Universal Verification Methodology
(UVM) 1.1 Class Reference

June 2011

Copyright© 2011 Accellera. All rights reserved.
Accellera Organization, 1370 Trancas Street #163, Napa, CA 94558, USA.

Notices

Accellera Standar ds documents are devel oped within Accellera and the Technical Committees of Accellera Organi-
zation, Inc. Accellera devel ops its standards through a consensus development process, approved by its members and
board of directors, which brings together volunteers representing varied viewpoints and interests to achieve the final
product. Volunteers are not necessarily members of Accellera and serve without compensation. While Accellera
administers the process and establishes rules to promote fairness in the consensus development process, Accellera
does not independently evaluate, test, or verify the accuracy of any of the information contained in its standards.

Use of an Accellera Standard is wholly voluntary. Accellera disclaims liability for any personal injury, property or
other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indi-
rectly resulting from the publication, use of, or reliance upon this, or any other Accellera Standard document.

Accellera does not warrant or represent the accuracy or content of the material contained herein, and expressly dis-
claims any express or implied warranty, including any implied warranty of merchantability or suitability for a specific
purpose, or that the use of the material contained herein is free from patent infringement. Accellera Standards docu-
ments are supplied “ASS.”

The existence of an Accellera Standard does not imply that there are no other ways to produce, test, measure, pur-
chase, market, or provide other goods and services related to the scope of an Accellera Standard. Furthermore, the
viewpoint expressed at the time a standard is approved and issued is subject to change due to developments in the
state of the art and comments received from users of the standard. Every Accellera Standard is subjected to review
periodicaly for revision and update. Users are cautioned to check to determine that they have the latest edition of any
Accellera Standard.

In publishing and making this document available, Accellerais not suggesting or rendering professional or other ser-
vices for, or on behalf of, any person or entity. Nor is Accellera undertaking to perform any duty owed by any other
person or entity to another. Any person utilizing this, and any other Accellera Standards document, should rely upon
the advice of acompetent professional in determining the exercise of reasonable care in any given circumstances.

Interpretations. Occasionally questions may arise regarding the meaning of portions of standards as they relate to spe-
cific applications. When the need for interpretations is brought to the attention of Accellera, Accellera will initiate
action to prepare appropriate responses. Since Accellera Standards represent a consensus of concerned interests, it is
important to ensure that any interpretation has al so received the concurrence of abalance of interests. For this reason,
Accellera and the members of its Technical Committees are not able to provide an instant response to interpretation
requests except in those cases where the matter has previously received formal consideration.

Comments for revision of Accellera Standards are welcome from any interested party, regardiess of membership
affiliation with Accellera. Suggestions for changes in documents should be in the form of a proposed change of text,
together with appropriate supporting comments. Comments on standards and requests for interpretations should be
addressed to:

Accellera Organization
1370 Trancas Street #163
Napa, CA 94558

USA

Note: Attention is called to the possibility that implementation of this standard may require use of subject mat-
ter covered by patent rights. By publication of this standard, no position is taken with respect to the existence
or validity of any patent rightsin connection therewith. Accellera shall not be responsible for identifying pat-

UVM 1.1 Class Reference Front-2

ents for which alicense may be required by an Accellera standard or for conducting inquiriesinto the legal
validity or scope of those patents that are brought to its attention.

Accellerais the sole entity that may authorize the use of Accellera-owned certification marks and/or trademarks to
indicate compliance with the materials set forth herein.

Authorization to photocopy portions of any individual standard for internal or personal use must be granted by Accel-
lera Organization, Inc., provided that permission is obtained from and any required fee is paid to Accellera. To
arrange for authorization please contact Lynn Bannister, Accellera, 1370 Trancas Street #163, Napa, CA 94558,
phone (707) 251-9977, e-mail lynn@accellera.org. Permission to photocopy portions of any individual standard for
educational classroom use can also be obtained from Accellera.

Suggestions for improvements to the UVM 1.1 Class Reference are welcome. They should be sent to the VIP email
reflector

vip-tc@lists.accellera.org
The current Working Group’s website addressis

www.accellera.org/activities/vip

UVM 1.1 Class Reference Front-3

Contents

1

L@ N YT ST 1
11 00 = 1
12 PUNDOSEot e 1

NOIMBEIVE REFEIEINCES. ... ettt ettt sttt b et b et b et b et b et e b e e b e st e st b e st st e st b en e et en e ebe e enenes 2

Definitions, Acronyms, and ADBIEVIatiONS...........cccoviiiirieiireee et e e enens 2
31 D NI ONS . ot 2
3.2 Acronymsand Abbreviations. 3

ClASSES NG ULIHITIES.....eeeceiectiet etttk b e st b st b ettt ebene 5

2 F S Y O = S =TSO 8
51 UV VOI L .ottt e e e e e e e e e 9
5.2 01V 4 1o o= 10
53 UV rANSBC 0N . . . ottt ettt e e e e e 25
54 L1110 0 (00 34
55 UV POM DB . . oo 38

LS 00 U g0 O =5 = 47
6.1 U1V T = o) A o] o 48
6.2 UV rEport handler 58
6.3 (81 T (= 7 = V= 61
6.4 UV TEPOM CalCNEr . .ot e e 66

FFACLOMY CIBSSESeeii ettt ettt et e st ste s ae e te s ae e testee st e eaeeateeheentesaeesseeReessesaeesbesseentenseentesreenseaneeneas 73
7.1 01V 0 ='o [11 74
7.2 UV FaCtOrY . e 81

L T2 ST 0 O =SS S R 93
8.1 UV P80 et ettt e e e e e e 95
8.2 UV OMIaiN . .o et e e 105
8.3 UVM_bottomup_Phase. e 107
84 UV BaSK PNaSE . . . oot e e 109
8.5 UVM _tOPdOWN PRase . ..o 111
8.6 UVM CommON Phases.ottt e e e e e e e e e 113

UVM 1.1 Class Reference Front-4

10.

11.

12.

13.

14.

8.7 UVM RUN-TIME PhESES . . . oo e e e e e e e 122

8.8 User-Defined Phases.o e 133

Configuration and RESOUICE ClaSSES..........eiueiiirieiieeieseeeseeee st e see e e sae s e e te e e teste e besseesesseensesseessesaeensesnens 135
9.1 L8170 I = 0 0 o= P 136
9.2 UV TeSOUNCE Ab . .o 156
9.3 UV CONfig ab. . o e 161

SYNCIIONIZALION ClASSESecuvevieiictiee et ete st e st e e s e e e es e s te et e saesaeeseeeneesbessaentesseenseaseensesreensesnnesesnnes 165
10.1 L8140 =Y | 166
10.2 uvm event callback 170
10.3 UV DT Or . 172
104 0177 0 T 0] o= 1 o o 175
10.5 UV heartbeal e e e 184
10.6 UVM_CallbacK . . .o 187

CONLAINEY ClIBSSES. ... ettt ettt sttt ettt it st b e b s et s b e be s e se e b e s b e e e Rt eheehe s Rt eh e e bt sbe se e e e e e e ebeebe et e nbeseesbebees 196
11.1 UV PO0O0L .ottt e e e 197
11.2 LU0V 0 1= 202

TLIM INEEITACES ...ttt ettt h bbbt bt s bt sb e se et e e e seeae e b e eaeeheebeebesbesbenbenbeseen 205

I OSSR URURTPRURI 207
131 eI S . . . 216
13.2 POITS . 221
133 EXPOItS . .o e e 224
134 IS .ot e 227
135 ANAlY SIS PO S, . .o e 231
13.6 FIRO . 234
13.7 FIFO Bast. . .o 238
13.8 Request-Response Channel i e e 241

LM 2 <tttk b bbb ek b SE e £ e R e R e e SR e e RE e Rt ReeR e eReeReeR e AR e R e e e ReeReeReeReeR e eb e Rt nRenbeneeneens 247
14.1 Generic Payload 250
14.2 eI aCES . . . 265
14.3 SOCK LSottt e 269
144 POITS . 277
14.5 EXPOItS . .ot e e 280

UVM 1.1 Class Reference Front-5

15.

16.

17.

18.

19.

14.6 IS .ot e e 282

14.7 = o 0 286
14.8 SOCKEL Base. . . . oo 287
14.9 Temporal DeCOUPIING.ot 292

S0 (U1 a0] £ T TSP 208
15.1 UVM_Seq item puUll _pOrt . .. e e 298
15.2 UV SOr i D8, .. o e 301

COMPONENTE CIBSSES ... ccueeteeiieieeteeste et e ste st este s e teste e teste e seareeaeeaseaseesaeessestessaesseessenseassenseenseaseensesseensesneesneannas 305
16.1 UV COMIPONENE .« v ettt et et et e e e e e e e e e e e e 306
16.2 01V = P 336
16.3 L0170 0 = 01 338
16.4 L0110 =0 < o 339
16.5 01V 0 T 270 T e 341
16.6 UV SCOMED0@Iottt e e e e e 342
16.7 01V 0 T [= 343
16.8 UV PUSH driVEr o e e e 345
16.9 UV Fandom_StimMUIUS.o e e e e e 347
16.10 UV _SUBSCHIDEr. . . o 349

(0] /0= =1 [0 = T O SSUPSPR 351
17.1 UV N Order _COMPaIaiOrot ittt e et e e e e et ettt 352
17.2 UvM_algorithmiC_COMPAralorottt e e e ettt ettt 356
17.3 1Y 0 T o 359
174 UV POl CIES ..ottt e e 362

SOOUENCEN ClaSSES.....euuiitieutietietisteeteseeste st esteste e testeessesseesseaseaseeaseaneesaeeneesenssesteeseenseaseesseenseaseensesreensesseensesnees 365
181 UVIM_SBOUENCEN _DESE . . . oottt et e e e 367
18.2 UVIM_SEQUENCEY _Palram _DaSe . . ottt e e e ettt et et 374
18.3 0N A o [0 o 378
184 UV PUSN SBgUENCEYttt ettt e e e et e e e e 381

SOOUENCE ClBSSESevecuieteeeiesieeeesteeteste et e s teseestesaaes e sseesteeseesteaseeseaaeeseesaeessesaeestenseentenseenseaseensesreensesneensesnnes 383
19.1 UV SEOUENCE IO . L . ottt et ettt e e e et e e e e 384
19.2 UV SEgUENCE DaSE . . . ottt e e e 389
19.3 UV SEOUENCE & o v vttt et e et ettt e e e et e et e e e e e e e e 403

UVM 1.1 Class Reference Front-6

21.

22.

23.

24,

1= o 0TSSP P PROPRPI 405
20.1 REPOI MaCIOS . . oot 405
20.2 Component and ObJECt MaCIOS oot e 409
20.3 Sequence-REaed MaCrOSottt 434
204 CallDack MaCrOSot e 440
20.5 TLM MaCIOS. . . ottt e e e e e e e e 444
20.6 REgISIEr MaCIOS . . . ottt 451

0 oY O =S-SRS 452
21.1 01V T o1 1= 453
212 LU0V o0 0] = 466
21.3 01V T 1= o0 {0 [471
21.4 UV PBCKEr . e e 476

LS00 g 1= Y= RSSO 481
22.1 Register Layer OVerVIOWttt et et et 481
22.2 Global DeClarationso e 483

LS00 1Y/ o L= TSRS 490
231 BlOCKS. . . 490
23.2 AdAreSS M aDS. . .ot e 506
233 Register Files . ..o 516
23.4 RO OIS ..o e e 520
235 RIS . . 539
23.6 = 000 =P 552
23.7 INAIrECt REgIS OIS . . . ottt e 568
238 FIFO REgIS S . . .ot e 570
239 VirtUal REgI S O S. .« .. ottt e e 574
2310 Virtual Felds . .. o 587
2311 CaAllbaCKS . ..o 596
23.12 Memory AlloCation Managerou ittt et 605

(D 1O BT 01 = | = 1 o o DO OSSP O SRRSO PRURTPRPRURTON 616
24.1 Generic Register Operation DesCriptOrS. vttt e e e 616
24.2 Register Model Adaptoro 622
24.3 REgI Sl e SEgUENCES. . . . ottt et 626

UVM 1.1 Class Reference Front-7

25.

26.

27.

24.4 BatkdoorS. . ..ot 639

245 HD L A CCESS . . o v ittt e e et e e e e e e e e e 643

=S RS o (01 1o S SRRSO 646
251 RUN Al BUIE-IN . e 646
25.2 RESEL . . . 648
253 Register Bit Bash 650
25.4 RO ACCESS . . ot ittt et e 654
255 SNArEd ACCESS. . . o ottt e 658
25.6 M BIMIO Y A GBS . o vt vttt et e e ettt e 663
25.7 Memory WalK. 667
25.8 HDL Paths Checking Test SEqUENCEot it it e e e et et 671

Command Line ProCessor (CLP) ClaSScciiiecieieiie e siestes e e ste et e st s sae e e te st tesse s e snesnaesseesaesneensesneas 673
26.1 CLP OVEIVI BV . ottt e e e e e e e e e e 673
26.2 UV CMAIINE PrOCESSO . .« o v ot ettt e ettt e et e et e e et 674

L€ [o] 7= £SOV PR PRSP 682
27.1 Typesand ENUMErationsttt et et e 682
27.2 GlObaIS . . . 691

LT o 10T =T V2SSO 696

g0 L= TSRS PRRPRORPRN 697

UVM 1.1 Class Reference Front-8

1. Overview

Verification has evolved into a complex project that often spans internal and external teams, but the discontinuity
associated with multiple, incompatible methodologies among those teams has limited productivity. The Universal
Verification Methodology (UVM) 1.1 Class Reference addresses verification complexity and interoperability within
companies and throughout the electronics industry for both novice and advanced teams while also providing
consistency. While UVM s revolutionary, being the first verification methodology to be standardized, it is also
evolutionary, as it is built on the Open Verification Methodology (OVM), which combined the Advanced
Verification Methodology (AVM) with the Universal Reuse Methodology (URM) and concepts from the e Reuse
Methodology (eRM). Furthermore, UVM also infuses concepts and code from the Verification Methodology Manual
(VMM), plus the collective experience and knowledge of the 300+ members of the Accellera Verification IP
Technical Subcommittee (VIP-TSC) to help standardize verification methodology.

1.1 Scope

The UVM application programming interface (API) defines a standard for the creation, integration, and extension of
UVM Verification Components (UVCs) and verification environments that scale from block to system. The UVM
1.1 Class Reference is independent of any specific design processes and is complete for the construction of
verification environments. The generator to connect register abstractions, many of which are captured using IP-
XACT (IEEE Std 1685™), is not part of the standard, although a register package is.

1.2 Purpose

The purpose of the UVM 1.1 Class Reference is to enable verification interoperability throughout the electronics
ecosystem. To further that goal, a reference implementation will be made available, along with the UVM 1.1 User’s
Guide. While these materials are neither required to implement UVM, nor considered part of the standard, they help
provide consistency when the UVM 1.1 Class Reference is applied and further enable UVM to achieve its purpose.

UVM 1.1 Class Reference 1

2. Normative References

The following referenced documents are indispensable for the application of this specification (i.e., they must be
understood and used, so each referenced document is cited in text and its relationship to this document is explained).
For dated references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments or corrigenda) applies.

IEEE Std 1800™, |IEEE Standard for SystemVerilog Unified Hardware Design, Specification and Verification Lan-
guage. ?

3. Definitions, Acronyms, and Abbreviations

For the purposes of this document, the following terms and definitions apply. The IEEE Sandards Dictionary:
Glossary of Terms & Defi nitions® should be referenced for terms not defined in this chapter.

3.1 Definitions

agent: An abstract container used to emulate and verify DUT devices; agents encapsulate a driver, sequencer, and
monitor.

blocking: An interface where tasks block execution until they complete. See also: non blocking.
component: A piece of VIP that provides functionality and interfaces. Also referred to as atransactor.
consumer: A verification component that receives transactions from another component.

driver: A component responsible for executing or otherwise processing transactions, usualy interacting with the
device under test (DUT) to do so.

environment: The container object that defines the testbench topology.

export: A transaction level modeling (TLM) interface that provides the implementation of methods used for commu-
nication. Used in UVM to connect to a port.

factory method: A classic software design pattern used to create generic code by deferring, until run time, the exact
specification of the object to be created.

foreign methodology: A verification methodology that is different from the methodol ogy being used for the majority
of the verification environment.

generator: A verification component that provides transactions to another component. Also referred to as a pro-
ducer.

monitor: A passive entity that sasmples DUT signals, but does not drive them.

non blocking: A call that returnsimmediately. See also: blocking.

LI EEE publications are available from the Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, Piscataway, NJ 08854, USA
(http://standards.ieee.org/).

2The |EEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.
3The |IEEE Standards Dictionary: Glossary of Terms & Definitions is available at http://shop.ieee.org/.

UVM 1.1 Class Reference 2

port: A TLM interface that defines the set of methods used for communication. Used in UVM to connect to an
export.

primary (host) methodology: The methodol ogy that manages the top-level operation of the verification environment
and with which the user/integrator is presumably more familiar.

request: A transaction that provides information to initiate the processing of a particular operation.
response: A transaction that provides information about the completion or status of a particular operation.

scoreboard: The mechanism used to dynamically predict the response of the design and check the observed response
against the predicted response. Usually refers to the entire dynamic response-checking structure.

sequence: An UVM object that procedurally defines a set of transactions to be executed and/or controls the execu-
tion of other sequences.

sequencer : An advanced stimulus generator which executes sequences that define the transactions provided to the
driver for execution.

test: Specific customization of an environment to exercise required functionality of the DUT.

testbench: The structural definition of a set of verification components used to verify a DUT. Also referred to as a
verification environment.

transaction: A class instance that encapsulates information used to communicate between two or more components.
transactor: See component.

virtual sequence: A conceptual term for a sequence that controls the execution of sequences on other sequencers.

3.2 Acronyms and Abbreviations
AP application programming interface
CDV coverage-driven verification
CBCL common base classlibrary

CLI command line interface

DUT device under test

DUV device under verification

EDA electronic design automation
FIFO first-in, first-out

HDL hardware description language
HVL high-level verification language

IP intellectual property

UVM 1.1 Class Reference 3

OSCl Open SystemC Initiative

TLM transaction level modeling

UVC UVM Verification Component
UVM Universa Verification Methodology

VIP verification intellectual property

UVM 1.1 Class Reference

4. UVM Class Reference

The UVM Class Library provides the building blocks needed to quickly develop well-
constructed and reusable verification components and test environments in
SystemVerilog.

This UVM Class Reference provides detailed reference information for each user-visible
class in the UVM library. For additional information on using UVM, see the UVM User’s
Guide located in the top level directory within the UVM Kkit.

We divide the UVM classes and utilities into categories pertaining to their role or
function. A more detailed overview of each category-- and the classes comprising them--
can be found in the menu at the left.

Globals This category defines a small list of types,
variables, functions, and tasks defined in the
uvm_pkg scope. These items are accessible
from any scope that imports the uvm_pkg. See
Types and Enumerations and Globals for details.

Base This basic building blocks for all environments
are components, which do the actual work,
transactions, which convey information between
components, and ports, which provide the
interfaces used to convey transactions. The
UVM’s core base classes provide these building
blocks. See Core Base Classes for more
information.

Reporting The reporting classes provide a facility for
issuing reports (messages) with consistent
formatting and configurable side effects, such
as logging to a file or exiting simulation. Users
can also filter out reports based on their
verbosity , unique ID, or severity. See
Reporting Classes for more information.

Factory As the name implies, the UVM factory is used to
manufacture (create) UVM objects and
components. Users can configure the factory to
produce an object of a given type on a global
or instance basis. Use of the factory allows
dynamically configurable component hierarchies
and object substitutions without having to
modify their code and without breaking
encapsulation. See Factory Classes for details.

Phasing This sections describes the phasing capability
providing by UVM. The details can be found in
Phasing Overview.

Configuration and Resources The Configuration and Resource Classes are a
set of classes which provide a configuration
database. The configuration database is used to
store and retrieve both configuration time and
run time properties.

UVM 1.1 Class Reference 5

Sychronization

Containers

Policies

TLM

Components

Sequencers

Sequences

UVM 1.1 Class Reference

The UVM provides event and barrier
synchronization classes for process
synchronization. See Synchronization Classes
for more information.

The Container Classes are type parameterized
datastructures which provide queue and pool
services. The class based queue and pool types
allow for efficient sharing of the datastructures
compared with their SystemVerilog built-in
counterparts.

Each of UVM’s policy classes perform a specific
task for uvm_object-based objects: printing,
comparing, recording, packing, and unpacking.
They are implemented separately from
uvm_object so that users can plug in different
ways to print, compare, etc. without modifying
the object class being operated on. The user
can simply apply a different printer or compare
“policy” to change how an object is printed or
compared. See Policy Classes for more
information.

The UVM TLM library defines several abstract,
transaction-level interfaces and the ports and
exports that facilitate their use. Each TLM
interface consists of one or more methods used
to transport data, typically whole transactions
(objects) at a time. Component designs that
use TLM ports and exports to communicate are
inherently more reusable, interoperable, and
modular. See TLM Interfaces for details.

Components form the foundation of the UVM.
They encapsulate behavior of drivers,
scoreboards, and other objects in a testbench.
The UVM library provides a set of predefined
component types, all derived directly or
indirectly from uvm_component. See
Predefined Component Classes for more
information.

The sequencer serves as an arbiter for
controlling transaction flow from multiple
stimulus generators. More specifically, the
sequencer controls the flow of
uvm_sequence_item-based transactions
generated by one or more uvm_sequence
#(REQ,RSP)-based sequences. See Sequencer
Classes for more information.

Sequences encapsulate user-defined procedures
that generate multiple uvm_sequence_item-
based transactions. Such sequences can be
reused, extended, randomized, and combined
sequentially and hierarchically in interesting

Macros

Register Layer

Command Line Processor

Summary

UVM Class Reference

ways to produce realistic stimulus to your DUT.
See Sequence Classes for more information.

The UVM provides several macros to help
increase user productivity. See the set of
macro categories in the main menu for a
complete list of macros for Reporting,
Components, Objects, Sequences, Callbacks,
TLM and Registers.

The Register abstraction classes, when properly
extended, abstract the read/write operations to
registers and memories in a design-under-
verification. See Register Layer for more
information.

The command line processor provides a general
interface to the command line arguments that
were provided for the given simulation. The
capabilities are detailed in the
uvm_cmdline_processor section.

The UVM Class Library provides the building blocks needed to quickly develop
well-constructed and reusable verification components and test environments in

SystemVerilog.

UVM 1.1 Class Reference

5. Core Base Classes

The UVM library defines a set of base classes and utilities that facilitate the design of
modular, scalable, reusable verification environments.

The basic building blocks for all environments are components and the transactions they
use to communicate. The UVM provides base classes for these, as shown below.

[uwm_void |

| LT DbJE'I:J

|
T
|

Iu'-'rn re::lclrt _object

[uwrn_transaction

| uvm_component | usar transaction

USEr component

+ uvm_object - All components and transactions derive from uvm_object, which
defines an interface of core class-based operations: create, copy, compare, print,
sprint, record, etc. It also defines interfaces for instance identification (name, type
name, unique id, etc.) and random seeding.

« uvm_component - The uvm_component class is the root base class for all UVM
components. Components are quasi-static objects that exist throughout
simulation. This allows them to establish structural hierarchy much like modules
and program blocks. Every component is uniquely addressable via a hierarchical
path name, e.g. “envl.pcil.master3.driver”. The uvm_component also defines a
phased test flow that components follow during the course of simulation. Each
phase-- build, connect, run, etc.-- is defined by a callback that is executed in
precise order. Finally, the uvm_component also defines configuration, reporting,
transaction recording, and factory interfaces.

e uvm_transaction - The uvm_transaction is the root base class for UVM
transactions, which, unlike uvm_components, are transient in nature. It extends
uvm_object to include a timing and recording interface. Simple transactions can
derive directly from uvm_transaction, while sequence-enabled transactions derive
from uvm_sequence_item.

e uvm_root - The uvm_root class is special uvm_component that serves as the top-
level component for all UVYM components, provides phasing control for all UVM
components, and other global services.

Summary
Core Base Classes

The UVM library defines a set of base classes and utilities that facilitate the
design of modular, scalable, reusable verification environments.

UVM 1.1 Class Reference 8

The uvm_void class is the base class for all UVM classes. It is an abstract class with no
data members or functions. It allows for generic containers of objects to be created,
similar to a void pointer in the C programming language. User classes derived directly
from uvm_void inherit none of the UVM functionality, but such classes may be placed in
uvm_void-typed containers along with other UVM objects.

Summary

uvm_void

The uvm_void class is the base class for all UVM classes.

UVM 1.1 Class Reference

5.2 uvm_object

The uvm_object class is the base class for all UVM data and hierarchical classes. Its
primary role is to define a set of methods for such common operations as create, copy,
compare, print, and record. Classes deriving from uvm_object must implement the pure
virtual methods such as create and get_type_name.

Summary

uvm_object

The uvm_object class is the base class for all UVM data and hierarchical classes.

Crass HierARCHY

uvm_void

uvm_object

CLass DEecLARATION
virtual class uvm_object extends uvm_void

new Creates a new uvm_object with the given instance name.
SEEDING
use_uvm_seeding This bit enables or disables the UVM seeding
mechanism.
reseed Calls srandom on the object to reseed the object using

the UVM seeding mechanism, which sets the seed based
on type name and instance name instead of based on
instance position in a thread.

IDENTIFICATION
set_name Sets the instance name of this object, overwriting any
previously given name.
get_name Returns the name of the object, as provided by the
name argument in the new constructor or set_name
method.
get_full_name Returns the full hierarchical name of this object.
get_inst_id Returns the object’s unique, numeric instance identifier.
get_inst_count Returns the current value of the instance counter, which
represents the total number of uvm_object-based
objects that have been allocated in simulation.
get_type Returns the type-proxy (wrapper) for this object.
get_object_type Returns the type-proxy (wrapper) for this object.
get_type_name This function returns the type name of the object, which
is typically the type identifier enclosed in quotes.
CREATION
create The create method allocates a new object of the same
type as this object and returns it via a base uvm_object
handle.
clone The clone method creates and returns an exact copy of
this object.
PRINTING
print The print method deep-prints this object’s properties in

a format and manner governed by the given printer

UVM 1.1 Class Reference 10

sprint

do_print

convert2string

RECORDING
record

do_record
CopYING
copy

do_copy

COMPARING
compare

do_compare

PAckinG
pack
pack_bytes
pack_ints

do_pack

UNPACKING

unpack
unpack_bytes
unpack_ints

do_unpack

CONFIGURATION

set_int_local
set_string_local
set_object_local

new

argument; if the printer argument is not provided, the
global uvm_default_printer is used.

The sprint method works just like the print method,
except the output is returned in a string rather than
displayed.

The do_print method is the user-definable hook called
by print and sprint that allows users to customize what
gets printed or sprinted beyond the field information
provided by the “uvm_field_* macros, Utility and Field
Macros for Components and Objects.

This virtual function is a user-definable hook, called
directly by the user, that allows users to provide object
information in the form of a string.

The record method deep-records this object’s properties
according to an optional recorder policy.

The do_record method is the user-definable hook called
by the record method.

The copy makes this object a copy of the specified
object.

The do_copy method is the user-definable hook called
by the copy method.

Deep compares members of this data object with those
of the object provided in the rhs (right-hand side)
argument, returning 1 on a match, 0 othewise.

The do_compare method is the user-definable hook
called by the compare method.

The pack methods bitwise-concatenate this object’s
properties into an array of bits, bytes, or ints.

The do_pack method is the user-definable hook called
by the pack methods.

The unpack methods extract property values from an
array of bits, bytes, or ints.

The do_unpack method is the user-definable hook called
by the unpack method.

These methods provide write access to integral, string,
and uvm_object-based properties indexed by a
field_name string.

function new (string name)

UVM 1.1 Class Reference

11

Creates a new uvm_object with the given instance name. If name is not supplied, the
object is unnamed.

SEEDING

use_uvm_seeding

static bit use _uvm_seeding = 1

This bit enables or disables the UVM seeding mechanism. It globally affects the
operation of the reseed method.

When enabled, UVM-based objects are seeded based on their type and full hierarchical
name rather than allocation order. This improves random stability for objects whose
instance names are unique across each type. The uvm_component class is an example
of a type that has a unique instance name.

reseed

function void reseed ()

Calls srandom on the object to reseed the object using the UVM seeding mechanism,
which sets the seed based on type name and instance name instead of based on
instance position in a thread.

If the use_uvm_seeding static variable is set to 0, then reseed() does not perform any
function.

IDENTIFICATION

set_name

virtual function void set name (string name)

Sets the instance name of this object, overwriting any previously given name.

get_name

virtual function string get _name

Returns the name of the object, as provided by the name argument in the new
constructor or set_name method.

UVM 1.1 Class Reference

12

get_full_name

virtual function string get_full_name ()

Returns the full hierarchical name of this object. The default implementation is the same
as get_name, as uvm_objects do not inherently possess hierarchy.

Objects possessing hierarchy, such as uvm_components, override the default
implementation. Other objects might be associated with component hierarchy but are
not themselves components. For example, uvm_sequence #(REQ,RSP) classes are
typically associated with a uvm_sequencer #(REQ,RSP). In this case, it is useful to
override get_full_name to return the sequencer’s full name concatenated with the
sequence’s name. This provides the sequence a full context, which is useful when
debugging.

get_inst_id
virtual function int get_ inst_id O

Returns the object’s unique, numeric instance identifier.

get_inst_count

static function int get_inst_count()

Returns the current value of the instance counter, which represents the total number of
uvm_object-based objects that have been allocated in simulation. The instance counter
is used to form a unique numeric instance identifier.

get_type

static function uvm_object wrapper get _type (O

Returns the type-proxy (wrapper) for this object. The uvm_factory’s type-based override
and creation methods take arguments of uvm_object_wrapper. This method, if
implemented, can be used as convenient means of supplying those arguments.

The default implementation of this method produces an error and returns null. To enable
use of this method, a user’s subtype must implement a version that returns the
subtype’s wrapper.

For example

class cmd extends uvm_object;
typedef uvm _object_registry #(cmd) type_id;
static function type_id get_type();
return_type_id::get();
endfunction
endclass

UVM 1.1 Class Reference

13

Then, to use

factory.set_type override(cmd: :get_type(),subcmd: :get_type());
This function is implemented by the *uvm_*_utils macros, if employed.

get_object_type
virtual function uvm_object wrapper get _object _type (O

Returns the type-proxy (wrapper) for this object. The uvm_factory’s type-based override
and creation methods take arguments of uvm_object_wrapper. This method, if
implemented, can be used as convenient means of supplying those arguments. This
method is the same as the static get_type method, but uses an already allocated object
to determine the type-proxy to access (instead of using the static object).

The default implementation of this method does a factory lookup of the proxy using the
return value from get_type_name. If the type returned by get_type_name is not
registered with the factory, then a null handle is returned.

For example

class cmd extends uvm_object;
typedef uvm _object_registry #(cmdg type_id;
static function type_id get_type();
return_type_id::zget();
endfunction
virtual function type_id get _object_type();
return_type_id::get(Q);
endfunction
endclass

This function is implemented by the *uvm_*_utils macros, if employed.

get_type_name

virtual function string get_type_name ()

This function returns the type name of the object, which is typically the type identifier
enclosed in quotes. It is used for various debugging functions in the library, and it is
used by the factory for creating objects.

This function must be defined in every derived class.

A typical implementation is as follows

UVM 1.1 Class Reference

14

class mytype extends uvm_object;
const static string type_name = "mytype";
virtual function string get_type name();

return_type_name;
endfunction

We define the type name static variable to enable access to the type name without need
of an object of the class, i.e., to enable access via the scope operator,
mytype::type_name.

CREATION

create

virtual function uvm_object create (string name)

The create method allocates a new object of the same type as this object and returns it
via a base uvm_object handle. Every class deriving from uvm_object, directly or
indirectly, must implement the create method.

A typical implementation is as follows

class mytype extends uvm_object;

virtual function uvm_object create(string name=""");
mytype t = new(name);
return_t;

endfunction

clone

virtual function uvm_object clone ()

The clone method creates and returns an exact copy of this object.

The default implementation calls create followed by copy. As clone is virtual, derived
classes may override this implementation if desired.

PRINTING

UVM 1.1 Class Reference

15

print
function void print (uvm_printer printer)}

The print method deep-prints this object’s properties in a format and manner governed
by the given printer argument; if the printer argument is not provided, the global
uvm_default_printer is used. See uvm_printer for more information on printer output
formatting. See also uvm_line_printer, uvm_tree_printer, and uvm_table_printer for
details on the pre-defined printer “policies,” or formatters, provided by the UVM.

The print method is not virtual and must not be overloaded. To include custom
information in the print and sprint operations, derived classes must override the do_print
method and use the provided printer policy class to format the output.

sprint
function string sprint (uvm_printer printer)

The sprint method works just like the print method, except the output is returned in a
string rather than displayed.

The sprint method is not virtual and must not be overloaded. To include additional fields
in the print and sprint operation, derived classes must override the do_print method and
use the provided printer policy class to format the output. The printer policy will manage
all string concatenations and provide the string to sprint to return to the caller.

do_print

virtual function void do_print (uvm_printer printer)

The do_print method is the user-definable hook called by print and sprint that allows
users to customize what gets printed or sprinted beyond the field information provided
by the “uvm_field_* macros, Utility and Field Macros for Components and Objects.

The printer argument is the policy object that governs the format and content of the
output. To ensure correct print and sprint operation, and to ensure a consistent output
format, the printer must be used by all do_print implementations. That is, instead of
using $display or string concatenations directly, a do_print implementation must call
through the printer’s API to add information to be printed or sprinted.

An example implementation of do_print is as follows

class mytype extends uvm_object;

data_obj data;

int T1;

virtual function void do_print (uvm_printer printer);
super.do_print(printer);)
printer_print_int("fl", f1, $bits(fl), DEC);
printer.print_object('data”™, data);

endfunction

UVM 1.1 Class Reference 16

Then, to print and sprint the object, you could write

mytype t = new;
t.print(Q);
uvm_report_info("'Received”,t.sprint());

See uvm_printer for information about the printer API.

convert2string

virtual function string convert2string()

This virtual function is a user-definable hook, called directly by the user, that allows
users to provide object information in the form of a string. Unlike sprint, there is no
requirement to use an uvm_printer policy object. As such, the format and content of the
output is fully customizable, which may be suitable for applications not requiring the
consistent formatting offered by the print/sprint/do_print API.

Fields declared in Utility Macros macros (" uvm_field_%*), if used, will not automatically
appear in calls to convert2string.

An example implementation of convert2string follows.

class _base_extends uvm_object;
string field = "foo';
virtual function string convertZStrin?S ;
convert2string = {"base_field=",fTie ;
endfunction
endclass

class _obj2_extends uvm object;
string field = "bar';
virtual function strin convertZStrings);
convert2string = {"child_field=",field}

endfunction
endclass
class obj extends base;

int addr = "h123;
int data = "h456;
bit write = 1;
obj2 child = new; } R
virtual function string convert2string();
convert2string = {super.convert2string(),)
$sformatf (" write=%0d addr=%8h data=%8h *,write,addr,data),
child.convert2string(Q};
endfunction
endclass

Then, to display an object, you could write

obj o = new; _ =
uvm_report_info("'BusMaster",{"'Sending:\n ",o.convert2string()});

UVM 1.1 Class Reference

17

The output will look similar to

UVM_INFO @ O: reporter [BusMaster] Sending:
base field=foo write=1 addr=00000123 data=00000456 child_ field=bar

RECORDING

record

function void record (uvm_recorder recorder)

The record method deep-records this object’s properties according to an optional recorder
policy. The method is not virtual and must not be overloaded. To include additional
fields in the record operation, derived classes should override the do_record method.

The optional recorder argument specifies the recording policy, which governs how
recording takes place. If a recorder policy is not provided explicitly, then the global
uvm_default_recorder policy is used. See uvm_recorder for information.

A simulator’s recording mechanism is vendor-specific. By providing access via a common
interface, the uvm_recorder policy provides vendor-independent access to a simulator’s
recording capabilities.

do_record

virtual function void do_record (uvm_recorder recorder)

The do_record method is the user-definable hook called by the record method. A derived
class should override this method to include its fields in a record operation.

The recorder argument is policy object for recording this object. A do_record
implementation should call the appropriate recorder methods for each of its fields.
Vendor-specific recording implementations are encapsulated in the recorder policy,
thereby insulating user-code from vendor-specific behavior. See uvm_recorder for more
information.

A typical implementation is as follows

class mytype extends uvm_object;
data_obj data;
int T1;
function void do_record (uvm _recorder regorder};
recorder.record_field_int("f1", f1, $bits(fl), DEC);
recorder.record_object('data’, data);
endfunction

UVM 1.1 Class Reference

18

CoPYING

copy

function void copy (uvm_object rhs)

The copy makes this object a copy of the specified object.

The copy method is not virtual and should not be overloaded in derived classes. To copy
the fields of a derived class, that class should override the do_copy method.

do_copy

virtual function void do_copy (uvm_object rhs)

The do_copy method is the user-definable hook called by the copy method. A derived
class should override this method to include its fields in a copy operation.

A typical implementation is as follows

class mytype extends uvm_object;

int f1;

function void do_copy (uvm_object rhs);
mytype rhs_;
super.do_copﬁ(rhs);
$cast(rhs_,rhs);
field_1 = rhs_.field_1;

endfunction

The implementation must call super.do_copy, and it must $cast the rhs argument to the
derived type before copying.

COMPARING

compare

function bit compare (uvm_object rhs,
uvm_comparer comparer)

Deep compares members of this data object with those of the object provided in the rhs
(right-hand side) argument, returning 1 on a match, 0 othewise.

The compare method is not virtual and should not be overloaded in derived classes. To
compare the fields of a derived class, that class should override the do_compare method.

UVM 1.1 Class Reference

19

The optional comparer argument specifies the comparison policy. It allows you to control
some aspects of the comparison operation. It also stores the results of the comparison,
such as field-by-field miscompare information and the total number of miscompares. If a
compare policy is not provided, then the global uvm_default_comparer policy is used.
See uvm_comparer for more information.

do_compare

virtual function bit do_compare (uvm_object rhs,
uvm_comparer comparer)

The do_compare method is the user-definable hook called by the compare method. A
derived class should override this method to include its fields in a compare operation. It
should return 1 if the comparison succeeds, 0 otherwise.

