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Abstract
This paper describes how SystemC 2.0 and the new

SystemC Verification Standard provide a robust standard
for developing test benches and verification IP for SoC
designs. The new SystemC Verification Standard includes
features for verification, such as transaction recording and
constrained randomization, which facilitate stimulus
generation, visualization, debugging and analysis of a
simulation run.

1. Introduction
While the SystemC 2.0 standard [1,2] can be used to

perform basic verification of a design, the new SystemC
Verification Standard [3] improves the capability by
providing APIs for transaction-based verification,
constrained and weighted randomization, exception
handling, and other verification tasks. In this paper, we
provide an overview of the new SystemC Verification
Standard through an example of a transaction-based test
bench. The following aspects of the Verification Standard
are discussed:
• transaction-based verification
• data introspection
• transaction recording
• constrained and weighted randomization
• miscellaneous features of the Standard, such as HDL 

connection and detection of bugs and exceptions.
The basic structure of a transaction-based test bench is

shown in Figure 1.

Figure 1:  Transaction-Based Verification

 A transaction-based verification methodology
partitions the system into transaction-level tests, transactors,
and the design [5,6]. Communication between the tests and
the transactors is done through task invocation, at a level
above the RTL level of abstraction. The communication
between the transactors and the design is done through
RTL-level signals.

Manipulation of high-level data types is an important
element in this approach. A data introspection facility in the

Verification Standard enables the manipulation of arbitrary
data types in a consistent way, including C/C++ built-in
types, SystemC built-in types, user-defined composite types
and user-defined enumerations. As a result, arbitrary data
types can be used in variable recording, transaction
recording, randomization, constraints, assertions, and other
high-leveling activities.

Another important aspect of transaction-based
verification is transaction recording. The transaction
recording facility in the Verification Standard allows the
user to capture transaction-level activities during
simulation. Through a callback mechanism, these activities
can be monitored by another SystemC module at run-time,
or they can be recorded into a database for visualization,
debugging, and post-simulation analysis.

On the other hand, randomization allows a large amount
of stimulus to be generated with less manual effort than
directed tests. In order to improve coverage and focus on
specific aspects of the design, constraints or weights are
typically used in randomization. While many existing test
benches may be using rand() from the C library to generate
a random integer, the Verification Standard supports
randomization of any data type through the use of the data
introspection facility. Boolean predicates can be used as a
constraint, and weights can be used as a distribution from
which values are selected.

To complete the flow in a typical design environment,
we envision SystemC test benches to be used for designs
written in Verilog or VHDL as well. The Verification
Standard provides a minimal set of HDL connection API to
enable this use model. The Verification Standard also
includes a debugging interface and an exception reporting
API to facilitate debugging using a C++ debugger and to
maintain a consistent way of reporting detection of design
bugs or test bench bugs in verification models. Because of
space reason, they are not described in this paper.

This paper assumes some basic knowledge about C and
C++. The classes and functions in SystemC 2.0 use the
prefix sc_, and the classes and functions in the SystemC
Verification Standard use the prefix scv_. 

2. Transaction-Based Test Bench in SystemC
It is desirable to write a test bench at the transaction

level, since it captures the design intent and test scenarios at
the level at which the architect thinks. Such a test bench can
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be used to simulate a transaction-level design directly, and it
can also be used to simulate a RTL-level design through an
adaptor channel, usually known as a transactor or a bus-
functional model. The description in this paper falls into the
latter use model.

Using channels and interfaces in SystemC, a
transaction-based test bench can be implemented as shown
in Figure 2. The notation is adapted from the book System
Design with SystemC [2], slightly modified to emphasize
the use of a channel. The transaction-level interface for the
transactor is implemented as a rw_task_if base class. Using
abstract methods in C++, it can be declared as:

class rw_task_if : virtual public sc_interface {
public:

typedef sc_uint<8> addr_t;
typedef sc_uint<8> data_t;
struct write_t {

addr_t addr;
data_t data;

};
virtual data_t read( const addr_t * ) = 0;
virtual void write( const write_t * ) = 0;

};
This abstract base class specifies two abstract methods,

read() and write(), and their related data types. These two
methods represent the abstract level in which a test is to be
written in. The class sc_interface is provided by SystemC to
facilitate the creation of such interfaces. The template
sc_uint and other similar templates are provided by
SystemC to support data objects with different bit widths
and different operator semantics.

The communication between the transactor and the
design is captured in a base class with signal-level ports:

class pipelined_bus_ports : public sc_module {
public:

sc_in<bool> clk;
sc_inout<bool> rw;

sc_inout<bool> addr_req;
sc_inout<bool> addr_ack;
sc_inout< sc_uint<8> > bus_addr;
sc_inout<bool> data_rdy;
sc_inout< sc_uint<8> > bus_data;

};
These ports represent the RTL-level interface in which a

design communicates to its environment. The class
sc_module is provided by SystemC to specify a module; and
signal ports are created via the templates sc_in, sc_out, and
sc_inout, indicating a read-only port, a write-only port, and
a read-write port respectively.

