEMI_VERSION_STRING "2.0.0"

/* 32 bit unsigned word type for building and reading messages */

typedef unsigned int SceMiU32;

/* 64 bit unsigned word used for CycleStamps */

typedef unsigned long long SceMiU64;

typedef int (*SceMiServiceLoopHandler)(void* context, int pending);

/*

 * struct SceMiEC - SceMi Error Context

 */

typedef enum {

 SceMiOK,

 SceMiError

} SceMiErrorType;

typedef struct {

 const char* Culprit; /* The offending function */

 const char* Message; /* Descriptive message describing problem */

 SceMiErrorType Type; /* Error code describing the nature of the error */

 int Id; /* A code to uniquely identify each error */

} SceMiEC;

typedef void (*SceMiErrorHandler)(void* context, SceMiEC* ec);

/*

 * struct SceMiIC - SceMi Informational Message Context

 */

typedef enum {

 SceMiInfo,

 SceMiWarning,

 SceMiNonFatalError

} SceMiInfoType;

typedef struct {

 const char* Originator;

 const char* Message;

 SceMiInfoType Type;

SCE-MI 2.4 172

 int Id;

} SceMiIC;

typedef void (*SceMiInfoHandler)(void* context, SceMiIC* ic);

/*

 * struct SceMiMessageInPortBinding

 *

 * Description

 * -----------

 * This structure defines a tray of callback functions that support

 * propagation of message input readiness back to the software.

 *

 * If an input ready callback is registered (optionally) on a given

 * input port, the port will dispatch the callback whenever becomes

 * ready for more input.

 *

 * Note: All callbacks must take their data and return promptly as they

 * are called possibly deep down in a non-preemptive thread. Typically,

 * the callback might to some minor manipulation to the context object

 * then return and let a suspended thread resume and do the main process¬ing

 * of the received transaction.

 */

typedef struct {

 /*

 * This is the user's context object pointer.

 * The application is free to use this pointer for any purposes it

 * wishes. Neither the class SceMi nor class MessageInputPortProxy do

 * anything with this pointer other than store it and pass it when

 * calling functions.

 */

 void* Context;

 /*

 * Receive a response transaction. This function is called when data

 * from the message output port arrives. This callback acts as a proxy

 * for the message output port of the transactor.

 */

 void (*IsReady)(

 void* context);

 /*

 * This function is called from the MessageInputPortProxy destructor

 * to notify the user code that the reference to the 'context' pointer

 * has been deleted.

 */

 int (*Close)(

 void* context);

} SceMiMessageInPortBinding;

/*

 * struct SceMiMessageOutPortBinding

 *

 * Description

 * -----------

 * This structure defines a tray of callback functions are passed to the class

 * SceMi when the application model binds to a message output port proxy and

 * which are called on message receipt and close notification. It is the means

 * by which the MessageOutputPort forwards received transactions to the C model.

 *

SCE-MI 2.4 173

 * Note: All callbacks must take their data and return promptly as they

 * are called possibly deep down in a non-preemptive thread. Typically,

 * the callback might to some minor manipulation to the context object

 * then return and let a suspended thread resume and do the main process¬ing

 * of the received transaction.

 *

 * Additionally, the message data passed into the receive callback is

 * not guaranteed to remain the same once the callback returns. All

 * data therein then must be processed while inside the callback.

 */

typedef struct {

 /*

 * This is the user's context object pointer.

 * The application is free to use this pointer for any purposes it

 * wishes. Neither the class SceMi nor class SceMiMessageOutPortProxy do

 * anything with this pointer other than store it and pass it when

 * calling callback functions Receive and Close.

 */

 void* Context;

 /*

 * Receive a response transaction. This function is called when data

 * from the message output port arrives. This callback acts as a proxy

 * for the message output port of the transactor.

 */

 void (*Receive)(

 void* context,

 const SceMiMessageData* data);

 /*

 * This function is called from the MessageOutputPortProxy destructor

 * to notify the user code that the reference to the 'context' pointer

 * has been deleted.