A typical implementation is as follows

class mytype extends uvm_object;
int f1; } })
virtual function bit do_compare (uvm_object rhs,uvm_comparer comparer);
mytype rhs_;
do_compare = super.do_compare(rhs,comparer);
$cast(rhs_,rhs);))
do_compare &= comparer.compare_field_int("fl"”, f1, rhs_.fl);
endfunction

A derived class implementation must call super.do_compare() to ensure its base class’
properties, if any, are included in the comparison. Also, the rhs argument is provided as
a generic uvm_object. Thus, you must $cast it to the type of this object before
comparing.

The actual comparison should be implemented using the uvm_comparer object rather
than direct field-by-field comparison. This enables users of your class to customize how
comparisons are performed and how much miscompare information is collected. See
uvm_comparer for more details.

PAcKING
pack
function int pack (bit bitstream[],
uvm_packer packer)}
pack_bytes
function int pack bytes (unsigned bytestream[],

UVM 1.1 Class Reference

20

uvm_packer packer)}

pack_ints

function int pack_ints (unsigned intstream[],
uvm_packer packer)}

The pack methods bitwise-concatenate this object’s properties into an array of bits,
bytes, or ints. The methods are not virtual and must not be overloaded. To include
additional fields in the pack operation, derived classes should override the do_pack
method.

The optional packer argument specifies the packing policy, which governs the packing
operation. If a packer policy is not provided, the global uvm_default_packer policy is
used. See uvm_packer for more information.

The return value is the total number of bits packed into the given array. Use the array’s
built-in size method to get the number of bytes or ints consumed during the packing
process.

do_pack

virtual function void do_pack (uvm_packer packer)

The do_pack method is the user-definable hook called by the pack methods. A derived
class should override this method to include its fields in a pack operation.

The packer argument is the policy object for packing. The policy object should be used
to pack objects.

A typical example of an object packing itself is as follows

class mysubtype extends mysupertype;
éﬁértint myshort;
obj type myobj;
byte myarray[];

function void do_pack (uvm_packer packer);)
super.do_pack(packer); /7 pack mysuperggpe properties
packer.pack_field_int(myarray.size(), 32);
foreach (myarray })

packer.pack_field_int(myarray[index], 8);

packer.pack_field_int(myshort, $bits(myshort));
packer.pack_object(myob});

endfunction

The implementation must call super.do_pack so that base class properties are packed as
well.

If your object contains dynamic data (object, string, queue, dynamic array, or associative
array), and you intend to unpack into an equivalent data structure when unpacking, you
must include meta-information about the dynamic data when packing as follows.

« For queues, dynamic arrays, or associative arrays, pack the number of elements in

UVM 1.1 Class Reference

21

the array in the 32 bits immediately before packing individual elements, as shown
above.

« For string data types, append a zero byte after packing the string contents.
* For objects, pack 4 bits immediately before packing the object. For null objects,
pack 4’b0000. For non-null objects, pack 4'b0001.

When the “uvm_field_* macros are used, Utility and Field Macros for Components and
Objects, the above meta information is included provided the
uvm_packer::use_metadata variable is set for the packer.

Packing order does not need to match declaration order. However, unpacking order must
match packing order.

UNPACKING
unpack

function int unpack (bit bitstream[],

uvm_packer packer)}

unpack_bytes

function int unpack bytes (unsigned bytestream[],

uvm_packer packer)}

unpack_ints

function int unpack ints (unsigned intstream[],

uvm_packer packer)}

The unpack methods extract property values from an array of bits, bytes, or ints. The
method of unpacking must exactly correspond to the method of packing. This is assured
if (a) the same packer policy is used to pack and unpack, and (b) the order of unpacking
is the same as the order of packing used to create the input array.

The unpack methods are fixed (non-virtual) entry points that are directly callable by the
user. To include additional fields in the unpack operation, derived classes should override
the do_unpack method.

The optional packer argument specifies the packing policy, which governs both the pack
and unpack operation. If a packer policy is not provided, then the global
uvm_default_packer policy is used. See uvm_packer for more information.

The return value is the actual nhumber of bits unpacked from the given array.

do_unpack

UVM 1.1 Class Reference 22

virtual function void do_unpack (uvm_packer packer)

The do_unpack method is the user-definable hook called by the unpack method. A
derived class should override this method to include its fields in an unpack operation.

The packer argument is the policy object for both packing and unpacking. It must be
the same packer used to pack the object into bits. Also, do_unpack must unpack fields
in the same order in which they were packed. See uvm_packer for more information.

The following implementation corresponds to the example given in do_pack.

function void do_unpack (uvm_packer packer);
int sz;
super.do_unpack(packer); // unpack super-®s progerties
sz = packer.unpack_field_int(myarray.size(), 32);
myarray.deleteg);
for(int index=0; iIndex<sz; index++
myarray[index] = packer.unpack_field_int(8);
myshort = packer.unpack_field_int($bits(myshort));
packer .unpack_object(myobj);
endfunction

If your object contains dynamic data (object, string, queue, dynamic array, or associative
array), and you intend to unpack into an equivalent data structure, you must have
included meta-information about the dynamic data when it was packed.

* For queues, dynamic arrays, or associative arrays, unpack the number of elements
in the array from the 32 bits immediately before unpacking individual elements, as
shown above.

* For string data types, unpack into the new string until a null byte is encountered.

* For objects, unpack 4 bits into a byte or int variable. If the value is 0, the target
object should be set to null and unpacking continues to the next property, if any.
If the least significant bit is 1, then the target object should be allocated and its
properties unpacked.

CONFIGURATION

set_int_local

virtual function void set_int_local (string field_name,
uvm_brtstream_t value,
bit recurse)

set_string_local

virtual function void set_string_local (string field_name,
string value,
bit recurse)

UVM 1.1 Class Reference 23

set_object_local

virtual function void set _object local (string_ field_name,
uvm_object value,
bit clone
bit recurse

b
1)

These methods provide write access to integral, string, and uvm_object-based properties
indexed by a field_name string. The object designer choose which, if any, properties will
be accessible, and overrides the appropriate methods depending on the properties’
types. For objects, the optional clone argument specifies whether to clone the value
argument before assignment.

The global uvm_is_match function is used to match the field names, so field_name may
contain wildcards.

An example implementation of all three methods is as follows.

class mytype extends uvm_object;

local int myint;

local bﬁte mybyte;

local shortint myshort; // no access
local string mystring;

local obj_type myobj;

// provide access to integral properties }
function void set_int_local(string field_name, uvm _bitstream t value);
if (uvm_is match (field name, "myint'))
myint = value;
else if (uvm_is_match (field_name, "mybyte'))
mybyte = value;
endfunction

// provide access to string properties
function void set string local(string field name, string value);
if (uvm_is_match (field_name, "mystring'))
mystring = value;
endfunction

// provide access to_sub-objects))
function void set_object_local(string field_name, uvm_object value,
))) bit clone=1I);_
ifT_(uvm_is_match (field_name, ‘"myobj')) begin
it (value != null) begin

Ob/ *ttype tmp; _
// 1t provided value is not correct type, produce error
if (!$cast(t@p, value))
/* error *
else begin
if(clone
cast(myobj, tmp.clone());
else
myobj = tmp;
end
end
else : } B)
. myobj = null; // value is null, so simply assign null to myobj
en
endfunction

Although the object designer implements these methods to provide outside access to one
or more properties, they are intended for internal use (e.g., for command-line debugging
and auto-configuration) and should not be called directly by the user.

UVM 1.1 Class Reference

24

5.3 uvm_transaction

The uvm_transaction class is the root base class for UVM transactions. Inheriting all the
methods of uvm_object, uvm_transaction adds a timing and recording interface.

This class provides timestamp properties, notification events, and transaction recording
support.

Use of this class as a base for user-defined transactions is deprecated. Its subtype,
uvm_sequence_item, shall be used as the base class for all user-defined transaction
types.

The intended use of this API is via a <uvm_driver> to call uvm_component::accept_tr,
uvm_component::begin_tr, and uvm_component::end_tr during the course of sequence
item execution. These methods in the component base class will call into the
corresponding methods in this class to set the corresponding timestamps (accept_time,
begin_time, and end_tr), trigger the corresponding event (begin_event and end_event,
and, if enabled, record the transaction contents to a vendor-specific transaction database.

Note that start_item/finish_item (or “uvm_do* macro) executed from a uvm_sequence
#(REQ,RSP) will automatically trigger the begin_event and end_events via calls to
begin_tr and end_tr. While convenient, it is generally the responsibility of drivers to
mark a transaction’s progress during execution. To allow the driver to control sequence
item timestamps, events, and recording, you must add
+define+UVM_DISABLE_AUTO_ITEM_RECORDING when compiling the UVM package.
Alternatively, users may use the transaction’s event pool, events, to define custom
events for the driver to trigger and the sequences to wait on. Any in-between events
such as marking the begining of the address and data phases of transaction execution
could be implemented via the events pool.

In pipelined protocols, the driver may release a sequence (return from finish_item() or
it’s “uvm_do macro) before the item has been completed. If the driver uses the
begin_tr/end_tr API in uvm_component, the sequence can wait on the item’s end_event
to block until the item was fully executed, as in the following example.

c)l
can use the “uvmdo necros as well
start_iten(item;
i temrandom ze();
finish_iten(item;
item end_event.walt_on();]]]
/] get_response(rsp, itemget_transaction_id()); //if needed
endt ask

t ask/ uvm execut e(item

A simple two-stage pipeline driver that can execute address and data phases
concurrently might be implemented as follows:

task runﬁq);
]{/ It< is driver supports a two-deep pipeline
or
do_ite ;
do i te%;;
join
endt ask

UVM 1.1 Class Reference 25

task do_item();

forever begin
nmbus_item regq;

| ock. get();
seq_itemport.get(req); // Conpletes the sequencer-driver handshake
accept _tr(req);
/1 request bus, wait for grant, etc.
begin_tr(req);
/'l execute address phase

/1 allows next transaction to begin address phase
| ock. put();

/| execute data phase
/1 (may trigger custom "data_phase" event here)

end_tr(req);
end

endt ask: do_item

Summary

uvm_transaction

The uvm_transaction class is the root base class for UVM transactions.
CLass HIERARCHY
uvm_void

uvm_object

uvm_transaction

CLass DEecLARATION
virtual class uvmtransacti on extends uvm object

MEeTHODS

new Creates a new transaction object.

accept_tr Calling accept_tr indicates that the transaction item
has been received by a consumer component.

do_accept_tr This user-definable callback is called by accept_tr
just before the accept event is triggered.

begin_tr This function indicates that the transaction has been
started and is not the child of another transaction.

begin_child_tr This function indicates that the transaction has been
started as a child of a parent transaction given by
parent_handle.

do_begin_tr This user-definable callback is called by begin_tr and
begin_child_tr just before the begin event is
triggered.

end_tr This function indicates that the transaction execution
has ended.

do_end_tr This user-definable callback is called by end_tr just

before the end event is triggered.

UVM 1.1 Class Reference 26

get_tr_handle Returns the handle associated with the transaction,
as set by a previous call to begin_child_tr or
begin_tr with transaction recording enabled.

disable_recording Turns off recording for the transaction stream.

enable_recording Turns on recording to the stream specified by
stream, whose interpretation is implementation
specific.

is_recording_enabled Returns 1 if recording is currently on, 0 otherwise.

is_active Returns 1 if the transaction has been started but has
not yet been ended.

get_event_pool Returns the event pool associated with this
transaction.

set_initiator Sets initiator as the initiator of this transaction.

get_initiator Returns the component that produced or started the

transaction, as set by a previous call to set_initiator.

get_accept_time

get_begin_time

get_end_time Returns the time at which this transaction was
accepted, begun, or ended, as by a previous call to
accept_tr, begin_tr, begin_child_tr, or end_tr.

set_transaction_id Sets this transaction’s numeric identifier to id.
get_transaction_id Returns this transaction’s numeric identifier, which is
-1 if not set explicitly by set_transaction_.id.
VARIABLES
events The event pool instance for this transaction.
begin_event A uvm_event that is triggered when this transaction’s

actual execution on the bus begins, typically as a
result of a driver calling uvm_component::begin_tr.
end_event A uvm_event that is triggered when this transaction’s
actual execution on the bus ends, typically as a
result of a driver calling uvm_component::end_tr.

MEeTHODS

new

function new (string name.
uvm _conponent initiator

nui 1)

Creates a new transaction object. The name is the instance name of the transaction. If
not supplied, then the object is unnamed.

accept_tr

function void accept_tr (tine accept_tine =)

Calling accept_tr indicates that the transaction item has been received by a consumer
component. Typically a <uvm_driver> would call uvm_component::accept_tr, which calls
this method-- upon return from a get_next_item(), get(), or peek() call on its sequencer
port, <uvm_driver::seq_item_port>.

UVM 1.1 Class Reference

With some protocols, the received item may not be started immediately after it is
accepted. For example, a bus driver, having accepted a request transaction, may still
have to wait for a bus grant before begining to execute the request.

This function performs the following actions

* The transaction’s internal accept time is set to the current simulation time, or to
accept_time if provided and non-zero. The accept_time may be any time, past or
future.

* The transaction’s internal accept event is triggered. Any processes waiting on the
this event will resume in the next delta cycle.

e The do_accept_tr method is called to allow for any post-accept action in derived
classes.

do_accept_tr
virtual protected function void do_accept _tr ()

This user-definable callback is called by accept_tr just before the accept event is
triggered. Implementations should call super.do_accept tr to ensure correct operation.

begin_tr
function integer begin_tr (tine begin_tine)

This function indicates that the transaction has been started and is not the child of
another transaction. Generally, a consumer component begins execution of a
transactions it receives.

Typically a <uvm_driver> would call uvm_component::begin_tr, which calls this method,
before actual execution of a sequence item transaction. Sequence items received by a
driver are always a child of a parent sequence. In this case, begin_tr obtains the parent
handle and delegates to begin_child_tr.

See accept_tr for more information on how the begin-time might differ from when the
transaction item was received.

This function performs the following actions

e The transaction’s internal start time is set to the current simulation time, or to
begin_time if provided and non-zero. The begin_time may be any time, past or
future, but should not be less than the accept time.

« If recording is enabled, then a new database-transaction is started with the same
begin time as above.

e The do_begin_tr method is called to allow for any post-begin action in derived
classes.

* The transaction’s internal begin event is triggered. Any processes waiting on this
event will resume in the next delta cycle.

The return value is a transaction handle, which is valid (non-zero) only if recording is

UVM 1.1 Class Reference 28

enabled. The meaning of the handle is implementation specific.

begin_child_tr

function integer begin_child_tr (tine begi n_tine
i nteger parent_handl e)

This function indicates that the transaction has been started as a child of a parent
transaction given by parent_handle. Generally, a consumer component calls this method
via uvm_component::begin_child_tr to indicate the actual start of execution of this
transaction.

The parent handle is obtained by a previous call to begin_tr or begin_child_tr. If the
parent_handle is invalid (=0), then this function behaves the same as begin_tr.

This function performs the following actions

e The transaction’s internal start time is set to the current simulation time, or to
begin_time if provided and non-zero. The begin_time may be any time, past or
future, but should not be less than the accept time.

+ If recording is enabled, then a new database-transaction is started with the same
begin time as above. The record method inherited from uvm_object is then called,
which records the current property values to this new transaction. Finally, the
newly started transaction is linked to the parent transaction given by
parent_handle.

e The do_begin_tr method is called to allow for any post-begin action in derived
classes.

* The transaction’s internal begin event is triggered. Any processes waiting on this
event will resume in the next delta cycle.

The return value is a transaction handle, which is valid (non-zero) only if recording is
enabled. The meaning of the handle is implementation specific.

do_begin_tr

virtual protected function void do_begin_tr ()

This user-definable callback is called by begin_tr and begin_child_tr just before the begin
event is triggered. Implementations should call super.do_begin_tr to ensure correct
operation.

end_tr

function void end_tr (time end_time
bit free_handle)

This function indicates that the transaction execution has ended. Generally, a consumer
component ends execution of the transactions it receives.

UVM 1.1 Class Reference

29

You must have previously called begin_tr or begin_child_tr for this call to be successful.

Typically a <uvm_driver> would call uvm_component::end_tr, which calls this method,
upon completion of a sequence item transaction. Sequence items received by a driver
are always a child of a parent sequence. In this case, begin_tr obtain the parent handle
and delegate to begin_child_tr.

This function performs the following actions

e The transaction’s internal end time is set to the current simulation time, or to
end_time if provided and non-zero. The end_time may be any time, past or
future, but should not be less than the begin time.

« If recording is enabled and a database-transaction is currently active, then the
record method inherited from uvm_object is called, which records the final
property values. The transaction is then ended. If free_handle is set, the
transaction is released and can no longer be linked to (if supported by the
implementation).

e The do_end_tr method is called to allow for any post-end action in derived classes.

* The transaction’s internal end event is triggered. Any processes waiting on this
event will resume in the next delta cycle.

do_end_tr

virtual protected function void do_end tr ()

This user-definable callback is called by end_tr just before the end event is triggered.
Implementations should call super.do_end_tr to ensure correct operation.

get_tr_handle

function integer get _tr_handle ()

Returns the handle associated with the transaction, as set by a previous call to
begin_child_tr or begin_tr with transaction recording enabled.

disable_recording

function void disable_recording ()

Turns off recording for the transaction stream. This method does not effect a
uvm_component’s recording streams.

enable_recording

function void enable_recording (string stream
uvm recorder recorder)

UVM 1.1 Class Reference 30

Turns on recording to the stream specified by stream, whose interpretation is
implementation specific. The optional recorder argument specifies

If transaction recording is on, then a call to record is made when the transaction is
started and when it is ended.

is_recording_enabled

function bit is_recording_enabl ed()

Returns 1 if recording is currently on, 0 otherwise.

is_active

function bit is_active ()

Returns 1 if the transaction has been started but has not yet been ended. Returns 0 if
the transaction has not been started.

get_event_pool

function uvm event _pool get_event _pool ()

Returns the event pool associated with this transaction.

By default, the event pool contains the events: begin, accept, and end. Events can also
be added by derivative objects. An event pool is a specialization of an <uvm_pool
#(T)>, e.g. a uvm_pool#(uvm_event).

set_initiator
function void set_initiator (uvm.conponent initiator)

Sets initiator as the initiator of this transaction.

The initiator can be the component that produces the transaction. It can also be the
component that started the transaction. This or any other usage is up to the transaction
designer.

get_initiator

function uvm conponent get _initiator ()

Returns the component that produced or started the transaction, as set by a previous call
to set_initiator.

UVM 1.1 Class Reference

31

get_accept_time

function time get_accept_tine ()

get_begin_time

function tinme get_begin_tinme ()

get_end_time
function time get_end_tine ()

Returns the time at which this transaction was accepted, begun, or ended, as by a
previous call to accept_tr, begin_tr, begin_child_tr, or end_tr.

set_transaction_.id

function void set_transaction_id(integer id)

Sets this transaction’s numeric identifier to id. If not set via this method, the transaction
ID defaults to -1.

When using sequences to generate stimulus, the transaction ID is used along with the
sequence ID to route responses in sequencers and to correlate responses to requests.

get_transaction_id

function integer get_transaction_id()

Returns this transaction’s numeric identifier, which is -1 if not set explicitly by
set_transaction_id.

When using a uvm_sequence #(REQ,RSP) to generate stimulus, the transaction ID is
used along with the sequence ID to route responses in sequencers and to correlate
responses to requests.

V ARIABLES

events

const uvm event _pool events = new

The event pool instance for this transaction. This pool is used to track various The

UVM 1.1 Class Reference

32

begin_event

begin_event
uvm event begi n_event

A uvm_event that is triggered when this transaction’s actual execution on the bus
begins, typically as a result of a driver calling uvm_component::begin_tr. Processes that
wait on this event will block until the transaction has begun.

For more information, see the general discussion for uvm_transaction. See uvm_event
for details on the event API.

end_event

uvm event end_event

A uvm_event that is triggered when this transaction’s actual execution on the bus ends,
typically as a result of a driver calling uvm_component::end_tr. Processes that wait on
this event will block until the transaction has ended.

For more information, see the general discussion for uvm_transaction. See uvm_event
for details on the event API.

virtual task my_sequence:: body();

_start_iterr(iteng; \)

i temrandom ze(); } “uvmdo(item

finish_item(item; /

[/ return from finish item does not always nean itemis conpleted
itemend_event.wait_on();

UVM 1.1 Class Reference

33

The uvm_root class serves as the implicit top-level and phase controller for all UVM
components. Users do not directly instantiate uvm_root. The UVM automatically creates
a single instance of uvm_root that users can access via the global (uvm_pkg-scope)
variable, uvm_top.

phase quels

17 i et 1 8."
| uvm_root I4h-| uvm_phase |

| urm_component |

The uvm_top instance of uvm_root plays several key roles in the UVM.

Implicit top-level The uvm_top serves as an implicit top-level
component. Any component whose parent is specified
as NULL becomes a child of uvm_top. Thus, all UVM
components in simulation are descendants of uvm_top.

Phase control uvm_top manages the phasing for all components.

Search Use uvm_top to search for components based on their
hierarchical name. See find and find_all.

Report configuration Use uvm_top to globally configure report verbosity, log
files, and actions. For example,
uvm_top.set_report_verbosity level _hier(UVM_FULL)
would set full verbosity for all components in simulation.

Global reporter Because uvm_top is globally accessible (in uvm_pkg
scope), UVM’s reporting mechanism is accessible from
anywhere outside uvm_component, such as in modules
and sequences. See uvm_report_error,
uvm_report_warning, and other global methods.

The uvm_top instance checks during the end_of_elaboration phase if any errors have
been generated so far. If errors are found an UVM_FATAL error is being generated as
result so that the simulation will not continue to the start_of_simulation_phase.

Summary

uvm_root

The uvm_root class serves as the implicit top-level and phase controller for all
UVM components.

MEeTHODS
run_test Phases all components through all registered
phases.
VARIABLES
top_levels This variable is a list of all of the top level

components in UVM.

UVM 1.1 Class Reference 34

MEeTHODS

find
find_all Returns the component handle (find) or list of
components handles (find_all) matching a given
string.
print_topology Print the verification environment’s component
topology.
V ARIABLES
enable_print_topology If set, then the entire testbench topology is printed
just after completion of the end_of_elaboration
phase.
finish_on_completion If set, then run_test will call $finish after all phases
are executed.
MEeTHODS
set_timeout Specifies the timeout for task-based phases.
V ARIABLES
uvm_top This is the top-level that governs phase execution
and provides component search interface.
MEeTHODS
run_test
virtual task run_test (string test_name)

Phases all components through all registered phases. If the optional test_name
argument is provided, or if a command-line plusarg, +UVM_TESTNAME=TEST_NAME, is
found, then the specified component is created just prior to phasing. The test may
contain new verification components or the entire testbench, in which case the test and
testbench can be chosen from the command line without forcing recompilation. If the
global (package) variable, finish_on_completion, is set, then $finish is called after
phasing completes.

V ARIABLES

top_levels

uvm conponent top_| evel s[$]

This variable is a list of all of the top level components in UVM. It includes the
uvm_test_top component that is created by run_test as well as any other top level
components that have been instantiated anywhere in the hierarchy.

UVM 1.1 Class Reference

35

METHODS

find

function uvm conponent find (string conp_natch)

find_all
function void find_all (string conp_mat ch,
ref uvm_conponent conps[$],
I nput uvm_conponent conp = null)

Returns the component handle (find) or list of components handles (find_all) matching a
given string. The string may contain the wildcards,

« and ?. Strings beginning with *.” are absolute path names. If optional comp arg is
provided, then search begins from that component down (default=all components).

print_topology
function void print_topology (uvmprinter printer = null)
Print the verification environment’s component topology. The printer is a uvm_printer

object that controls the format of the topology printout; a null printer prints with the
default output.

V ARIABLES

enable_print_topology

bit enable_print_topology = 0

If set, then the entire testbench topology is printed just after completion of the
end_of_elaboration phase.

finish_on_completion

bit finish_on_conpletion =1

If set, then run_test will call $finish after all phases are executed.

MEeTHODS

UVM 1.1 Class Reference

36

set_timeout

function void set_timeout(tinme tineout,
bit overridable = 1)

Specifies the timeout for task-based phases. Default is 0, i.e. no timeout.

V ARIABLES

uvm_top

const uvmroot uvmtop = uvmroot::get()

This is the top-level that governs phase execution and provides component search
interface. See uvm_root for more information.

UVM 1.1 Class Reference

37

5.5 Port Base Classes

Contents

Port Base Classes

uvm_port_component_base This class defines an interface for obtaining a port’s
connectivity lists after or during the
end_of_elaboration phase.

uvm_port_component See description of uvm_port_component_base for
#(PORT) information about this class
uvm_port_base #(IF) Transaction-level communication between

components is handled via its ports, exports, and
imps, all of which derive from this class.

uvm_port_component_base

This class defines an interface for obtaining a port’s connectivity lists after or during the
end_of_elaboration phase. The sub-class, uvm_port_component #(PORT), implements
this interface.

The connectivity lists are returned in the form of handles to objects of this type. This
allowing traversal of any port’s fan-out and fan-in network through recursive calls to
get_connected_to and get_provided_to. Each port’s full name and type name can be
retrieved using get_full_name and get_type_name methods inherited from
uvm_component.

Summary

uvm_port_component_base

This class defines an interface for obtaining a port’s connectivity lists after or
during the end_of_elaboration phase.

CLass HierarcHy
uvm_void
uvm_object
uvm_report_object

uvm_component

uvm_port_component_base

Crass DecLARATION

virtual class uvm port_conponent base extends
uvm conmponent

UVM 1.1 Class Reference 38

MEeTHODS

get_connected_to For a port or export type, this function fills list with all of
the ports, exports and implementations that this port is
connected to.

get_provided_to For an implementation or export type, this function fills
list with all of the ports, exports and implementations
that this port is provides its implementation to.

is_port

is_export

is_imp These function determine the type of port.

METHODS

get_connected_to

pure virtual function void get_connected to(ref uvmport list list)

For a port or export type, this function fills list with all of the ports, exports and
implementations that this port is connected to.

get_provided_to

pure virtual function void get _provided to(ref uvmport list list)

For an implementation or export type, this function fills list with all of the ports, exports
and implementations that this port is provides its implementation to.

is_port

pure virtual function bit is_port()

is_export

pure virtual function bit is_export()

is_imp
pure virtual function bit is_inp()

These function determine the type of port. The functions are mutually exclusive; one will
return 1 and the other two will return 0.

UVM 1.1 Class Reference

uvm_port_component #(PORT)

See description of uvm_port_component_base for information about this class

Summary

uvm_port_component #(PORT)

See description of uvm_port_component_base for information about this class
CLass HierarcHY
uvm_void
uvm_object
uvm_report_object
uvm_component

uvm_port_component_base

uvm_port_component#(PORT) |

Crass DEecLARATION

cl ass uvm port_conponent #(
type PO%T uvm obj ect
) extends uvm port corrponent base

METHODS
get_port Retrieve the actual port object that this proxy refers to.

METHODS

get_port

function PORT get _port()

Retrieve the actual port object that this proxy refers to.

uvim_port_base #(IF)

Transaction-level communication between components is handled via its ports, exports,
and imps, all of which derive from this class.

The uvm_port_base extends IF, which is the type of the interface implemented by

UVM 1.1 Class Reference 40

derived port, export, or implementation. IF is also a type parameter to uvm_port_base.

IF The interface type implemented by the subtype to this base port

The UVM provides a complete set of ports, exports, and imps for the OSCI- standard TLM
interfaces. They can be found in the ../src/tim/ directory. For the TLM interfaces, the IF
parameter is always uvm_tim_if _base #(T1,T2).

Just before <uvm_component::end_of_elaboration>, an internal
uvm_component::resolve_bindings process occurs, after which each port and export
holds a list of all imps connected to it via hierarchical connections to other ports and
exports. In effect, we are collapsing the port’s fanout, which can span several levels up
and down the component hierarchy, into a single array held local to the port. Once the
list is determined, the port’s min and max connection settings can be checked and
enforced.

uvm_port_base possesses the properties of components in that they have a hierarchical
instance path and parent. Because SystemVerilog does not support multiple inheritance,
uvm_port_base can not extend both the interface it implements and uvm_component.
Thus, uvm_port_base contains a local instance of uvm_component, to which it delegates
such commands as get_name, get_full_name, and get_parent.

Summary

uvm_port_base #(IF)

Transaction-level communication between components is handled via its ports,
exports, and imps, all of which derive from this class.

CLass HIERARCHY

IF

uvm_port_base#(IF) |

Crass DEcLARATION

virtual class uvm port_base #(
type IF
) extends IF

MEeTHODS

new The first two arguments are the normal
uvm_component constructor arguments.

get_name Returns the leaf name of this port.

get_full_name Returns the full hierarchical name of this port.

get_parent Returns the handle to this port’s parent, or null if it
has no parent.

get_comp Returns a handle to the internal proxy component
representing this port.

get_type_name Returns the type name to this port.

min_size Returns the mininum number of implementation ports

that must be connected to this port by the
end_of_elaboration phase.

max_size Returns the maximum number of implementation
ports that must be connected to this port by the
end_of_elaboration phase.

is_unbounded Returns 1 if this port has no maximum on the number

UVM 1.1 Class Reference 41

of implementation ports this port can connect to.

is_port

is_export

is_imp Returns 1 if this port is of the type given by the
method name, 0 otherwise.

size Gets the number of implementation ports connected
to this port.

set_default_index Sets the default implementation port to use when
calling an interface method.

connect Connects this port to the given provider port.

debug_connected_to The debug_connected_to method outputs a visual

text display of the port/export/imp network to which
this port connects (i.e., the port’s fanout).

debug_provided_to The debug_provided_to method outputs a visual
display of the port/export network that ultimately
connect to this port (i.e., the port’s fanin).

resolve_bindings This callback is called just before entering the
end_of_elaboration phase.
get_if Returns the implementation (imp) port at the given
index from the array of imps this port is connected
to.
MEeTHODS
new
function new (string nane,

uvm conponent par ent,

uvm port_type_e port_type,

i nt mn_size

i nt max_si ze)

The first two arguments are the normal uvm_component constructor arguments.

The port_type can be one of UVM_PORT, UVM_EXPORT, or UVM_IMPLEMENTATION.

The min_size and max_size specify the minimum and maximum number of
implementation (imp) ports that must be connected to this port base by the end of
elaboration. Setting max_size to UVM_UNBOUNDED_CONNECTIONS sets no maximum,
i.e., an unlimited number of connections are allowed.

By default, the parent/child relationship of any port being connected to this port is not
checked. This can be overridden by configuring the port’s check connection_relationships
bit via set_config_int. See connect for more information.

get_name

function string get_nane()

Returns the leaf name of this port.

UVM 1.1 Class Reference

get_full_name

virtual function string get_full_nanme()

Returns the full hierarchical name of this port.

get_parent

virtual function uvm conponent get_parent ()

Returns the handle to this port’s parent, or null if it has no parent.

get_comp
virtual function uvm port_conponent_base get_conp()
Returns a handle to the internal proxy component representing this port.
Ports are considered components. However, they do not inherit uvm_component.

Instead, they contain an instance of uvm_port_component #(PORT) that serves as a
proxy to this port.

get_type_name
virtual function string get_type nanme()
Returns the type name to this port. Derived port classes must implement this method to

return the concrete type. Otherwise, only a generic “uvm_port”, “uvm_export” or
“uvm_implementation” is returned.

min_size

Returns the mininum number of implementation ports that must be connected to this
port by the end_of_elaboration phase.

max_size

Returns the maximum number of implementation ports that must be connected to this
port by the end_of_elaboration phase.

is_unbounded

function bit is_unbounded ()

UVM 1.1 Class Reference 43

Returns 1 if this port has no maximum on the number of implementation ports this port
can connect to. A port is unbounded when the max_size argument in the constructor is
specified as UVM_UNBOUNDED_CONNECTIONS.

is_port

function bit is_port ()

is_export

function bit is_export ()

is_imp
function bit is_inp ()

Returns 1 if this port is of the type given by the method name, 0 otherwise.

size
function int size ()

Gets the number of implementation ports connected to this port. The value is not valid
before the end_of_elaboration phase, as port connections have not yet been resolved.

set_default_index

function void set_default_index (int index)

Sets the default implementation port to use when calling an interface method. This
method should only be called on UVM_EXPORT types. The value must not be set before
the end_of_elaboration phase, when port connections have not yet been resolved.

connect

virtual function void connect (this_type provider)

Connects this port to the given provider port. The ports must be compatible in the
following ways

* Their type parameters must match

* The provider’s interface type (blocking, non-blocking, analysis, etc.) must be
compatible. Each port has an interface mask that encodes the interface(s) it
supports. If the bitwise AND of these masks is equal to the this port’'s mask, the

UVM 1.1 Class Reference 44

requirement is met and the ports are compatible. For example, an
uvm_blocking_put_port #(T) is compatible with an uvm_put_export #(T) and
uvm_blocking_put_imp #(T) because the export and imp provide the interface
required by the uvm_blocking_put_port.

e Ports of type UVM_EXPORT can only connect to other exports or imps.
¢ Ports of type UVM_IMPLEMENTATION can not be connected, as they are bound to
the component that implements the interface at time of construction.

In addition to type-compatibility checks, the relationship between this port and the
provider port will also be checked if the port’s check connection_relationships
configuration has been set. (See new for more information.)

Relationships, when enabled, are checked are as follows

« If this port is an UVM_PORT type, the provider can be a parent port, or a sibling
export or implementation port.

o If this port is an UVM_EXPORT type, the provider can be a child export or
implementation port.

If any relationship check is violated, a warning is issued.

Note- the <uvm_component::connect> method is related to but not the same as this
method. The component’s connect method is a phase callback where port’s connect
method calls are made.

debug_connected_to

function void debug_connected_to (int |evel
int max_| evel)

The debug_connected_to method outputs a visual text display of the port/export/imp
network to which this port connects (i.e., the port’s fanout).

This method must not be called before the end_of_elaboration phase, as port connections
are not resolved until then.

debug_provided_to

function void debug_provided_to (int |evel
int max_| evel)

The debug_provided_to method outputs a visual display of the port/export network that
ultimately connect to this port (i.e., the port’s fanin).

This method must not be called before the end_of elaboration phase, as port connections
are not resolved until then.

resolve_bindings

virtual function void resol ve_bindings()

UVM 1.1 Class Reference 45

This callback is called just before entering the end_of_elaboration phase. It recurses
through each port’s fanout to determine all the imp destina- tions. It then checks
against the required min and max connections. After resolution, size returns a valid
value and get_if can be used to access a particular imp.

This method is automatically called just before the start of the end_of_elaboration
phase. Users should not need to call it directly.

get_if
function uvm port_base #(I1F) get_if(int index=0)

Returns the implementation (imp) port at the given index from the array of imps this
port is connected to. Use size to get the valid range for index. This method can only be
called at the end_of_elaboration phase or after, as port connections are not resolved
before then.

UVM 1.1 Class Reference

46

6. RePORTING CLASSES

The reporting classes provide a facility for issuing reports with consistent formatting.
Users can configure what actions to take and what files to send output to based on
report severity, ID, or both severity and ID. Users can also filter messages based on
their verbosity settings.

The primary interface to the UVM reporting facility is the uvm_report_object from which
all uvm_components extend. The uvm_report_object delegates most tasks to its internal
uvm_report_handler. If the report handler determines the report is not filtered based
the configured verbosity setting, it sends the report to the central uvm_report_server for
formatting and processing.

Reporting Classes

uvm_object

Lo .
! uvm_report_handler 1

uvm_report_server

L 4

¥

uvm_report_object

UVFA_companeant

i

user-defined
componant

Summary
Reporting Classes

The reporting classes provide a facility for issuing reports with consistent
formatting.

UVM 1.1 Class Reference 47

6.1 uvm_report_object

The uvm_report_object provides an interface to the UVM reporting facility. Through this
interface, components issue the various messages that occur during simulation. Users
can configure what actions are taken and what file(s) are output for individual messages
from a particular component or for all messages from all components in the
environment. Defaults are applied where there is no explicit configuration.

Most methods in uvm_report_object are delegated to an internal instance of an
uvm_report_handler, which stores the reporting configuration and determines whether an
issued message should be displayed based on that configuration. Then, to display a
message, the report handler delegates the actual formatting and production of messages
to a central uvm_report_server.

A report consists of an id string, severity, verbosity level, and the textual message
itself. They may optionally include the filename and line number from which the
message came. If the verbosity level of a report is greater than the configured
maximum verbosity level of its report object, it is ignored. If a report passes the
verbosity filter in effect, the report’s action is determined. If the action includes output
to a file, the configured file descriptor(s) are determined.

Actions can be set for (in increasing priority) severity, id, and
(severity,id) pair. They include output to the screen
UVM_DISPLAY, whether the message counters should be
incremented UVM_COUNT, and whether a $finish should
occur UVM_EXIT.

Default Actions The following provides the default actions assigned to each
severity. These can be overridden by any of the set_*_action
methods.

UM | NFO - UVM DI SPLAY
UVM_WARNI NG - UVM DI SPLAY
UVM ERRCR - UVM DI SPLAY | UVM COUNT
UVM FATAL - UVM DI SPLAY | UWMEXI T
File descriptors These can be set by (in increasing priority) default,

severity level, an id, or (severity,id) pair. File descriptors
are standard verilog file descriptors; they may refer to
more than one file. It is the user’s responsibility to open
and close them.

Default file handle The default file handle is 0, which means that reports are
not sent to a file even if an UVM_LOG attribute is set in
the action associated with the report. This can be
overridden by any of the set_*_file methods.

Summary

uvm_report_object

UVM 1.1 Class Reference 48

The uvm_report_object provides an interface to the UVM reporting facility.
Crass HieraARCHY
uvm_void

uvm_object

uvm_report_object

CLass DECLARATION
class uvmreport _object extends uvm object

new Creates a new report object with the given
name.

REPORTING
uvm_report_info
uvm_report_warning
uvm_report_error
uvm_report_fatal

CALLBACKS
report_info_hook
report_error_hook
report_warning_hook
report_fatal_hook
report_hook

report_header
report_summarize

die

CONFIGURATION
set_report_verbosity_level

set_report_id_verbosity
set_report_severity_id_verbosity

set_report_severity_action
set_report_id_action
set_report_severity_id_action

set_report_severity_override
set_report_severity_id_override

set_report_default_file
set_report_severity_file
set_report_id_file
set_report_severity_id_file

UVM 1.1 Class Reference

These are the primary reporting methods
in the UVM.