A transaction-based verification methodology relies on
transactors to act as the adaptors between the abstract tests
and the RTL-level design. By capturing these transactors as
reusable IP, new tests with complex concurrent behavior can
be quickly created. In this example, a transactor is created as
a class deriving from both aforementioned interfaces:

class rw_pipelined_transactor
: public rw_task_if,  public pipelined_bus_ports {
public:

SC_CTOR(rw_pipelined_transactor) {}
virtual data_t read( const addr_t *);
virtual void write( const write_t *);

   ...
};
The macro SC_CTOR in SystemC 2.0 specifies the

constructor. The implementation of read() and write()
convert the transaction-level operations to signal-level
activities with respect to the actual pipelined protocol. The
related transaction-level information can be captured using
the transaction recording facility discussed in Section 4.

With the signal-level protocol abstracted away by the
transactor, a test can be written in a form independent of the
signal-level interface. In this example, a test is created with
a port to the rw_task_if transaction-level interface.

rw_task_ifsc_port < rw_task_if >

class test class design

...

clk

data

class rw_pipelined_transactor

pipelined_bus_ports pipelined_bus_ports

a module instance

a C++ base class

port-transactor binding

a signal

port

an abstract method

Figure 2: Modeling Transaction-Based Test Benches in SystemC
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class test : public sc_module {
public:

sc_port< rw_task_if > transactor;
SC_CTOR(test) { SC_THREAD(test_body); }
void test_body();

};
The sc_port template in SystemC 2.0 creates a system-

level port with an abstract interface. The methods in the
channel attached to this port can be accessed through the
C++ operator->, for example:

transactor-> write ( arg );
The macro SC_THREAD creates a new thread of

execution for the test_body method. The implementation of
test_body can be a directed test, a constrained random test,
or a weighted random test, as described in Section 5.

It is important to note that the port of this test has the
rw_task_if interface as the template argument, so that, by
plugging in a different transactor, the test can be reused with
other designs with a different bus interface. The rw_task_if
interface can be made even more general and reusable, for
example, by putting the width of address and data into
template parameters instead of having a fixed value.

Finally, the code for the RTL design uses the standard
SystemC RTL modeling style:

class design : public pipelined_bus_ports {
public:

SC_CTOR(design) {
SC_THREAD(addr_phase); SC_THREAD(data_phase); 

}
void addr_phase() { while (1) ... }
void data_phase() { while (1) ... }
...

};
The addr_phase and data_phase methods are similar to

always blocks in Verilog, and they implement the two
phases of the pipeline. The design contains the same set of
ports as the transactor, although the direction of the ports are
reversed. In order to keep the example simple, we have used
the same base class for the signal-level ports. In practise, it
is desirable to declare the ports as sc_in or sc_out and use
different port declarations for the transactor and the design.

Finally, a simulation netlist can be created as follows:
int sc_main(int argc, char *argv[ ]) { ...

// the modules and channels
test t ("t");
rw_pipelined_transactor tr ("tr");
design duv ("duv");
sc_clock clk ("clk",20,0.5,0,true);
// the signals to connect the modules
sc_signal < bool > rw, addr_req, ... ; ...

// connecting the signals and transactors to the ports
t.transactor = tr;
tr ( clk.signal(), rw, addr_req, ... ); 
duv ( clk.signal(), rw, addr_req, ... );
// start simulation
sc_start(10000); ...

}
The sc_main function is the entry point to the SystemC

reference simulator. The first portion of the function
instantiates the modules, the channels, and the signals.
Then, it connects the modules by attaching channels or
signals to the appropriate ports. In the final portion of the
function, simulation is initiated through sc_start() with the
simulation time specified in the argument.

Strictly speaking, this arrangement relies on the ability
to drive the same signal (sc_signal) from more than one
threads, since the read() and write() tasks are executed in
the calling thread, and there may be more than one thread
calling the tasks in the transactor. However, as described in
Section 4, since explicit synchronization is performed
among tasks, it is not necessary to use resolved signals. In
this use model, the values are updated with the last-
assignment-wins semantic, which is how the sc_signal class
is implemented in the reference implementation.

On the other hand, using a resolved signal will give
better error-detection, although it requires more code and
leads to slower performance. For example, when a
misbehaving design tries to drive a signal while a transactor
is also driving it, collisions can be detected with a resolved
signal. However, the signal must be set to high-impedance
when it is no longer being driven by the current thread. A
resolved signal must be a logic bit or a logic vector, so 2-
state data types and arithmetic cannot be used directly, and
explicit conversion must be made to an arithmetic type.