 */

 int (*Close)(

 void* context);

} SceMiMessageOutPortBinding;

/*

 * Register an error handler which is called in the event

 * that an error occurs. If no handler is registered, the

 * default error handler is called. The errorHandler will

 * pass back the 'context' object registered by the user

 * when making this function call. The system makes no

 * assumptions about the 'context' pointer and will not

 * modify it.

 */

void

SceMiRegisterErrorHandler(

 SceMiErrorHandler errorHandler,

 void* context);

/*

 * Register an info handler which is called in the event

 * that an informational text message needs to be printed.

 * If no handler is registered, the message is printed to stdout.

 */

void SceMiRegisterInfoHandler(

 SceMiInfoHandler infoHandler,

 void* context);

SCE-MI 2.4 174

/*

 * Check version string against supported versions.

 * Return -1 if passed string not supported.

 * Return interface version # if it is supported. This interface

 * version # can be passed to the SceMiInit() function.

 */

int

SceMiVersion(

 const char* versionString);

/*

 * This function wraps constructor of class SceMi. If an instance

 * of class SceMi has been established on a prior call to the

 * the SceMiInit() function, that pointer is returned since a single

 * instance of class SceMi is reusable among all C models.

 *

 * The caller must provide the interface version # it is expecting

 * to work with. If the caller requests an unsupported version,

 * an error is returned.

 *

 * The caller must also provide a pointer to a filled-in SceMiParameters

 * struct that contains global interface specification parameters.

 *

 * Returns NULL if error occurred, check ec for status or register

 * an error callback.

 */

SceMi*

SceMiInit(

 int version,

 const SceMiParameters* parameters,

 SceMiEC* ec);

/*

 * Shut down the specified SCEMI interface.

 */

void

SceMiShutdown(

 SceMi* mctHandle,

 SceMiEC* ec);

/*

 * Create proxy for message input port.

 *

 * The caller must provide the handle to the initialized SceMi system,

 * as well as the name of the transactor and port to which binding

 * is requested.

 *

 * The 'binding' input is a callback function and context pointer tray.

 * See the comments in scemitypes.h for struct SceMiMessageInPortBinding.

 */

SceMiMessageInPortProxy*

SceMiBindMessageInPort(

 SceMi* mctHandle,

 const char* transactorName,

 const char* portName,

 const SceMiMessageInPortBinding* binding,

 SceMiEC* ec);

/*

 * Create proxy for message output port.

 *

SCE-MI 2.4 175

 * The caller must provide the handle to the initialized SceMi system,

 * as well as the name of the transactor and port to which binding

 * is requested.

 *

 * The 'binding' input is a callback function and context pointer tray.

 * See the comments in scemitypes.h for struct SceMiMessageOutPortBind¬ing.

 */

SceMiMessageOutPortProxy*

SceMiBindMessageOutPort(

 SceMi* mctHandle,

 const char* transactorName,

 const char* portName,

 const SceMiMessageOutPortBinding* binding,

 SceMiEC* ec);

/*

 * Service arriving transactions from the portal.

 * Messages enqueued by SceMiMessageOutPortProxy methods, or which are

 * are from output transactions that pending dispatch to the

 * SceMiMessageOutPortProxy callbacks, may not be handled until

 * ServiceLoop() is called. This function returns the # of output

 * messages that were dispatched.

 *

 * The 'g' input is a pointer to a user-defined service function.

 * If g is NULL, check for transfers to be performed and

 * dispatch them returning immediately afterwards. If g is

 * non-NULL, enter into a loop of performing transfers and

 * calling 'g'. When 'g' returns 0 return from the loop.

 * When 'g' is called, an indication of whether there is at

 * least 1 message pending will be made with the 'pending' flag.

 *

 * The 'context' input is a user context object pointer.

 * This pointer is uninterpreted by the SceMiServiceLoop()

 * method and is passed on to the 'g' callback function.