These hook methods can be defined in
derived classes to perform additional
actions when reports are issued.

Prints version and copyright information.
Outputs statistical information on the
reports issued by the central report
server.

This method is called by the report server
if a report reaches the maximum quit
count or has an UVM_EXIT action
associated with it, e.g., as with fatal
errors.

This method sets the maximum verbosity
level for reports for this component.

These methods associate the specified
verbosity with reports of the given
severity, id, or severity-id pair.

These methods associate the specified
action or actions with reports of the given
severity, id, or severity-id pair.

These methods provide the ability to
upgrade or downgrade a message in
terms of severity given severity and id.

These methods configure the report
handler to direct some or all of its output
to the given file descriptor.

49

get_report_verbosity_level Gets the verbosity level in effect for this

object.
get_report_action Gets the action associated with reports
having the given severity and id.
get_report_file_handle Gets the file descriptor associated with
reports having the given severity and id.
uvm_report_enabled Returns 1 if the configured verbosity for

this severity/id is greater than verbosity
and the action associated with the given
severity and id is not UVYM_NO_ACTION,
else returns 0.

set_report_max_quit_count Sets the maximum quit count in the
report handler to max_count.

SEeTuP

set_report_handler Sets the report handler, overwriting the
default instance.

get_report_handler Returns the underlying report handler to
which most reporting tasks are
delegated.

reset_report_handler Resets the underlying report handler to
its default settings.

get_report_server Returns the uvm_report_server instance
associated with this report object.

dump_report_state This method dumps the internal state of
the report handler.

new
function new(string name = "")

Creates a new report object with the given name. This method also creates a new
uvm_report_handler object to which most tasks are delegated.

REPORTING

uvm_report_info

virtual function void uvmreport_info(string id,
string nessage,

int verbosity = UVM VEDI UM
string filename = "",
i nt line =0)
uvm_report_warning
virtual function void uvmreport_warning(string id,
string nessage,
int verbosity = UVM MEDI UM
string filename = "",
i nt line =0)

UVM 1.1 Class Reference 50

uvm_report_error

virtual function void

uvm_report_fatal

uvmreport _error(stri
stri
i nt
stri
i nt

ng
ng

ng

id,

nessage,

verbosity

fil enane

line)

vi r t ual

function void uvmreport_fatal (string id,

string nessage,

i nt verbosity

string fil enane

i nt line)

These are the primary reporting methods in the UVM. Using these instead of $display
and other ad hoc approaches ensures consistent output and central control over where
output is directed and any actions that result. All reporting methods have the same
arguments, although each has a different default verbosity:

id

message

verbosity

filename/line

CALLBACKS

a unique id for the report or report group that can be used for
identification and therefore targeted filtering. You can configure
an individual report’s actions and output file(s) using this id
string.

the message body, preformatted if necessary to a single string.

the verbosity of the message, indicating its relative
importance. If this number is less than or equal to the
effective verbosity level, see set_report_verbosity_level, then
the report is issued, subject to the configured action and file
descriptor settings. Verbosity is ignored for warnings, errors,
and fatals. However, if a warning, error or fatal is demoted to
an info message using the uvm_report_catcher, then the
verbosity is taken into account.

(Optional) The location from which the report was issued. Use
the predefined macros, *__FILE_ and " _ LINE__ . If specified,
it is displayed in the output.

report_info_hook

vi rtual

UVM 1.1 Class Reference

function bit

report _info_hook(string id,
string nessage,

int verbosity,
string fil enane,
i nt l'ine)

51

report_error_hook

virtual function bit report_error_hook(string id,
string nessage,

int verbosity,
string fil enane,
i nt line)

report_warning_hook

virtual function bit report_warning_hook(string id,
string nmessage,

int verbosity,
string fil enane,
i nt line)

report_fatal_hook

virtual function bit report_fatal _hook(string id,
string message,

int verbosity,
string fil enane,
i nt l'ine

report_hook

virtual function bit report_hook(string id,
string nessage,

int verbosity,
string fil enane,
int l'ine

These hook methods can be defined in derived classes to perform additional actions when
reports are issued. They are called only if the UVM_CALL_HOOK bit is specified in the
action associated with the report. The default implementations return 1, which allows
the report to be processed. If an override returns 0, then the report is not processed.

First, the report_hook method is called, followed by the severity severity specific hook
(report_info_hook, etc.). If either hook method returns 0 then the report is not
processed further.

report_header

virtual function void report_header(UWMFILE file = 0)

Prints version and copyright information. This information is sent to the command line if
file is 0, or to the file descriptor file if it is not 0. The uvm_root::run_test task calls this
method just before it component phasing begins.

UVM 1.1 Class Reference

52

report_summarize

virtual function void report_summari ze(UYM FILE file = 0)

Outputs statistical information on the reports issued by the central report server. This
information will be sent to the command line if file is 0, or to the file descriptor file if it
is not O.

The run_test method in uvm_top calls this method.

die
virtual function void die()

This method is called by the report server if a report reaches the maximum quit count or
has an UVM_EXIT action associated with it, e.g., as with fatal errors.

Calls the uvm_component::pre_abort() method on the entire uvm_component hierarchy
in a bottom-up fashion. It then call calls report_summarize and terminates the
simulation with $finish.

CONFIGURATION

set_report_verbosity_level

function void set _report_verbosity level (int verbosity |evel)

This method sets the maximum verbosity level for reports for this component. Any
report from this component whose verbosity exceeds this maximum will be ignored.

set_report_id_verbosity

function void set_report_id_verbosity (string id, _
i nt verbosity)

set_report_severity_id_verbosity

function void set_report_severity_id_verbosity (uvmseverity severity,
string id,
i nt ver bosity)

These methods associate the specified verbosity with reports of the given severity, id, or
severity-id pair. An verbosity associated with a particular severity-id pair takes
precedence over an verbosity associated with id, which take precedence over an an
verbosity associated with a severity.

UVM 1.1 Class Reference

53

The verbosity argument can be any integer, but is most commonaly a predefined
uvm_verbosity value, UVM_NONE, UVM_LOW, UVM_MEDIUM, UVM_HIGH, UVM_FULL.

set_report_severity_action

function void set_report_severity_action (uvmseverity severity,
uvm acti on action)

set_report_id_action

function void set_report_id_action (string id,
uvm acti on action)

set_report_severity_id_action

function void set_report_severity_id_action (uvmseverity _sgveri ty,
string id,
uvm acti on action)

These methods associate the specified action or actions with reports of the given
severity, id, or severity-id pair. An action associated with a particular severity-id pair
takes precedence over an action associated with id, which takes precedence over an an
action associated with a severity.

The action argument can take the value UVM_NO_ACTION, or it can be a bitwise OR of
any combination of UVM_DISPLAY, UVM_LOG, UVM_COUNT, UVM_STOP, UVM_EXIT, and
UVM_CALL_HOOK.

set_report_severity_override

function void set_report_severity_override(uvmseverity cur_severity,
uvm severity new severity)

set_report_severity_id_override

function void set_report_severity_id_override(uvmseverity _cgr_severi ty,
string i

uvm severity ne\'/v_severi ty)
These methods provide the ability to upgrade or downgrade a message in terms of

severity given severity and id. An upgrade or downgrade for a specific id takes
precedence over an upgrade or downgrade associated with a severity.

set_report_default_file

function void set_report_default file (UM FILE file)

UVM 1.1 Class Reference 54

set_report_severity_file

function void set_report_severity file (uvmseverity severity,
UVM FI LE file)

set_report_id_file

id

function void set_report_id file (string id,
FILE file)

UVM_

set_report_severity_id_file

function void set_report_severity_id_file (uvmseverity sgveri ty,
string id,
UVM FI'LE file)

These methods configure the report handler to direct some or all of its output to the
given file descriptor. The file argument must be a multi-channel descriptor (mcd) or file
id compatible with $fdisplay.

A FILE descriptor can be associated with with reports of the given severity, id, or
severity-id pair. A FILE associated with a particular severity-id pair takes precedence
over a FILE associated with id, which take precedence over an a FILE associated with a
severity, which takes precedence over the default FILE descriptor.

When a report is issued and its associated action has the UVM_LOG bit set, the report
will be sent to its associated FILE descriptor. The user is responsible for opening and
closing these files.

get_report_verbosity_level

function int get_report_verbosity_| evel (uvm severity severity

UVM | NFO,
string id "

Gets the verbosity level in effect for this object. Reports issued with verbosity greater
than this will be filtered out. The severity and tag arguments check if the verbosity level
has been modified for specific severity/tag combinations.

get_report_action

function int get_report_action(uvmseverity severity,
string id

Gets the action associated with reports having the given severity and id.

UVM 1.1 Class Reference 55

get_report_file_handle

function int get_report_file_handl e(uvm severity severity,
string id

Gets the file descriptor associated with reports having the given severity and id.

uvm_report_enabled

function int uvmreport_enabl ed(int) verbosity,
uvm severity severity = UWM_I NFO,
string id ="

Returns 1 if the configured verbosity for this severity/id is greater than verbosity and the
action associated with the given severity and id is not UVM_NO_ACTION, else returns 0.

See also get_report_verbosity_level and get_report_action, and the global version of
uvm_report_enabled.

set_report_max_quit_count

function void set_report_nax_quit_count(int max_count)

Sets the maximum quit count in the report handler to max_count. When the number of
UVM_COUNT actions reaches max_count, the die method is called.

The default value of 0 indicates that there is no upper limit to the number of
UVM_COUNT reports.

SETUP

set_report_handler

function void set_report_handl er(uvmreport_handl er handl er)

Sets the report handler, overwriting the default instance. This allows more than one
component to share the same report handler.

get_report_handler

function uvmreport_handl er get_report_handl er ()

Returns the underlying report handler to which most reporting tasks are delegated.

UVM 1.1 Class Reference 56

reset_report_handler

function void reset_report_handl er

Resets the underlying report handler to its default settings. This clears any settings
made with the set_report_* methods (see below).

get_report_server

function uvmreport_server get_report_server()

Returns the uvm_report_server instance associated with this report object.

dump_report_state

function void dunp_report_state()

This method dumps the internal state of the report handler. This includes information
about the maximum quit count, the maximum verbosity, and the action and files
associated with severities, ids, and (severity, id) pairs.

UVM 1.1 Class Reference

57

6.2 uvm_report_handler

The uvm_report_handler is the class to which most methods in uvm_report_object
delegate. It stores the maximum verbosity, actions, and files that affect the way reports
are handled.

The report handler is not intended for direct use. See uvm_report_object for information
on the UVM reporting mechanism.

The relationship between uvm_report_object (a base class for uvm_component) and
uvm_report_handler is typically one to one, but it can be many to one if several
uvm_report_objects are configured to use the same uvm_report_handler_object. See
uvm_report_object::set_report_handler.

The relationship between uvm_report_handler and uvm_report_server is many to one.

Summary

uvm_report_handler

The uvm_report_handler is the class to which most methods in
uvm_report_object delegate.

MEeTHODS

new Creates and initializes a new uvm_report_handler
object.

run_hooks The run_hooks method is called if the
UVM_CALL_HOOK action is set for a report.

get_verbosity_level Returns the verbosity associated with the given
severity and id.

get_action Returns the action associated with the given severity
and id.

get_file_handle Returns the file descriptor associated with the given
severity and id.

report This is the common handler method used by the four
core reporting methods (e.g., uvm_report_error) in
uvm_report_object.

format_action Returns a string representation of the action, e.g.,
“DISPLAY".

MEeTHODS

new

function new()

Creates and initializes a new uvm_report_handler object.

UVM 1.1 Class Reference 58

run_hooks

virtual function bit run_hooks(uvmreport object client,

uvm severity severity,
string id,

string message,

i nt verbosity,
string fil ename,
i nt l'ine

The run_hooks method is called if the UVM_CALL_HOOK action is set for a report. It first
calls the client’s uvm_report_object::report_hook method, followed by the appropriate
severity-specific hook method. If either returns 0, then the report is not processed.

get_verbosity_level

function int get_verbosity_level (uvmseverity severity
string id)

Returns the verbosity associated with the given severity and id.

First, if there is a verbosity associated with the (severity,id) pair, return that. Else, if
there is an verbosity associated with the id, return that. Else, return the max verbosity
setting.

get_action

function uvm action get_action(uvmseverity severity,
string id

Returns the action associated with the given severity and id.

First, if there is an action associated with the (severity,id) pair, return that. Else, if
there is an action associated with the id, return that. Else, if there is an action
associated with the severity, return that. Else, return the default action associated with
the severity.

get_file_handle

function UVMFILE get_file_handl e(uvm severity severity,
string id

Returns the file descriptor associated with the given severity and id.

First, if there is a file handle associated with the (severity,id) pair, return that. Else, if
there is a file handle associated with the id, return that. Else, if there is an file handle
associated with the severity, return that. Else, return the default file handle.

report

UVM 1.1 Class Reference

59

virtual function void report(uvmseverity severity,

string name,

string id,

string nessage,

i nt verbosity_|evel,
string fil ename,

i nt l'ine,

uvm report_object client)

This is the common handler method used by the four core reporting methods (e.g.,
uvm_report_error) in uvm_report_object.

format_action

function string format_acti on(uvm action action)

Returns a string representation of the action, e.g., "DISPLAY".

UVM 1.1 Class Reference

60

6.3 uvm_report_server

uvm_report_server is a global server that processes all of the reports generated by an
uvm_report_handler. None of its methods are intended to be called by normal testbench
code, although in some circumstances the virtual methods process_report and/or
compose_uvm_info may be overloaded in a subclass.

Summary

uvim_report_server

uvm_report_server is a global server that processes all of the reports generated
by an uvm_report_handler.

V ARIABLES
id_count An associative array holding the number of
occurences for each unique report ID.
MEeTHODS
new Creates the central report server, if not already
created.
set_server Sets the global report server to use for reporting.
get_server Gets the global report server.

set_max_quit_count
get_max_quit_count

set_quit_count
get_quit_count
incr_quit_count
reset_quit_count

is_quit_count_reached
set_severity_count
get_severity_count
incr_severity_count
reset_severity_counts
set_id_count
get_id_count
incr_id_count
process_report

compose_message

summarize

dump_server_state
get_server

UVM 1.1 Class Reference

Get or set the maximum number of COUNT actions
that can be tolerated before an UVM_EXIT action is
taken.

Set, get, increment, or reset to 0 the quit count,
i.e., the number of COUNT actions issued.

If is_quit_count_reached returns 1, then the quit
counter has reached the maximum.

Set, get, or increment the counter for the given
severity, or reset all severity counters to 0.

Set, get, or increment the counter for reports with
the given id.

Calls compose_message to construct the actual
message to be output.

Constructs the actual string sent to the file or
command line from the severity, component name,
report id, and the message itself.

See uvm_report_object::report_summarize
method.

Dumps server state information.

Returns a handle to the central report server.

61

V ARIABLES

id_count

protected int id _count[string]

An associative array holding the number of occurences for each unique report ID.

MEeTHODS

new

function new()

Creates the central report server, if not already created. Else, does nothing. The
constructor is protected to enforce a singleton.

set_server

static function void set_server(uvmreport_server server)

Sets the global report server to use for reporting. The report server is responsible for
formatting messages.

get_server

static function uvmreport_server get_server()

Gets the global report server. The method will always return a valid handle to a report
server.

set_max_quit_count

function void set_max_quit_count(int count,
bit overridable = 1)

get_max_quit_count

function int get_max_quit_count()

Get or set the maximum number of COUNT actions that can be tolerated before an

UVM 1.1 Class Reference

62

UVM_EXIT action is taken. The default is 0, which specifies no maximum.

set_quit_count

function void set_quit_count(int quit_count)

get_quit_count

function int get_quit_count()

incr_quit_count

function void incr_quit_count()

reset_quit_count

function void reset_quit_count()

Set, get, increment, or reset to 0 the quit count, i.e., the number of COUNT actions
issued.

is_quit_count_reached

function bit is_quit_count_reached()

If is_quit_count_reached returns 1, then the quit counter has reached the maximum.

set_severity_count

function void set_severity_count(uvmseverity severity,
i nt count)

get_severity_count

function int get_severity_count(uvmseverity severity)

incr_severity_count

function void incr_severity _count(uvmseverity severity)

UVM 1.1 Class Reference 63

reset_severity_counts

function void reset_severity_counts()

Set, get, or increment the counter for the given severity, or reset all severity counters to
0.

set_id_count

function void set_id_count(string id,
i nt count)

get_id_count

function int get_id_count(string id)

incr_id_count

function void incr_id _count(string id)

Set, get, or increment the counter for reports with the given id.

process_report

virtual function void process_report(uvmseverity severity,
string nare,
string id,
string nessage,
uvm acti on action,
UVM FI LE file,
string fil enane,
i nt I'ine,
string conmposed_nessage,
i nt verbosity_|evel,

uvm report_object client

Calls compose_message to construct the actual message to be output. It then takes the
appropriate action according to the value of action and file.

This method can be overloaded by expert users to customize the way the reporting
system processes reports and the actions enabled for them.

compose_message

virtual function string conpose_nessage(uvmseverity severity,

string nane,
string id,
string nmessage,

UVM 1.1 Class Reference

64

enane,

string Ifil
ine

i nt

Constructs the actual string sent to the file or command line from the severity,
component name, report id, and the message itself.

Expert users can overload this method to customize report formatting.

summarize

virtual function void sunmmarize(U/M FILE file =)

See uvm_report_object::report_summarize method.

dump_server_state

function void dunp_server_state()

Dumps server state information.

get_server

function uvmreport_server get_server()

Returns a handle to the central report server.

UVM 1.1 Class Reference

65

6.4 uvm_report_catcher

The uvm_report_catcher is used to catch messages issued by the uvm report server.
Catchers are uvm_callbacks#(uvm_report_object,uvm_report_catcher) objects, so all
factilities in the uvm_callback and uvm_callbacks#(T,CB) classes are available for
registering catchers and controlling catcher state. The
uvm_callbacks#(uvm_report_object,uvm_report_catcher) class is aliased to
uvm_report_cb to make it easier to use. Multiple report catchers can be registered with
a report object. The catchers can be registered as default catchers which catch all
reports on all uvm_report_object reporters, or catchers can be attached to specific report
objects (i.e. components).

User extensions of uvm_report_catcher must implement the catch method in which the
action to be taken on catching the report is specified. The catch method can return
CAUGHT, in which case further processing of the report is immediately stopped, or return
THROW in which case the (possibly modified) report is passed on to other registered
catchers. The catchers are processed in the order in which they are registered.

On catching a report, the catch method can modify the severity, id, action, verbosity or
the report string itself before the report is finally issued by the report server. The report
can be immediately issued from within the catcher class by calling the issue method.

The catcher maintains a count of all reports with FATAL,ERROR or WARNING severity and
a count of all reports with FATAL, ERROR or WARNING severity whose severity was
lowered. These statistics are reported in the summary of the uvm_report_server.

This example shows the basic concept of creating a report catching callback and
attaching it to all messages that get emitted:

class ny_error_denoter extends uvmreport_catcher;
function new(string nanme="ny_error_denoter");
super. new(nane) ;
endf uncti on]
/1 This exanple denptes "My_ID' errors to an info nessage
function action_e catch();]
i f(get_severi tng)v == M ERROR && get_id() == "MY_ID")
set _severity(UVM I NFO);
return THROW
endf uncti on
endcl ass

ny_error_denoter denoter = new,

initial begin]

/] Catchers are callbacks on report objects (conponents are report
/1 objects, so catchers can be attached to conponents).

/1 To affect all reporters, use null for the object
uvm report_ch::add(null, denoter);

/1 To affect some specific object use the specific reporter
uvm report _ch: :add(nytest. nyenv. nyagent. nydriver, denoter);

/1 To affect some set of conponents using the conponent name

ugm_r eport_ch::add_by nane("*.*driver", denoter);
en

Summary

UVM 1.1 Class Reference

66

uvm_report_catcher

The uvm_report_catcher is used to catch messages issued by the uvm report
server.
CLass DEecLARATION
typedef class uvmreport_catcher
new Create a new report object.

CURRENT MESsSAGE STATE

new

get_client

get_severity
get_verbosity
get_id

get_message

Returns the uvm_report_object that has
generated the message that is currently being
processes.

Returns the uvm_severity of the message that
is currently being processed.

Returns the verbosity of the message that is
currently being processed.

Returns the string id of the message that is
currently being processed.

Returns the string message of the message
that is currently being processed.

get_action Returns the uvm_action of the message that is
currently being processed.

get_fname Returns the file name of the message.

get_line Returns the line number of the message.

CHANGE MESSAGE STATE
set_severity

Change the severity of the message to

severity.
set_verbosity Change the verbosity of the message to
verbosity.
set_id Change the id of the message to id.
set_message Change the text of the message to message.
set_action Change the action of the message to action.
DeBuG

get_report_catcher
print_catcher

CaLLBack INTERFACE
catch

REPORTING
uvm_report_fatal

uvm_report_error

uvm_report_warning

uvm_report_info

issue

summarize_report_catcher

UVM 1.1 Class Reference

Returns the first report catcher that has name.
Prints information about all of the report
catchers that are registered.

This is the method that is called for each
registered report catcher.

Issues a fatal message using the current
messages report object.

Issues a error message using the current
messages report object.

Issues a warning message using the current
messages report object.

Issues a info message using the current
messages report object.

Immediately issues the message which is
currently being processed.

This function is called automatically by
uvm_report_server::summarize().

67

function newstring name = "uvmreport catcher™)

Create a new report object. The name argument is optional, but should generally be
provided to aid in debugging.

CURRENT MESSAGE STATE

get_client

function uvmreport_object get_client()

Returns the uvm_report_object that has generated the message that is currently being
processes.

get_severity

function uvm severity get_severity()

Returns the uvm_severity of the message that is currently being processed. If the
severity was modified by a previously executed report object (which re-threw the
message), then the returned severity is the modified value.

get_verbosity

function int get_verbosity()
Returns the verbosity of the message that is currently being processed. If the verbosity

was modified by a previously executed report object (which re-threw the message), then
the returned verbosity is the modified value.

get_id
function string get _id()
Returns the string id of the message that is currently being processed. If the id was

modified by a previously executed report object (which re-threw the message), then the
returned id is the modified value.

get_message

function string get_nessage()

Returns the string message of the message that is currently being processed. If the

UVM 1.1 Class Reference

68

message was modified by a previously executed report object (which re-threw the
message), then the returned message is the modified value.

get_action

function uvm action get_action()
Returns the uvm_action of the message that is currently being processed. If the action

was modified by a previously executed report object (which re-threw the message), then
the returned action is the modified value.

get_fname

function string get_fnane()

Returns the file name of the message.
get_line

function int get _line()

Returns the line number of the message.

CHANGE MESSAGE STATE

set_severity

protected function void set_severity(uvmseverity severity)

Change the severity of the message to severity. Any other report catchers will see the
modified value.

set_verbosity

protected function void set_verbosity(int verbosity)

Change the verbosity of the message to verbosity. Any other report catchers will see
the modified value.

set_id

protected function void set_id(string id)

UVM 1.1 Class Reference 69

Change the id of the message to id. Any other report catchers will see the modified
value.

set_message

protected function void set_nessage(string nessage)

Change the text of the message to message. Any other report catchers will see the
modified value.

set_action

protected function void set_action(uvmaction action)

Change the action of the message to action. Any other report catchers will see the
modified value.

DeBuG

get_report_catcher

static function uvmreport_catcher get_report_catcher(string nane)

Returns the first report catcher that has name.

print_catcher

static function void print_catcher(UUMFILE file =)
Prints information about all of the report catchers that are registered. For finer grained

detail, the uvm_callbacks #(T,CB)::display method can be used by calling
uvm_report_cb::display(uvm_report_object).

CaLLBACK INTERFACE

catch

pure virtual function action_e catch()

This is the method that is called for each registered report catcher. There are no
arguments to this function. The Current Message State interface methods can be used to

UVM 1.1 Class Reference

access information about the current message being processed.

REPORTING

uvm_report_fatal

protected function void uvmreport_fatal (string id,
string message,

int verbosity,
string fname =",
i nt l'ine =0)

Issues a fatal message using the current messages report object. This message will
bypass any message catching callbacks.

uvm_report_error

protected function void uvmreport_error(string id,
string nessage,

int verbosity,
string fname =",
i nt l'ine =0)

Issues a error message using the current messages report object. This message will
bypass any message catching callbacks.

uvm_report_warning

protected function void uvmreport_warning(string id,
string nmessage,

int verbosity,
string fname =",
i nt l'ine =0)

Issues a warning message using the current messages report object. This message will
bypass any message catching callbacks.

uvm_report_info

protected function void uvmreport_info(string id,
string nessage,

int verbosity,
string fname =",
i nt l'ine =0)

Issues a info message using the current messages report object. This message will
bypass any message catching callbacks.

UVM 1.1 Class Reference

71

issue

protected function void issue()

Immediately issues the message which is currently being processed. This is useful if the
message is being CAUGHT but should still be emitted.

Issuing a message will update the report_server stats, possibly multiple times if the
message is not CAUGHT.

summarize_report_catcher

static function void sunmmarize_report_catcher (UYM FILE file)

This function is called automatically by uvm_report_server::summarize(). It prints the
statistics for the active catchers.

UVM 1.1 Class Reference

72

7. Factory Classes

As the name implies, the uvm_factory is used to manufacture (create) UVM objects and
components. Only one instance of the factory is present in a given simulation.

User-defined object and component types are registered with the factory via typedef or
macro invocation, as explained in uvm_factory::Usage. The factory generates and stores
lightweight proxies to the user-defined objects and components: uvm_object_registry
#(T,Tname) for objects and uvm_component_registry #(T,Tname) for components. Each
proxy only knows how to create an instance of the object or component it represents,
and so is very efficient in terms of memory usage.

When the user requests a new object or component from the factory (e.g.
uvm_factory::create_object_by_type), the factory will determine what type of object to
create based on its configuration, then ask that type’s proxy to create an instance of the
type, which is returned to the user.

Factory Classes

uvm_factory ! “»l uvm_object_wrapper
|~ T Toame | |~ T Toame |
______ — l______
uvmn_compenent_registry uvm_object_registry
Summary

Factory Classes

As the name implies, the uvm_factory is used to manufacture (create) UVM
objects and components.

UVM 1.1 Class Reference

73

7.1 Factory Component and Object Wrappers

Contents

Factory Component
and Object Wrappers

Intro This section defines the proxy component and object
classes used by the factory.
uvm_component_registry The uvm_component_registry serves as a lightweight

#(T,Tname) proxy for a component of type T and type name
Tname, a string.

uvm_object_registry The uvm_object_registry serves as a lightweight proxy

#(T,Tname) for an uvm_object of type T and type name Tname, a
string.

Intro

This section defines the proxy component and object classes used by the factory. To
avoid the overhead of creating an instance of every component and object that get
registered, the factory holds lightweight wrappers, or proxies. When a request for a new
object is made, the factory calls upon the proxy to create the object it represents.

uvm_component_registry #(T,Tname)

The uvm_component_registry serves as a lightweight proxy for a component of type T
and type name Tname, a string. The proxy enables efficient registration with the
uvm_factory. Without it, registration would require an instance of the component itself.

See Usage section below for information on using uvm_component_registry.

Summary

uvm_component_registry #(T,Tname)

The uvm_component_registry serves as a lightweight proxy for a component of
type T and type name Tname, a string.

Crass HieraARCHY

uvm_object_wrapper

uvm_component_registry#(T,Tname) |

Crass DEcLARATION

cl ass uvm conponent registry #(
type T = uvm conponent,

UVM 1.1 Class Reference

74

string Tname :
) extends uvm obj ect wrapper

MEeTHODS

create_component Creates a component of type T having the provided
name and parent.

get_type_name Returns the value given by the string parameter,
Tname.

get Returns the singleton instance of this type.

create Returns an instance of the component type, T,
represented by this proxy, subject to any factory
overrides based on the context provided by the parent’s
full name.

set_type_override Configures the factory to create an object of the type

represented by override_type whenever a request is
made to create an object of the type, T, represented by
this proxy, provided no instance override applies.

set_inst_override Configures the factory to create a component of the
type represented by override_type whenever a request
is made to create an object of the type, T, represented
by this proxy, with matching instance paths.

METHODS

create_component

virtual function uvm conponent create_conponent (string nane,
uvm _component parent)

Creates a component of type T having the provided name and parent. This is an
override of the method in uvm_object_wrapper. It is called by the factory after

determining the type of object to create. You should not call this method directly. Call
create instead.

get_type_name
virtual function string get_type nanme()

Returns the value given by the string parameter, Tname. This method overrides the
method in uvm_object_wrapper.

get

static function this_type get()

Returns the singleton instance of this type. Type-based factory operation depends on
there being a single proxy instance for each registered type.

UVM 1.1 Class Reference

Ccreate

static function T create(string nane,
uvm conponent parent,
string contxt = "")

Returns an instance of the component type, T, represented by this proxy, subject to any
factory overrides based on the context provided by the parent’s full name. The contxt
argument, if supplied, supercedes the parent’s context. The new instance will have the
given leaf name and parent.

set_type_override

static function void set_type_override (uvmobject_w apper override_type,
bi t repl ace =1

Configures the factory to create an object of the type represented by override_type
whenever a request is made to create an object of the type, T, represented by this
proxy, provided no instance override applies. The original type, T, is typically a super
class of the override type.

set_inst_override

static function void set_inst_override(uvm object_w apper override_type,
string i nst _path,
uvm conponent par ent = nu

Configures the factory to create a component of the type represented by override_type
whenever a request is made to create an object of the type, T, represented by this
proxy, with matching instance paths. The original type, T, is typically a super class of
the override type.

If parent is not specified, inst_path is interpreted as an absolute instance path, which
enables instance overrides to be set from outside component classes. If parent is
specified, inst_path is interpreted as being relative to the parent’s hierarchical instance
path, i.e. {parent.get_full_ name(),”.”,inst_path} is the instance path that is registered
with the override. The inst_path may contain wildcards for matching against multiple
contexts.

uvim_object_registry #(T,Tname)

The uvm_object_registry serves as a lightweight proxy for an uvm_object of type T and
type name Tname, a string. The proxy enables efficient registration with the
uvm_factory. Without it, registration would require an instance of the object itself.

See Usage section below for information on using uvm_component_registry.

UVM 1.1 Class Reference

76

Summary

uvm_object_registry #(T,Tname)

The uvm_object_registry serves as a lightweight proxy for an uvm_object of type
T and type name Tname, a string.

Crass HierARCHY

uvm_object_wrapper

uvm_object_registry#(T,Tname) |

Crass DEcCLARATION

class uvm object _registry #(
type
string Tname

) extends uvm obj ect_wrapper

create_object Creates an object of type T and returns it as a handle to
an uvm_object.

get_type_name Returns the value given by the string parameter, Tname.

get Returns the singleton instance of this type.

create Returns an instance of the object type, T, represented by

this proxy, subject to any factory overrides based on the
context provided by the parent’s full name.

set_type_override Configures the factory to create an object of the type
represented by override_type whenever a request is made
to create an object of the type represented by this proxy,
provided no instance override applies.

set_inst_override Configures the factory to create an object of the type
represented by override_type whenever a request is made
to create an object of the type represented by this proxy,
with matching instance paths.

Usace This section describes usage for the uvm_*_registry
classes.

create_object

virtual function uvm object create_object(string name)
Creates an object of type T and returns it as a handle to an uvm_object. This is an
override of the method in uvm_object_wrapper. It is called by the factory after

determining the type of object to create. You should not call this method directly. Call
create instead.

get_type_name

virtual function string get_type_nane()

Returns the value given by the string parameter, Tname. This method overrides the
method in uvm_object_wrapper.

UVM 1.1 Class Reference

77

get

static function this_type get()

Returns the singleton instance of this type. Type-based factory operation depends on
there being a single proxy instance for each registered type.

create
static function T create (string name
uvm component par ent
string cont xt)

Returns an instance of the object type, T, represented by this proxy, subject to any
factory overrides based on the context provided by the parent’s full name. The contxt
argument, if supplied, supercedes the parent’s context. The new instance will have the
given leaf name, if provided.

set_type_override

static function void set_type_override (uvmobject_w apper override_type,
bi t repl ace

Configures the factory to create an object of the type represented by override_type
whenever a request is made to create an object of the type represented by this proxy,
provided no instance override applies. The original type, T, is typically a super class of
the override type.

set_inst_override

static function void set_inst_override(uvm object_w apper override_type,
string i nst_path,
uvm conponent par ent

Configures the factory to create an object of the type represented by override_type
whenever a request is made to create an object of the type represented by this proxy,
with matching instance paths. The original type, T, is typically a super class of the
override type.

If parent is not specified, inst_path is interpreted as an absolute instance path, which
enables instance overrides to be set from outside component classes. If parent is
specified, inst_path is interpreted as being relative to the parent’s hierarchical instance
path, i.e. {parent.get_full name(),”.”,inst_path} is the instance path that is registered
with the override. The inst_path may contain wildcards for matching against multiple
contexts.

UVM 1.1 Class Reference

78

UsAGE

This section describes usage for the uvm_*_registry classes.
The wrapper classes are used to register lightweight proxies of objects and components.

To register a particular component type, you need only typedef a specialization of its
proxy class, which is typically done inside the class.

For example, to register an UVM component of type mycomp

class nyconp extends uvm conponent ;

ylpedef uvm conponent _regi stry #(nyconp, "myconp") type_id;
endcl ass

However, because of differences between simulators, it is necessary to use a macro to
ensure vendor interoperability with factory registration. To register an UVM component
of type mycomp in a vendor-independent way, you would write instead:

class nyconp extends uvm 1 conponent ;
uvm conponent _util s(myconp);

endcl ass

The "uvm_component_utils macro is for non-parameterized classes. In this example, the
typedef underlying the macro specifies the Tname parameter as “mycomp”, and
mycomp’s get_type_name() is defined to return the same. With Tname defined, you can
use the factory’s name-based methods to set overrides and create objects and
components of non-parameterized types.

For parameterized types, the type name changes with each specialization, so you can not
specify a Tname inside a parameterized class and get the behavior you want; the same
type name string would be registered for all specializations of the class! (The factory
would produce warnings for each specialization beyond the first.) To avoid the warnings
and simulator interoperability issues with parameterized classes, you must register
parameterized classes with a different macro.

For example, to register an UVM component of type driver #(T), you would write:

class driver #(type T=int) extends uvm conponent
uvm conponent _param utils(driver #(T))

endcl ass

The "uvm_component_param_utils and “uvm_object_param_utils macros are used to
register parameterized classes with the factory. Unlike the the non-param versions,
these macros do not specify the Tname parameter in the underlying
uvm_component_registry typedef, and they do not define the get_type_name method for
the user class. Consequently, you will not be able to use the factory’s name-based

UVM 1.1 Class Reference 79

methods for parameterized classes.

The primary purpose for adding the factory’s type-based methods was to accommodate
registration of parameterized types and eliminate the many sources of errors associated
with string-based factory usage. Thus, use of nhame-based lookup in uvm_factory is no
longer recommended.

UVM 1.1 Class Reference

80

7.2 UVM Factory

This page covers the classes that define the UVM factory facility.

Contents
UVM Factory This page covers the classes that define the UVM factory
facility.
uvm_factory As the name implies, uvm_factory is used to manufacture

(create) UVM objects and components.
uvm_object_wrapper The uvm_object_wrapper provides an abstract interface for
creating object and component proxies.

uvm_factory

As the name implies, uvm_factory is used to manufacture (create) UVM objects and
components. Only one instance of the factory is present in a given simulation (termed a
singleton). Object and component types are registered with the factory using lightweight
proxies to the actual objects and components being created. The uvm_object_registry
#(T,Tname) and uvm_component_registry #(T,Tname) class are used to proxy
uvm_objects and uvm_components.

The factory provides both name-based and type-based interfaces.

type-based The type-based interface is far less prone to errors in usage.
When errors do occur, they are caught at compile-time.

name-based The name-based interface is dominated by string arguments
that can be misspelled and provided in the wrong order. Errors
in name-based requests might only be caught at the time of the
call, if at all. Further, the name-based interface is not portable
across simulators when used with parameterized classes.

See Usage section for details on configuring and using the factory.

Summary

uvm_factory

As the name implies, uvm_factory is used to manufacture (create) UVM objects
and components.

Crass DECLARATION
class uvm factory

REeGisTERING TYPES
register Registers the given proxy object, obj, with

UVM 1.1 Class Reference

81

the factory.

Type & INsTANCE OVERRIDES

set_inst_override_by_type

set_inst_override_by_name Configures the factory to create an object of
the override’s type whenever a request is
made to create an object of the original type
using a context that matches full_inst_path.

set_type_override_by_type

set_type_override_by_name Configures the factory to create an object of
the override’s type whenever a request is
made to create an object of the original type,
provided no instance override applies.

CREATION
create_object_by_type
create_component_by_type
create_object_by_name
create_component_by_name Creates and returns a component or object of
the requested type, which may be specified
by type or by name.

DeBuc

debug_create_by_type

debug_create_by_name These methods perform the same search
algorithm as the create_* methods, but they
do not create new objects.

find_override_by_type

find_override_by_name These methods return the proxy to the
object that would be created given the
arguments.

print Prints the state of the uvm_factory, including

registered types, instance overrides, and
type overrides.

Usace Using the factory involves three basic
operations

REeGisTERING TYPES

register

function void register (uvm.object_w apper obj)

Registers the given proxy object, obj, with the factory. The proxy object is a lightweight
substitute for the component or object it represents. When the factory needs to create
an object of a given type, it calls the proxy’s create_object or create_component method
to do so.

When doing name-based operations, the factory calls the proxy’s get_type_name method
to match against the requested_type_name argument in subsequent calls to
create_component_by_name and create_object_by_name. If the proxy object’s
get_type_name method returns the empty string, name-based lookup is effectively
disabled.

UVM 1.1 Class Reference

82

Tyre & INsTANCE OVERRIDES

set_inst_override_by_type

function void set_inst_override_by_type (uvm object_w apper original _type,
uvm obj ect _wr apper override_type,
string full _i nst_path)

set_inst_override_by_name

function void set_inst_override_by_name (string original_type_nane,
string override_type_nane,
string full _inst _path

Configures the factory to create an object of the override’s type whenever a request is
made to create an object of the original type using a context that matches
full_inst_path. The original type is typically a super class of the override type.