This example illustrates a preferred style for organizing
transaction-based test benches in SystemC. In the remainder
of this paper, implementation of the tests and transactors are
discussed.

3. Data Introspection
The SystemC Verification Standard uses data

introspection to enable the manipulation of arbitrary data
types. It allows a library routine to extract information from
data objects of arbitrary types, regardless of whether it is a
C/C++ built-in type, a SystemC data type, a user-specified
composite type (struct), or a user-specified enumeration.
Similar techniques can be found in articles on C++ [8,9]. 

For example, the rw_task_if interface shown in
Section 2 uses sc_uint (from SystemC) and write_t (a
composite type). Using C++ template specialization, the
Verification Standard maps these data types to an abstract
interface called scv_extensions_if, through which the
following operations can be performed on the data object.
• extraction of type information
• value access and value assignment
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• randomization
• callback registration

While traditional C++ libraries typically require the user
to use a similar interface class as the base class of their
composite type, the Verification Standard uses template
specialization to attach this interface to data objects. This
style supports a wider range of data types. It enables import
of legacy code without modification, and allows the same
pieces of code to work on built-in types such as int, library
types such as sc_uint, composite types such as a user-
defined packet type with multiple fields, and enumerations
such as an instruction set.

Using data introspection, a piece of code can manipulate
a data object without explicit type information at compile-
time. This facility can be considered as a C++ version of the
Verilog PLI standard. It is a crucial building block for
constrained randomization, variable recording, and
transaction attribute recording.

Using the scv_extensions_if Interface
The abstract methods provided by scv_extensions_if can

be classified into methods for static extensions and methods
for dynamic extensions. A static extension is used for
simple type information and value access or assignment.
This is accomplished via the scv_get_extensions() function
in the Verification Standard. For example, the following
code extract the bit width of an integer and print its value.

int data;
int bitwidth = scv_get_extensions(data).get_bitwidth();
scv_get_extensions(data).print();
Because the same abstract interface can be used to

manipulate C/C++ built-in types, SystemC types, and user-
specified type, a predefined library can manipulate any of
these data types, typically using the following style:

template<typename datatype> void process(datatype& data) {
    scv_extensions<datatype> data_ext

 =  scv_get_extensions(data);
    process_core(&data_ext);
}
void process_core(scv_extensions_if *);
This code uses C++ template parameter deduction to

find the right extension for the data object, and then pass a
pointer to the extension to the actual code that process the
data object. As a result, the function process_core can
process any data object without requiring explicit type
information at compile time of this function. 

A dynamic extension is used when auxiliary data needs
to be associated with the data object, such as a constraint or
a callback function pointer. This is accomplished via the
scv_smart_ptr template in the Verification Standard. For
example, the following code generates a random value for
an integer and register a callback.

scv_smart_ptr<int> ptr;

ptr->next(); // generate a random integer value.
ptr->register_cb(value_change_callback);
The scv_smart_ptr template is designed so that it

behaves as if it is a C pointer (c.f. a smart pointer [7]).

Defining the Extensions for User-Specified Types
The Verification Standard supports C++ data types and

SystemC data types without any extra work from the user.
For user-specified composite types and enumerations, a
template specification for the scv_extensions template needs
to be provided to the library1. For example, without
changing the declaration of the composite type write_t in
rw_task_if, the extensions can be declared as:

SCV_EXTENSIONS(rw_task_if::write_t) {
public:
    scv_extensions< rw_task_if::addr_t > addr;
    scv_extensions< rw_task_if::data_t > data;
    SCV_EXTENSIONS_CTOR(rw_task_if::write_t) {
        SCV_FIELD(addr);
        SCV_FIELD(data);
    }
};
By providing this extension class, the data introspection

interface can be used to manipulate write_t:
rw_task_if::write_t data;
int bitwidth = scv_get_extensions(data).get_bitwidth();
scv_get_extensions(data).print();
scv_smart_ptr< rw_task_if::write_t > ptr;
ptr->next(); // generate random values for both fields
ptr->register_cb(value_change_callbacks);

4. Transaction Recording
Transaction recording is typically used in the

implementation of a transactor. The job of a transactor is to
convert a high-level operation, as modeled by a function
call, into signal-level communication, and vice versa. For
example, the read method is implemented as follows:

data_t rw_pipelined_transactor::read( const addr_t * addr) {
address_phase.lock();
scv_tr_handle h = read_gen.begin_transaction(*addr);
{ // address phase

scv_tr_handle h1 
   = addr_gen.begin_transaction(*addr, "addr_phase", h);

...// address phase
addr_gen.end_transaction(h1);

}
addr_phase.unlock();

1. The extension declaration can be automatically extracted 
from the C struct or C++ class definition using a script.



Submission to DATE’03 5

data_phase.lock();
{ // data phase

scv_tr_handle h2
= data_gen.begin_transaction("data_phase",h);

...// data phase
data_gen.end(h2,data);

}
read_gen.end_transaction(h, data);
data_phase.unlock();
return data;

}
This method translates a call to read() into a series of

signal activities according to the specific protocol at the
signal-level interface. Two mutexes, addr_phase and
data_phase, are used to coordinate the two phases in the
pipelined protocol. Both of them grant access in a first-
come-first-served manner. At the beginning of the address
phase, addr_phase is locked so that another operation
cannot begin. At the end of the address phase, addr_phase is
unlocked so that, although the data phase has not finished
yet, another operation can still start its address phase.