 */

int

SceMiServiceLoop(

 SceMi* mctHandle,

 SceMiServiceLoopHandler g,

 void* context,

 SceMiEC* ec);

SceMiParameters*

SceMiParametersNew(

 const char* paramsFile,

 SceMiEC* ec);

unsigned int

SceMiParametersNumberOfObjects(

 const SceMiParameters* parametersHandle,

 const char* objectKind,

 SceMiEC* ec);

int

SceMiParametersAttributeIntegerValue(

 const SceMiParameters* parametersHandle,

 const char* objectKind,

 unsigned int index,

 const char* attributeName,

 SceMiEC* ec);

SCE-MI 2.4 176

const char*

SceMiParametersAttributeStringValue(

 const SceMiParameters* parametersHandle,

 const char* objectKind,

 unsigned int index,

 const char* attributeName,

 SceMiEC* ec);

void

SceMiParametersOverrideAttributeIntegerValue(

 SceMiParameters* parametersHandle,

 const char* objectKind,

 unsigned int index,

 const char* attributeName,

 int value,

 SceMiEC* ec);

void

SceMiParametersOverrideAttributeStringValue(

 SceMiParameters* parametersHandle,

 const char* objectKind,

 unsigned int index,

 const char* attributeName,

 const char* value,

 SceMiEC* ec);

/*

 * SceMiMessageData initialization function.

 * This is called to construct a new SceMiMessageData object.

 */

SceMiMessageData*

SceMiMessageDataNew(

 const SceMiMessageInPortProxy* messageInPortProxyHandle,

 SceMiEC* ec);

/*

 * Destroy a SceMiMessageData object previously returned from

 * SceMiMessageDataNew.

 */

void

SceMiMessageDataDelete(

 SceMiMessageData* messageDataHandle);

/*

 * Return size of message data array in 32 bit words.

 */

unsigned int

SceMiMessageDataWidthInBits(

 const SceMiMessageData* messageDataHandle);

/*

 * Return size of array in 32 bit words.

 */

unsigned int

SceMiMessageDataWidthInWords(

 const SceMiMessageData* messageDataHandle);

/*

 * Set value of message data word at given index.

 */

void

SCE-MI 2.4 177

SceMiMessageDataSet(

 SceMiMessageData* messageDataHandle,

 unsigned int i,

 SceMiU32 word,

 SceMiEC* ec);

/*

 * Set bit in message data word at given index.

 */

void

SceMiMessageDataSetBit(

 SceMiMessageData* messageDataHandle,

 unsigned int i,

 int bit,

 SceMiEC* ec);

/*

 * Set bit range in message data word at given index.

 */

void SceMiMessageDataSetBitRange(

 SceMiMessageData* messageDataHandle,

 unsigned int i,

 unsigned int range,

 SceMiU32 bits,

 SceMiEC *ec);

/*

 * Return value of message data word at given index.

 */

SceMiU32

SceMiMessageDataGet(

 const SceMiMessageData* messageDataHandle,

 unsigned int i,

 SceMiEC* ec);

/*

 * Return value of bit in message data word at given index.

 */

int

SceMiMessageDataGetBit(

 const SceMiMessageData* messageDataHandle,

 unsigned int i,

 SceMiEC* ec);

/*

 * Return value of bit range in message data word at given index.

 */

SceMiU32

SceMiMessageDataGetBitRange(

 const SceMiMessageData *messageDataHandle,

 unsigned int i,

 unsigned int range,

 SceMiEC *ec);

/*

 * Get cyclestamp.

 */

SceMiU64

SceMiMessageDataCycleStamp(

 const SceMiMessageData* messageDataHandle);

SCE-MI 2.4 178

/*

 * This method sends a message with the specified payload to the

 * transactor input port. The data will transparently be delivered

 * to the transactor as 1 or more chunks.