When overriding by type, the original_type and override_type are handles to the types’
proxy objects. Preregistration is not required.

When overriding by name, the original_type_name typically refers to a preregistered type
in the factory. It may, however, be any arbitrary string. Future calls to any of the
create_* methods with the same string and matching instance path will produce the type
represented by override_type_name, which must be preregistered with the factory.

The full_inst_path is matched against the contentation of {parent_inst_path, “.”, name?}
provided in future create requests. The full_inst_path may include wildcards (* and ?)
such that a single instance override can be applied in multiple contexts. A full_inst_path
of "*" is effectively a type override, as it will match all contexts.

When the factory processes instance overrides, the instance queue is processed in order
of override registrations, and the first override match prevails. Thus, more specific
overrides should be registered first, followed by more general overrides.

set_type_override_by_type

function void set_type_override_by_type (uvm object_w apper original _type,
uvm obj ect _wr apper override_type,
bi t repl ace =

set_type_override_by_name

function void set_type_override_by_name (string original_type_nane,
string override_type_nane,
bi t repl ace = 1)

UVM 1.1 Class Reference

Configures the factory to create an object of the override’s type whenever a request is
made to create an object of the original type, provided no instance override applies. The
original type is typically a super class of the override type.

When overriding by type, the original_type and override_type are handles to the types’
proxy objects. Preregistration is not required.

When overriding by name, the original_type_name typically refers to a preregistered type
in the factory. It may, however, be any arbitrary string. Future calls to any of the
create_* methods with the same string and matching instance path will produce the type
represented by override_type_name, which must be preregistered with the factory.

When replace is 1, a previous override on original_type_name is replaced, otherwise a
previous override, if any, remains intact.

CREATION

create_object_by_type

function uvm obj ect create_object_by_type (uvm object_w apper requested_type,
string parent _i nst _pat
string name

create_component_by_type

function uvm conmponent create_conponent _by_type (
uvm obj ect _wr apper requested_type,

string parent _inst_path = ""
string name,
uvm conponent par ent

create_object_by_name

function uvm obj ect create_object_by_name (string requested_type_name,
string parent_inst_path
string name

create_component_by_name

function uvm conmponent create_conponent_by_name (string requested_type
string parent _i nst _pa
string nane,

uvm _conponent parent

UVM 1.1 Class Reference 84

Creates and returns a component or object of the requested type, which may be
specified by type or by name. A requested component must be derived from the
uvm_component base class, and a requested object must be derived from the
uvm_object base class.

When requesting by type, the requested_type is a handle to the type’s proxy object.
Preregistration is not required.

When requesting by name, the request_type_name is a string representing the requested
type, which must have been registered with the factory with that name prior to the
request. If the factory does not recognize the requested_type_name, an error is
produced and a null handle returned.

If the optional parent_inst_path is provided, then the concatenation, {parent_inst_path,
“.",~name~}, forms an instance path (context) that is used to search for an instance
override. The parent_inst_path is typically obtained by calling the
uvm_component::get_full_name on the parent.

If no instance override is found, the factory then searches for a type override.

Once the final override is found, an instance of that component or object is returned in
place of the requested type. New components will have the given name and parent.
New objects will have the given name, if provided.

Override searches are recursively applied, with instance overrides taking precedence over
type overrides. If foo overrides bar, and xyz overrides foo, then a request for bar will
produce xyz. Recursive loops will result in an error, in which case the type returned will
be that which formed the loop. Using the previous example, if bar overrides xyz, then
bar is returned after the error is issued.

DEeBuG

debug_create_by_type

function void debug_create_by_type (uvm object_w apper requested_type,
string parent _i nst_path
string nanme

debug_create_by_name

function void debug_create_by_nanme (string requested_type_nane,
string parent _inst_path
string nane)

These methods perform the same search algorithm as the create_* methods, but they do
not create new objects. Instead, they provide detailed information about what type of
object it would return, listing each override that was applied to arrive at the result.
Interpretation of the arguments are exactly as with the create_* methods.

UVM 1.1 Class Reference

85

find_override_by_type

function uvm obj ect _w apper find_override_by_type (
uvm obj ect _wr apper requested_type,
string ful'l _inst_path

find_override_by_name

function uvm obj ect _w apper find_override_by_name (string requested_type_nane
string full _inst_path

These methods return the proxy to the object that would be created given the
arguments. The full_inst_path is typically derived from the parent’s instance path and

the leaf name of the object to be created, i.e. { parent.get_full_name(), “.”, name }.

print

function void print (int all_types)

Prints the state of the uvm_factory, including registered types, instance overrides, and
type overrides.

When all_types is 0, only type and instance overrides are displayed. When all_types is 1
(default), all registered user-defined types are printed as well, provided they have names
associated with them. When all_types is 2, the UVM types (prefixed with uvm_) are
included in the list of registered types.

UsAGE

Using the factory involves three basic operations

1 Registering objects and components types with the factory
2 Designing components to use the factory to create objects or components
3 Configuring the factory with type and instance overrides, both within and

outside components

We'll briefly cover each of these steps here. More reference information can be found at
Utility Macros, uvm_component_registry #(T,Tname), uvm_object_registry #(T,Tname),
uvm_component.

1 -- Registering objects and component types with the factory

When defining uvm_object and uvm_component-based classes, simply invoke the
appropriate macro. Use of macros are required to ensure portability across different
vendors’ simulators.

UVM 1.1 Class Reference

Objects that are not parameterized are declared as

class packet extends uvm object;
uvm obj ect _util s(packet)
endcl ass

class packetD extends packet;
uvm obj ect _uti |l s(packet D)
endcl ass

Objects that are parameterized are declared as

cl ass packet #(type T=int, int WDTH=32£) extends uvm obj ect;
) gvlm_obj ect _param util s(packet #(T, WDTH))
endcl ass

Components that are not parameterized are declared as

class conp extends uvm conponent;
uvm conponent _uti | s(conp)
endcl ass

Components that are parameterized are declared as

class conp #(type T=int, int WDTH=32) extends uvm conponent;
dulvm_corrponent _paramutil s(conmp #(T, WDTH))
endcl ass

The "uvm_*_utils macros for simple, non-parameterized classes will register the type

with the factory and define the get_type, get_type_name, and create virtual methods

inherited from uvm_object. It will also define a static type_name variable in the class,
which will allow you to determine the type without having to allocate an instance.

The “uvm_*_param_utils macros for parameterized classes differ from *uvm_*_utils
classes in the following ways:

* The get_type_name method and static type_name variable are not defined. You
will heed to implement these manually.

* A type name is not associated with the type when registeriing with the factory, so
the factory’s *_by_name operations will not work with parameterized classes.

* The factory’s print, debug_create_by_type, and debug_create_by_name methods,
which depend on type names to convey information, will list parameterized types
as <unknown>.

It is worth noting that environments that exclusively use the type-based factory methods
(*_by_type) do not require type registration. The factory’s type-based methods will
register the types involved “on the fly,” when first used. However, registering with the
“uvm_*_utils macros enables name-based factory usage and implements some useful
utility functions.

UVM 1.1 Class Reference

2 -- Designing components that defer creation to the factory

Having registered your objects and components with the factory, you can now make
requests for new objects and components via the factory. Using the factory instead of
allocating them directly (via new) allows different objects to be substituted for the
original without modifying the requesting class. The following code defines a driver class
that is parameterized.

class driverB #(type T=uvm object) extends uvmdriver;

[/ paraneterized classes nust use the _paramutils version
‘uvm conponent _param utils(driverB #(T))

{I_/ Eur packet type; this can be overridden via the factory
pkt;

/| standard conponent constructor

function new(string nanme, uvmconponent parent=null);
super . new(nane, parent);

endf uncti on

/1 get_type_nanme not inplenented by macro for paraneterized cl asses
const static string type_nane = {"driverB #(", T::type_nane,")"};
virtual function string get_type_nane();

return type_nane;
endf unction

/] using the factory allows pkt overrides from outside the class
virtual function void build_phase(uvm phase phase);

pkt = packet::type_id::create("pkt",this);
endf uncti on

/1 print the packet so we can confirmits type when printing

virtual function void do_print(uvmprinter printer);
printer.print_object("pkt", pkt);

endf uncti on

endcl ass

For purposes of illustrating type and instance overrides, we define two subtypes of the
driverB class. The subtypes are also parameterized, so we must again provide an
implementation for uvm_object::get_type_name, which we recommend writing in terms
of a static string constant.

class driverDl #(type T=uvm object) extends driverB #(T);
“uvm conponent _paramutils(driverDl #(T))
function new(string name, uvmconponent parent=null);
super . new(nane, parent);
endf uncti on
const static string type_nane = {"driverDl #(",T::type_name,")"};
virtual function string get_type_nane();
...return type_nane;
endf unction
endcl ass
class driverD2 #(type T=uvm object) extends driverB #(T);
“uvm conponent _param utils(driverD2 #(T))
function new(string nanme, uvm conponent parent=null);
super. new nane, parent);
endf uncti on
const static string type_nane = {"driverD2 #(", T::type_name,")"};

virtual function string get_type nane();
return type_nane;

UVM 1.1 Class Reference 88

endf unction
endcl ass

/1 typedef some specializations for convenience)

typedef driverB #(packet) B driver; [/ the base driver
typedef driverDl #(packet) DI _driver; // a derived driver
typedef driverD2 #(packet) D2 driver; // another derived driver

Next, we'll define a agent component, which requires a utils macro for non-

parameterized types. Before creating the drivers using the factory, we override driverQ’s

packet type to be packetD.

cl ass agent extends uvm agent;
“uvm conponent _util s(agent)

B'_'dri ver driverO0;
B driver driverl;

function new(string name, uvm conponent parent=null);
super . new nane, parent);
endf uncti on

virtual function void build_phase(uvm phase phase);

/1 override the packet type for driverO and bel ow)
packet::type_id::set_inst_override(packetD: :get_type(),"driver0.*");

/1 create using the factory; actual driver types may be different
driverO = B driver::type_id::create("driver0",this);
driverl B driver::type_id::create("driverl",this);

endfunction

endcl ass

Finally we define an environment class, also not parameterized. Its build method shows
three methods for setting an instance override on a grandchild component with relative

path name, agentl.driverl, all equivalent.

class env extends uvm env;
“uvm conponent _util s(env)

agent agentO;
agent agent 1,

function new(string nanme, uvm conponent parent=null);
super . new(nane, parent);
endf uncti on

virtual function void build_phase(uvm phase phase);

[/ three nethods to set an instance override for agentl.driverl
/1 - via conponent conveni ence nethod...
set _inst_override_by_type("agentl.driverl",
B _driver::get_type(),
D2_driver::get_type());

[/ - via the conponent's proxy (same approach as create)...
B_driver::type_id::set_inst_override(D2_driver::get_type(),
Tagent 1.driverl",this);
/[l - via a direct call to a factory nethod. ..
factory.set_inst_override_by_type(B_driver::get_type(),
D2_driver::get_type(),

{get _full_nane(),".agentl.driverl"});

UVM 1.1 Class Reference

/] create agents using the factory; actual agent types nay be different

89

agent0 = agent::type_id::create("agent0Q",
agentl = agent::type_id::create("agent1"

endf unction

/| at end_of el aboration, print topology and factory state to verlfy
virtual fancfion void end of _el aboration_phase(uvm phase phase);

uvm t op. print_t opol ogy();
endf unction

virtual task run_phase(uvm hase phase);
#100 gl obal _stop_request
endf uncti on

endcl ass

3 -- Configuring the factory with type and instance overrides

In the previous step, we demonstrated setting instance overrides and creating
components using the factory within component classes. Here, we will demonstrate
setting overrides from outside components, as when initializing the environment prior to
running the test.

nodul e top;
env envo;
initial begin

/1 Being registered first, the follow ng overrides take recedence
/'l over any overrides made within env0' S construction &

/1 Repl ace al | base drivers with derived drivers...

B driver::type_id::set_type_override(D driver::get_type());

/1 .except for agentO.driver0O, whose type remains a base driver.
/1 (Both net hods bel ow have the equival ent result.)

/1

- via the conc])onent s proxy (preferred)
B driver::type_i set_inst_override(B_driver::get_type(),

"envO. agent'O drlver 0");

/1l - via a direct call to a factory rrethod
factory.set _inst_override_by type(B_ drlver - get type()
driver: et ty
{get _ f_uII _nane envO agentO driver0"});

// now, create the environnent; our factory conflguratlon will
8overn what topol ogy gets creat ed
env

new(" env0"
/1 run the test (will execute build phase)
run_test();
end
endnodul e

When the above example is run, the resulting topology (displayed via a call to
uvm_root::print_topology in env’s uvm_component::end_of_elaboration_phase method)
is similar to the following:

UM.INFO @O [RNTST] Running test .

ﬁ UVM_INFO @0 [UVYMICP] UVM t est bench topol ogy:

Name Type Si ze Val ue
B c- - e eeme e ceceeeecccccmcccammsmsmecememcccmcmemeccseecece e
env0 env - envO@
agent 0 agent - agent 0@

UVM 1.1 Class Reference

driverO driverB #(packet) - driver 0@

#

pkt packet = . pkt@1
driverl driverD #(packet) - driverl@i4

pkt packet - pkt @3
agent 1 agent - agent 1@
driverO driverD #(packet) - drivero@4

pkt packet = . pkt@7
driverl driverD2 #(packet) - driver1@0

pkt packet - pkt @9
#

uvm_object_wrapper

The uvm_object_wrapper provides an abstract interface for creating object and
component proxies. Instances of these lightweight proxies, representing every
uvm_object-based and uvm_component-based object available in the test environment,
are registered with the uvm_factory. When the factory is called upon to create an object
or component, it finds and delegates the request to the appropriate proxy.

Summary

uvm_object_wrapper

The uvm_object_wrapper provides an abstract interface for creating object and
component proxies.

CLass DEecLARATION
virtual class uvm object_wr apper

MEeTHODS

create_object Creates a new object with the optional name.

create_component Creates a new component, passing to its constructor
the given name and parent.

get_type_name Derived classes implement this method to return the
type name of the object created by create_component
or create_object.

MEeTHODS

create_object

virtual function uvmobject create_object (string name = "")

Creates a new object with the optional name. An object proxy (e.g.,
uvm_object_registry #(T,Tname)) implements this method to create an object of a
specific type, T.

UVM 1.1 Class Reference

91

create_component

virtual function uvm conponent create_conponent (string nane,
uvm conmponent parent)

Creates a new component, passing to its constructor the given name and parent. A
component proxy (e.g. uvm_component_registry #(T,Tname)) implements this method
to create a component of a specific type, T.

get_type_name

pure virtual function string get_type_nane()

Derived classes implement this method to return the type name of the object created by
create_component or create_object. The factory uses this hame when matching against
the requested type in name-based lookups.

UVM 1.1 Class Reference

92

8. Phasing Overview

UVM implements an automated mechanism for phasing the execution of the various
components in a testbench.

Summary

Phasing Overview

UVM implements an automated mechanism for phasing the execution of the
various components in a testbench.

Phasing Implementation

The API described here provides a general purpose testbench phasing solution, consisting
of a phaser machine, traversing a master schedule graph, which is built by the integrator
from one or more instances of template schedules provided by UVM or by 3rd-party VIP,
and which supports implicit or explicit synchronization, runtime control of threads and
jumps.

Each schedule leaf node refers to a single phase that is compatible with that VIP’s
components and which executes the required behavior via a functor or delegate
extending the phase into component context as required.

Execution threads are tracked on a per-component basis.

Class hierarchy

A single class represents both the definition, the state, and the context of a phase. It is
instantiated once as a singleton IMP and one or more times as nodes in a graph which
represents serial and parallel phase relationships and stores current state as the phaser
progresses, and the phase implementation which specifies required component behavior
(by extension into component context if non-default behavior required.)

UVM 1.1 Class Reference 93

| uwin_ohject |

VM _componant

[averrides]

[demain]

wamn_taskitopdowni uym_domain

bottomup_phase

F 3

I uvm_MAME_phase I | custom compoment |

- 5
]

uvin_HAME_phase

The following classes related to phasing are defined herein
uvm_phase : The base class for defining a phase’s behavior, state, context

uvm_domain : Phasing schedule node representing an independent branch of the
schedule

uvm_bottomup_phase : A phase implemenation for bottom up function phases.
uvm_topdown_phase : A phase implemenation for topdown function phases.
uvm_task_phase : A phase implemenation for task phases.

Common, Run-Time and User-Defined Phases

The common phases to all uvm_components are described in UVM Common Phases.
The run-time phases are described in UVM Run-Time Phases.

The ability to create user-defined phases is described User-Defined Phases.

Summary

Phasing Implementation

The API described here provides a general purpose testbench phasing solution,
consisting of a phaser machine, traversing a master schedule graph, which is built
by the integrator from one or more instances of template schedules provided by
UVM or by 3rd-party VIP, and which supports implicit or explicit synchronization,
runtime control of threads and jumps.

UVM 1.1 Class Reference 94

8.1 uvm_phase

This base class defines everything about a phase: behavior, state, and context.

To define behavior, it is extended by UVM or the user to create singleton objects which
capture the definition of what the phase does and how it does it. These are then cloned
to produce multiple nodes which are hooked up in a graph structure to provide context:
which phases follow which, and to hold the state of the phase throughout its lifetime.
UVM provides default extensions of this class for the standard runtime phases. VIP
Providers can likewise extend this class to define the phase functor for a particular
component context as required.

Phase Definition

Singleton instances of those extensions are provided as package variables. These
instances define the attributes of the phase (not what state it is in) They are then cloned
into schedule nodes which point back to one of these implementations, and calls it's
virtual task or function methods on each participating component. It is the base class
for phase functors, for both predefined and user-defined phases. Per-component
overrides can use a customized imp.

To create custom phases, do not extend uvm_phase directly: see the three predefined
extended classes below which encapsulate behavior for different phase types: task,
bottom-up function and top-down function.

Extend the appropriate one of these to create a uvm_YOURNAME_phase class (or
YOURPREFIX_NAME_phase class) for each phase, containing the default implementation
of the new phase, which must be a uvm_component-compatible delegate, and which may
be a null implementation. Instantiate a singleton instance of that class for your code to
use when a phase handle is required. If your custom phase depends on methods that
are not in uvm_component, but are within an extended class, then extend the base
YOURPREFIX_NAME_phase class with parameterized component class context as required,
to create a specialized functor which calls your extended component class methods. This
scheme ensures compile-safety for your extended component classes while providing
homogeneous base types for APIs and underlying data structures.

Phase Context

A schedule is a coherent group of one or mode phase/state nodes linked together by a
graph structure, allowing arbitrary linear/parallel relationships to be specified, and
executed by stepping through them in the graph order. Each schedule node points to a
phase and holds the execution state of that phase, and has optional links to other nodes
for synchronization.

The main operations are: construct, add phases, and instantiate hierarchically within
another schedule.

Structure is a DAG (Directed Acyclic Graph). Each instance is a node connected to
others to form the graph. Hierarchy is overlaid with m_parent. Each node in the graph
has zero or more successors, and zero or more predecessors. No nodes are completely
isolated from others. Exactly one node has zero predecessors. This is the root node.
Also the graph is acyclic, meaning for all nodes in the graph, by following the forward
arrows you will never end up back where you started but you will eventually reach a

UVM 1.1 Class Reference

95

node that has no successors.
Phase State

A given phase may appear multiple times in the complete phase graph, due to the
multiple independent domain feature, and the ability for different VIP to customize their
own phase schedules perhaps reusing existing phases. Each node instance in the graph
maintains its own state of execution.

Phase Handle

Handles of this type uvm_phase are used frequently in the API, both by the user, to
access phasing-specific API, and also as a parameter to some APIs. In many cases, the
singleton package-global phase handles can be used (eg. connect_ph, run_ph) in APIs.
For those APIs that need to look up that phase in the graph, this is done automatically.

Summary

uvm_phase

This base class defines everything about a phase: behavior, state, and context.
Crass HierARCHY
uvm_void

uvm_object

uvim_phase

CLAss DECLARATION
cl ass uvm phase extends uvm obj ect

CONSTRUCTION

new Create a new phase node, with a name and a note of
its type name - name of this phase type - task,
topdown func or bottomup func

get_phase_type Returns the phase type as defined by
uvm_phase_type

STATE
get_state Accessor to return current state of this phase
get_run_count Accessor to return the integer number of times this
phase has executed
find_by_name Locate a phase node with the specified name and
return its handle.
find Locate the phase node with the specified phase IMP
and return its handle.
is returns 1 if the containing uvm_phase refers to the
same phase as the phase argument, 0 otherwise
is_before Returns 1 if the containing uvm_phase refers to a
phase that is earlier than the phase argument, 0
otherwise
is_after returns 1 if the containing uvm_phase refers to a
phase that is later than the phase argument, 0
otherwise
CALLBACKS
exec_func Implements the functor/delegate functionality for a

UVM 1.1 Class Reference 96

exec_task

SCHEDULE

add

get_parent
get_full_name
get_schedule
get_schedule_name
get_domain

get_imp
get_domain_name

SYNCHRONIZATION
get_objection

raise_objection

drop_objection
sync and unsync
sync

unsync

wait_for_state

JuMPING
jump
jump_all

get_jump_target

CONSTRUCTION

function phase type comp - the component to execute
the functionality upon phase - the phase schedule that
originated this phase call

Implements the functor/delegate functionality for a
task phase type comp - the component to execute the
functionality upon phase - the phase schedule that
originated this phase call

Build up a schedule structure inserting phase by
phase, specifying linkage

Returns the parent schedule node, if any, for
hierarchical graph traversal

Returns the full path from the enclosing domain down
to this node.

Returns the topmost parent schedule node, if any, for
hierarchical graph traversal

Returns the schedule name associated with this phase
node

Returns the enclosing domain

Returns the phase implementation for this this node.
Returns the domain name associated with this phase
node

Return the uvm_objection that gates the termination
of the phase.

Raise an objection to ending this phase Provides
components with greater control over the phase flow
for processes which are not implicit objectors to the
phase.

Drop an objection to ending this phase

Add soft sync relationships between nodes
Synchronize two domains, fully or partially

Remove synchronization between two domains, fully
or partially

Wait until this phase compares with the given state
and op operand.

Jump to a specified phase.

Make all schedules jump to a specified phase, even if
the jump target is local.

Return handle to the target phase of the current
jump, or null if no jump is in progress.

new

function new(strin

name

uvm_p%ase_t ype phase_type

uvm phase

Create a new phase node, with a name and a note of its type name - name of this phase

par ent)

type - task, topdown func or bottomup func

UVM 1.1 Class Reference

97

get_phase_type

functi on uvm phase_type get_phase_type()

Returns the phase type as defined by uvm_phase_type

STATE

get_state

function uvm phase_state get_state()

Accessor to return current state of this phase

get_run_count

function int get_run_count()

Accessor to return the integer number of times this phase has executed

find_by_name

function uvm phase find_by_nane(string nane,
bi t stay_in_scope = 1)

Locate a phase node with the specified name and return its handle. With stay_in_scope
set, searches only within this phase’s schedule or domain.

find

function uvm phase find(uvm phase phase,
bi t stay_in_scope = 1)

Locate the phase node with the specified phase IMP and return its handle. With
stay_in_scope set, searches only within this phase’s schedule or domain.

IS

function bit is(uvm phase phase)

returns 1 if the containing uvm_phase refers to the same phase as the phase argument,
0 otherwise

UVM 1.1 Class Reference 98

is_before

function bit is_before(uvm phase phase)

Returns 1 if the containing uvm_phase refers to a phase that is earlier than the phase
argument, 0 otherwise

is_after

function bit is_after(uvm phase phase)

returns 1 if the containing uvm_phase refers to a phase that is later than the phase
argument, 0 otherwise

CALLBACKS

exec_func

virtual function void exec_func(uvm conponent conp,
uvm phase phase)

Implements the functor/delegate functionality for a function phase type comp - the
component to execute the functionality upon phase - the phase schedule that originated
this phase call

exec_task

virtual task exec_task(uvm conmponent conp,
uvm phase phase)

Implements the functor/delegate functionality for a task phase type comp - the

component to execute the functionality upon phase - the phase schedule that originated
this phase call

SCHEDULE

add

function void add(uvm phase phase,
uvm phase with_phase
uvm phase after_phase
uvm phase before_phase)

UVM 1.1 Class Reference 99

Build up a schedule structure inserting phase by phase, specifying linkage

Phases can be added anywhere, in series or parallel with existing nodes

phase handle of singleton derived imp containing actual functor. by
default the new phase is appended to the schedule
with_phase specify to add the new phase in parallel with this one
after_phase specify to add the new phase as successor to this one
before_phase specify to add the new phase as predecessor to this one

get_parent

function uvm phase get_parent()

Returns the parent schedule node, if any, for hierarchical graph traversal

get_full_name

virtual function string get_full_nanme()

Returns the full path from the enclosing domain down to this node. The singleton IMP
phases have no hierarchy.

get_schedule

function uvm phase get_schedul e(bit hier =)

Returns the topmost parent schedule node, if any, for hierarchical graph traversal

get_schedule_name

function string get_schedul e_name(bit hier =)

Returns the schedule name associated with this phase node

get_domain

function uvm domai n get_domai n()

Returns the enclosing domain

get_imp

UVM 1.1 Class Reference 100

function uvm phase get _inp()

Returns the phase implementation for this this node. Returns null if this phase type is
not a UVM_PHASE_LEAF_NODE.

get_domain_name

function string get_domai n_name()

Returns the domain name associated with this phase node

SYNCHRONIZATION

get_objection
function uvm objection get_objection()

Return the uvm_objection that gates the termination of the phase.

raise_objection

virtual function void raise_objection (uvmobject obj,
string description
i nt count

0

Raise an objection to ending this phase Provides components with greater control over
the phase flow for processes which are not implicit objectors to the phase.

whi |l e(1) begin
sone_phase. rai se_obj ection(this);

;sbhe_phase. drop_obj ection(this);
end

drop_objection

virtual function void drop_objection (uvmobject obj,
string descri ption
i nt count

Drop an objection to ending this phase

The drop is expected to be matched with an earlier raise.

UVM 1.1 Class Reference 101

sync and unsync

Add soft sync relationships between nodes

Summary of usage

ny_phase. sync(.t arget (donai n)
[,.phase(phase)[,.w th_phase(phase)]]);
ny_phase. unsync(.t arget (donai n;
[,.phase(phase)[,.w th_phase(phase)]]);

Components in different schedule domains can be phased independently or in sync with
each other. An API is provided to specify synchronization rules between any two
domains. Synchronization can be done at any of three levels:

« the domain’s whole phase schedule can be synchronized

* a phase can be specified, to sync that phase with a matching counterpart

e or a more detailed arbitrary synchronization between any two phases
Each kind of synchronization causes the same underlying data structures to be

managed. Like other APIs, we use the parameter dot-notation to set optional
parameters.

When a domain is synced with another domain, all of the matching phases in the two
domains get a ‘with’ relationship between them. Likewise, if a domain is unsynched, all
of the matching phases that have a ‘with’ relationship have the dependency removed. It
is possible to sync two domains and then just remove a single phase from the
dependency relationship by unsyncing just the one phase.

sync

function void sync(uvmdonain target,
uvm phase phase
uvm phase w th_phase)

Synchronize two domains, fully or partially

target handle of target domain to synchronize this one to

phase optional single phase in this domain to synchronize, otherwise
sync all

with_phase optional different target-domain phase to synchronize with,

otherwise use phase in the target domain

unsync

function void unsync(uvm domain target,
uvm phase phase
uvm phase with_phase)

UVM 1.1 Class Reference 102

Remove synchronization between two domains, fully or partially

target handle of target domain to remove synchronization from

phase optional single phase in this domain to un-synchronize, otherwise
unsync all

with_phase optional different target-domain phase to un-synchronize with,

otherwise use phase in the target domain

wait_for_state

task wait_for_state(uvm phase_state state,
uvm wai t _op op)

Wait until this phase compares with the given state and op operand. For UVM_EQ and
UVM_NE operands, several uvm_phase_states can be supplied by ORing their enum
constants, in which case the caller will wait until the phase state is any of (UVM_EQ) or
none of (UVM_NE) the provided states.

To wait for the phase to be at the started state or after

wai t_for_state(UM PHASE_STARTED, UVM GTE);

To wait for the phase to be either started or executing

wai t _for_state(UVUM PHASE_STARTED | UVM PHASE_EXECUTI NG UVM EQ) ;

JUMPING

jump
function void junp(uvm phase phase)
Jump to a specified phase. If the destination phase is within the current phase schedule,

a simple local jump takes place. If the jump-to phase is outside of the current schedule
then the jump affects other schedules which share the phase.

jump_all

static function void junp_all (uvm phase phase)

Make all schedules jump to a specified phase, even if the jump target is local. The jump

UVM 1.1 Class Reference 103

happens to all phase schedules that contain the jump-to phase, i.e. a global jump.

get_jump_target
function uvm phase get_junp_target ()

Return handle to the target phase of the current jump, or null if no jump is in progress.
Valid for use during the phase_ended() callback

UVM 1.1 Class Reference 104

8.2 uvm_domain

Phasing schedule node representing an independent branch of the schedule. Handle used
to assign domains to components or hierarchies in the testbench

Summary

uvm_domain

Phasing schedule node representing an independent branch of the schedule.
CLass HierARCHY
uvm_void
uvm_object

uvm_phase

uvm_domain

CLass DECLARATION
cl ass uvm domai n ext ends uvm phase

MEeTHODS
get_domains Provides a list of all domains in the provided domains
argument.
get_uvm_schedule Get the “"UVM” schedule, which consists of the run-

time phases that all components execute when
participating in the “UVM” domain.

get_common_domain Get the “common” domain, which consists of the
common phases that all components execute in sync
with each other.

add_uvm_phases Appends to the given schedule the built-in UVM
phases.
get_uvm_domain Get a handle to the singleton uvm domain
new Create a new instance of a phase domain.
METHODS

get_domains

static function void get_donai ns(out put uvm donai n donai ns[string])

Provides a list of all domains in the provided domains argument.

get_uvm_schedule

UVM 1.1 Class Reference 105

static function uvm phase get_uvm schedul e()

Get the “"UVM” schedule, which consists of the run-time phases that all components
execute when participating in the "UVM” domain.

get_common_domain

static function uvm donmai n get_common_donai n()
Get the “"common” domain, which consists of the common phases that all components

execute in sync with each other. Phases in the “common” domain are build, connect,
end_of_elaboration, start_of simulation, run, extract, check, report, and final.

add_uvm_phases

static function void add_uvm phases(uvm phase schedul e)

Appends to the given schedule the built-in UVM phases.

get_uvm_domain

static function uvmdonai n get_uvm donai n()

Get a handle to the singleton uvm domain

new

function new string nane)

Create a new instance of a phase domain.

UVM 1.1 Class Reference 106

8.3 uvm_bottomup_phase

Virtual base class for function phases that operate bottom-up. The pure virtual function
execute() is called for each component. This is the default traversal so is included only
for naming.

A bottom-up function phase completes when the execute() method has been called and
returned on all applicable components in the hierarchy.

Summary

uvm_bottomup_phase

Virtual base class for function phases that operate bottom-up.
CLass HierarcHY
uvm_void
uvm_object

uvm_phase

uvm_bottomup_phase

CLASS DECLARATION
virtual class uvm bottonmup_phase extends uvm phase

MEeTHODS
new Create a new instance of a bottom-up phase.
traverse Traverses the component tree in bottom-up order, calling execute
for each component.
execute Executes the bottom-up phase phase for the component comp.
METHODS

new

function new string name)

Create a new instance of a bottom-up phase.

traverse

virtual function void traverse(uvm conponent conp,
uvm phase phase,
uvm phase_state state)

UVM 1.1 Class Reference 107

Traverses the component tree in bottom-up order, calling execute for each component.

execute

protected virtual function void execute(uvm conponent conp,
uvm phase phase)

Executes the bottom-up phase phase for the component comp.

UVM 1.1 Class Reference 108

8.4 uvm_task_phase

Base class for all task phases. It forks a call to uvm_phase::exec_task() for each
component in the hierarchy.

The completion of the task does not imply, nor is it required for, the end of phase. Once
the phase completes, any remaining forked uvm_phase::exec_task() threads are forcibly
and immediately killed.

By default, the way for a task phase to extend over time is if there is at least one
component that raises an objection.

class ny_conp extends uvm conponent;
task mai n_phase(uvm phase phase);])
phase.rai se_objection(this, "Applying stimulus")

bhése. drop_objection(this, "Applied enough stinulus")

endt ask
endcl ass

There is however one scenario wherein time advances within a task-based phase without
any objections to the phase being raised. If two (or more) phases share a common
successor, such as the uvm_run_phase and the uvm_post_shutdown_phase sharing the
uvm_extract_phase as a successor, then phase advancement is delayed until all
predecessors of the common successor are ready to proceed. Because of this, it is
possible for time to advance between uvm_component::phase_started and
uvm_component::phase_ended of a task phase without any participants in the phase
raising an objection.

Summary

uvm_task_phase

Base class for all task phases.
CLass HierarcHy
uvm_void
uvm_object

uvm_phase

uvm_task_phase

CLass DEecLARATION

virtual class uvmtask phase extends uvm phase

MEeTHODS
new Create a new instance of a task-based phase
traverse Traverses the component tree in bottom-up order, calling execute
for each component.
execute Fork the task-based phase phase for the component comp.

UVM 1.1 Class Reference 109

MEeTHODS

new

function new string name)

Create a new instance of a task-based phase

traverse

virtual function void traverse(uvm conponent conp,
uvm phase phase,
uvm phase_state state)

Traverses the component tree in bottom-up order, calling execute for each component.

The actual order for task-based phases doesn’t really matter, as each component task is
executed in a separate process whose starting order is not deterministic.

execute

protected virtual function void execute(uvm conponent conp,
uvm phase phase)

Fork the task-based phase phase for the component comp.

UVM 1.1 Class Reference 110

8.5 uvm_topdown_phase

Virtual base class for function phases that operate top-down. The pure virtual function
execute() is called for each component.

A top-down function phase completes when the execute() method has been called and
returned on all applicable components in the hierarchy.

Summary

uvm_topdown_phase

Virtual base class for function phases that operate top-down.
CLass HierarcHY
uvm_void
uvm_object

uvm_phase

uvm_topdown_phase

CLASS DECLARATION
virtual class uvmtopdown_phase extends uvm phase

MEeTHODS
new Create a new instance of a top-down phase
traverse Traverses the component tree in top-down order, calling execute
for each component.
execute Executes the top-down phase phase for the component comp.
METHODS

new

function new string name)

Create a new instance of a top-down phase

traverse

virtual function void traverse(uvm conponent conp,
uvm phase phase,
uvm phase_state state)

Traverses the component tree in top-down order, calling execute for each component.

UVM 1.1 Class Reference 111

execute

protected virtual function void execute(uvm conponent conp,
uvm phase phase)

Executes the top-down phase phase for the component comp.

UVM 1.1 Class Reference 112

8.6 UVM Common Phases

The common phases are the set of function and task phases that all uvm_components
execute together. All uvm_components are always synchronized with respect to the
common phases.

The common phases are executed in the sequence they are specified below.

Contents
UVM Common Phases The common phases are the set of function and
task phases that all uvm_components execute
together.
uvm_build_phase Create and configure of testbench structure
uvm_connect_phase Establish cross-component connections.

uvm_end_of_elaboration_phase Fine-tune the testbench.
uvm_start_of simulation_phase Get ready for DUT to be simulated.

uvm_run_phase Stimulate the DUT.

uvm_extract_phase Extract data from different points of the
verficiation environment.

uvm_check_phase Check for any unexpected conditions in the
verification environment.

uvm_report_phase Report results of the test.

uvm_final_phase Tie up loose ends.

uvim_build_phase

Create and configure of testbench structure

uvm_topdown_phase that calls the uvm_component::build_phase method.

Upon entry
* The top-level components have been instantiated under uvm_root.

e Current simulation time is still equal to 0 but some “delta cycles” may have
occurred

Typical Uses
+ Instantiate sub-components.
+ Instantiate register model.
* Get configuration values for the component being built.
» Set configuration values for sub-components.

Exit Criteria
« All uvm_components have been instantiated.

UVM 1.1 Class Reference 113

Summary

uvm_build_phase

Create and configure of testbench structure
CLass HierarcHY
uvm_void
uvm_object
uvm_phase

uvm_topdown_phase

uvm_build_phase

CLass DEcLARATION
class uvm bui |l d_phase extends uvm topdown_phase

uvim_connect_phase

Establish cross-component connections.

uvm_bottomup_phase that calls the uvm_component::connect_phase method.

Upon Entry
* All components have been instantiated.

¢ Current simulation time is still equal to 0 but some “delta cycles” may have
occurred.

Typical Uses
e Connect TLM ports and exports.
¢ Connect TLM initiator sockets and target sockets.
+ Connect register model to adapter components.
e Setup explicit phase domains.

Exit Criteria
* All cross-component connections have been established.
* All independent phase domains are set.

Summary

uvm_connect_phase

UVM 1.1 Class Reference 114

Establish cross-component connections.
Crass HieraARCHY
uvm_void
uvm_object
uvm_phase

uvm_bottomup_phase

uvm_connect_phase

CLass DEcCLARATION
cl ass uvm connect _phase extends uvm bottonup_phase

uvim_end_of_elaboration_phase

Fine-tune the testbench.

uvm_bottomup_phase that calls the uvm_component::end_of_elaboration_phase method.

Upon Entry
« The verification environment has been completely assembled.

+ Current simulation time is still equal to 0 but some “delta cycles” may have
occurred.

Typical Uses
+ Display environment topology.
+ Open files.
+ Define additional configuration settings for components.

Exit Criteria
¢ None.

Summary

uvm_end_of_elaboration_phase

Fine-tune the testbench.

Crass HierARCHY
uvm_void

uvm_object

UVM 1.1 Class Reference 115

uvm_phase

uvm_bottomup_phase

uvm_end_of_elaboration_phase

Crass DEcLARATION

cl ass uvm end_of el aborati on_phase extends
uvm bot t omup_phase

uvim_start_of_simulation_phase

Get ready for DUT to be simulated.

uvm_bottomup_phase that calls the uvm_component::start_of_simulation_phase method.