Typically each transaction-level operation generates at
least one transaction, which begins when the operation has
successfully arbitrated for the resource to proceed, and ends
then the operation is completed. This is captured in the
transaction generated by the read_gen generator. The
begin_transaction() method initiates a new transaction with
the supplied argument as an attribute, and the
end_transaction() method terminates a transaction and uses
the second argument as another attribute. These methods
rely on the static extension of addr_t and data_t to access
and record the values of the attributes.

Depending on the protocol, sub transactions can be
generated to capture individual aspects of the protocol,
which in this case, corresponds to the transactions from the

addr_gen generator and the data_gen generator. The extra
argument for the begin_transaction method establishes a
relationship between the new transaction and the overall
transaction from read_gen.

The transactions generated by two read() can be
visualized as in Figure 3. Capturing the concept in this
diagram, the Verification Standard provides the
scv_tr_stream class and the scv_tr_generator template to
describe transaction streams and transaction types. By
instantiating these classes before the simulation starts, run-
time efficiency is maximized. For example,
rw_pipelined_transactor can be implemented as follows:

class rw_pipelined_transactor 
: public pipelined_bus_ports, public rw_task_if {

fifo_mutex address_phase;
fifo_mutex data_phase;
scv_tr_stream pipelined_stream;
scv_tr_stream addr_stream;
scv_tr_stream data_stream;
scv_tr_generator< addr_t, data_t > read_gen;
scv_tr_generator< addr_t, data_t > write_gen;
scv_tr_generator< addr_t > addr_gen;
scv_tr_generator< data_t > data_gen;

public:
SC_CTOR(rw_pipelined_transactor)
: pipelined_stream("pipelined_stream"),

addr_stream("addr_stream"),
data_stream("data_stream"),
read_gen("read",pipelined_stream, "addr","data"),
write_gen("write",pipelined_stream,"addr","data"),
addr_gen("addr",addr_stream,"addr"),
data_gen("data",data_stream, "data") { ... }

Figure 3: Transactions from Two Read Operations
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    virtual data_t read( const addr_t * addr);
    virtual void write( const write_t * write);
};

5. Constrained and Weighted Randomization
Constrained and Weighted random tests are an important

element in verification. For example, as described in
Section 3, a random value can be generated for a smart
pointer by a simple call to next().

Using the Verification Standard, expressions and
constraints can be created using scv_smart_ptr as well. For
example,

class write_constraint : virtual public scv_constraint_base {
public: 

scv_smart_ptr< rw_task_if::write_t > write;
SCV_CONSTRAINT_CTOR(write_constraint) {

SCV_CONSTRAINT( write->addr() < 0x00FF );
SCV_CONSTRAINT( write->addr() != write->data() );

}
};
This constraint creates two Boolean expressions

regarding the fields of the variable write. When next() is
executed, values that satisfy these expressions are generated
for each field. Randomization for individual fields can be
enabled or disabled through the enable_randomization()
and disable_randomization() methods.

Declaring the constraints as classes allows them to be
processed once for high-speed randomization. It also allows
an object-oriented way to manage constraints, using
hierarchy and inheritance. There are two ways to use these
constraint classes. It can be used directly:

write_constraint c("c");
c.next();
scv_smart_ptr< rw_task_if::write_t> write = c.write;
or it can be associated with an existing smart pointer

using the use_constraint() method:
write_constraint c("c");
scv_smart_ptr<rw_task_if::write_t> write;
write->use_constraint(c.write);
write->next();
Biased randomization using weights can be performed

with a bag using the set_mode() method. A bag is similar to
the concept of a set in mathematics, except that it can
contain duplicated objects. The following example
generates the value "1" 40% of the time and the value "2"
60% of the time:

scv_smart_ptr<int> data;
scv_bag<int > distribution;
distribution.push( 1, 40);
distribution.push( 2, 60);

data->set_mode(distribution);
for (int i=0; i<3; i++) {data->next(); ... }
A distribution for simple ranges can also be specified

without a bag, using the keep_only() and keep_out()
methods. For example, the following code generates values
from 0 to 5, and from 10 to 15 with a uniform distribution:

scv_smart_ptr<int> data;
data->keep_only(0,15);
data->keep_out(6,9);
data->next();
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