 */

void

SceMiMessageInPortProxySend(

 SceMiMessageInPortProxy* messageInPortProxyHandle,

 const SceMiMessageData* messageDataHandle,

 SceMiEC* ec);

const char*

SceMiMessageInPortProxyTransactorName(

 const SceMiMessageInPortProxy* messageInPortProxyHandle);

const char*

SceMiMessageInPortProxyPortName(

 const SceMiMessageInPortProxy* messageInPortProxyHandle);

unsigned int

SceMiMessageInPortProxyPortWidth(

 const SceMiMessageInPortProxy* messageInPortProxyHandle);

const char*

SceMiMessageOutPortProxyTransactorName(

 const SceMiMessageOutPortProxy* messageOutPortProxyHandle);

const char*

SceMiMessageOutPortProxyPortName(

 const SceMiMessageOutPortProxy* messageOutPortProxyHandle);

unsigned int

SceMiMessageOutPortProxyPortWidth(

 const SceMiMessageOutPortProxy* messageOutPortProxyHandle);

#endif

SCE-MI 2.4 179

Appendix F: Sample header file for basic transaction-pipes C-Side
API
As described in section 5.8, the infrastructure will provide the implementations of the actual built-in functions for

the transaction pipes on both the C side and the HDL side. On the HDL side, the pipe functions and tasks in the

SystemVerilog interface can be can be implementation supplied HDL definitions of built-in functions that perform

the operations of the pipe inside. For example a pipe call can call code that does PLI or DPI calls inside the

tasks/functions in the SystemVerilog interface definitions. The way pipe functions are defined is up to the

implementation but they must have the exact profiles shown in section 5.8.2.

The following is a precise listing of the include file that can be included by the C application to declare the API

functions. The name of this file is scemi_pipes.h.

SCE-MI 2.4 180

#ifndef _scemi_pipes_h

#define _scemi_pipes_h

#include "svdpi.h"

#ifdef __cplusplus

extern "C" {

#endif

//---

// scemi_pipe_c_handle()

//

// This function retreives an opaque handle representing a transaction

// input or output pipe given an HDL scope and a pipe ID.

//---

void *scemi_pipe_c_handle(// return: pipe handle

 const char *endpoint_path); // input: path to HDL endpoint instance

//---

// scemi_pipe_get_direction()

// scemi_pipe_get_depth()

// scemi_pipe_get_bytes_per_element()

//

// These functions return the direction, depth, and bytes-per-element

// respectively of this pipe instance. These parameters are statically

// determined by parameterizations of the HDL side interface of the pipe.

//--

svBit scemi_pipe_get_direction(// return: 1 for input pipe, 0 for output pipe

 void *pipe_handle); // input: pipe handle

int scemi_pipe_get_depth(// return: current depth (in elements) of the pipe

 void *pipe_handle); // input: pipe handle

int scemi_pipe_get_bytes_per_element(// return: bytes per element

 void *pipe_handle); // input: pipe handle

//---

// scemi_pipe_c_send()

//

// This is the basic blocking send function for a transaction input pipe.

// The passed in data is sent to the pipe. If necessary the calling thread

// is suspended until there is room in the pipe.

//

// The eom argument is a flag which is used for the user specified

// end-of-message (eom) indication. It can be used for example to mark the

// end of a frame containing a sequence of transactions.

//

// scemi_pipe_c_receive()

//

// This is the basic blocking receive function for a transaction

// output pipe.

//

// The eom argument for this call is an output argument. It is set to the

// same setting of the flag passed on the ::send() call by the producer

// endpoint of the pipe as described in the standard. Thus it can be used

// by the caller to query whether the current read is one for which an eom

// was specified when the data was sent on the producer endpoint.

//

//---

SCE-MI 2.4 181

void scemi_pipe_c_send(

 void *pipe_handle, // input: pipe handle

 int num_elements, // input: #elements to be written

 const svBitVecVal *data, // input: data

 svBit eom); // input: end-of-message marker flag (and flush)

void scemi_pipe_c_send_bytes(

 void *pipe_handle, // input: pipe handle

 int num_elements, // input: #elements to be written

 const char *data, // input: data

 svBit eom); // input: end-of-message marker flag (and flush)

void scemi_pipe_c_receive(

 void *pipe_handle, // input: pipe handle

 int num_elements, // input: #elements to be read

 int *num_elements_valid, // output: #elements that are valid

 svBitVecVal *data, // output: data

 svBit *eom); // output: end-of-message marker flag (and flush)

void scemi_pipe_c_receive_bytes(

 void *pipe_handle, // input: pipe handle

 int num_elements, // input: #elements to be read

 int *num_elements_valid, // output: #elements that are valid

 char *data, // output: data

 svBit *eom); // output: end-of-message marker flag (and flush)

//---

// scemi_pipe_c_flush()

//

// Flush pipe data. This function will cause the calling thread to suspend

// until the last element sent to the pipe is confirmed to have been

// received on the HDL side.