Upon Entry

« Other simulation engines, debuggers, hardware assisted platforms and all other
run-time tools have been started and synchronized.

* The verification environment has been completely configured and is ready to start.

+ Current simulation time is still equal to 0 but some “delta cycles” may have
occurred.

Typical Uses
+ Display environment topology
+ Set debugger breakpoint
¢ Set initial run-time configuration values.

Exit Criteria
¢ None.

Summary

uvm_start_of_simulation_phase

Get ready for DUT to be simulated.
CrLass HierarcHY
uvm_void
uvm_object
uvm_phase

uvm_bottomup_phase

uvm_start_of_simulation_phase

UVM 1.1 Class Reference 116

Crass DEcCLARATION

class uvmstart_of _sinulati on_phase extends
uvm bot t omup_phase

uvm_run_phase

Stimulate the DUT.

This uvm_task_phase calls the uvm_component::run_phase virtual method. This phase
runs in parallel to the runtime phases, uvm_pre_reset_phase through
uvm_post_shutdown_phase. All components in the testbench are synchronized with
respect to the run phase regardles of the phase domain they belong to.

Upon Entry
+ Indicates that power has been applied.

+ There should not have been any active clock edges before entry into this phase
(e.g. x->1 transitions via initial blocks).

+ Current simulation time is still equal to 0 but some “delta cycles” may have
occurred.

Typical Uses

« Components implement behavior that is exhibited for the entire run-time, across
the various run-time phases.

* Backward compatibility with OVM.

Exit Criteria
+ The DUT no longer needs to be simulated, and
e The <uvm_post_shutdown_ph> is ready to end

The run phase terminates in one of two ways.

1. All run_phase objections are dropped

When all objections on the run_phase objection have been dropped, the phase ends and
all of its threads are killed. If no component raises a run_phase objection immediately
upon entering the phase, the phase ends immediately.

2. Timeout

The phase ends if the timeout expires before all objections are dropped. By default, the
timeout is set to 9200 seconds. You may override this via <set_global_timeout>.

If a timeout occurs in your simulation, or if simulation never ends despite completion of
your test stimulus, then it usually indicates that a component continues to object to the
end of a phase.

UVM 1.1 Class Reference 117

Summary

uvm_run_phase

Stimulate the DUT.
CLass HierarcHY
uvm_void

uvm_object

uvm_phase

uvm_task_phase

uvm_run_phase

CLASS DECLARATION
class uvmrun_phase extends uvmtask phase

uvm_extract_phase

Extract data from different points of the verficiation environment.

uvm_bottomup_phase that calls the uvm_component::extract_phase method.

Upon Entry
e The DUT no longer needs to be simulated.

« Simulation time will no longer advance.

Typical Uses

« Extract any remaining data and final state information from scoreboard and
testbench components

* Probe the DUT (via zero-time hierarchical references and/or backdoor accesses)
for final state information.

¢ Compute statistics and summaries.
+ Display final state information
¢ Close files.

Exit Criteria
« All data has been collected and summarized.

Summary

UVM 1.1 Class Reference 118

uvm_extract_phase

Extract data from different points of the verficiation environment.
CLass HierarcHY
uvm_void
uvm_object
uvm_phase

uvm_bottomup_phase

uvm_extract_phase

CLass DEcLARATION
cl ass uvm extract _phase extends uvm bottonmup_phase

uvim_check_phase

Check for any unexpected conditions in the verification environment.
uvm_bottomup_phase that calls the uvm_component::check_phase method.

Upon Entry
« All data has been collected.

Typical Uses
e Check that no unaccounted-for data remain.

Exit Criteria
e Test is known to have passed or failed.

Summary

uvm_check_phase

Check for any unexpected conditions in the verification environment.
CLass HierarcHY
uvm_void
uvm_object
uvm_phase

uvm_bottomup_phase

| uvim_check_phase |

UVM 1.1 Class Reference 119

CLass DEecLARATION
cl ass uvm check_phase extends uvm bottonup_phase

uvim_report_phase

Report results of the test.

uvm_bottomup_phase that calls the uvm_component::report_phase method.

Upon Entry
* Test is known to have passed or failed.

Typical Uses
¢ Report test results.
* Write results to file.

Exit Criteria
e End of test.

Summary

uvm_report_phase

Report results of the test.
CLass HierarcHY
uvm_void
uvm_object
uvm_phase

uvm_bottomup_phase

uvm_report_phase

CLass DEcLARATION
cl ass uvmreport _phase extends uvm bottomup_phase

uvm_final_phase

UVM 1.1 Class Reference 120

Tie up loose ends.

uvm_topdown_phase that calls the uvm_component::final_phase method.

Upon Entry
* All test-related activity has completed.

Typical Uses
+ Close files.
« Terminate co-simulation engines.

Exit Criteria
* Ready to exit simulator.

Summary

uvm_final_phase

Tie up loose ends.
CLass HierarcHy
uvm_void

uvm_object

uvm_phase

uvm_topdown_phase

uvm_final_phase

Crass DEcLARATION

class uvm final _phase extends uvmtopdown_phase

UVM 1.1 Class Reference 121

8.7 UVM Run-Time Phases

The run-time schedule is the pre-defined phase schedule which runs concurrently to the
uvm_run_phase global run phase. By default, all uvm_components using the run-time
schedule are synchronized with respect to the pre-defined phases in the schedule. It is
possible for components to belong to different domains in which case their schedules can
be unsynchronized.

The run-time phases are executed in the sequence they are specified below.

Contents

UVM Run-Time Phases

uvm_pre_reset_phase
uvm_reset_phase
uvm_post_reset_phase
uvm_pre_configure_phase
uvm_configure_phase
uvm_post_configure_phase
uvm_pre_main_phase
uvm_main_phase
uvm_post_main_phase
uvm_pre_shutdown_phase
uvm_shutdown_phase
uvm_post_shutdown_phase

The run-time schedule is the pre-defined phase
schedule which runs concurrently to the
uvm_run_phase global run phase.

Before reset is asserted.

Reset is asserted.

After reset is de-asserted.

Before the DUT is configured by the SW.
The SW configures the DUT.

After the SW has configured the DUT.
Before the primary test stimulus starts.
Primary test stimulus.

After enough of the primary test stimulus.
Before things settle down.

Letting things settle down.

After things have settled down.

uvim_pre_reset_phase

Before reset is asserted.

uvm_task_phase that calls the uvm_component::pre_reset_phase method. This phase
starts at the same time as the uvm_run_phase unless a user defined phase is inserted in
front of this phase.

Upon Entry
+ Indicates that power has been applied but not necessarily valid or stable.
* There should not have been any active clock edges before entry into this phase.

Typical Uses
+ Wait for power good.
« Components connected to virtual interfaces should initialize their output to X’s or
Z's.
» Initialize the clock signals to a valid value

UVM 1.1 Class Reference 122

Assign reset signals to X (power-on reset).
« Wait for reset signal to be asserted if not driven by the verification environment.

Exit Criteria
* Reset signal, if driven by the verification environment, is ready to be asserted.

* Reset signal, if not driven by the verification environment, is asserted.

Summary

uvm_pre_reset_phase

Before reset is asserted.
Crass HieraARcCHY
uvm_void
uvm_object
uvm_phase

uvm_task_phase

uvm_pre_reset_phase

CLass DecLARATION
class uvm pre_reset _phase extends uvm task_phase

uvm_reset_phase

Reset is asserted.

uvm_task_phase that calls the uvm_component::reset_phase method.

Upon Entry
+ Indicates that the hardware reset signal is ready to be asserted.

Typical Uses
¢ Assert reset signals.

« Components connected to virtual interfaces should drive their output to their
specified reset or idle value.

« Components and environments should initialize their state variables.
* Clock generators start generating active edges.

* De-assert the reset signal(s) just before exit.

« Wait for the reset signal(s) to be de-asserted.

UVM 1.1 Class Reference 123

Exit Criteria
* Reset signal has just been de-asserted.
* Main or base clock is working and stable.
* At least one active clock edge has occurred.
e Output signals and state variables have been initialized.

Summary

uvm_reset_phase

Reset is asserted.
Crass HierARCHY
uvm_void

uvm_object

uvm_phase

uvm_task_phase

uvm_reset_phase

CLass DEcCLARATION
class uvm reset phase extends uvmtask phase

uvim_post_reset_phase

After reset is de-asserted.
uvm_task_phase that calls the uvm_component::post_reset_phase method.

Upon Entry
* Indicates that the DUT reset signal has been de-asserted.

Typical Uses

« Components should start behavior appropriate for reset being inactive. For
example, components may start to transmit idle transactions or interface training
and rate negotiation. This behavior typically continues beyond the end of this
phase.

Exit Criteria
e The testbench and the DUT are in a known, active state.

Summary

UVM 1.1 Class Reference 124

uvm_post_reset_phase

After reset is de-asserted.
CLass HierarcHY
uvm_void
uvm_object
uvm_phase

uvm_task_phase

uvm_post_reset_phase

CLass DEcLARATION
cl ass uvm post _reset phase extends uvmtask _phase

uvm_pre_configure_phase

Before the DUT is configured by the SW.
uvm_task_phase that calls the uvm_component::pre_configure_phase method.

Upon Entry
* Indicates that the DUT has been completed reset and is ready to be configured.

Typical Uses

e Procedurally modify the DUT configuration information as described in the
environment (and that will be eventually uploaded into the DUT).

+ Wait for components required for DUT configuration to complete training and rate
negotiation.

Exit Criteria
* DUT configuration information is defined.

Summary

uvm_pre_configure_phase

Before the DUT is configured by the SW.

CLaAss HIERARCHY
uvm_void

uvm_object

UVM 1.1 Class Reference 125

uvm_phase

uvm_task_phase

uvm_pre_configure_phase

CLass DEcCLARATION
class uvm pre_configure_phase extends uvm task _phase

uvim_configure_phase

The SW configures the DUT.

uvm_task_phase that calls the uvm_component::configure_phase method.

Upon Entry
+ Indicates that the DUT is ready to be configured.

Typical Uses
« Components required for DUT configuration execute transactions normally.

+ Set signals and program the DUT and memories (e.g. read/write operations and
sequences) to match the desired configuration for the test and environment.

Exit Criteria
« The DUT has been configured and is ready to operate normally.

Summary

uvm_configure_phase

The SW configures the DUT.
CLass HierarcHy
uvm_void
uvm_object
uvm_phase

uvm_task_phase

uvm_configure_phase

CLass DecLARATION
cl ass uvm configure_phase extends uvm task_phase

UVM 1.1 Class Reference 126

uvm_post_configure_phase

After the SW has configured the DUT.

uvm_task_phase that calls the uvm_component::post_configure_phase method.

Upon Entry
« Indicates that the configuration information has been fully uploaded.

Typical Uses
« Wait for configuration information to fully propagate and take effect.
« Wait for components to complete training and rate negotiation.
+ Enable the DUT.
« Sample DUT configuration coverage.

Exit Criteria

« The DUT has been fully configured and enabled and is ready to start operating
normally.

Summary

uvm_post_configure_phase

After the SW has configured the DUT.
CLass HierarcHY
uvm_void
uvm_object
uvm_phase

uvm_task_phase

uvm_post_configure_phase

CLass DEecLARATION
cl ass uvm post _confi gure_phase extends uvm task _phase

uvim_pre_main_phase

Before the primary test stimulus starts.

UVM 1.1 Class Reference 127

uvm_task_phase that calls the uvm_component::pre_main_phase method.

Upon Entry
¢ Indicates that the DUT has been fully configured.

Typical Uses
+ Wait for components to complete training and rate negotiation.

Exit Criteria
« All components have completed training and rate negotiation.
* All components are ready to generate and/or observe normal stimulus.

Summary

uvm_pre_main_phase

Before the primary test stimulus starts.
CiLass HierARCHY
uvm_void
uvm_object
uvm_phase

uvm_task_phase

uvm_pre_main_phase

CLass DEecLARATION
cl ass uvm pre_mai n_phase extends uvm task_phase

uvim_main_phase

Primary test stimulus.

uvm_task_phase that calls the uvm_component::main_phase method.

Upon Entry
* The stimulus associated with the test objectives is ready to be applied.

Typical Uses
« Components execute transactions normally.
« Data stimulus sequences are started.
« Wait for a time-out or certain amount of time, or completion of stimulus

UVM 1.1 Class Reference 128

sequences.

Exit Criteria

* Enough stimulus has been applied to meet the primary stimulus objective of the
test.

Summary

uvm_main_phase

Primary test stimulus.
CLass HierarcHy
uvm_void
uvm_object
uvm_phase

uvm_task_phase

uvm_main_phase

CLass DECLARATION
cl ass uvm nmai n_phase extends uvmtask_phase

uvim_post_main_phase

After enough of the primary test stimulus.

uvm_task_phase that calls the uvm_component::post_main_phase method.

Upon Entry
* The primary stimulus objective of the test has been met.

Typical Uses
e Included for symmetry.

Exit Criteria
« None.

Summary

uvm_post_main_phase

After enough of the primary test stimulus.

UVM 1.1 Class Reference 129

Crass HierARCHY
uvm_void
uvm_object
uvm_phase

uvm_task_phase

uvm_post_main_phase

CLASS DECLARATION
cl ass uvm post _mai n_phase extends uvm task_phase

uvm_pre_shutdown_phase

Before things settle down.

uvm_task_phase that calls the uvm_component::pre_shutdown_phase method.

Upon Entry
* None.

Typical Uses
¢ Included for symmetry.

Exit Criteria
* None.
Summary

uvm_pre_shutdown_phase

Before things settle down.
CLass HierARCHY
uvm_void
uvm_object
uvm_phase

uvm_task_phase

uvm_pre_shutdown_phase

Crass DEcLARATION

UVM 1.1 Class Reference 130

cl ass uvm pre_shut down_phase extends uvm task phase

uvm_shutdown_phase

Letting things settle down.

uvm_task_phase that calls the uvm_component::shutdown_phase method.

Upon Entry
¢ None.

Typical Uses
 Wait for all data to be drained out of the DUT.

o Extract data still buffered in the DUT, usually through read/write operations or
seqguences.

Exit Criteria
e All data has been drained or extracted from the DUT.
e All interfaces are idle.

Summary

uvm_shutdown_phase

Letting things settle down.
CLass HierarcHY
uvm_void
uvm_object
uvm_phase

uvm_task_phase

uvm_shutdown_phase

CLASS DECLARATION
cl ass uvm shut down_phase extends uvm task_phase

uvm_post_shutdown_phase

UVM 1.1 Class Reference 131

After things have settled down.

uvm_task_phase that calls the uvm_component::post_shutdown_phase method. The end
of this phase is synchronized to the end of the uvm_run_phase phase unless a user
defined phase is added after this phase.

Upon Entry
« No more “data” stimulus is applied to the DUT.

Typical Uses

* Perform final checks that require run-time access to the DUT (e.g. read accounting
registers or dump the content of memories).

Exit Criteria
* All run-time checks have been satisfied.
e The uvm_run_phase phase is ready to end.

Summary

uvm_post_shutdown_phase

After things have settled down.
CLass HierarcHY
uvm_void
uvm_object
uvm_phase

uvm_task_phase

uvm_post_shutdown_phase

Crass DEcLARATION

cl ass uvm post _shut down_phase extends uvm task_phase

UVM 1.1 Class Reference 132

8.8 User-Defined Phases

To define your own custom phase, use the following pattern.

1. Extend the appropriate base class for your phase type.

cl ass ny_PHASE phase extends uvm task_phase;
cl ass ny_PHASE phase extends uvmtopdown_phase;
cl ass ny_PHASE phase extends uvm bottonup_phase;

2. Optionally, implement your exec_task or exec_func method.

task exec_task(uvm conponent conp, uvm phase schedul e);
function void exec_func(uvm conponent conp, uvm phase schedul e);

If implemented, these methods usually call the related method on the component

conp. PHASE phase(uvm phase phase);

3. Since the phase class is a singleton, providing an accessor method allows for easy
global use, and protecting the constructor prevents misuse.

cl ass _PHASE phase extends uvm topdown_phase; or
uvm t ask_phase/ uvm bot t onum phase
static local ny PHASE phase m.nst; Local reference to global | M
] prlot ected function new(string nane="PHASE"); Protected constructor for
si ngl eton

super. new nane) ;
endfunction : new])
~static function ny_PHASE phase get(); Static nethod for accessing
singleton
if (minmp == null)
minp = new);
return m.inp;
endfunction : get
Optional ly inplenent exec_func/exec_task
endcl ass : ny_PHASE phase

4. Insert the phase in a phase schedule or domain using the uvm_phase::add method:

ny_schedul e. add(ny_PHASE cl ass::get());

Summary

User-Defined Phases

UVM 1.1 Class Reference 133

To define your own custom phase, use the following pattern.

UVM 1.1 Class Reference 134

9. Configuration and Resource Classes

The configuration and resources classes provide access to a centralized database where
type specific information can be stored and recieved. The uvm_resource_db is the low
level resource database which users can write to or read from. The uvm_config_db is
layered on top of the resoure database and provides a typed intereface for configuration
setting that is consistent with the uvm_component::Configuration Interface.

Information can be read from or written to the database at any time during simulation.
A resource may be associated with a specific hierarchical scope of a uvm_component or it
may be visible to all components regardless of their hierarchical position.

Summary
Configuration and Resource Classes

The configuration and resources classes provide access to a centralized database
where type specific information can be stored and recieved.

UVM 1.1 Class Reference 135

9.1 Resources

Contents

Resources

Intro A resource is a parameterized container that holds
arbitrary data.

uvm_resource_types Provides typedefs and enums used throughout the
resources facility.

uvm_resource_options Provides a namespace for managing options for the
resources facility.

uvm_resource_base Non-parameterized base class for resources.
uvm_resource_pool The global (singleton) resource database.
uvm_resource #(T) Parameterized resource.

Intro

A resource is a parameterized container that holds arbitrary data. Resources can be used
to configure components, supply data to sequences, or enable sharing of information
across disparate parts of a testbench. They are stored using scoping information so their
visibility can be constrained to certain parts of the testbench. Resource containers can
hold any type of data, constrained only by the data types available in SystemVerilog.
Resources can contain scalar objects, class handles, queues, lists, or even virtual
interfaces.

Resources are stored in a resource database so that each resource can be retrieved by
name or by type. The databse has both a name table and a type table and each
resource is entered into both. The database is globally accessible.

Each resource has a set of scopes over which it is visible. The set of scopes is
represented as a regular expression. When a resource is looked up the scope of the
entity doing the looking up is supplied to the lookup function. This is called the current
scope. If the current scope is in the set of scopes over which a resource is visible then
the resource can be retuned in the lookup.

Resources can be looked up by name or by type. To support type lookup each resource
has a static type handle that uniquely identifies the type of each specialized resource
container.

Mutliple resources that have the same name are stored in a queue. Each resource is
pushed into a queue with the first one at the front of the queue and each subsequent
one behind it. The same happens for multiple resources that have the same type. The
resource queues are searched front to back, so those placed earlier in the queue have
precedence over those placed later.

The precedence of resources with the same name or same type can be altered. One way
is to set the precedence member of the resource container to any arbitrary value. The
search algorithm will return the resource with the highest precedence. In the case where
there are multiple resources that match the search criteria and have the same (highest)
precedence, the earliest one located in the queue will be one returned. Another way to

UVM 1.1 Class Reference 136

change the precedence is to use the set_priority function to move a resource to either
the front or back of the queue.

The classes defined here form the low level layer of the resource database. The classes
include the resource container and the database that holds the containers. The following
set of classes are defined here:

uvm_resource_types: A class without methods or members, only typedefs and enums.
These types and enums are used throughout the resources facility. Putting the types in
a class keeps them confined to a specific name space.

uvm_resource_options: policy class for setting options, such as auditing, which effect
resources.

uvm_resource_base: the base (untyped) resource class living in the resource database.
This class includes the interface for setting a resource as read-only, notification, scope
management, altering search priority, and managing auditing.

uvm_resource#(T): parameterized resource container. This class includes the interfaces
for reading and writing each resource. Because the class is parameterized, all the access
functions are type sace.

uvm_resource_pool: the resource database. This is a singleton class object.

uvm_resource_types

Provides typedefs and enums used throughout the resources facility. This class has no
members or methods, only typedefs. It's used in lieu of package-scope types. When
needed, other classes can use these types by prefixing their usage with
uvm_resource_types::. E.g.

uvm resource_types::rsrc_g_t queue,

Summary

uvim_resource_types

Provides typedefs and enums used throughout the resources facility.

Crass DEecLARATION
class uvmresource_types

uvim_resource_options

UVM 1.1 Class Reference 137

Provides a namespace for managing options for the resources facility. The only thing
allowed in this class is static local data members and static functions for manipulating
and retrieving the value of the data members. The static local data members represent
options and settings that control the behavior of the resources facility.

Summary

uvm_resource_options

Provides a namespace for managing options for the resources facility.

MEeTHODS
turn_on_auditing Turn auditing on for the resource database.
turn_off_auditing Turn auditing off for the resource database.
is_auditing Returns 1 if the auditing facility is on and 0 if it is off.
METHODS

turn_on_auditing

static function void turn_on_auditing()

Turn auditing on for the resource database. This causes all reads and writes to the
database to store information about the accesses. Auditing is turned on by default.

turn_off_auditing

static function void turn_off_auditing()

Turn auditing off for the resource database. If auditing is turned off, it is not possible t
get extra information about resource database accesses.

(o]

is_auditing
static function bit is_auditing()

Returns 1 if the auditing facility is on and 0 if it is off.

uvm_resource_base

Non-parameterized base class for resources. Supports interfaces for scope matching,

UVM 1.1 Class Reference 138

and virtual functions for printing the resource and for printing the accessor list

Summary

uvim_resource_base

Non-parameterized base class for resources.

Crass HierARCHY
uvm_void

uvm_object

uvm_resource_base

Crass DEcLARATION

virtual class uvmresource_base extends uvm obj ect

precedence

default_precedence

new
get_type_handle

Reap-oNLY INTERFACE

set_read_only
is_read_only

NoTIFICATION
wait_modified

Score INTERFACE
set_scope
get_scope

match_scope
PriorITY
set priority

UriLity FuncTiONS
do_print

Aupit TrAIL

record_read_access
record_write_access
print_accessors
init_access_record

UVM 1.1 Class Reference

This variable is used to associate a precedence that a
resource has with respect to other resources which
match the same scope and name.

The default precedence for an resource that has been
created.

constructor for uvm_resource_base.

Pure virtual function that returns the type handle of the

resource container.

Establishes this resource as a read-only resource.
Retruns one if this resource has been set to read-
only, zero otherwise

This task blocks until the resource has been modified
-- that is, a uvm_resource#(T)::write operation has
been performed.

Each resource has a name, a value and a set of scopes
over which it is visible.

Set the value of the regular expression that identifies
the set of scopes over which this resource is visible.
Retrieve the regular expression string that identifies
the set of scopes over which this resource is visible.
Using the regular expression facility, determine if this
resource is visible in a scope.

Functions for manipulating the search priority of
resources.

Change the search priority of the resource based on
the value of the priority enum argument.

Implementation of do_print which is called by print().

To find out what is happening as the simulation
proceeds, an audit trail of each read and write is kept.

Dump the access records for this resource
Initalize a new access record

139

precedence

i nt unsigned precedence

This variable is used to associate a precedence that a resource has with respect to other
resources which match the same scope and name. Resources are set to the
default_precedence initially, and may be set to a higher or lower precedence as desired.

default_precedence

static int unsigned default_precedence = 1000

The default precedence for an resource that has been created. When two resources have
the same precedence, the first resource found has precedence.

new

function new(string name
string s

’

wxhy

constructor for uvm_resource_base. The constructor takes two arguments, the name of
the resource and a resgular expression which represents the set of scopes over which
this resource is visible.

get_type_handle

pure virtual function uvmresource_base get_type_handl e()

Pure virtual function that returns the type handle of the resource container.

ReAD-ONLY INTERFACE

set_read_only

function void set_read_only()

Establishes this resource as a read-only resource. An attempt to call
uvm_resource#(T)::write on the resource will cause an error.

is_read_only

UVM 1.1 Class Reference 140

function bit is_read_only()

Retruns one if this resource has been set to read-only, zero otherwise

NoTIiFICATION

wait_modified
task wait_nodified()

This task blocks until the resource has been modified -- that is, a
uvm_resource#(T)::write operation has been performed. When a
uvm_resource#(T)::write is performed the modified bit is set which releases the block.
Wait_modified() then clears the modified bit so it can be called repeatedly.

Score INTERFACE

Each resource has a name, a value and a set of scopes over which it is visible. A scope
is a hierarchical entity or a context. A scope name is a multi-element string that
identifies a scope. Each element refers to a scope context and the elements are
separated by dots (.).

t op. env. agent . noni t or

I\

Consider the example above of a scope name. It consists of four elements: “top”, “env”,
“agent”, and “"monitor”. The elements are strung together with a dot separating each
element. top.env.agent is the parent of top.env.agent.monitor, top.env is the parent of
top.env.agent, and so on. A set of scopes can be represented by a set of scope name
strings. A very straightforward way to represent a set of strings is to use regular
expressions. A regular expression is a special string that contains placeholders which can
be substituted in various ways to generate or recognize a particular set of strings. Here
are a few simple examples:

top\..* ~all of the scopes whose top-I|evel conponent
is top
top\.env\..*\.nmonitor all of the scopes in env that end in nonitor;
i.e. all the nonitors two |evels down from env
.*\. moni tor all of the scopes that end in nmonitor; i.e.
all the nonitors ?assum’ ng a nam ng convention
was used where all nonitors are naned "nonitor")
top\.u[1-5]\.* all of the scopes rooted and naned ul, u2, u3,

u4, or u5, and any of their subscopes.

The examples above use posix regular expression notation. This is a very general and
expressive notation. It is not always the case that so much expressiveness is required.

UVM 1.1 Class Reference 141

Sometimes an expression syntax that is easy to read and easy to write is useful, even if
the syntax is not as expressive as the full power of posix regular expressions. A popular
substitute for regular expressions is globs. A glob is a simplified regular expression. It
only has three metacharacters -- *, +, and ?. Character ranges are not allowed and
dots are not a metacharacter in globs as they are in regular expressions. The following
table shows glob metacharacters.

char neani ng regul ar expression
equi val ent

* 0 or nore characters Lx

;r 1 or nore characters L+

exactly one character

Of the examples above, the first three can easily be translated into globs. The last one
cannot. It relies on notation that is not available in glob syntax.

regul ar expression gl ob equi val ent
top\..*] top. *]
tO{J\.eny\..*\.nnmtor top. env.*. noni tor
.*\.noni tor *. nmoni tor

The resource facility supports both regular expression and glob syntax. Regular
expressions are identified as such when they surrounded by '/’ characters. For example,
/" top\.*/ is interpreted as the regular expression ~top\.*, where the surrounding '/’
characters have been removed. All other expressions are treated as glob expressions.
They are converted from glob notation to regular expression notation internally. Regular
expression compilation and matching as well as glob-to-regular expression conversion
are handled by three DPI functions:

function int uvmre_match(string re, string str);
function string uvmaglob _to _re(string glob);

uvm_re_match both compiles and matches the regular expression. of the matching is
done using regular expressions, so globs are converted to regular expressions and then
processed.

set_scope

function void set_scope(string s)

Set the value of the regular expression that identifies the set of scopes over which this
resource is visible. If the supplied argument is a glob it will be converted to a regular
expression before it is stored.

get_scope

UVM 1.1 Class Reference 142

function string get_scope()

Retrieve the regular expression string that identifies the set of scopes over which this
resource is visible.

match_scope

function bit match_scope(string s)

Using the regular expression facility, determine if this resource is visible in a scope.
Return one if it is, zero otherwise.

PRrIORITY

Functions for manipulating the search priority of resources. The function definitions here
are pure virtual and are implemented in derived classes. The definitons serve as a
priority management interface.

set priority

Change the search priority of the resource based on the value of the priority enum
argument.

UtiLity FUuNCcTIONS

do_print

function void do_print (uvmprinter printer)

Implementation of do_print which is called by print().

Aupit TRrRAIL

To find out what is happening as the simulation proceeds, an audit trail of each read and
write is kept. The read and write methods in uvm_resource#(T) each take an accessor
argument. This is a handle to the object that performed that resource access.

function T read(uvm object accessor = null);
function void wite(T t, uvmobject accessor = null);

The accessor can by anything as long as it is derived from uvm_object. The accessor

UVM 1.1 Class Reference 143

object can be a component or a sequence or whatever object from which a read or write
was invoked. Typically the this handle is used as the accessor. For example:

uvm resource#(int) rint;
int i;

rint.wite(7, this);
i = rint.read(this);

The accessor’s get_full name() is stored as part of the audit trail. This way you can find
out what object performed each resource access. Each audit record also includes the
time of the access (simulation time) and the particular operation performed (read or
write).

Auditting is controlled through the uvm_resource_options class.

record_read_access

function void record_read_access(uvm object accessor = null)

record_write_access

function void record wite_access(uvm object accessor = null)

print_accessors

virtual function void print_accessors()

Dump the access records for this resource

init_access_record

function void init_access_record (
I nout uvm resource types::access_t access_record

Initalize a new access record

uvim_resource_pool

The global (singleton) resource database.

Each resource is stored both by primary name and by type handle. The resource pool
contains two associative arrays, one with hame as the key and one with the type handle

UVM 1.1 Class Reference 144

as the key. Each associative array contains a queue of resources. Each resource has a
regular expression that represents the set of scopes over with it is visible.

+e-c--- T + Hemmmceaeaa- £ T +
| name | rsrc queue | | rsrc queue | type |
E T - [T - + Feommmm e aa [+
I I I I I I
+e-c--- T + +- +- + Hemmmmeaaaa-- E TR +
I I I [] | <--t---7 [T
E T - T + +- +- + +- +- + Feomme e e e o f T +
| A B I I I I
+e-e--- T + +- +- + Hemmmme e a E TR +
I I I I I I I
E T - Fememe e e oo + Feommm i m + +-+ Fommm e e e aa [T +
I I I I | I I I
E - T + Hemmmme e a E T +
I I | \ I | |
dbccococoo dbcccococococoocooo + dboocococoo + dbococococooocoooo dbocococoo +
I I I | rsrc | I I I
E - T + B + Hemmmmeamaaa [T +

The above diagrams illustrates how a resource whose name is A and type is T is stored
in the pool. The pool contains an entry in the type map for type T and an entry in the
name map for name A. The queues in each of the arrays each contain an entry for the
resource A whose type is T. The name map can contain in its queue other resources
whose name is A which may or may not have the same type as our resource A.
Similarly, the type map can contain in its queue other resources whose type is T and
whose name may or may not be A.

Resources are added to the pool by calling set; they are retrieved from the pool by
calling get_by_name or get_by_type. When an object creates a new resource and calls
set the resource is made available to be retrieved by other objects outside of itsef; an
object gets a resource when it wants to access a resource not currently available in its
scope.

The scope is stored in the resource itself (not in the pool) so whether you get by name
or by type the resource’s visibility is the same.

As an auditing capability, the pool contains a history of gets. A record of each get,
whether by get_by_type or get_by_name, is stored in the audit record. Both successful
and failed gets are recorded. At the end of simulation, or any time for that matter, you
can dump the history list. This will tell which resources were successfully located and
which were not. You can use this information to determine if there is some error in
name, type, or scope that has caused a resource to not be located or to be incorrrectly
located (i.e. the wrong resource is located).

Summary

uvm_resource_pool

The global (singleton) resource database.

CLass DEcLARATION
cl ass uvm_resource_pool

get Returns the singleton handle to the resource pool
spell_check Invokes the spell checker for a string s.

UVM 1.1 Class Reference 145

SET

set
set_override

set_name_override

set_type_override

Lookupr

lookup_name
get_highest_precedence

sort_by_precedence

get_by_name
lookup_type

get_by_type
lookup_regex_names

lookup_regex

lookup_scope

Set PRIORITY
set_priority_type
set_priority_name

set_priority

DeBuc
find_unused_resources

print_resources
dump

get

Add a new resource to the resource pool.

The resource provided as an argument will be
entered into the pool and will override both by
name and type.

The resource provided as an argument will
entered into the pool using normal precedence in
the type map and will override the name.

The resource provided as an argument will be
entered into the pool using noraml precedence in
the name map and will override the type.

This group of functions is for finding resources in
the resource database.

Lookup resources by name.

Traverse a queue, g, of resources and return the
one with the highest precedence.

Given a list of resources, obtained for example
from lookup_scope, sort the resources in
precedence order.

Lookup a resource by name, scope, and
type_handle.

Lookup resources by type.

Lookup a resource by type handle and scope.
This utility function answers the question, for a
given name, scope,and type_handle, what are all
of the resources with a matching name (where
the resource name may be a regular expression),
a matching scope (where the resoucre scope may
be a regular expression), and a matching type?
Looks for all the resources whose name matches
the regular expression argument and whose scope
matches the current scope.

This is a utility function that answers the
question: For a given scope, what resources are
visible to it?

Functions for altering the search priority of
resources.

Change the priority of the rsrc based on the value
of pri, the priority enum argument.

Change the priority of the rsrc based on the value
of pri, the priority enum argument.

Change the search priority of the rsrc based on
the value of pri, the priority enum argument.

Locate all the resources that have at least one
write and no reads

Print the resources that are in a single queue, rq.
dump the entire resource pool.

static function uvmresource_pool get ()

Returns the singleton handle to the resource pool

UVM 1.1 Class Reference

146

spell_check

function bit spell_check(string s)

Invokes the spell checker for a string s. The universe of correctly spelled strings -- i.e.
the dictionary -- is the name map.

SET

set

function void set (uvm.resource_base rsrc,
override_t override)

Add a new resource to the resource pool. The resource is inserted into both the name
map and type map so it can be located by either.

An object creates a resources and sets it into the resource pool. Later, other objects
that want to access the resource must get it from the pool

Overrides can be specified using this interface. Either a name override, a type override
or both can be specified. If an override is specified then the resource is entered at the
front of the queue instead of at the back. It is not recommended that users specify the
override paramterer directly, rather they use the set_override, set_name_override, or
set_type_override functions.

set_override

function void set_override(uvmresource_base rsrc)

The resource provided as an argument will be entered into the pool and will override
both by name and type.

set_name_override

function void set_name_override(uvmresource_base rsrc)

The resource provided as an argument will entered into the pool using normal
precedence in the type map and will override the name.

set_type_override

function void set_type_override(uvmresource_base rsrc)

The resource provided as an argument will be entered into the pool using noraml

UVM 1.1 Class Reference 147

precedence in the name map and will override the type.

Lookup

This group of functions is for finding resources in the resource database.

lookup_name and lookup_type locate the set of resources that matches the name or
type (respectively) and is visible in the current scope. These functions return a queue of
resources.

get_highest_precedence traverese a queue of resources and returns the one with the
highest precedence -- i.e. the one whose precedence member has the highest value.

get_by_name and get_by_type use lookup_name and lookup_type (respectively) and
get_highest_precedence to find the resource with the highest priority that matches the
other search criteria.

lookup_name

function uvmresource_types::rsrc_q_t | ookup_nane(

string scope ,
string nane,

uvm resource_base type _handle = nul |,
bi t rpterr =1

)

Lookup resources by name. Returns a queue of resources that match the name, scope,
and type_handle. If no resources match the queue is returned empty. If rpterr is set
then a warning is issued if no matches are found, and the spell checker is invoked on
name. If type_handle is null then a type check is not made and resources are returned
that match only name and scope.

get_highest_precedence

function uvmresource_base get_hi ghest_ precedence(
ref uvmresource_types::rsrc_q_t q

Traverse a queue, q, of resources and return the one with the highest precedence. In
the case where there exists more than one resource with the highest precedence value,
the first one that has that precedence will be the one that is returned.

sort_by_precedence

static function void sort_by precedence(ref uvmresource types::rsrc_q_t Q)

Given a list of resources, obtained for example from lookup_scope, sort the resources in
precedence order. The highest precedence resource will be first in the list and the lowest

UVM 1.1 Class Reference 148

precedence will be last. Resources that have the same precedence and the same name
will be ordered by most recently set first.

get_by_name

function uvmresource_base get_by nane(string scope
string name,
uvm resour ce_base type_handl e,
bi t rpterr

Lookup a resource by name, scope, and type_handle. Whether the get succeeds or fails,
save a record of the get attempt. The rpterr flag indicates whether to report errors or
not. Essentially, it serves as a verbose flag. If set then the spell checker will be invoked
and warnings about multiple resources will be produced.

lookup_type

function uvmresource_types::rsrc_q_t |ookup_type(string scope
uvm resour ce_base type_hand

Lookup resources by type. Return a queue of resources that match the type handle and
scope. If no resources match then the returned queue is empty.

get_by_type

function uvmresource_base get_by type(string scope
uvm resour ce_base type_handl e)

Lookup a resource by type_handle and scope. Insert a record into the get history list
whether or not the get succeeded.

lookup_regex_names

function uvmresource_types::rsrc_g_t | ookup_regex_nanes(
string scope,
string namne,
uvm resour ce_base type_handl e

)

This utility function answers the question, for a given name, scope,and type_handle,
what are all of the resources with a matching name (where the resource name may be a
regular expression), a matching scope (where the resoucre scope may be a regular
expression), and a matching type? name and scope are explicit values.

lookup_regex

UVM 1.1 Class Reference 149

function uvmresource_types::rsrc_q_t |ookup_regex(string re,
scope)

Looks for all the resources whose name matches the regular expression argument and
whose scope matches the current scope.

lookup_scope

function uvmresource_types::rsrc_q_t | ookup_scope(string scope)

This is a utility function that answers the question: For a given scope, what resources are
visible to it? Locate all the resources that are visible to a particular scope. This
operation could be quite expensive, as it has to traverse all of the resources in the
database.

SEeET PRIORITY

Functions for altering the search priority of resources. Resources are stored in queues in
the type and name maps. When retrieving resoures, either by type or by name, the
resource queue is search from front to back. The first one that matches the search
criteria is the one that is returned. The set_priority functions let you change the order in
which resources are searched. For any particular resource, you can set its priority to
UVM_HIGH, in which case the resource is moved to the front of the queue, or to
UVM_LOW in which case the resource is moved to the back of the queue.

set_priority_type
function void set_priority_type(uvm resource_base rsrc,
priority_e pri

Change the priority of the rsrc based on the value of pri, the priority enum argument.
This function changes the priority only in the type map, leavint the name map
untouched.

set_priority_name

function void set_priority_name(uvm resour ce_base rsrc,
priority_e pri)

Change the priority of the rsrc based on the value of pri, the priority enum argument.
This function changes the priority only in the name map, leaving the type map
untouched.

set_priority

UVM 1.1 Class Reference 150

function void set_priority (uvm resource_base rsrc,
uvm resource_types::priority_e pri

Change the search priority of the rsrc based on the value of pri, the priority enum
argument. This function changes the priority in both the name and type maps.

DeBuG

find_unused_resources

function uvmresource_types::rsrc_q_t find_unused_resources()

Locate all the resources that have at least one write and no reads

print_resources

function void print_resources(uvmresource_types::rsrc_g_t rq,
bit audit = 0)

Print the resources that are in a single queue, rq. This is a utility function that can be
used to print any collection of resources stored in a queue. The audit flag determines
whether or not the audit trail is printed for each resource along with the name, value,
and scope regular expression.

dump

function void dunp(bit audit = 0)

dump the entire resource pool. The resource pool is traversed and each resource is
printed. The utility function print_resources() is used to initiate the printing. If the audit
bit is set then the audit trail is dumped for each resource.

uvm_resource #(T)

Parameterized resource. Provides essential access methods to read from and write to
the resource database.

Summary

uvm_resource #(T)

Parameterized resource.

UVM 1.1 Class Reference 151

CLass HIERARCHY
uvm_void
uvm_object

uvm_resource_base

uvm_resource#(T) |

CLAss DECLARATION
class uvmresource #(
type T
) extends uvm resource_base

Type INTERFACE

get_type
get_type_handle

Set/ Ger INTERFACE

set
set_override

get_by_name
get_by_type

Reap/WRite INTERFACE

read

write

PRrIORITY

set priority

get_highest_precedence

Type INTERFACE

Resources can be identified by type using a static
type handle.

Static function that returns the static type handle.
Returns the static type handle of this resource in
a polymorphic fashion.

uvm_resource#(T) provides an interface for setting
and getting a resources.

Simply put this resource into the global resource
pool

Put a resource into the global resource pool as an
override.

looks up a resource by name in the name map.
looks up a resource by type_handle in the type
map.

read and write provide a type-safe interface for
getting and setting the object in the resource
container.

Return the object stored in the resource
container.
Modify the object stored in this resource
container.

Functions for manipulating the search priority of
resources.

Change the search priority of the resource based
on the value of the priority enum argument, pri.
In a queue of resources, locate the first one with
the highest precedence whose type is T.

Resources can be identified by type using a static type handle. The parent class provides
the virtual function interface get_type_handle. Here we implement it by returning the

static type handle.

get_type

static function this_type get_type()

UVM 1.1 Class Reference

Static function that returns the static type handle. The return type is this_type, which is
the type of the parameterized class.

get_type_handle

function uvmresource_base get_type_handl e()
Returns the static type handle of this resource in a polymorphic fashion. The return type

of get_type_handle() is uvm_resource_base. This function is not static and therefore can
only be used by instances of a parameterized resource.

SeT/ GeT INTERFACE

uvm_resource#(T) provides an interface for setting and getting a resources. Specifically,
a resource can insert itself into the resource pool. It doesn’t make sense for a resource
to get itself, since you can't call a funtion on a handle you don’t have. However, a static
get interface is provided as a convenience. This obviates the need for the user to get a
handle to the global resource pool as this is done for him here.

set

function void set()

Simply put this resource into the global resource pool

set_override

function void set_override(

Put a resource into the global resource pool as an override. This means it gets put at
the head of the list and is searched before other existing resources that occupy the same
position in the name map or the type map. The default is to override both the name
and type maps. However, using the override argument you can specify that either the
name map or type map is overridden.

get_by_name

static function this_type get_by nane(string scope,
string nane,
bi t rpterr)

looks up a resource by name in the name map. The first resource with the specified
nam, whose type is the current type, and is visible in the specified scope is returned, if
one exists. The rpterr flag indicates whether or not an error should be reported if the
search fails. If rpterr is set to one then a failure message is issued, including suggested
spelling alternatives, based on resource names that exist in the database, gathered by

UVM 1.1 Class Reference 153

the spell checker.

get_by_type

static function this_type get_by type(string scope
uvm resour ce_base type_handl e)

looks up a resource by type_handle in the type map. The first resource with the
specified type_handle that is visible in the specified scope is returned, if one exists. Null
is returned if there is no resource matching the specifications.

Reap/WRITE INTERFACE

read and write provide a type-safe interface for getting and setting the object in the
resource container. The interface is type safe because the value argument for write and
the return value of read are T, the type supplied in the class parameter. If either of
these functions is used in an incorrect type context the compiler will complain.

read

function T read(uvm object accessor)

Return the object stored in the resource container. If an accessor object is supplied
then also update the accessor record for this resource.

write

function void wite(T) t,
uvm obj ect accessor)

Modify the object stored in this resource container. If the resource is read-only then
issue an error message and return without modifying the object in the container. If the
resource is not read-only and an accessor object has been supplied then also update the
accessor record. Lastly, replace the object value in the container with the value supplied
as the argument, t, and release any processes blocked on
uvm_resource_base::wait_modified.

PRIORITY

Functions for manipulating the search priority of resources. These implementations of
the interface defined in the base class delegate to the resource pool.

set priority

UVM 1.1 Class Reference 154

Change the search priority of the resource based on the value of the priority enum
argument, pri.

get_highest_precedence

static function this_type get_hi ghest_ precedence(
) ref uvmresource types::rsrc_q_t ¢

In a queue of resources, locate the first one with the highest precedence whose type is
T. This function is static so that it can be called from anywhere.

UVM 1.1 Class Reference 155

9.2 UVM Resource Database

Contents

UVM Resource

Database

Intro The uvm_resource_db class provides a convenience
interface for the resources facility.

uvm_resource_db All of the functions in uvm_resource_db#(T) are

static, so they must be called using the :: operator.
uvm_resource_db_options Provides a namespace for managing options for the
resources DB facility.

Intro

The uvm_resource_db class provides a convenience interface for the resources facility.
In many cases basic operations such as creating and setting a resource or getting a
resource could take multiple lines of code using the interfaces in uvm_resource_base or
uvm_resource#(T). The convenience layer in uvm_resource_db reduces many of those
operations to a single line of code.

If the run-time +UVM_RESOURCE_DB_TRACE command line option is specified, all
resource DB accesses (read and write) are displayed.

uvm_resource_db

All of the functions in uvm_resource_db#(T) are static, so they must be called using the
:: operator. For example:

uvm resource_db#(int)::set("A", "*", 17, this);

The parameter value “int” identifies the resource type as uvm_resource#(int). Thus, the
type of the object in the resource container is int. This maintains the type-safety
characteristics of resource operations.

Summary

uvm_resource_db

All of the functions in uvm_resource_db#(T) are static, so they must be called
using the :: operator.

UVM 1.1 Class Reference 156

Crass DEcCLARATION

class uvmresource_db #(type T)
MEeTHODS
get_by_type Get a resource by type.
get_by_name Imports a resource by name.
set_default add a new item into the resources database.
set Create a new resource, write a val to it, and set it into the
database using name and scope as the lookup
parameters.
set_anonymous Create a new resource, write a val to it, and set it into the
database.
read_by_name locate a resource by name and scope and read its value.
read_by_type Read a value by type.
write_by_name write a val into the resources database.
write_by_type write a val into the resources database.
dump Dump all the resources in the resource pool.
METHODS
get_by_type

static function rsrc_t get_by type(string scope)

Get a resource by type. The type is specified in the db class parameter so the only
argument to this function is the scope.

get_by_name

static function rsrc_t get_by_name(string scope,
string nane,
bi t rpterr)

Imports a resource by name. The first argument is the name of the resource to be
retrieved and the second argument is the current scope. The rpterr flag indicates
whether or not to generate a warning if no matching resource is found.

set_default

static function rsrc_t set_default(string scope,
string name)

add a new item into the resources database. The item will not be written to so it will

have its default value. The resource is created using name and scope as the lookup
parameters.

UVM 1.1 Class Reference 157

set

static function void set(string scope,
string nane,
T val ,
uvm obj ect accessor)

Create a new resource, write a val to it, and set it into the database using name and
scope as the lookup parameters. The accessor is used for auditting.

set_anonymous

static function void set_anonynous(string scope,
T

uvm obj ect accessor)

Create a new resource, write a val to it, and set it into the database. The resource has
no name and therefore will not be entered into the name map. But is does have a scope
for lookup purposes. The accessor is used for auditting.

read_by_name

static function bit read_by_ nane(string scope,
string namne,
T val ,
uvm obj ect accessor)

locate a resource by name and scope and read its value. The value is returned through
the ref argument val. The return value is a bit that indicates whether or not the read
was successful. The accessor is used for auditting.

read_by_type

static function bit read_by type(string sclope,
T val ,
uvm obj ect accessor)

Read a value by type. The value is returned through the ref argument val. The scope is
used for the lookup. The return value is a bit that indicates whether or not the read is
successful. The accessor is used for auditting.

write_by_name

static function bit wite_by name(string scope,
string nane,
T val ,
uvm obj ect accessor)

write a val into the resources database. First, look up the resource by name and scope.
If it is not located then add a new resource to the database and then write its value.

UVM 1.1 Class Reference 158

Because the scope is matched to a resource which may be a regular expression, and
consequently may target other scopes beyond the scope argument. Care must be taken
with this function. If a get_by_name match is found for name and scope then val will be
written to that matching resource and thus may impact other scopes which also match
the resource.

write_by_type

static function bit wite_by_type(input string scope,
input T) val ,
i nput uvm obj ect accessor = null)

write a val into the resources database. First, look up the resource by type. If it is not
located then add a new resource to the database and then write its value.

Because the scope is matched to a resource which may be a regular expression, and
consequently may target other scopes beyond the scope argument. Care must be taken
with this function. If a get_by_name match is found for name and scope then val will be
written to that matching resource and thus may impact other scopes which also match
the resource.

dump

static function void dunp()

Dump all the resources in the resource pool. This is useful for debugging purposes. This
function does not use the parameter T, so it will dump the same thing -- the entire
database -- no matter the value of the parameter.

uvim_resource_db_options

Provides a namespace for managing options for the resources DB facility. The only thing
allowed in this class is static local data members and static functions for manipulating
and retrieving the value of the data members. The static local data members represent
options and settings that control the behavior of the resources DB facility.

Summary

uvm_resource_db_options

Provides a namespace for managing options for the resources DB facility.

MEeTHODS
turn_on_tracing Turn tracing on for the resource database.
turn_off_tracing Turn tracing off for the resource database.
is_tracing Returns 1 if the tracing facility is on and O if it is off.

UVM 1.1 Class Reference 159

MEeTHODS

turn_on_tracing

static function void turn_on_tracing()

Turn tracing on for the resource database. This causes all reads and writes to the
database to display information about the accesses. Tracing is off by default.

This method is implicitly called by the +UVM_RESOURCE_DB_TRACE.

turn_off_tracing

static function void turn_off_tracing()

Turn tracing off for the resource database.

is_tracing
static function bit is_tracing()

Returns 1 if the tracing facility is on and O if it is off.

UVM 1.1 Class Reference 160

9.3 UVM Configuration Database

Contents

UVM Configuration
Database

Intro The uvm_config_db class provides a convenience
interface on top of the uvm_resource_db to simplify the
basic interface that is used for configuring
uvm_component instances.

uvm_config_db All of the functions in uvm_config_db#(T) are static, so
they must be called using the :: operator.

uvm_config_db_options Provides a namespace for managing options for the
configuration DB facility.

Intro

The uvm_config_db class provides a convenience interface on top of the
uvm_resource_db to simplify the basic interface that is used for configuring
uvm_component instances.

If the run-time +UVM_CONFIG_DB_TRACE command line option is specified, all
configuration DB accesses (read and write) are displayed.

uvm_config_db

All of the functions in uvm_config_db#(T) are static, so they must be called using the ::
operator. For example:

uvm config_db#(int)::set(this, "*", "A");

The parameter value “int” identifies the configuration type as an int property.

The set and get methods provide the same api and semantics as the set/get_config_*
functions in uvm_component.

Summary
uvm_config_db

All of the functions in uvm_config_db#(T) are static, so they must be called using
the :: operator.

UVM 1.1 Class Reference 161

CLass HIERARCHY

uvm_resource_db#(T)

uvm_config_db |

Crass DEcLARATION

class uvm confi g_db#(
type T
) extends uvm resource_db#(T)

MEeTHODS
get Get the value field_name in inst_name, using component
cntxt as the starting search point.
set Create a new or update an existing configuration setting for
field_name in inst_name from cntxt.
exists Check if a value for field_name is available in inst_name,
using component cntxt as the starting search point.
wait_modified Wait for a configuration setting to be set for field_name in
cntxt and inst_name.
MEeTHODS
get
static function bit get(uvm conponent cntxt,
string i nst narre
string field_nane,
T val ue

Get the value field_name in inst_name, using component cntxt as the starting search
point. inst_name is an explicit instance name relative to cntxt and may be an empty
string if the cntxt is the instance that the configuration object applies to. field_name is
the specific field in the scope that is being searched for.

The basic get_config_* methods from uvm_component are mapped to this function as:

get _config_int(...) => uvmconfig_db#(uvm bitst ream 1t)::get(centxt,...)
get _config_stri g§. .. g => uvm config_ db#gst rin get cnt xt,
get _config_object(...) => uvmconfig_db#(uvm o J ect get(cntxt)

set
static function void set(uvm.conponent cntxt,
string i nst_nane,
string field_nane,
T val ue)

Create a new or update an existing configuration setting for field_name in inst_name

UVM 1.1 Class Reference

162

from cntxt. The setting is made at cntxt, with the full name of cntxt added to the
inst_name. If cntxt is null then inst_name provides the complete scope information of
the setting. field_name is the target field. Both inst name and field_name may be glob
style or regular expression style expressions.

If a setting is made at build time, the cntxt hierarchy is used to determine the setting’s
precedence in the database. Settings from hierarchically higher levels have higher
precedence. Settings from the same level of hierarchy have a last setting wins
semantic. A precedence setting of uvm_resource_base::default_precedence is used for
uvm_top, and each hierarcical level below the top is decremented by 1.

After build time, all settings use the default precedence and thus have a last wins
semantic. So, if at run time, a low level component makes a runtime setting of some
field, that setting will have precedence over a setting from the test level that was made
earlier in the simulation.

The basic set_config_* methods from uvm_component are mapped to this function as:

set_config_int(...) => uvm.config_db#(uvm bi tstream 1t)::set(centxt,...)
set _config_strin gg. . g => uvm config_ db#gstrl n set(cnt xt
set_config_object(...) => uvmconfig_db#(uvm o jec set(cntxt)
exists
static function bit exists(uvmconponent cntxt,

stri ng i nst nama

string field nane,

bi t spel | _chk =)

Check if a value for field_name is available in inst_name, using component cntxt as the
starting search point. inst_name is an explicit instance name relative to cntxt and may
be an empty string if the cntxt is the instance that the configuration object applies to.
field_name is the specific field in the scope that is being searched for. The spell_chk arg
can be set to 1 to turn spell checking on if it is expected that the field should exist in
the database. The function returns 1 if a config parameter exists and 0 if it doesn’t
exist.

wait_modified

static task wait_nodified(uvm conponent cntxt,
strl ng I nst_nane,
string field _nane)

Wait for a configuration setting to be set for field_name in cntxt and inst_name. The
task blocks until a new configuration setting is applied that effects the specified field.

uvm_config_db_options

UVM 1.1 Class Reference 163

Provides a namespace for managing options for the configuration DB facility. The only
thing allowed in this class is static local data members and static functions for
manipulating and retrieving the value of the data members. The static local data
members represent options and settings that control the behavior of the configuration DB
facility.

Summary

uvm_config_db_options

Provides a namespace for managing options for the configuration DB facility.

MEeTHODS
turn_on_tracing Turn tracing on for the configuration database.
turn_off_tracing Turn tracing off for the configuration database.
is_tracing Returns 1 if the tracing facility is on and 0 if it is off.
METHODS

turn_on_tracing

static function void turn_on_tracing()

Turn tracing on for the configuration database. This causes all reads and writes to the
database to display information about the accesses. Tracing is off by default.

This method is implicitly called by the +UVM_CONFIG_DB_TRACE.

turn_off_tracing

static function void turn_off_tracing()

Turn tracing off for the configuration database.
is_tracing

static function bit is_tracing()

Returns 1 if the tracing facility is on and 0 if it is off.

UVM 1.1 Class Reference 164

10. Synchronization Classes

| rREVT

| uvm_event | | uvmn_barrier | | uurnJ:u"u:u:TI' |'I |u1.-'m_e'.rent_|:'.allback

The UVM provides event and barrier synchronization classes for managing concurrent
processes.

« uvm_event - UVM’s event class augments the SystemVerilog event datatype with
such services as setting callbacks and data delivery.

e uvm_barrier - A barrier is used to prevent a pre-configured number of processes
from continuing until all have reached a certain point in simulation.

¢ uvm_event_pool and uvm_barrier_pool - The event and barrier pool classes are
specializations of uvm_object_string_pool #(T) used to store collections of
uvm_events and uvm_barriers, respectively, indexed by string name. Each pool
class contains a static, “global” pool instance for sharing across all processes.

« uvm_event_callback - The event callback is used to create callback objects that
may be attached to uvm_events.

Summary

Synchronization Classes

UVM 1.1 Class Reference 165

10.1 uvm_event

The uvm_event class is a wrapper class around the SystemVerilog event construct. It
provides some additional services such as setting callbacks and maintaining the number

of waiters.

Summary

uvm_event

The uvm_event class is a wrapper class around the SystemVerilog event

construct.

Crass HierARCHY
uvm_void

uvm_object

uvm_event

Crass DEcLARATION

cl ass uvm event

MEeTHODS
new
wait_on
wait_off

wait_trigger
wait_ptrigger
wait_trigger_data

wait_ptrigger_data

trigger
get_trigger_data

get_trigger_time
is_on

is_off

reset
add_callback
delete_callback
cancel
get_num_waiters

MEeTHODS

ext ends uvm obj ect

Creates a new event object.

Waits for the event to be activated for the first time.
If the event has already triggered and is “on”, this task
waits for the event to be turned “off” via a call to
reset.

Waits for the event to be triggered.

Waits for a persistent trigger of the event.

This method calls wait_trigger followed by
get_trigger_data.

This method calls wait_ptrigger followed by
get_trigger_data.

Triggers the event, resuming all waiting processes.
Gets the data, if any, provided by the last call to
trigger.

Gets the time that this event was last triggered.
Indicates whether the event has been triggered since it
was last reset.

Indicates whether the event has been triggered or
been reset.

Resets the event to its off state.

Registers a callback object, cb, with this event.
Unregisters the given callback, cb, from this event.
Decrements the number of waiters on the event.
Returns the number of processes waiting on the event.

UVM 1.1 Class Reference

166

new

function new (string nane)

Creates a new event object.

wait_on
virtual task wait_on (bit delta)
Waits for the event to be activated for the first time.

If the event has already been triggered, this task returns immediately. If delta is set,
the caller will be forced to wait a single delta #0 before returning. This prevents the
caller from returning before previously waiting processes have had a chance to resume.

Once an event has been triggered, it will be remain “on” until the event is reset.

wait_off

virtual task wait_off (bit delta)

If the event has already triggered and is “on”, this task waits for the event to be turned
“off” via a call to reset.

If the event has not already been triggered, this task returns immediately. If delta is
set, the caller will be forced to wait a single delta #0 before returning. This prevents the
caller from returning before previously waiting processes have had a chance to resume.

wait_trigger
virtual task wait_trigger ()

Waits for the event to be triggered.

If one process calls wait_trigger in the same delta as another process calls trigger, a race
condition occurs. If the call to wait occurs before the trigger, this method will return in
this delta. If the wait occurs after the trigger, this method will not return until the next
trigger, which may never occur and thus cause deadlock.

wait_ptrigger
virtual task wait_ptrigger ()
Waits for a persistent trigger of the event. Unlike wait_trigger, this views the trigger as

persistent within a given time-slice and thus avoids certain race conditions. If this
method is called after the trigger but within the same time-slice, the caller returns

UVM 1.1 Class Reference 167

immediately.

wait_trigger_data
virtual task wait_trigger_data (output uvm object data)

This method calls wait_trigger followed by get_trigger_data.

wait_ptrigger_data
virtual task wait_ptrigger_data (output uvm object data)

This method calls wait_ptrigger followed by get_trigger_data.

trigger

virtual function void trigger (uvmobject data = null)

Triggers the event, resuming all waiting processes.

An optional data argument can be supplied with the enable to provide trigger-specific
information.

get_trigger_data

virtual function uvmobject get _trigger_data ()

Gets the data, if any, provided by the last call to trigger.

get_trigger_time
virtual function tinme get_trigger_time ()

Gets the time that this event was last triggered. If the event has not been triggered, or
the event has been reset, then the trigger time will be 0.

is_on
virtual function bit is_on ()

Indicates whether the event has been triggered since it was last reset.

A return of 1 indicates that the event has triggered.

UVM 1.1 Class Reference 168

is_ off

virtual function bit is_off ()

Indicates whether the event has been triggered or been reset.

A return of 1 indicates that the event has not been triggered.

reset

virtual function void reset (bit wakeup)

Resets the event to its off state. If wakeup is set, then all processes currently waiting
for the event are activated before the reset.

No callbacks are called during a reset.

add_callback

virtual function void add_callback (uvm event_cal |l back cb,
bi t append)

Registers a callback object, cb, with this event. The callback object may include

pre_trigger and post_trigger functionality. If append is set to 1, the default, cb is added
to the back of the callback list. Otherwise, cb is placed at the front of the callback list.

delete_callback

virtual function void delete_callback (uvmevent call back cb)

Unregisters the given callback, cb, from this event.

cancel

virtual function void cancel ()

Decrements the number of waiters on the event.

This is used if a process that is waiting on an event is disabled or activated by some
other means.

get_num_waiters

virtual function int get_numwaiters ()

Returns the number of processes waiting on the event.

UVM 1.1 Class Reference 169

10.2 uvm_event_callback

The uvm_event_callback class is an abstract class that is used to create callback objects
which may be attached to uvm_events. To use, you derive a new class and override any
or both pre_trigger and post_trigger.

Callbacks are an alternative to using processes that wait on events. When a callback is
attached to an event, that callback object’s callback function is called each time the

event is triggered.

Summary

uvm_event_callback

The uvm_event_callback class is an abstract class that is used to create callback
objects which may be attached to uvm_events.

Crass HierARCHY
uvm_void

uvm_object

uvm_event_callback

CLass DECLARATION
virtual class uvm event call back extends uvm obj ect

METHODS
new Creates a new callback object.
pre_trigger This callback is called just before triggering the associated
event.

post_trigger This callback is called after triggering the associated event.
MEeTHODS
new

function new (string nane = "")

Creates a new callback object.

pre_trigger

virtual function bit pre_trigger (uvmevent e,
uvm obj ect data = null)

UVM 1.1 Class Reference 170

This callback is called just before triggering the associated event. In a derived class,
override this method to implement any pre-trigger functionality.

If your callback returns 1, then the event will not trigger and the post-trigger callback is
not called. This provides a way for a callback to prevent the event from triggering.

In the function, e is the uvm_event that is being triggered, and data is the optional data
associated with the event trigger.

post_trigger

virtual function void post_trigger (uvmevent e,
uvm obj ect data)

This callback is called after triggering the associated event. In a derived class, override
this method to implement any post-trigger functionality.

In the function, e is the uvm_event that is being triggered, and data is the optional data
associated with the event trigger.

UVM 1.1 Class Reference 171

10.3 uvm_barrier

The uvm_barrier class provides a multiprocess synchronization mechanism. It enables a
set of processes to block until the desired number of processes get to the
synchronization point, at which time all of the processes are released.

Summary

uvm_barrier

The uvm_barrier class provides a multiprocess synchronization mechanism.

Crass HierARCHY
uvm_void

uvm_object

uvm_barrier

Crass DEecLARATION
class uvm barri

MEeTHODS

new
wait_for

reset
set_auto_reset

set_threshold
get_threshold
get_num_waiters

cancel

METHODS

er extends uvm obj ect

Creates a new barrier object.

Waits for enough processes to reach the barrier before
continuing.

Resets the barrier.

Determines if the barrier should reset itself after the
threshold is reached.

Sets the process threshold.

Gets the current threshold setting for the barrier.
Returns the number of processes currently waiting at the
barrier.

Decrements the waiter count by one.

new

function new (string nane
i nt t hreshol d

Creates a new barrier object.

wait_for

virtual task wait_for()

UVM 1.1 Class Reference

11l
o :
~

172

Waits for enough processes to reach the barrier before continuing.

The number of processes to wait for is set by the set_threshold method.

reset

virtual function void reset (bit wakeup)

Resets the barrier. This sets the waiter count back to zero.

The threshold is unchanged. After reset, the barrier will force processes to wait for the
threshold again.

If the wakeup bit is set, any currently waiting processes will be activated.

set_auto_reset

virtual function void set_auto_reset (bit value)

Determines if the barrier should reset itself after the threshold is reached.

The default is on, so when a barrier hits its threshold it will reset, and new processes will
block until the threshold is reached again.

If auto reset is off, then once the threshold is achieved, new processes pass through
without being blocked until the barrier is reset.

set_threshold

virtual function void set_threshold (int threshold)

Sets the process threshold.

This determines how many processes must be waiting on the barrier before the
processes may proceed.

Once the threshold is reached, all waiting processes are activated.

If threshold is set to a value less than the number of currently waiting processes, then
the barrier is reset and waiting processes are activated.

get_threshold

virtual function int get_threshold ()

Gets the current threshold setting for the barrier.

UVM 1.1 Class Reference 173

get_num_waiters

virtual function int get_numwaiters ()

Returns the number of processes currently waiting at the barrier.

cancel

virtual function void cancel ()

Decrements the waiter count by one. This is used when a process that is waiting on the
barrier is killed or activated by some other means.

UVM 1.1 Class Reference 174

10.4 Objection Mechanism

The following classes define the objection mechanism and end-of-test functionality, which
is based on uvm_objection.

Contents

Objection Mechanism The following classes define the objection mechanism
and end-of-test functionality, which is based on
uvm_objection.

uvm_objection Objections provide a facility for coordinating status
information between two or more participating
components, objects, and even module-based IP.

uvm_callbacks_objection The uvm_callbacks_objection is a specialized
uvm_objection which contains callbacks for the raised
and dropped events.

uvm_objection_callback The uvm_objection is the callback type that defines the
callback implementations for an objection callback.

uvm_objection

Objections provide a facility for coordinating status information between two or more
participating components, objects, and even module-based IP.

Tracing of objection activity can be turned on to follow the activity of the objection
mechanism. It may be turned on for a specific objection instance with
uvm_objection::trace_mode, or it can be set for all objections from the command line
using the option +UVM_OBJECTION_TRACE.

Summary

uvm_objection

Objections provide a facility for coordinating status information between two or
more participating components, objects, and even module-based IP.

Crass HierARCHY
uvm_void
uvm_object

uvm_report_object

uvm_objection

CLASS DECLARATION
cl ass uvm obj ecti on extends uvmreport _object

UVM 1.1 Class Reference 175

clear

vi rtual

Immediately clears the objection state. All counts are cleared and any processes that
called wait_for(UVM_ALL_DROPPED,uvm_top) are released. The caller should pass 'this' to

clear
new
trace_mode

OBiectioNn ConTROL
m_set_hier_mode
raise_objection
drop_objection

set_drain_time
CaLLeack Hooks
raised

dropped

all_dropped

OBJECTION STATUS
get_objectors

wait_for
get_objection_count
get_objection_total
get_drain_time

display_objections

Immediately clears the objection state.
Creates a new objection instance.
Set or get the trace mode for the objection object.

Hierarchical mode only needs to be set for
intermediate components, not for uvm_root or a leaf
component.

Raises the number of objections for the source object
by count, which defaults to 1.

Drops the number of objections for the source object
by count, which defaults to 1.

Sets the drain time on the given object to drain.

Objection callback that is called when a
raise_objection has reached obj.

Objection callback that is called when a
drop_objection has reached obj.

Objection callback that is called when a
drop_objection has reached obj, and the total count
for obj goes to zero.

Returns the current list of objecting objects (objects
that raised an objection but have not dropped it).
Waits for the raised, dropped, or all_dropped event to
occur in the given obj.

Returns the current number of objections raised by
the given object.

Returns the current number of objections raised by
the given object and all descendants.

Returns the current drain time set for the given object
(default: 0 ns).

Displays objection information about the given object.

function void clear(uvm object obj)

the obj argument for record keeping. Any configured drain times are not affected.

new

function new(string name

)

Creates a new objection instance. Accesses the command line argument
+UVM_OBJECTION_TRACE to turn tracing on for all objection objects.

trace_mode

function bit trace_node (int node)

UVM 1.1 Class Reference

176

aerickso
Typewritten Text

aerickso
Typewritten Text
the obj argument for record keeping. Any configured drain times are not affected.

aerickso
Typewritten Text

aerickso
Typewritten Text

aerickso
Typewritten Text

aerickso
Typewritten Text

aerickso
Typewritten Text

aerickso
Typewritten Text

aerickso
Typewritten Text

aerickso
Typewritten Text

aerickso
Typewritten Text

aerickso
Typewritten Text

aerickso
Typewritten Text

aerickso
Typewritten Text

aerickso
Typewritten Text

aerickso
Typewritten Text

Set or get the trace mode for the objection object. If no argument is specified (or an
argument other than 0 or 1) the current trace mode is unaffected. A trace_mode of 0
turns tracing off. A trace mode of 1 turns tracing on. The return value is the mode prior
to being reset.

OBiectioNn ConTROL

m_set_hier_mode
function void mset_hier_npde (uvm.object obj)

Hierarchical mode only needs to be set for intermediate components, not for uvm_root or
a leaf component.

raise_objection

virtual function void raise_objection (uvmobject obj =
string descri ption
i nt count)

Raises the number of objections for the source object by count, which defaults to 1. The
object is usually the this handle of the caller. If object is not specified or null, the
implicit top-level component, uvm_root, is chosen.

Rasing an objection causes the following.

* The source and total objection counts for object are increased by count.
description is a string that marks a specific objection and is used in tracing/debug.

* The objection’s raised virtual method is called, which calls the
uvm_component::raised method for all of the components up the hierarchy.

drop_objection

virtual function void drop_objection (uvmobject obj
string descri ption
i nt count)

Drops the number of objections for the source object by count, which defaults to 1. The
object is usually the this handle of the caller. If object is not specified or null, the
implicit top-level component, uvm_root, is chosen.

Dropping an objection causes the following.

*« The source and total objection counts for object are decreased by count. It is an
error to drop the objection count for object below zero.

* The objection’s dropped virtual method is called, which calls the
uvm_component::dropped method for all of the components up the hierarchy.

« If the total objection count has not reached zero for object, then the drop is

UVM 1.1 Class Reference 177

propagated up the object hierarchy as with raise_objection. Then, each object in
the hierarchy will have updated their source counts--objections that they
originated--and total counts--the total number of objections by them and all their
descendants.

If the total objection count reaches zero, propagation up the hierarchy is deferred until a
configurable drain-time has passed and the uvm_component::all_dropped callback for
the current hierarchy level has returned. The following process occurs for each instance
up the hierarchy from the source caller:

A process is forked in a non-blocking fashion, allowing the drop call to return. The
forked process then does the following:

« If a drain time was set for the given object, the process waits for that amount of
time.

* The objection’s all_dropped virtual method is called, which calls the
uvm_component::all_dropped method (if object is a component).

* The process then waits for the all_dropped callback to complete.

+ After the drain time has elapsed and all_dropped callback has completed,
propagation of the dropped objection to the parent proceeds as described in
raise_objection, except as described below.

If a new objection for this object or any of its descendents is raised during the drain
time or during execution of the all_dropped callback at any point, the hierarchical chain
described above is terminated and the dropped callback does not go up the hierarchy.
The raised objection will propagate up the hierarchy, but the number of raised
propagated up is reduced by the number of drops that were pending waiting for the
all_dropped/drain time completion. Thus, if exactly one objection caused the count to go
to zero, and during the drain exactly one new objection comes in, no raises or drops are
propagted up the hierarchy,

As an optimization, if the object has no set drain-time and no registered callbacks, the
forked process can be skipped and propagation proceeds immediately to the parent as
described.

set_drain_time
Sets the drain time on the given object to drain.

The drain time is the amount of time to wait once all objections have been dropped
before calling the all_dropped callback and propagating the objection to the parent.

If a new objection for this object or any of its descendents is raised during the drain
time or during execution of the all_dropped callbacks, the drain_time/all_dropped
execution is terminated.

CaLLBack Hooks

raised

UVM 1.1 Class Reference 178

virtual function void raised (uvmobject obj,
uvm obj ect source_obj,
string descri ption,
i nt count

Objection callback that is called when a raise_objection has reached obj. The default
implementation calls uvm_component::raised.

dropped

virtual function void dropped (uvm object obj,)
uvm obj ect source_obj,
string descri pti on,
i nt count)

Objection callback that is called when a drop_objection has reached obj. The default
implementation calls uvm_component::dropped.

all_dropped

virtual task all_dropped (uvm object obj,)
uvm obj ect source_obj,
string descri ption,
i nt count)

Objection callback that is called when a drop_objection has reached obj, and the total

count for obj goes to zero. This callback is executed after the drain time associated with
obj. The default implementation calls uvm_component::all_dropped.

OBJECTION STATUS

get_objectors

function void get_objectors(ref uvmobject list[$])

Returns the current list of objecting objects (objects that raised an objection but have
not dropped it).

wait_for

task wait_for(uvmobjection_event objt_event,
uvm obj ect obj = null)

Waits for the raised, dropped, or all_dropped event to occur in the given obj. The task
returns after all corresponding callbacks for that event have been executed.

UVM 1.1 Class Reference 179

get_objection_count

function int get_objection_count (uvmobject obj = null)

Returns the current number of objections raised by the given object.

get_objection_total

function int get_objection_total (uvm.object obj = null)

Returns the current number of objections raised by the given object and all descendants.

get_drain_time
function tinme get_drain_tine (uvm.object obj = null)

Returns the current drain time set for the given object (default: 0 ns).

display_objections

nul |,

function void display_objections(gym_obj ect obj !

it show_header

Displays objection information about the given object. If object is not specified or null,
the implicit top-level component, uvm_root, is chosen. The show_header argument
allows control of whether a header is output.

uvm_callbacks_objection

The uvm_callbacks_objection is a specialized uvm_objection which contains callbacks for
the raised and dropped events. Callbacks happend for the three standard callback
activities, raised, dropped, and all_dropped.

The uvm_heartbeat mechanism use objections of this type for creating heartbeat

conditions. Whenever the objection is raised or dropped, the component which did the
raise/drop is considered to be alive.

Summary

uvm_callbacks_objection

The uvm_callbacks_objection is a specialized uvm_objection which contains
callbacks for the raised and dropped events.

Crass HierARCHY

UVM 1.1 Class Reference 180

uvm_void
uvm_object
uvm_report_object

uvm_objection

uvm_callbacks_objection

CLass DEecLARATION
cl ass uvm cal | backs_obj ecti on extends uvm objection

MEeTHODS
raised Executes the uvm_objection_callback::raised method in the
user callback class whenever this objection is raised at the
object obj.
dropped Executes the uvm_objection_callback: :dropped method in the
user callback class whenever this objection is dropped at the
object obj.
all_dropped Executes the uvm_objection_callback::all_dropped task in the
user callback class whenever the objection count for this
objection in reference to obj goes to zero.
MEeTHODS
raised

virtual function void raised (uvmobject obj,
uvm obj ect source_obj,
string descri ption,
i nt count)

Executes the uvm_objection_callback::raised method in the user callback class whenever
this objection is raised at the object obj.

dropped

virtual function void dropped (uvm object obj,)
uvm obj ect source_obj,
string descri pti on,
i nt count

Executes the uvm_objection_callback::dropped method in the user callback class
whenever this objection is dropped at the object obj.

all_dropped

virtual task all_dropped (uvm object obj,)
uvm obj ect source_obj,

UVM 1.1 Class Reference 181

string descri ption,
i nt count

Executes the uvm_objection_callback::all_dropped task in the user callback class
whenever the objection count for this objection in reference to obj goes to zero.

uvm_objection_callback

The uvm_objection is the callback type that defines the callback implementations for an
objection callback. A user uses the callback type uvm_objection_cbs_t to add callbacks
to specific objections.

For example

class ny_objection_cb extends uvm objection_call back;
function new(stri ng name) ;
super. new nane) ;
endf uncti on

virtual function void raised (uvmobjection objection, uvmobject obj,
uvm obj ect source_obj, string description, int count)
$di spl_ay(o%0t: bjection %: Raised for %", $tine,
obj ecti on get name
.get _ ful'l _nane());
endf unct i on
endcl ass
initial begin
ny_ ob{)ectlon cb cb = new("ch");]
uvm objection_cbs_t::add(null, cb); //typew de call back

Summary

uvm_objection_callback

The uvm_objection is the callback type that defines the callback implementations
for an objection callback.

Crass HieErRARCHY
uvm_void
uvm_object

uvm__callback

uvm_objection_callback

CLass DEecLARATION

cl ass uvm obj ection_cal | back extends uvm cal | back

MEeTHODS
raised Objection raised callback function.
dropped Objection dropped callback function.

UVM 1.1 Class Reference 182

all_dropped Objection all_dropped callback function.

METHODS
raised
virtual function void raised (uvm objection objection,
uvm obj ect obj ,)
uvm obj ect source_obj,
string descri ption,
i nt count

Objection raised callback function. Called by uvm_callbacks_objection::raised.

dropped
virtual function void dropped (uvm objection objection,
uvm obj ect obj ,)
uvm obj ect sour ce_obj,
string descri pti on,
i nt count

Objection dropped callback function. Called by uvm_callbacks_objection::dropped.

all_dropped

virtual task all_dropped (uvm objection objection,

uvm obj ect obj ,)
uvm obj ect sour ce_obj,
string descri pti on,
i nt count

Objection all_dropped callback function. Called by uvm_callbacks_objection::all_dropped.