//---

void scemi_pipe_c_flush(

 void *pipe_handle); // input: pipe handle

//---

// scemi_pipe_c_try_send()

//

// This is the basic non-blocking send function for a transaction

// input pipe.

//

// The number of elements actually sent is returned. It is possible

// that there is not enough room in the pipe for the entire set of

// requested elements to be sent. In this case the number of elements

// returned will be less than the number requested to be sent, and

// the application may wish continue to retry the send at future points

// in time until all the desired elements are sent. It is possible for

// it to do so without changing the input payload reference by simply

// bumping the byte_offset argument in each new call attempt by the amount

// successfully sent in the previous call.

//

// scemi_pipe_c_try_receive()

//

// This is the basic non-blocking receive function for a transaction

// output pipe.

//

// The number of elements actually received is returned. It is possible

// there are not enough elements in the pipe to satisfy the request.

// In this case the number of elements returned will be less than the

// number requested to be received, and the application may wish continue

SCE-MI 2.4 182

// to retry the receive at future points in time until all the desired

// elements are received. It is possible for it to do so without changing

// the output payload reference by simply bumping the byte_offset argument

// in each new call attempt by the amount successfully received in the

// previous call.

//

//---

int scemi_pipe_c_try_send(

 void *pipe_handle, // input: pipe handle

 int byte_offset, // input: byte offset within data array

 int num_elements, // input: #elements to be written

 const svBitVecVal *data, // input: data

 svBit eom); // input: end-of-message marker flag

int scemi_pipe_c_try_send_bytes(

 void *pipe_handle, // input: pipe handle

 int byte_offset, // input: byte offset within data array

 int num_elements, // input: #elements to be written

 const char *data, // input: data

 svBit eom); // input: end-of-message marker flag

int scemi_pipe_c_try_receive(

 void *pipe_handle, // input: pipe handle

 int byte_offset, // input: byte offset within data array

 int num_elements, // input: #elements to be read

 svBitVecVal *data, // output: data

 svBit *eom); // output: end-of-message marker flag

int scemi_pipe_c_try_receive_bytes(

 void *pipe_handle, // input: pipe handle

 int byte_offset, // input: byte offset within data array

 int num_elements, // input: #elements to be read

 char *data, // output: data

 svBit *eom); // output: end-of-message marker flag

//---

// scemi_pipe_c_try_flush()

//

// This is the basic non-blocking flush function for a transaction

// input pipe. A flush is successful if the last element sent to the

// pipe is confirmed to have been received on the HDL side. //

//---

int scemi_pipe_c_try_flush(

 void *pipe_handle); // input: pipe handle

//---

// scemi_pipe_c_in_flush_state()

//---

svBit scemi_pipe_c_in_flush_state(// return: whether pipe is in Flush state

void *pipe_handle); // input: pipe handle

//---

// scemi_pipe_c_can_send()

//

// This function returns the maximum number of elements that would

// currently fit in the pipe. This number could be passed immediately

// to a call to the ::send() function and it would be guaranteed to return

// immediately without requiring a block. Similarly if it is passed

// immediately to a call to the ::try_send() function it would be

// guaranteed to return the same number of elements requested indicating

SCE-MI 2.4 183

// a successful send of that full number of elements.

//

// scemi_pipe_c_can_receive()

//

// This function returns the maximum number of elements are currently

// visible in the pipe. This number could be passed immediately

// to a call to the ::receive() function and it would be guaranteed to

// return immediately without requiring a block. Similarly if it is passed

// immediately to a call to the ::try_receive() function it would be

// guaranteed to return the same number of elements requested indicating

// a successful receive of that full number of elements.