UVM 1.1 Class Reference 183

10.5 uvm__heartbeat

Heartbeats provide a way for environments to easily ensure that their descendants are
alive. A uvm_heartbeat is associated with a specific objection object. A component that
is being tracked by the heartbeat object must raise (or drop) the synchronizing objection
during the heartbeat window. The synchronizing objection must be a
uvm_callbacks_objection type.

The uvm_heartbeat object has a list of participating objects. The heartbeat can be
configured so that all components (UVM_ALL_ACTIVE), exactly one (UVYM_ONE_ACTIVE),
or any component (UVM_ANY_ACTIVE) must trigger the objection in order to satisfy the
heartbeat condition.

Summary

uvm_heartbeat

Heartbeats provide a way for environments to easily ensure that their
descendants are alive.

MEeTHODS
new Creates a new heartbeat instance associated with cntxt.
set_mode Sets or retrieves the heartbeat mode.
set_heartbeat Sets up the heartbeat event and assigns a list of objects to
watch.
add Add a single component to the set of components to be
monitored.
remove Remove a single component to the set of components being
monitored.
start Starts the heartbeat monitor.
stop Stops the heartbeat monitor.
METHODS
new
function newstring nane,
uvm_conPonent) . cntxt,
uvm cal | backs_obj ecti on objection = null)

Creates a new heartbeat instance associated with cntxt. The context is the hierarchical
location that the heartbeat objections will flow through and be monitored at. The
objection associated with the heartbeat is optional, if it is left null but it must be set
before the heartbeat monitor will activate.

U\k;_m_ca! | backs_obj ecti on nyobjection = new("nyobjection"); //some shared
obj ection
class nyenv extends uvm env;

UVM 1.1 Class Reference 184

uvm heartbeat hb = new("hb", this, myobjection);

endcl ass

set_mode

function uvm heartbeat nodes set node (
uvm heart beat nodes™ node

Sets or retrieves the heartbeat mode. The current value for the heartbeat mode is
returned. If an argument is specified to change the mode then the mode is changed to
the new value.

set_heartbeat

function void set_heartbeat (uvm event e,
uvm conponent conps[$])

Sets up the heartbeat event and assigns a list of objects to watch. The monitoring is
started as soon as this method is called. Once the monitoring has been started with a
specific event, providing a new monitor event results in an error. To change trigger
events, you must first stop the monitor and then start with a new event trigger.

If the trigger event e is null and there was no previously set trigger event, then the
monitoring is not started. Monitoring can be started by explicitly calling start.

add

function void add (uvm conponent conp)
Add a single component to the set of components to be monitored. This does not cause
monitoring to be started. If monitoring is currently active then this component will be

immediately added to the list of components and will be expected to participate in the
currently active event window.

remove

function void renpbve (uvm conponent conp)

Remove a single component to the set of components being monitored. Monitoring is not
stopped, even if the last component has been removed (an explicit stop is required).

start

function void start (uvm.event e)

UVM 1.1 Class Reference 185

Starts the heartbeat monitor. If e is null then whatever event was previously set is
used. If no event was previously set then a warning is issued. It is an error if the
monitor is currently running and e is specifying a different trigger event from the current
event.

stop

function void stop ()

Stops the heartbeat monitor. Current state information is reset so that if start is called
again the process will wait for the first event trigger to start the monitoring.

UVM 1.1 Class Reference 186

10.6 Callbacks Classes

This section defines the classes used for callback registration, management, and user-
defined callbacks.

Contents
Callbacks This section defines the classes used for callback registration,
Classes management, and user-defined callbacks.
uvm_ callbacks The uvm_callbacks class provides a base class for
#(T,CB) implementing callbacks, which are typically used to modify or

augment component behavior without changing the
component class.
uvm_callback_iter The uvm_callback_iter class is an iterator class for iterating
over callback queues of a specific callback type.
uvm_callback The uvm_callback class is the base class for user-defined
callback classes.

uvm_callbacks #(T,CB)

The uvm_callbacks class provides a base class for implementing callbacks, which are
typically used to modify or augment component behavior without changing the
component class. To work effectively, the developer of the component class defines a set
of “hook” methods that enable users to customize certain behaviors of the component in
a manner that is controlled by the component developer. The integrity of the
component’s overall behavior is intact, while still allowing certain customizable actions by
the user.

To enable compile-time type-safety, the class is parameterized on both the user-defined
callback interface implementation as well as the object type associated with the callback.
The object type-callback type pair are associated together using the "uvm_register_cb
macro to define a valid pairing; valid pairings are checked when a user attempts to add a
callback to an object.

To provide the most flexibility for end-user customization and reuse, it is recommended
that the component developer also define a corresponding set of virtual method hooks in
the component itself. This affords users the ability to customize via inheritance/factory
overrides as well as callback object registration. The implementation of each virtual
method would provide the default traversal algorithm for the particular callback being
called. Being virtual, users can define subtypes that override the default algorithm,
perform tasks before and/or after calling super.<method> to execute any registered
callbacks, or to not call the base implementation, effectively disabling that particalar
hook. A demonstration of this methodology is provided in an example included in the kit.

Summary

UVM 1.1 Class Reference 187

uvm_callbacks #(T,CB)

The uvm_callbacks class provides a base class for implementing callbacks, which
are typically used to modify or augment component behavior without changing
the component class.

CLass HIERARCHY

uvm_typed_callbacks#(T)
uvm_callbacks#(T,CB) |

Crass DEcLARATION
class uvm cal | backs #(

type T
type CB
) extends uvm typed cal | backs#(T)
T This type parameter specifies the base object type with
which the CB callback objects will be registered.
CB This type parameter specifies the base callback type that
will be managed by this callback class.
ApD / DELETE
INTEFACE
add Registers the given callback object, cb, with the given obj
handle.
add_by_name Registers the given callback object, cb, with one or more
uvm_components.
delete Deletes the given callback object, cb, from the queue
associated with the given obj handle.
delete_by_name Removes the given callback object, cb, associated with

one or more uvm_component callback queues.

ITeraTOR INTERFACE This set of functions provide an iterator interface for
callback queues.

get_first Returns the first enabled callback of type CB which
resides in the queue for obj.

get_last Returns the last enabled callback of type CB which
resides in the queue for obj.

get_next Returns the next enabled callback of type CB which
resides in the queue for obj, using itr as the starting
point.

get_prev Returns the previous enabled callback of type CB which
resides in the queue for obj, using itr as the starting
point.

DeBuc
display This function displays callback information for obj.

T

This type parameter specifies the base object type with which the CB callback objects will
be registered. This object must be a derivative of uvm_object.

CB

UVM 1.1 Class Reference 188

This type parameter specifies the base callback type that will be managed by this
callback class. The callback type is typically a interface class, which defines one or more
virtual method prototypes that users can override in subtypes. This type must be a
derivative of uvm_callback.

ADD/ DELETE INTEFACE

add
static function void add(T obj ,
uvm cal | back cb,
uvm appr epend ordering)

Registers the given callback object, cb, with the given obj handle. The obj handle can be
null, which allows registration of callbacks without an object context. If ordreing is
UVM_APPEND (default), the callback will be executed after previously added callbacks,
else the callback will be executed ahead of previously added callbacks. The cb is the
callback handle; it must be non-null, and if the callback has already been added to the
object instance then a warning is issued. Note that the CB parameter is optional. For
example, the following are equivalent:

. cb);

uvm cal | backs# co ::add(co ;
1 érry_) (I lgp_)::add(conp_a, ch);

a
uvm cal | backs#(ny_conp, ny_ca ack

add_by_name

static function void add_by nane(string nane,
uvm cal | back cb,
uvm comnponent root,
uvm apprepend ordering)

Registers the given callback object, cb, with one or more uvm_components. The
components must already exist and must be type T or a derivative. As with add the CB
parameter is optional. root specifies the location in the component hierarchy to start the
search for name. See uvm_root::find_all for more details on searching by name.

delete

static function void delete(T obj ,
uvm cal | back cb)

Deletes the given callback object, cb, from the queue associated with the given obj
handle. The obj handle can be null, which allows de-registration of callbacks without an
object context. The cb is the callback handle; it must be non-null, and if the callback
has already been removed from the object instance then a warning is issued. Note that
the CB parameter is optional. For example, the following are equivalent:

UVM 1.1 Class Reference 189

uvm cal | backs#(my_conp)::delete(co _a,
uvm cal | backs#(ny_conp, my_call back del et e(corrp a, cb);

delete_by name

static function void delete_by name(string nane,
uvm cal | back cb,
uvm _conponent root)

Removes the given callback object, cb, associated with one or more uvm_component
callback queues. As with delete the CB parameter is optional. root specifies the location
in the component hierarchy to start the search for name. See uvm_root::find_all for
more details on searching by name.

ITERATOR INTERFACE

This set of functions provide an iterator interface for callback queues. A facade class,
uvm_callback_iter is also available, and is the generally preferred way to iterate over
callback queues.

get_first

static function CB get _first (ref int itr,
input T obj)

Returns the first enabled callback of type CB which resides in the queue for obj. If obj is
null then the typewide queue for T is searched. itr is the iterator; it will be updated with
a value that can be supplied to get_next to get the next callback object.

If the queue is empty then null is returned.

The iterator class uvm_callback_iter may be used as an alternative, simplified, iterator
interface.

get_last

static function CB get_last (ref int itr,
input T obj)

Returns the last enabled callback of type CB which resides in the queue for obj. If objis
null then the typewide queue for T is searched. itr is the iterator; it will be updated with
a value that can be supplied to get_prev to get the previous callback object.

If the queue is empty then null is returned.

The iterator class uvm_callback_iter may be used as an alternative, simplified, iterator

UVM 1.1 Class Reference 190

interface.

get_next

static function CB get_next (ref int itr,
input T obj)

Returns the next enabled callback of type CB which resides in the queue for obj, using itr
as the starting point. If obj is null then the typewide queue for T is searched. itr is the

iterator; it will be updated with a value that can be supplied to get_next to get the next

callback object.

If no more callbacks exist in the queue, then null is returned. get_next will continue to
return null in this case until get_first or get_last has been used to reset the iterator.

The iterator class uvm_callback_iter may be used as an alternative, simplified, iterator
interface.

get_prev

static function CB get_prev (ref int itr,
input T obj)

Returns the previous enabled callback of type CB which resides in the queue for obj,
using itr as the starting point. If obj is null then the typewide queue for T is searched.
itr is the iterator; it will be updated with a value that can be supplied to get_prev to get
the previous callback object.

If no more callbacks exist in the queue, then null is returned. get_prev will continue to
return null in this case until get_first or get_last has been used to reset the iterator.

The iterator class uvm_callback_iter may be used as an alternative, simplified, iterator
interface.

DEeBuG

display
static function void display(T obj = null)

This function displays callback information for obj. If obj is null, then it displays callback
information for all objects of type T, including typewide callbacks.

uvm_callback_iter

UVM 1.1 Class Reference 191

The uvm_callback_iter class is an iterator class for iterating over callback queues of a
specific callback type. The typical usage of the class is:

uvm cal | back_iter# conp, mycbh) iter = new(this);
for(nych cb = iter(.?}i/rsrtr%)r;wcb) I'= null; (\:Aé = i%er.next())
ch. dosonet hi ng();

The callback iteration macros, "uvm_do_callbacks and "uvm_do_callbacks_exit_on
provide a simple method for iterating callbacks and executing the callback methods.

Summary

uvm_callback_iter

The uvm_callback_iter class is an iterator class for iterating over callback queues
of a specific callback type.

CLass DECLARATION
class uvmcal l back_iter#(type T

type CB)
METHODS

new Creates a new callback iterator object.

first Returns the first valid (enabled) callback of the callback type (or a
derivative) that is in the queue of the context object.

last Returns the last valid (enabled) callback of the callback type (or a
derivative) that is in the queue of the context object.

next Returns the next valid (enabled) callback of the callback type (or a
derivative) that is in the queue of the context object.

prev Returns the previous valid (enabled) callback of the callback type
(or a derivative) that is in the queue of the context object.

get_cb Returns the last callback accessed via a first() or next() call.

MEeTHODS

new

function newm(T obj)

Creates a new callback iterator object. It is required that the object context be provided.

first

function CB first()

Returns the first valid (enabled) callback of the callback type (or a derivative) that is in
the queue of the context object. If the queue is empty then null is returned.

UVM 1.1 Class Reference 192

last

function CB | ast()

Returns the last valid (enabled) callback of the callback type (or a derivative) that is in
the queue of the context object. If the queue is empty then null is returned.

next

function CB next()

Returns the next valid (enabled) callback of the callback type (or a derivative) that is in
the queue of the context object. If there are no more valid callbacks in the queue, then
null is returned.

prev

function CB prev()
Returns the previous valid (enabled) callback of the callback type (or a derivative) that is

in the queue of the context object. If there are no more valid callbacks in the queue,
then null is returned.

get_cb

function CB get_cb()

Returns the last callback accessed via a first() or next() call.

The uvm_callback class is the base class for user-defined callback classes. Typically, the
component developer defines an application-specific callback class that extends from this
class. In it, he defines one or more virtual methods, called a callback interface, that
represent the hooks available for user override.

Methods intended for optional override should not be declared pure. Usually, all the
callback methods are defined with empty implementations so users have the option of
overriding any or all of them.

The prototypes for each hook method are completely application specific with no
restrictions.

UVM 1.1 Class Reference 193

Summary

uvm_callback

The uvm_callback class is the base class for user-defined callback classes.
Crass HieraARCHY
uvm_void

uvm_object

uvm_callback

CLASS DECLARATION
cl ass uvm cal | back extends uvm obj ect

MEeTHODS
new Creates a new uvm_callback object, giving it an optional
name.
callback_mode Enable/disable callbacks (modeled like rand_mode and
constraint_mode).
is_enabled Returns 1 if the callback is enabled, 0 otherwise.
get_type_name Returns the type name of this callback object.
MEeTHODS
new
function newstring nanme = "uvm cal | back™)

Creates a new uvm_callback object, giving it an optional name.

callback_mode

function bit callback_node(int on = -1)

Enable/disable callbacks (modeled like rand_mode and constraint_mode).

is_enabled

function bit is_enabled()

Returns 1 if the callback is enabled, 0 otherwise.

get_type_name

UVM 1.1 Class Reference

194

virtual function string get_type_name()

Returns the type name of this callback object.

UVM 1.1 Class Reference 195

11. Container Classes

The container classes are type parameterized datastructures. The uvm_queue #(T) class
implements a queue datastructure similar to the SystemVerilog queue construct. And
the uvm_pool #(KEY,T) class implements a pool datastructure similar to the
SystemVerilog associative array. The class based datastructures allow the objects to be
shared by reference; for example, a copy of a uvm_pool #(KEY,T) object will copy just
the class handle instead of the entire associative array.

Summary

Container Classes

The container classes are type parameterized datastructures.

UVM 1.1 Class Reference 196

11.1 Pool Classes

This section defines the uvm_pool #(KEY, T) class and derivative.

Contents
Pool Classes This section defines the uvm_pool #(KEY, T) class and
derivative.
uvm_pool #(KEY,T) Implements a class-based dynamic associative array.
uvm_object_string_pool This provides a specialization of the generic uvm_pool
#(T) #(KEY,T) class for an associative array of uvm_object-

based objects indexed by string.

uvm_pool #(KEY,T)

Implements a class-based dynamic associative array. Allows sparse arrays to be
allocated on demand, and passed and stored by reference.

Summary

uvm_pool #(KEY,T)

Implements a class-based dynamic associative array.
CLass HierarcHy
uvm_void
uvm_object

uvm_pool#(KEY,T) |

Crass DEcLARATION

class uvm pool #(type KEY = int,
T

uvm voi d) extends uvm obj ect

METHODS

new Creates a new pool with the given name.

get_global_pool Returns the singleton global pool for the item type, T.

get_global Returns the specified item instance from the global item
pool.

get Returns the item with the given key.

add Adds the given (key, item) pair to the pool.

num Returns the number of uniquely keyed items stored in the
pool.

delete Removes the item with the given key from the pool.

exists Returns 1 if a item with the given key exists in the pool, 0
otherwise.

first Returns the key of the first item stored in the pool.

UVM 1.1 Class Reference

197

last Returns the key of the last item stored in the pool.

next Returns the key of the next item in the pool.
prev Returns the key of the previous item in the pool.
MEeTHODS
new
function new (string nane)

Creates a new pool with the given name.

get_global_pool

static function this_type get_global _pool ()

Returns the singleton global pool for the item type, T.

This allows items to be shared amongst components throughout the verification
environment.

get_global

static function T get_global (KEY key)

Returns the specified item instance from the global item pool.

get

virtual function T get (KEY key)

Returns the item with the given key.

If no item exists by that key, a new item is created with that key and returned.

add

virtual function void add (KEY key,
T item)

Adds the given (key, item) pair to the pool. If an item already exists at the given key it
is overwritten with the new item.

UVM 1.1 Class Reference 198

num

virtual function int num ()

Returns the number of uniquely keyed items stored in the pool.

delete

virtual function void delete (KEY key)

Removes the item with the given key from the pool.

exists

virtual function int exists (KEY key)

Returns 1 if a item with the given key exists in the pool, 0 otherwise.

first

virtual function int first (KEY key)

Returns the key of the first item stored in the pool.
If the pool is empty, then key is unchanged and 0 is returned.

If the pool is not empty, then key is key of the first item and 1 is returned.

last

virtual function int last (KEY key)

Returns the key of the last item stored in the pool.
If the pool is empty, then 0 is returned and key is unchanged.

If the pool is not empty, then key is set to the last key in the pool and 1 is returned.

next

virtual function int next (KEY key)

Returns the key of the next item in the pool.

If the input key is the last key in the pool, then key is left unchanged and 0 is returned.

UVM 1.1 Class Reference 199

If a next key is found, then key is updated with that key and 1 is returned.

prev
virtual function int prev (ref KEY key)
Returns the key of the previous item in the pool.
If the input key is the first key in the pool, then key is left unchanged and 0 is returned.

If a previous key is found, then key is updated with that key and 1 is returned.

uvm_object_string_pool #(T)

This provides a specialization of the generic uvm_pool #(KEY,T) class for an associative
array of uvm_object-based objects indexed by string. Specializations of this class include
the uvm_event pool (a uvm_object_string_pool storing uvm_events) and
uvm_barrier_pool (a uvm_obejct_string_pool storing uvm_barriers).

Summary

uvm_object_string_pool #(T)

This provides a specialization of the generic uvm_pool #(KEY,T) class for an
associative array of uvm_object-based objects indexed by string.

Crass HieraARCHY

uvm_pool#(string,T)

uvm_object_string_pool#(T) |

CLass DEcLARATION
cl ass uvm obj ect _string_pool #(
type T = uvmobject
) extends uvm pool #(string,T)

METHODS
new Creates a new pool with the given name.
get_type_name Returns the type name of this object.
get_global_pool Returns the singleton global pool for the item type, T.
get_global Returns the specified item instance from the global item
pool.
get Returns the object item at the given string key.
delete Removes the item with the given string key from the pool.
MEeTHODS

UVM 1.1 Class Reference 200

new

function new (string nane = "")

Creates a new pool with the given name.

get_type_name

virtual function string get_type nane()

Returns the type name of this object.

get_global_pool

static function this_type get_ gl obal pool ()

Returns the singleton global pool for the item type, T.

This allows items to be shared amongst components throughout the verification
environment.

get_global

static function T get_global (string key)

Returns the specified item instance from the global item pool.

get

virtual function T get (string key)

Returns the object item at the given string key.

If no item exists by the given key, a new item is created for that key and returned.

delete

virtual function void delete (string key)

Removes the item with the given string key from the pool.

UVM 1.1 Class Reference 201

11.2 uvm_queue #(T)

Implements a class-based dynamic queue. Allows queues to be allocated on demand,
and passed and stored by reference.

Summary

uvm_queue #(T)

Implements a class-based dynamic queue.
CLass HieraRcHY
uvm_void

uvm_object

uvm_queue#(T) |

Crass DEecLARATION

class uvm queue #(type T = int) extends uvm object
METHODS

new Creates a new queue with the given name.

get_global_queue Returns the singleton global queue for the item type, T.

get_global Returns the specified item instance from the global item
queue.

get Returns the item at the given index.

size Returns the number of items stored in the queue.

insert Inserts the item at the given index in the queue.

delete Removes the item at the given index from the queue; if
index is not provided, the entire contents of the queue
are deleted.

pop_front Returns the first element in the queue (index=0), or null
if the queue is empty.

pop_back Returns the last element in the queue (index=size()-1),
or null if the queue is empty.

push_front Inserts the given item at the front of the queue.

push_back Inserts the given item at the back of the queue.

MEeTHODS
new
function new (string nane = "")

Creates a new queue with the given name.

UVM 1.1 Class Reference 202

get_global_queue

static function this_type get_gl obal queue ()

Returns the singleton global queue for the item type, T.

This allows items to be shared amongst components throughout the verification
environment.

get_global

static function T get_global (int index)

Returns the specified item instance from the global item queue.

get

virtual function T get (int index)

Returns the item at the given index.

If no item exists by that key, a new item is created with that key and returned.

size
virtual function int size ()

Returns the number of items stored in the queue.

insert

virtual function void insert (int index,
T item

Inserts the item at the given index in the queue.

delete

virtual function void delete (int index = -1)

Removes the item at the given index from the queue; if index is not provided, the entire
contents of the queue are deleted.

pop_front

UVM 1.1 Class Reference 203

virtual function T pop_front()

Returns the first element in the queue (index=0), or null if the queue is empty.

pop_back

virtual function T pop_back()

Returns the last element in the queue (index=size()-1), or null if the queue is empty.

push_front

virtual function void push_front(T item)

Inserts the given item at the front of the queue.

push_back

virtual function void push_back(T item)

Inserts the given item at the back of the queue.

UVM 1.1 Class Reference 204

12. TLM Interfaces

The UVM TLM library defines several abstract, transaction-level interfaces and the ports
and exports that facilitate their use. Each TLM interface consists of one or more methods
used to transport data, typically whole transactions (objects) at a time. Component
designs that use TLM ports and exports to communicate are inherently more reusable,
interoperable, and modular.

The UVM TLM library specifies the required behavior (semantic) of each interface

method. Classes (components) that implement a TLM interface must meet the specified
semantic.

Summary

TLM Interfaces

The UVM TLM library defines several abstract, transaction-level interfaces and the
ports and exports that facilitate their use.

TLM1 The TLM1 ports provide blocking and nonblocking pass-by-value
transaction-level interfaces.
TLM2 The TLM2 sockets provide blocking and nonblocking transaction-

level interfaces with well-defined completion semantics.
Sequencer A push or pull port, with well-defined completion semantics.
Port

Analysis The analysis interface is used to perform non-blocking broadcasts
of transactions to connected components.

TLM1

The TLM1 ports provide blocking and nonblocking pass-by-value transaction-level
interfaces. The semantics of these interfaces are limited to message passing.

TLM2

The TLM2 sockets provide blocking and nonblocking transaction-level interfaces with well-
defined completion semantics.

Sequencer Port

A push or pull port, with well-defined completion semantics. It is used to connect
sequencers with drivers and layering sequences.

Analysis

The analysis interface is used to perform non-blocking broadcasts of transactions to

UVM 1.1 Class Reference 205

connected components. It is typically used by such components as monitors to publish
transactions observed on a bus to its subscribers, which are typically scoreboards and
response/coverage collectors.

uvim_analysis_if

write

UVM 1.1 Class Reference 206

13. TLM1 Interfaces, Ports, Exports and Transport

Interfaces

Each TLM1 interface is either blocking, non-blocking, or a combination of these two.

blocking A blocking interface conveys transactions in blocking fashion; its
methods do not return until the transaction has been
successfully sent or retrieved. Because delivery may consume
time to complete, the methods in such an interface are
declared as tasks.

non-blocking A non-blocking interface attempts to convey a transaction
without consuming simulation time. Its methods are declared
as functions. Because delivery may fail (e.g. the target
component is busy and can not accept the request), the
methods may return with failed status.

combination A combination interface contains both the blocking and non-
blocking variants. In SystemC, combination interfaces are
defined through multiple inheritance. Because SystemVerilog
does not support multiple inheritance, the UVM emulates
hierarchical interfaces via a common base class and interface
mask.

Like their SystemC counterparts, the UVM’s TLM port and export implementations allow
connections between ports whose interfaces are not an exact match. For example, an
uvm_blocking_get_port can be connected to any port, export or imp port that provides at
the least an implementation of the blocking_get interface, which includes the uvm_get *
ports and exports, uvm_blocking_get _peek * ports and exports, and uvm_get_peek_ *
ports and exports.

The sections below provide and overview of the unidirectional and bidirectional TLM
interfaces, ports, and exports.

Summary

TLM1 Interfaces, Ports, Exports and Transport Interfaces

Each TLM1 interface is either blocking, non-blocking, or a combination of these
two.

UnipirectionaL The unidirectional TLM interfaces consist of blocking, non-

INTERFACES & blocking, and combined blocking and non-blocking variants of
Ports the put, get and peek interfaces, plus a non-blocking analysis
interface.
Put The put interfaces are used to send, or put, transactions to
other components.
Get and The get interfaces are used to retrieve transactions from
Peek other components.
Ports, The UVM provides unidirectional ports, exports, and
Exports, implementation ports for connecting your components via the
and Imps TLM interfaces.
BIDIRECTIONAL The bidirectional interfaces consist of blocking, non-blocking,
INTERFACES & and combined blocking and non-blocking variants of the

UVM 1.1 Class Reference 207

Porrts transport, master, and slave interfaces.
Transport The transport interface sends a request transaction and
returns a response transaction in a single task call, thereby
enforcing an in-order execution semantic.

Master and The primitive, unidirectional put, get, and peek interfaces are
Slave combined to form bidirectional master and slave interfaces.
Ports, The UVM provides bidirectional ports, exports, and
Exports, implementation ports for connecting your components via the
and Imps TLM interfaces.

Usace This example illustrates basic TLM connectivity using the

blocking put inteface.

UNipIRECTIONAL INTERFACES & PORTS

The unidirectional TLM interfaces consist of blocking, non-blocking, and combined
blocking and non-blocking variants of the put, get and peek interfaces, plus a non-
blocking analysis interface.

Put

The put interfaces are used to send, or put, transactions to other components.
Successful completion of a put guarantees its delivery, not execution.

77 77
uvm_blocking_put_if| |uvm_nonblocking_put_if
put try_put
can_put
T 77
L - —
uvmi_put if
put
try_put
can_put

Get and Peek

The get interfaces are used to retrieve transactions from other components. The peek
interfaces are used for the same purpose, except the retrieved transaction is not
consumed; successive calls to peek will return the same object. Combined get peek
interfaces are also defined.

UVM 1.1 Class Reference 208

(1] (7] (1 (1
uvm_blocking_get_if Iuvm_nunhlmhing _get_if| uvm_blocking_peelk_i uvm_nanhlucking_peel:_iﬂ_

get try_get peak try_get
can_get can_get
i :r 7 Fa)) T Fu
(37 I (7
| I — |
uvm_get_if uvm_peek_if

get peek
try_get try_paak
can_get can_peek

LT LI
uwvm_blocking_get_peek_if wvm_nonblocking_get_peek_if
et try_get
peek can_get

[try_peek

can_pesk
T (77
| I —
uvm_get_peek_if

get

try_get

can_get

peek

try_peek

can_peek

Ports, Exports, and Imps

The UVM provides unidirectional ports, exports, and implementation ports for connecting
your components via the TLM interfaces.

Ports instantiated in components that require, or use, the associate
interface to initiate transaction requests.

Exports instantiated by components that forward an implementation of the
methods defined in the associated interface. The implementation is
typically provided by an imp port in a child component.

Imps instantiated by components that provide or implement an
implementation of the methods defined in the associated interface.

UVM 1.1 Class Reference 209

P11

e
uvm_tim_if_base uvm_component
)
= : T rF'_-:}ET_JI
— 1 __
uvm pnr‘t base I:q—p- uvm_port_component

IF—IJrrI_Ir_bEm<T =
FORT=1m_port_hasa<IF=

7 7 e)

uvim_*_port I- uvm_*_export wm_—_imlp_ - -[

A summary of port, export, and imp declarations are

class uvm *_export #(type T= |nt2
extends” uvm port_base #(tlm.if_base #(T,T));

class uvm* _port #(type T=int)
extends uvm port_base #(tlm.if_base #(T,T));

class uvm?*_inp #(tgpe T=i nt
extends uvm port_base #(tlmlf base #(T,T));

where the asterisk can be any of

bl ocki nE__put
nonbl ocki ng_put
put

bl ocki nE__get
nonbl ocki ng_get
get

bl ocki nE peek
nonbl ocki ng_peek
peek

bl ocki ng_get _peek
nonbl ocking_get peek
get _peek

anal ysi s

BipirecTtioNAL INTERFACES & PORTS

The bidirectional interfaces consist of blocking, non-blocking, and combined blocking and

non-blocking variants of the transport, master, and slave interfaces.

Bidirectional interfaces involve both a transaction request and response.

Transport

UVM 1.1 Class Reference

210

The transport interface sends a request transaction and returns a response transaction in
a single task call, thereby enforcing an in-order execution semantic. The request and
response transactions can be different types.

CREG RS REQ RS
uvm_blocking_transport_if Il.nrm_nun blocking_transport_if
transport nb_transport
| T
[REG.RSF |

uvm_transp-m_lf

transport
nb_transport

Master and Slave

The primitive, unidirectional put, get, and peek interfaces are combined to form
bidirectional master and slave interfaces. The master puts requests and gets or peeks

responses. The slave gets or peeks requests and puts responses.

Because the put and

the get come from different function interface methods, the requests and responses are
not coupled as they are with the transport interface.

UVM 1.1 Class Reference

I‘T I'T [T [T '|-
uvm blncklng_pu t i —I uvm_nonblocking put | |f—| uvm_blocking get peek | |f uvimn_nonblocking get pesak |f—|
iy Fi 0 iy [a
T=REQ Thﬁ:bF T=REQ T=R5F T=R5P T=REQ T=R&P T=REG
T
[REQ,REF | [REG, REF | [REG,RSF | [REG, RSV |
uvmn_blocking_master if LivTi nnnhlocklng_master if uvrn_blocking_slave if u-.-m_mnblndclng_slaue-_ll
put (RE) try_put (REQ) get (RsP) try_get (REC)
get (rea) can_put [REZ) peeak {REQ) can_get (REQ)
peek (RaP) try_get (RsP) put (r=re) try_peek (Rea)
can_get (RsP) can_pesk (RED)
try_peak (RsF) ry_put (ree)
can_peek (RsP) can_put (RSP
[REQ, RSP | [REQRSF |
lJ'q.fI'I'I_I'I'IEIE-tEl_If uvm_nonblocking_slave if
put (RE) get (ReQ)
try_put (rRE2) fry_get (rea)
can_put (Rea) can_get (REq)
get (ReP) peek (REQ) REQ
try_get (RsF) ry_peek (REQ)
can_get (RsP) Ccan_peek (REC)
peek (RsP) put (rsP)
Iry_peek (RsR) Iry_put (rep) RSP
can_peek (RsP) can_put {RsP)

211

Ports, Exports, and Imps

The UVM provides bidirectional ports, exports, and implementation ports for connecting

your components via the TLM interfaces.

Ports instantiated in components that require, or use, the associate
interface to initiate transaction requests.

Exports instantiated by components that forward an implementation of the
methods defined in the associated interface. The implementation is
typically provided by an imp port in a child component.

Imps instantiated by components that provide or implement an

implementation of the methods defined in the associated interface.

MREQRSP |
uvm_ﬂm_if_base_]— T

==
IF i

IF::5m_i_base<REQ RSP=
PORT=uvm_port_base<F=

1_
uwm_port_base]-_-11—»

uvm_companent

1 " PORT |
LrT_part_companant

MREGRSP |

uvm_*_port

uvm_*_export |

"REQRSP |

' REQ,RSP.IMP |

e

uvm_"_imp

A summary of port, export, and imp declarations are

class uvm*_port #(type REQ=int, RSP=i ntg{
extends uvm port_base #(tlm.if_base #(REQ

class uvm *_export #(type REQ=int, RSP=int)
extends uvm port_base #(tlm.if_base #(REQ

class uvm?*_inp #(tgpe REQ=i nt, RSP=int)
extends uvm port_base #(tlm.if_base #(REQ

where the asterisk can be any of

transport
bl ocki ng_t ransport
nonbl ocki ng_t ransport

bl ocki ng_rmst er
nonbl ocki ng_mast er
mast er

bl ocki ng_sl ave
nonbl ocki ng_sl ave
sl ave

UVM 1.1 Class Reference

RSP)) ;
RSP)) ;

RSP)) ;

212

UsAGE

This example illustrates basic TLM connectivity using the blocking put inteface.

By
comp Compa
leafl
f’IH [g.:-h[port aupart '"""'_-Hﬂ*
put {trans) fask put] Tt);

[] =pot () =export/imp <> = analysis port

port-to-port leafl’s out port is connected to its parent’s (comp1l)
out port

port-to-export compl’s out port is connected to comp2’s in export

export-to-export comp2’s in export is connected to its child’s
(subcomp?2) in export

export-to-imp subcomp?2’s in export is connected leaf2’s in imp
port.

imp-to-implementation leaf2’s in imp port is connected to its implementation,
leaf2

Hierarchical port connections are resolved and optimized just before the
<uvm_component::end_of_elaboration> phase. After optimization, calling any port’s
interface method (e.g. leafl.out.put(trans)) incurs a single hop to get to the
implementation (e.g. leaf2’s put task), no matter how far up and down the hierarchy the
implementation resides.

“include "uvm pkg.sv"

i nport uvm pkg::*;

class trans extends uvmtransaction;
rand int addr;
rand int data;
rand bit wite;

endcl ass

class leafl extends uvm conponent;
“uvm conponent _util s(leaf1)
uvm bl ocki ng_put _port #(trans) out;
functi on new(string name, uvm conponent parent=null);
super . new nane, parent);
out = new("out",this);
endf uncti on

virtual task run();
trans t;

UVM 1.1 Class Reference 213

t = new,

t.random ze();

out . EUt (t);
endt as

endcl ass

class conpl extends uvm conponent;
“uvm conponent _util s(conpl)
uvm bl ocki ng_put _port #(trans) out;
| eaf1 |eaf;
function new(string nane, uvm conponent
super. new(name, parent);
endf uncti on
virtual function void build();
out = new("out",thi SL;
leaf = new("leafl", this);
endf uncti on
/'l connect port to port
virtual function void connect();
| eaf . out. connect (out);
endf uncti on

endcl ass

class |eaf2 extends uvm conponent;
“uvm conponent _util s(I eaf 2)
uvm bl ocki ng_put _inp #(trans,|leaf2) in;

function new(string nanme, uvm conponent
super . new(nane, parent) ;

in = new"in",this);
endfunction

virtual task put(trans t);

t.addr, t.data, t.wite);
endt ask

endcl ass

cl ass subconp2 extends uvm conponent;
“uvm conponent _uti |l s(subconp2)
uvm bl ocki ng_put _export #(trans) in;
| eaf 2 | eaf;
function new(string nanme, uvm conponent

super. new(hane, parent);
endf uncti on

in = new("in",this);
leaf = new("leaf2", this);
endf uncti on

virtual function void build();

/'l connect export to inp

virtual function void connect();
i n.connect (leaf.in);

endf uncti on

endcl ass

cl ass conp2 extends uvm conponent;
“uvm conponent _util s(conp2)
uvm bl ocki ng_put _export #(trans) in;

subconmp2 subconp;

UVM 1.1 Class Reference

parent=nul |);

parent=null);

/1 connect inp to inplenentation (this)

$di spl ay("Cot trans: addr=9%9d, data=%d, wite=%0d",

parent=nul |');

214

function new(string name, uvm conponent
super. new(hane, parent);
endf uncti on

virtual function void build();
in = new("in",this);
subconp = new("subconp2",this);
endf uncti on
/1 connect export to export
virtual function void connect();
i n. connect (subconp.in);
endf uncti on

endcl ass

cl ass env extends uvm conponent;
“uvm conponent _util s(conpl)

conpl conpl_i;
conp2 conp2_i;

function new(string nane, uvm conponent
super. new(name, parent);
endf uncti on

virtual function void build();
conpl_i = new("conpl",this);
conp2_i = new"conp2",this);

endf uncti on

/'l connect port to export

virtual function void connect();
conpl_i.out.connect(conp2_i.in);

endf uncti on

endcl ass

nodul e top;

env e = newm"env");

initial run_test();

initial #10 uvmtop.stop_request();
endnodul e

parent=nul |);

parent=nul |');

UVM 1.1 Class Reference

215

13.1 uvm_tim_if_base #(T1,T2)

This class declares all of the methods of the TLM API.

Various subsets of these methods are combined to form primitive TLM interfaces, which
are then paired in various ways to form more abstract “combination” TLM interfaces.
Components that require a particular interface use ports to convey that requirement.
Components that provide a particular interface use exports to convey its availability.

Communication between components is established by connecting ports to compatible
exports, much like connecting module signal-level output ports to compatible input
ports. The difference is that UVM ports and exports bind interfaces (groups of methods),
not signals and wires. The methods of the interfaces so bound pass data as whole
transactions (e.g. objects). The set of primitve and combination TLM interfaces afford
many choices for designing components that communicate at the transaction level.

Summary

uvm_tim_if_base #(T1,T2)

This class declares all of the methods of the TLM API.

Crass DEcLARATION

virtual class uvmtlm.if_base #(type T1 = int,
type T2 = int)
BLockiNG puT
put Sends a user-defined transaction of type T.
BLoCKING GET
get Provides a new transaction of type T.
BLOCKING PEEK
peek Obtain a new transaction without consuming it.
NonN-BLOCKING
PUT
try_put Sends a transaction of type T, if possible.
can_put Returns 1 if the component is ready to accept the
transaction; 0 otherwise.
NonN-BLOCKING
GET
try_get Provides a new transaction of type T.
can_get Returns 1 if a new transaction can be provided immediately
upon request, 0 otherwise.
NonN-BLOCKING
PEEK
try_peek Provides a new transaction without consuming it.
can_peek Returns 1 if a new transaction is available; 0 otherwise.
BLockinG
TRANSPORT
transport Executes the given request and returns the response in the

given output argument.