//---

int scemi_pipe_c_can_send(

 void *pipe_handle);

int scemi_pipe_c_can_receive(

 void *pipe_handle);

//---

// Notify callback support

//

typedef void (*scemi_pipe_notify_callback)(

 void *context); // input: C model context

typedef void *scemi_pipe_notify_callback_handle;

 // Handle type denoting registered notify callback.

#ifdef __cplusplus

scemi_pipe_notify_callback_handle scemi_pipe_set_notify_callback(

 void *pipe_handle, // input: pipe handle

 scemi_pipe_notify_callback notify_callback,

 // input: notify callback function

 void *notify_context, // input: notify context

 int callback_threshold=0); // input: threshold for notify callback function

#else // __cplusplus

scemi_pipe_notify_callback_handle scemi_pipe_set_notify_callback(

 void *pipe_handle, // input: pipe handle

 scemi_pipe_notify_callback notify_callback,

 // input: notify callback function

 void *notify_context, // input: notify context

 int callback_threshold); // input: threshold for notify callback function

#endif // __cplusplus

void scemi_pipe_clear_notify_callback(

 scemi_pipe_notify_callback_handle notify_callback_handle);

 // input: notify callback handle

void *scemi_pipe_get_notify_context(//return: notify context object pointer

 scemi_pipe_notify_handle notify_callback_handle); // input: notify handle

//---

// Per-pipe user data storage support

//

void scemi_pipe_put_user_data(

 void *pipe_handle, // input: pipe handle

 void *user_key, // input: user key

SCE-MI 2.4 184

 void *user_data); // input: user data

void *scemi_pipe_get_user_data(

 void *pipe_handle, // input: pipe handle

 void *user_key); // input: user key

//---

// Autoflush support

//

svBit scemi_pipe_set_eom_auto_flush(

 void *pipe_handle, // input: pipe handle

 svBit enabled); // input: enable/disable

#ifdef __cplusplus

} /* extern "C" */

#endif

#endif // _scemi_pipes_h

SCE-MI 2.4 185

Appendix G: Sample header file for SCE-MI DMI interface

The SCE-MI direct memory interface (SCE-MI DMI) provides a C-side interface to directly access an HDL-side

memory. This interface is defined in 5.9 Direct memory interface.

The following is a precise listing of the include file that can be included by the C application to declare the API

functions. The name of this file is scemi_dmi.h

SCE-MI 2.4 186

#ifndef _scemi_dmi_h_

#define _scemi_dmi_h_

#include "svdpi.h"

#ifdef __cplusplus

extern "C" {

#endif

//---

// Configuration and query functions

//---

void *scemi_mem_c_handle(// return : HDL-side memory handle

 const char *hdl_path); // input : path to the memory

void scemi_mem_get_size(

 woid *mem_handle, // input : HDL-side memory handle

 unsigned int *width, // output : bit-width of the memory

 unsigned long long *depth); // output : depth of the memory

//---

// Block interfaces: get/put a block of HDL memory words

//---

void scemi_mem_get_block(

 void *mem_handle, // input : HDL-side memory handle

 unsigned long long mem_word_offset, // input : memory address (offset)

 unsigned long long num_words, // input : length of data

 void *data); // input : user data block

void scemi_mem_put_block(

 void *mem_handle, // input : HDL-side memory handle

 unsigned long long mem_word_offset, // input : memory address (offset)

 unsigned long long num_words, // input : length of data

 void *data); // input : user data block

void scemi_mem_pattern_fill(

 void *mem_handle, // input : HDL-side memory handle

 unsigned long long mem_word_offset, // input : memory address (offset)

 unsigned long long num_words, // input : # of words impacted

 const svBitVecVal *word_pattern); // input : pattern to be applied onto

 // each memory word

void scemi_mem_clear(

 void *mem_handle); // input : HDL-side memory handle

//---

// Word interfaces: read/write a memory word of an HDL memory

//---

#ifdef __cplusplus

 void scemi_mem_write_word (

 void *mem_handle, // input : HDL-side memory handle

 unsigned long long mem_word_offset, // input : memory address (offset)

 const svBitVecVal *data, // input : memory word

 unsigned char *byte_enable_buf, // input : byte enable buffer

 unsigned int flush = 0); // input : flush write buffer

#else // __cplusplus

 void scemi_mem_write_word (

 void *mem_handle, // input : HDL-side memory handle

 unsigned long long mem_word_offset, // input : memory address (offset)

 const svBitVecVal *data, // input : memory word

 unsigned char *byte_enable_buf, // input : byte enable buffer

 unsigned int flush); // input : flush write buffer

#endif // __cplusplus

 void scemi_mem_read_word (

SCE-MI 2.4 187

 void *mem_handle, // input : HDL-side memory handle

 unsigned long long mem_word_offset, // input : memory address (offset)

 svBitVecVal *data, // output : memory word

 unsigned long long pre_fetch); // input : number of words to pre-fetch

//---

// Byte interfaces: get/put a block of bytes from/to HDL memory

//---

void scemi_mem_get_block_of_bytes(

 void *mem_handle, // input : HDL-side memory handle

 unsigned long long mem_byte_offset, // input : memory byte address

 unsigned long long num_bytes, // input : length of data in bytes

 void *data); // output : user data block

void scemi_mem_put_block_of_bytes(

 void *mem_handle, // input : HDL-side memory handle

 unsigned long long mem_byte_offset, // input : memory address (offset)

 unsigned long long num_bytes, // input : length of data

 void *data); // input : user data block

//---

// File interfaces: read/write data from/to file

//---

#ifdef __cplusplus

void scemi_mem_read_file(// $readmem(h/b) equivalent

 void *mem_handle, // input : HDL-side memory handle

 char *file_name, // input : content file

 svBit is_data_hex = 1, // input : hex vs binary data

 signed long long start_addr = -1, // input: starting word address of range

 signed long long end_addr = -1); // input: ending word address of range

void scemi_mem_write_file(// $readmem(h/b) equivalent

 void *mem_handle, // input : HDL-side memory handle

 char *file_name, // input : content file

 svBit is_data_hex = 1, // input : hex vs binary data

 signed long long start_addr = -1, // input: starting word address of range

 signed long long end_addr = -1); // input: ending word address of range

#else // __cplusplus

void scemi_mem_read_file(// $readmem(h/b) equivalent

 void *mem_handle, // input : HDL-side memory handle

 char *file_name, // input : content file

 bool is_data_hex, // input : hex vs binary data

 signed long long start_addr, // input: starting word address of range

 signed long long end_addr); // input: ending word address of range

void scemi_mem_write_file(// $readmem(h/b) equivalent

 void *mem_handle, // input : HDL-side memory handle

 char *file_name, // input : content file

 bool is_data_hex, // input : hex vs binary data

 signed long long start_addr, // input: starting word address of range

 signed long long end_addr); // input: ending word address of range

#endif // __cplusplus

#ifdef __cplusplus

} /* extern "C" */

#endif

#endif // _scemi_dmi_h_

SCE-MI 2.4 188

Appendix H: Bibliography
(informative)

[B1] The IEEE Standard Dictionary of Electrical and Electronics Terms, Sixth Edition. (1997)

[B2] SystemC, Version 2.0 User’s Guide, www.systemc.org.

[B3] Standard Co-Emulation Modeling Interface SCE-MI) Reference Manual - Version 1.1.0 - January

13th, 2005 - Accellera ITC

[B4] IEEE Std. 1800-2012: Standard for SystemVerilog: Unified Hardware Design, Specification and

Verification Language - SystemVerilog Language Working Group Design Automation Standards Committee IEEE

Computer Society

[B5] Using SystemVerilog Now with DPI - Rich Edelman, Doug Warmke

[B6] Integrating SystemC Models with Verilog and SystemVerilog Models Using the SystemVerilog Direct

Programming Interface [DPI] - Stuart Sutherland, Sutherland HDL, Inc.

[B7] Accellera Universal Verification Methodology (UVM) Reference Implementation Version 1.2 – June

2014