NoN-BLOCKING

UVM 1.1 Class Reference 216

TRANSPORT
nb_transport Executes the given request and returns the response in the
given output argument.
ANALYSIS

write Broadcasts a user-defined transaction of type T to any
number of listeners.

BLOCKING PUT

put

virtual task put(T1 t)

Sends a user-defined transaction of type T.

Components implementing the put method will block the calling thread if it cannot
immediately accept delivery of the transaction.

BLOCKING GET

get
virtual task get(T2 t)

Provides a new transaction of type T.

The calling thread is blocked if the requested transaction cannot be provided
immediately. The new transaction is returned in the provided output argument.

The implementation of get must regard the transaction as consumed. Subsequent calls
to get must return a different transaction instance.

BLOCKING PEEK

peek

virtual task peek(T2 t)

Obtain a new transaction without consuming it.

If a transaction is available, then it is written to the provided output argument. If a
transaction is not available, then the calling thread is blocked until one is available.

UVM 1.1 Class Reference 217

The returned transaction is not consumed. A subsequent peek or get will return the
same transaction.

NON-BLOCKING PUT

try_put

virtual function bit try put(input T1 t)

Sends a transaction of type T, if possible.

If the component is ready to accept the transaction argument, then it does so and
returns 1, otherwise it returns 0.

can_put

virtual function bit can_put()

Returns 1 if the component is ready to accept the transaction; 0 otherwise.

NON-BLOCKING GET

try_get

virtual function bit try get(output T2 t)

Provides a new transaction of type T.

If a transaction is immediately available, then it is written to the output argument and 1
is returned. Otherwise, the output argument is not modified and 0 is returned.

can_get

virtual function bit can_get()

Returns 1 if a new transaction can be provided immediately upon request, 0 otherwise.

NON-BLOCKING PEEK

UVM 1.1 Class Reference 218

try_peek

virtual function bit try_peek(output T2 t)

Provides a new transaction without consuming it.

If available, a transaction is written to the output argument and 1 is returned. A
subsequent peek or get will return the same transaction. If a transaction is not
available, then the argument is unmodified and 0 is returned.

can_peek

virtual function bit can_peek()

Returns 1 if a new transaction is available; 0 otherwise.

BLOCKING TRANSPORT

transport

virtual task transport(input T1 req ,
output T2 rsp)

Executes the given request and returns the response in the given output argument. The
calling thread may block until the operation is complete.

NON-BLOCKING TRANSPORT

nb_transport

virtual function bit nb_transport(input T1 req,
output T2 rsp)

Executes the given request and returns the response in the given output argument.
Completion of this operation must occur without blocking.

If for any reason the operation could not be executed immediately, then a 0 must be
returned; otherwise 1.

ANALYSIS

UVM 1.1 Class Reference 219

write

virtual function void wite(Tl t)

Broadcasts a user-defined transaction of type T to any number of listeners. The
operation must complete without blocking.

UVM 1.1 Class Reference 220

13.2 TLM1 Port Classes

The following classes define the TLM port classes.

Contents

TLM Port
Classes

uvm_*_port
#(T)

uvm_*_port
#(REQ,RSP)

The following classes define the TLM port classes.

These unidirectional ports are instantiated by components that
require, or use, the associated interface to convey transactions.
These bidirectional ports are instantiated by components that

require, or use, the associated interface to convey transactions.

uvm_*_port #(T)

These unidirectional ports are instantiated by components that require, or use, the
associated interface to convey transactions. A port can be connected to any compatible
port, export, or imp port. Unless its min_size is 0, a port must be connected to at least
one implementation of its assocated interface.

The asterisk in uvm_*_port is any of the following

blocking_put
nonbl ocki ng_put
put

blocking_get

nonbl ocki ng_get

get

blocking_peek
nonbl ocki ng_peek
peek
blocking_get_peek
nonbl ocki ng_get peek
get _peek

Type parameters

T The type of transaction to be communicated by the export

Ports are connected to interface implementations directly via uvm_*_imp #(T,IMP) ports
or indirectly via hierarchical connections to uvm_*_port #(T) and uvm_*_export #(T)
ports.

Summary

uvm_*_port #(T)

UVM 1.1 Class Reference 221

These unidirectional ports are instantiated by components that require, or use,
the associated interface to convey transactions.

MEeTHODS
new The name and parent are the standard uvm_component
constructor arguments.
MEeTHODS

new

The name and parent are the standard uvm_component constructor arguments. The
min_size and max_size specify the minimum and maximum number of interfaces that
must have been connected to this port by the end of elaboration.

function new (string name,
uvm conponent parent,
int mn_size=1,
int max_size=1)

uvm_*_port #(REQ,RSP)

These bidirectional ports are instantiated by components that require, or use, the
associated interface to convey transactions. A port can be connected to any compatible
port, export, or imp port. Unless its min_size is 0, a port must be connected to at least
one implementation of its assocated interface.

The asterisk in uvm_*_port is any of the following

bl ocki ng_t ransport
nonbl ocki ng_t ransport
transport

bl ocki ng_mast er
nonbl ocki ng_mast er
nmast er

bl ocki ng_sl ave
nonbl ocki ng_sl ave
sl ave

Ports are connected to interface implementations directly via uvm_*_imp
#(REQ,RSP,IMP,REQ_IMP,RSP_IMP) ports or indirectly via hierarchical connections to
uvm_*_port #(REQ,RSP) and uvm_*_export #(REQ,RSP) ports.

UVM 1.1 Class Reference 222

Type parameters

REQ The type of request transaction to be communicated by the export
RSP The type of response transaction to be communicated by the export
Summary

uvm_*_port #(REQ,RSP)

These bidirectional ports are instantiated by components that require, or use, the
associated interface to convey transactions.

METHODS
new The name and parent are the standard uvm_component
constructor arguments.
MEeTHODS

new

The name and parent are the standard uvm_component constructor arguments. The
min_size and max_size specify the minimum and maximum number of interfaces that
must have been supplied to this port by the end of elaboration.

function new (string name, uvm_component parent, int min_size=1, int max_size=1)

UVM 1.1 Class Reference

223

13.3 TLM1 Export Classes

The following classes define the TLM export classes.

Contents

TLM Export The following classes define the TLM export classes.
Classes

uvm_*_export The unidirectional uvm_*_export is a port that forwards or

#(T) promotes an interface implementation from a child component to
its parent.

uvm_*_export The bidirectional uvm_*_export is a port that forwards or

#(REQ,RSP) promotes an interface implementation from a child component to
its parent.

uvm_*_export #(T)

The unidirectional uvm_*_export is a port that forwards or promotes an interface
implementation from a child component to its parent. An export can be connected to
any compatible child export or imp port. It must ultimately be connected to at least one
implementation of its associated interface.

The interface type represented by the asterisk is any of the following

bIocking_put
nonbl ocki ng_put
put

bIocking_get
nonbl ocki ng_get
get
bIockinE_peek
nonbl ocki ng_peek
peek
bIocking_get_peek
i

nonbl ocki ng_get _peek
get _peek

Type parameters

T The type of transaction to be communicated by the export

Exports are connected to interface implementations directly via uvm_*_imp #(T,IMP)
ports or indirectly via other uvm_*_export #(T) exports.

Summary

UVM 1.1 Class Reference 224

uvm_*_export #(T)

The unidirectional uvm_*_export is a port that forwards or promotes an interface
implementation from a child component to its parent.

MEeTHODS
new The name and parent are the standard uvm_component
constructor arguments.
MEeTHODS

new

The name and parent are the standard uvm_component constructor arguments. The
min_size and max_size specify the minimum and maximum number of interfaces that
must have been supplied to this port by the end of elaboration.

function new (string naneg,
uvm conponent parent,
int mn_size=1,
int max_size=1)

uvm_*_export #(REQ,RSP)

The bidirectional uvm_*_export is a port that forwards or promotes an interface
implementation from a child component to its parent. An export can be connected to
any compatible child export or imp port. It must ultimately be connected to at least one
implementation of its associated interface.

The interface type represented by the asterisk is any of the following

bl ocki ng_t ransport
i

nonbl ocki ng_t ransport
transport

bl ocki n%_rrast er

nonbl ocki ng_mast er
nmast er

bl ocki n%_sl ave

nonbl ocki ng_sl ave

sl ave

Type parameters

REQ The type of request transaction to be communicated by the export

UVM 1.1 Class Reference 225

RSP The type of response transaction to be communicated by the export

Exports are connected to interface implementations directly via uvm_*_imp #(REQ, RSP,
IMP, REQ_IMP, RSP_IMP) ports or indirectly via other uvm_*_export #(REQ,RSP)
exports.

Summary

uvm_*_export #(REQ,RSP)

The bidirectional uvm_*_export is a port that forwards or promotes an interface
implementation from a child component to its parent.

MEeTHODS
new The name and parent are the standard uvm_component
constructor arguments.
MEeTHODS

new

The name and parent are the standard uvm_component constructor arguments. The
min_size and max_size specify the minimum and maximum number of interfaces that
must have been supplied to this port by the end of elaboration.

function new (string nane,
uvm conponent parent,
int mn_size=1,
int max_size=1)

UVM 1.1 Class Reference 226

13.4 uvm_*_imp ports

The following defines the TLM implementation (imp) classes.

Contents
uvm_*_imp The following defines the TLM implementation (imp) classes.
ports
uvm_*_imp Unidirectional implementation (imp) port classes--An imp
#(T,IMP) port provides access to an implementation of the associated

interface to all connected ports and exports.

uvm_*_imp Bidirectional implementation (imp) port classes--An imp port
#(REQ, RSP, IMP, provides access to an implementation of the associated
REQ_IMP, interface to all connected ports and exports.
RSP_IMP)

uvm_*_imp #(T,IMP)

Unidirectional implementation (imp) port classes--An imp port provides access to an
implementation of the associated interface to all connected ports and exports. Each imp
port instance must be connected to the component instance that implements the
associated interface, typically the imp port’s parent. All other connections-- e.g. to other
ports and exports-- are prohibited.

The asterisk in uvm_*_imp may be any of the following

bIocking_put
nonbl ocki ng_put
put

bIocking_get
nonbl ocki ng_get

get

bIocking_peek
nonbl ocki ng_peek
peek

bl ocki ng_get peek
nonblocgrng_get_peek
get _peek

Type parameters
T The type of transaction to be communicated by the imp

IMP The type of the component implementing the interface. That is, the
class to which this imp will delegate.

The interface methods are implemented in a component of type IMP, a handle to which is
passed in a constructor argument. The imp port delegates all interface calls to this

UVM 1.1 Class Reference 227

component.
Summary

uvm_*_imp #(T,IMP)

Unidirectional implementation (imp) port classes--An imp port provides access to
an implementation of the associated interface to all connected ports and exports.

MEeTHODS
new Creates a new unidirectional imp port with the given name and
parent.
MEeTHODS

new

Creates a new unidirectional imp port with the given name and parent. The parent must
implement the interface associated with this port. Its type must be the type specified in
the imp’s type-parameter, IMP.

function new (string name, |MP parent);

uvm_*_imp #(REQ, RSP, IMP, REQ_IMP,

RSP_IMP)

Bidirectional implementation (imp) port classes--An imp port provides access to an
implementation of the associated interface to all connected ports and exports. Each imp
port instance must be connected to the component instance that implements the
associated interface, typically the imp port’s parent. All other connections-- e.g. to other
ports and exports-- are prohibited.

The interface represented by the asterisk is any of the following

bl ocki ng_t ransport
nonbl ocki ng_t ransport
transport

bl ocki ng_mast er
nonbl ocki ng_mast er
nmast er

bl ocki ng_sl ave
i

nonbl ocki ng_sl ave
sl ave

UVM 1.1 Class Reference 228

Type parameters

REQ Request transaction type
RSP Response transaction type
IMP Component type that implements the interface methods, typically

the the parent of this imp port.

REQ_IMP Component type that implements the request side of the interface.
Defaults to IMP. For master and slave imps only.

RSP_IMP Component type that implements the response side of the
interface. Defaults to IMP. For master and slave imps only.

The interface methods are implemented in a component of type IMP, a handle to which is
passed in a constructor argument. The imp port delegates all interface calls to this
component.

The master and slave imps have two modes of operation.

» A single component of type IMP implements the entire interface for both requests
and responses.

+ Two sibling components of type REQ_IMP and RSP_IMP implement the request and
response interfaces, respectively. In this case, the IMP parent instantiates this imp
port and the REQ_IMP and RSP_IMP components.

The second mode is needed when a component instantiates more than one imp port, as
in the uvm_tlm_req_rsp_channel #(REQ,RSP) channel.

Summary

uvm_*_imp #(REQ, RSP, IMP, REQ_IMP, RSP_IMP)

Bidirectional implementation (imp) port classes--An imp port provides access to
an implementation of the associated interface to all connected ports and exports.

MEeTHODS
new Creates a new bidirectional imp port with the given name and
parent.
MEeTHODS

new
Creates a new bidirectional imp port with the given name and parent. The parent, whose

type is specified by IMP type parameter, must implement the interface associated with
this port.

UVM 1.1 Class Reference 229

Transport imp constructor

function new(string nane, | M inp)

Master and slave imp constructor

The optional req_imp and rsp_imp arguments, available to master and slave imp ports,
allow the requests and responses to be handled by different subcomponents. If they are
specified, they must point to the underlying component that implements the request and
response methods, respectively.

function new(string nanme, |M inp,
W(g REQIWF/P req_i np=i np, RSP_I MP rsp_i np=i np)

UVM 1.1 Class Reference 230

13.5 Analysis Ports

This section defines the port, export, and imp classes used for transaction analysis.

Contents

Analysis Ports This section defines the port, export, and imp classes used
for transaction analysis.

uvm_analysis_port Broadcasts a value to all subscribers implementing a
uvm_analysis_imp.

uvm_analysis_imp Receives all transactions broadcasted by a
uvm_analysis_port.

uvm_analysis_export Exports a lower-level uvm_analysis_imp to its parent.

uvim_analysis_port

Broadcasts a value to all subscribers implementing a uvm_analysis_imp.

class nobn extends uvm conponent;
uvm anal ysi s_port#(trans) ap;
function new(string nane = "sb", uvm.conponent parent = null);
super. new nane, parent);
ap = new 'ap", this);
endf unction

task run_phase(uvm phase phase);
trans t;

éb:wite(t);

endf unction
endcl ass

Summary

uvm_analysis_port

Broadcasts a value to all subscribers implementing a uvm_analysis_imp.
CLass HierARCHY

uvm_port_base#(uvm_tlm_if_base#(T,T))

uvm_analysis_port |

Crass DEcLARATION

class uvm anal ysis_port # (
type T = int
) extends uvm port_base # (uvmtIim.if_base #(T,T))

UVM 1.1 Class Reference 231

MEeTHODS
write Send specified value to all connected interface

METHODS

write

function void wite (input T t)

Send specified value to all connected interface

uvm_analysis_imp

Receives all transactions broadcasted by a uvm_analysis_port. It serves as the
termination point of an analysis port/export/imp connection. The component attached to
the imp class--called a subscriber-- implements the analysis interface.

Will invoke the write(T) method in the parent component. The implementation of the
write(T) method must not modify the value passed to it.

class sb extends uvm conponent;
uvm anal ysi s_i np#(trans, sb) ap;

function new(string nane = "sb", uvm.conponent parent = null);
super. new(nane, parent);
ap = new'ap", this);

endf unction

function void wite(trans t);

endf uncti on
endcl ass

Summary

uvm_analysis_imp
Receives all transactions broadcasted by a uvm_analysis_port.

Crass HierARCHY

uvm_port_base#(uvm_tlm_if_base#(T,T))

uvm_analysis_imp |

CLass DEecLARATION
class uvm anal ysis inp #(

UVM 1.1 Class Reference 232

type T = int,
type IMP = int)
) extends uvm port_base #(uvmtlm.if _base #(T,T))

uvm_analysis_export

Exports a lower-level uvm_analysis_imp to its parent.

Summary

uvm_analysis_export

Exports a lower-level uvm_analysis_imp to its parent.

Crass HierARCHY

uvm_port_base#(uvm_tlm_if_base#(T,T))

uvm_analysis_export |

CLass DEcCLARATION
cl ass uvm anal ysi s_export #(
type T = int]
) extends uvm port_base #(uvmtImif base #(T,T))

METHODS
new Instantiate the export.
MEeTHODS
new
function new (string nane,

uvm component parent = null)

Instantiate the export.

UVM 1.1 Class Reference 233

13.6 TLM FIFO Classes

This section defines TLM-based FIFO classes.
Contents

TLM FIFO Classes This section defines TLM-based FIFO classes.

uvm_tlm_fifo This class provides storage of transactions between two
independently running processes.

uvm_tlm_analysis_fifo An analysis_fifo is a uvm_tlm_fifo with an unbounded size
and a write interface.

This class provides storage of transactions between two independently running

processes. Transactions are put into the FIFO via the put_export. transactions are
fetched from the FIFO in the order they arrived via the get_peek_export. The put_export
and get_peek_export are inherited from the uvm_tim_fifo_base #(T) super class, and the
interface methods provided by these exports are defined by the uvm_tim_if_base
#(T1,T2) class.

Summary

uvm_tim_fifo

This class provides storage of transactions between two independently running
processes.

CLass HierarcHy
uvm_void
uvm_object
uvm_report_object
uvm_component

uvm_tlm_fifo_base#(T)

uvm_tim_fifo |

Crass DECLARATION

class uvmtlimfifo #(
type T = 1nt
) extends uvmtIimfifo_base #(T)

MEeTHODS
new The name and parent are the normal uvm_component

UVM 1.1 Class Reference 234

constructor arguments.

size Returns the capacity of the FIFO-- that is, the number of entries
the FIFO is capable of holding.

used Returns the number of entries put into the FIFO.

is_empty Returns 1 when there are no entries in the FIFO, 0 otherwise.

is_full Returns 1 when the number of entries in the FIFO is equal to its
size, 0 otherwise.

flush Removes all entries from the FIFO, after which used returns 0

and is_empty returns 1.

METHODS
new
function newstring nane,
uvm conponent par ent
i nt si ze)

The name and parent are the normal uvm_component constructor arguments. The
parent should be null if the uvm_tim_fifo is going to be used in a statically elaborated
construct (e.g., a module). The size indicates the maximum size of the FIFO; a value of
zero indicates no upper bound.

size
virtual function int size()

Returns the capacity of the FIFO-- that is, the number of entries the FIFO is capable of
holding. A return value of 0 indicates the FIFO capacity has no limit.

used

virtual function int used()

Returns the number of entries put into the FIFO.
is_empty
virtual function bit is_enpty()

Returns 1 when there are no entries in the FIFO, 0 otherwise.

is_full

UVM 1.1 Class Reference 235

virtual function bit is_full()

Returns 1 when the number of entries in the FIFO is equal to its size, 0 otherwise.

flush

virtual function void flush()

Removes all entries from the FIFO, after which used returns 0 and is_empty returns 1.

uvim_tim_analysis_fifo

An analysis_fifo is a uvm_tlm_fifo with an unbounded size and a write interface. It can
be used any place a uvm_analysis_imp is used. Typical usage is as a buffer between an
uvm_analysis_port in an initiator component and TLM1 target component.

Summary

uvm_tim_analysis_fifo
An analysis_fifo is a uvm_tIm_fifo with an unbounded size and a write interface.

Crass HieraRcHY

uvm_tim_fifo#(T)

uvm_tim_analysis_fifo |

CLASS DECLARATION
class uvmtlmanal ysis_fifo #(
type T = int
) extends uvmtlimfifo #(T)

Porrts
analysis_export The analysis_export provides the write method to all
#(T) connected analysis ports and parent exports:
MEeTHODS
new This is the standard uvm_component constructor.

PorTs

analysis_export #(T)

The analysis_export provides the write method to all connected analysis ports and parent
exports:

UVM 1.1 Class Reference 236

function void wite (T t)

Access via ports bound to this export is the normal mechanism for writing to an analysis
FIFO. See write method of uvm_tlm_if base #(T1,T2) for more information.

METHODS

new

function new nane ,
uvm component par ent)

This is the standard uvm_component constructor. name is the local hame of this
component. The parent should be left unspecified when this component is instantiated in
statically elaborated constructs and must be specified when this component is a child of
another UVM component.

UVM 1.1 Class Reference 237

13.7 uvm_tim_fifo_base #(T)

This class is the base for <uvm_tim_fifo #(T)>. It defines the TLM exports through
which all transaction-based FIFO operations occur. It also defines default
implementations for each inteface method provided by these exports.

The interface methods provided by the put_export and the get_peek_export are defined
and described by uvm_tim_if_base #(T1,T2). See the TLM Overview section for a
general discussion of TLM interface definition and usage.

Parameter type

T The type of transactions to be stored by this FIFO.

Summary

uvm_tim_fifo_base #(T)

This class is the base for <uvm_tim_fifo #(T)>.
CiLass HierARCHY
uvm_void
uvm_object
uvm_report_object

uvm_component

uvm_tim_fifo_base#(T) |

CLass DEecLARATION
virtual class uvmtlmfifo_base #(
type T = int
) extends uvm conponent

Porrts
put_export The put_export provides both the blocking and non-
blocking put interface methods to any attached port:
get_peek_export The get_peek_export provides all the blocking and non-
blocking get and peek interface methods:
put_ap Transactions passed via put or try_put (via any port

connected to the put_export) are sent out this port via
its write method.

get_ap Transactions passed via get, try_get, peek, or try_peek
(via any port connected to the get_peek_export) are sent
out this port via its write method.

MEeTHODS

new The name and parent are the normal uvm_component
constructor arguments.

UVM 1.1 Class Reference 238

PorTs

put_export

The put_export provides both the blocking and non-blocking put interface methods to
any attached port:

task put (input T t)
function bit can_put ()
function bit try put (input T t)

Any put port variant can connect and send transactions to the FIFO via this export,
provided the transaction types match. See uvm_tlm_if_base #(T1,T2) for more
information on each of the above interface methods.

get_peek_export

The get_peek_export provides all the blocking and non-blocking get and peek interface
methods:

task get (output T t)

function bit can_get ()

function bit try get (output T t)
task peek (output T t

function bit can_peek ()

function bit try peek (output T t)

Any get or peek port variant can connect to and retrieve transactions from the FIFO via
this export, provided the transaction types match. See uvm_tim_if base #(T1,T2) for
more information on each of the above interface methods.

put_ap

Transactions passed via put or try put (via any port connected to the put_export) are
sent out this port via its write method.

function void wite (T t)

All connected analysis exports and imps will receive put transactions. See
uvm_tim_if _base #(T1,T2) for more information on the write interface method.

get_ap

UVM 1.1 Class Reference 239

Transactions passed via get, try_get, peek, or try peek (via any port connected to the
get_peek_export) are sent out this port via its write method.

function void wite (T t)

All connected analysis exports and imps will receive get transactions. See
uvm_tim_if _base #(T1,T2) for more information on the write method.

METHODS

new

function newstring namne,
uvm conponent parent)

The name and parent are the normal uvm_component constructor arguments. The
parent should be null if the uvm_tim_fifo is going to be used in a statically elaborated
construct (e.g., a module). The size indicates the maximum size of the FIFO. A value of
zero indicates no upper bound.

UVM 1.1 Class Reference 240

13.8 TLM Channel Classes

This section defines built-in TLM channel classes.

Contents
TLM Channel Classes This section defines built-in TLM channel classes.
uvm_tlm_req_rsp_channel The uvm_tim_req_rsp_channel contains a request
#(REQ,RSP) FIFO of type REQ and a response FIFO of type RSP.
uvm_tlm_transport_channel A uvm_tlm_transport_channel is a
#(REQ,RSP) uvm_tlm_req_rsp_channel #(REQ,RSP) that

implements the transport interface.

uvm_tim_req_rsp_channel #(REQ,RSP)

The uvm_tim_req_rsp_channel contains a request FIFO of type REQ and a response FIFO
of type RSP. These FIFOs can be of any size. This channel is particularly useful for
dealing with pipelined protocols where the request and response are not tightly coupled.

Type parameters

REQ Type of the request transactions conveyed by this channel.
RSP Type of the reponse transactions conveyed by this channel.
Summary

uvm_tim_req_rsp_channel #(REQ,RSP)

The uvm_tim_req_rsp_channel contains a request FIFO of type REQ and a
response FIFO of type RSP.

CLass HierarcHy
uvm_void
uvm_object
uvm_report_object

uvm_component

uvm_tim_req_rsp_channel#(REQ,RSP) |

Crass DEcLARATION

class uvmtlmreq_rsp_channel #(
type REQ = 1nt,
type RSP = REOQ

) extends uvm conponent

UVM 1.1 Class Reference 241

PorTs
put_request_export

get_peek_response_export
get_peek_request_export
put_response_export
request_ap

response_ap

master_export

slave_export

MEeTHODS
new

PoRrTs

The put_export provides both the blocking and
non-blocking put interface methods to the
request FIFO:

The get_peek_response_export provides all the
blocking and non-blocking get and peek
interface methods to the response FIFO:

The get_peek_export provides all the blocking
and non-blocking get and peek interface
methods to the response FIFO:

The put_export provides both the blocking and
non-blocking put interface methods to the
response FIFO:

Transactions passed via put or try_put (via any
port connected to the put_request_export) are
sent out this port via its write method.
Transactions passed via put or try_put (via any
port connected to the put_response_export)
are sent out this port via its write method.
Exports a single interface that allows a master
to put requests and get or peek responses.
Exports a single interface that allows a slave to
get or peek requests and to put responses.

The name and parent are the standard
uvm_component constructor arguments.

put_request_export

The put_export provides both the blocking and non-blocking put interface methods to the

request FIFO:

task put (input T t);
function bit can_put

function bit try put gl'nput Tt);

Any put port variant can connect and send transactions to the request FIFO via this

export, provided the transaction types match.

get_peek_response_export

The get_peek_response_export provides all the blocking and non-blocking get and peek

interface methods to the response FIFO:

task get (output T t);

UVM 1.1 Class Reference

242

function bit can_get ();
function bit try get (output T t);
task peek (output T t);
function bit can_peek ();
function bit try peek (output T t);

Any get or peek port variant can connect to and retrieve transactions from the response
FIFO via this export, provided the transaction types match.

get_peek_request_export
The get_peek_export provides all the blocking and non-blocking get and peek interface

methods to the response FIFO:

task get (output T t);

function bit can_get ();

function bit try get (output T t);
task peek (output T t);

function bit can_peek E) ;

function bit try peek (output T t);

Any get or peek port variant can connect to and retrieve transactions from the response
FIFO via this export, provided the transaction types match.

put_response_export

The put_export provides both the blocking and non-blocking put interface methods to the
response FIFO:

task put (input T t);
function bit can_put ();
function bit try put (input T t);

Any put port variant can connect and send transactions to the response FIFO via this
export, provided the transaction types match.

request_ap
Transactions passed via put or try_put (via any port connected to the
put_request_export) are sent out this port via its write method.

function void wite (T t);

All connected analysis exports and imps will receive these transactions.

UVM 1.1 Class Reference 243

response_ap
Transactions passed via put or try_put (via any port connected to the

put_response_export) are sent out this port via its write method.

function void wite (T t);

All connected analysis exports and imps will receive these transactions.

master_export

Exports a single interface that allows a master to put requests and get or peek
responses. It is a combination of the put_request_export and
get_peek_response_export.

slave_export

Exports a single interface that allows a slave to get or peek requests and to put
responses. It is a combination of the get_peek_request_export and
put_response_export.

METHODS
new
function new (string nane,
uvm conponent parent)) = nul I,
i nt request _fifo_size = 1,
i nt response_fifo_size = 1)

The name and parent are the standard uvm_component constructor arguments. The
parent must be null if this component is defined within a static component such as a
module, program block, or interface. The last two arguments specify the request and
response FIFO sizes, which have default values of 1.

uvm_tim_transport_channel #(REQ,RSP)

A uvm_tim_transport_channel is a uvm_tlm_reqg_rsp_channel #(REQ,RSP) that
implements the transport interface. It is useful when modeling a non-pipelined bus at
the transaction level. Because the requests and responses have a tightly coupled one-

UVM 1.1 Class Reference 244

to-one relationship, the request and response FIFO sizes are both set to one.

Summary

uvm_tim_transport_channel #(REQ,RSP)

A uvm_tlm_transport_channel is a uvm_tlm_req_rsp_channel #(REQ,RSP) that
implements the transport interface.

Crass HieraARCHY
uvm_void
uvm_object
uvm_report_object
uvm_component

uvm_tlm_req_rsp_channel#(REQ,RSP)

uvm_tim_transport_channel#(REQ,RSP) |

CLAss DECLARATION
class uvmtlmtransport_channel #(

type REQ = int,
type RSP = REQ
) extends uvmtlmreq_rsp_channel #(REQ RSP)
PorTs
transport_export The put_export provides both the blocking and non-
blocking transport interface methods to the response
FIFO:
MEeTHODS
new The name and parent are the standard uvm_component
constructor arguments.
PorTs

transport_export

The put_export provides both the blocking and non-blocking transport interface methods
to the response FIFO:

task transport(REQ request, output RSP response);
function bit nb_transport(REQ request, output RSP response);

Any transport port variant can connect to and send requests and retrieve responses via
this export, provided the transaction types match. Upon return, the response argument

UVM 1.1 Class Reference 245

carries the response to the request.

METHODS

new

function new (string name,
uvm conponent parent)

The name and parent are the standard uvm_component constructor arguments. The

parent must be null if this component is defined within a statically elaborated construct
such as a module, program block, or interface.

UVM 1.1 Class Reference 246

14. TLM2 Interfaces, Ports, Exports and Transport

Interfaces Subset

Sockets group together all the necessary core interfaces for transportation and binding,
allowing more generic usage models than just TLM core interfaces.

A socket is like a port or export; in fact it is derived from the same base class as ports
and export, namely uvm_port_base #(IF). However, unlike a port or export a socket
provides both a forward and backward path. Thus you can enable asynchronous
(pipelined) bi-directional communication by connecting sockets together. To enable this,
a socket contains both a port and an export. Components that initiate transactions are
called initiators, and components that receive transactions sent by an initiator are called
targets. Initiators have initiator sockets and targets have target sockets. Initiator
sockets can connect to target sockets. You cannot connect initiator sockets to other
initiator sockets and you cannot connect target sockets to target sockets.

The UVM TLM2 subset provides the following two transport interfaces

Blocking (b_transport) completes the entire transaction within a single
method call
Non-blocking (nb_transport) describes the progress of a transaction using

multiple nb_transport() method calls going back-
and-forth between initiator and target

In general,any component might modify a transaction object during its lifetime (subject
to the rules of the protocol). Significant timing points during the lifetime of a transaction
(for example: start-ofresponse- phase) are indicated by calling nb_transport() in either
forward or backward direction, the specific timing point being given by the phase
argument. Protocol-specific rules for reading or writing the attributes of a transaction
can be expressed relative to the phase. The phase can be used for flow control, and for
that reason might have a different value at each hop taken by a transaction; the phase is
not an attribute of the transaction object.

A call to nb_transport() always represents a phase transition. However, the return from
nb_transport() might or might not do so, the choice being indicated by the value
returned from the function (UVM_TLM_ACCEPTED versus UVM_TLM_UPDATED).
Generally, you indicate the completion of a transaction over a particular hop using the
value of the phase argument. As a shortcut, a target might indicate the completion of
the transaction by returning a special value of UVM_TLM_COMPLETED. However, this is
an option, not a necessity.

The transaction object itself does not contain any timing information by design. Or even
events and status information concerning the API. You can pass the delays as
arguments to b_transport()/ nb_transport() and push the actual realization of any delay
in the simulator kernel downstream and defer (for simulation speed).

Use Models

Since sockets are derived from uvm_port_base #(IF) they are created and connected in
the same way as port, and exports. Create them in the build phase and connect them in
the connect phase by calling connect(). Initiator and target termination sockets are on

UVM 1.1 Class Reference 247

the ends of any connection. There can be an arbitrary number of passthrough sockets in
the path between initator and target. Some socket types must be bound to imps
implementations of the transport tasks and functions. Blocking terminator sockets must
be bound to an implementation of b_transport(), for example. Nonblocking initiator
sockets must be bound to an implementation of nb_transport_bw() and nonblocking
target sockets must be bound to an implementation of nb_transport_fw(). Typically, the
task or function is implemented in the component in which the socket is instantiated and
the component type and instance are provided to complete the binding.

Consider for example a consumer component with a blocking target socket.

Example

cl ass consuner extends uvm conponent;
tlnm2_b_target_socket #(consumer, trans) target_socket;
function new(string name, uvm conponent parent);
super. new nane, parent);
endf uncti on
function void build();]]
target _socket = new("target_socket", this, this);
endf unction
task b_transport(trans t, uvmtlmtine delay);
#5;
uvm report_info("consuner", t.convert2string());
endt ask
endcl ass

The interface task b_transport() is implemented in the consumer component. The
consumer component type is used in the declaration of the target socket. This informs
the socket object the type of the object that contains the interface task, in this case
b_transport(). When the socket is instantiated “this” is passed in twice, once as the
parent just like any other component instantiation and again to identify the object that
holds the implementation of b_transport(). Finally, in order to complete the binding, an
implementation of b_transport() must be present in the consumer component. Any
component that has either a blocking termination socket, a nonblocking initiator socket,
or a nonblocking termination socket must provide implementations of the relevant
components. This includes initiator and target components as well as interconnect
components that have these kinds of sockets. Components with passthrough sockets do
not need to provide implementations of any sort. Of course, they must ultimately be
connected to sockets that do that the necessary implementations.

In summary

Call to b_transport() start-of-life of transaction
Return from b_transport() end-of-life of transaction
Phase argument to nb_transport() timing point within lifetime of

transaction

Return value of nb_transport() whether return path is being used
(also shortcut to final phase)

Response status within transaction object protocol-specific status,
success/failure of transaction

On top of this, TLM-2.0 defines a generic payload and base protocol to enhance
interoperability for models with a memory-mapped bus interface.

UVM 1.1 Class Reference

248

It is possible to use the interfaces described above with user-defined transaction types
and protocols for the sake of interoperability. However, TLM-2.0 strongly recommends
either using the base protocol off-the-shelf or creating models of specific protocols on top
of the base protocol.

The UVM 1.1 standard only defines and supports this TLM2 style interface for

SystemVerilog to SystemVerlog communication. Mixed languanged TLM communication
is saved for future extension.

Summary
TLM2 Interfaces, Ports, Exports and Transport Interfaces Subset

Sockets group together all the necessary core interfaces for transportation and
binding, allowing more generic usage models than just TLM core interfaces.

UVM 1.1 Class Reference 249

14.1 TLM Generic Payload & Extensions

The Generic Payload transaction represents a generic bus read/write access. It is used as
the default transaction in TLM2 blocking and nonblocking transport interfaces.

Contents
TLM Generic Payload & The Generic Payload transaction represents a
Extensions generic bus read/write access.
GLOBALS Defines, Constants, enums.
uvm_tlm_command_e Command atribute type definition

uvm_tlm_response_status_e Respone status attribute type definition

GEeNeric PayLoap

uvm_tim_generic_payload This class provides a transaction definition
commonly used in memory-mapped bus-based
systems.

uvm_tim_gp This typedef provides a short, more convenient
name for the uvm_tlm_generic_payload type.

uvm_tlm_extension_base The class uvm_tim_extension_base is the non-
parameterized base class for all generic payload
extensions.

uvm_tlm_extension TLM extension class.

GLoBALS

Defines, Constants, enums.

uvm_tim_command_e

Command atribute type definition
UVM_TLM_READ COMMAND Bus read operation
UVM_TLM_WRITE_COMMAND Bus write operation
UVM_TLM_IGNORE_COMMAND No bus operation.

uvm_tim_response_status_e

Respone status attribute type definition

UVM_TLM_OK_RESPONSE Bus operation completed
succesfully

UVM_TLM_INCOMPLETE_RESPONSE Transaction was not delivered
to target

UVM_TLM_GENERIC_ERROR_RESPONSE Bus operation had an error

UVM 1.1 Class Reference 250

UVM_TLM_ADDRESS ERROR_RESPONSE Invalid address specified
UVM_TLM_COMMAND_ERROR_RESPONSE Invalid command specified
UVM_TLM_BURST_ERROR_RESPONSE Invalid burst specified
UVM_TLM_BYTE_ENABLE_ERROR_RESPONSE Invalid byte enabling specified

GEeNERIC PAyLOAD

uvm_tim_generic_payload

This class provides a transaction definition commonly used in memory-mapped bus-based
systems. It's intended to be a general purpose transaction class that lends itself to many
applications. The class is derived from uvm_sequence_item which enables it to be
generated in sequences and transported to drivers through sequencers.

Summary

uvm_tim_generic_payload

This class provides a transaction definition commonly used in memory-mapped
bus-based systems.

Crass HieraARCHY
uvm_void
uvm_object
uvm_transaction

uvm_sequence_item

uvm_tim_generic_payload

CLASS DECLARATION
class uvmtl mgeneric_payl oad extends uvm sequence_item

m_address Address for the bus operation.

m_command Bus operation type.

m_data Data read or to be written.

m_length The number of bytes to be copied to or from the

m_data array, inclusive of any bytes disabled by
the m_byte_enable attribute.

m_response_status Status of the bus operation.

m_dmi DMI mode is not yet supported in the UVM TLM2
subset.

m_byte_enable Indicates valid m_data array elements.

m_byte_enable_length The number of elements in the m_byte_enable
array.

m_streaming_width Number of bytes transferred on each beat.

new Create a new instance of the generic payload.

UVM 1.1 Class Reference 251

convert2string

ACCESSORS

get_command
set_command
is_read

set_read

is_write

set_write

set_address
get_address
get_data
set_data
get_data_length
set_data_length

get_streaming_width

set_streaming_width
get_byte_enable
set_byte_enable

get_byte_enable_length

set_byte_enable_length

set_dmi_allowed
is_dmi_allowed
get_response_status
set_response_status

is_response_ok

is_response_error

get_response_string

ExTENSIONS MECHANISM

set_extension
get_num_extensions

get_extension
clear_extension

clear_extensions

m_address

rand bit [63:0]

UVM 1.1 Class Reference

m addr ess

Convert the contents of the class to a string
suitable for printing.

The accessor functions let you set and get each of

the members of the generic payload.

Get the value of the m_command variable
Set the value of the m_command variable
Returns true if the current value of the
m_command variable is
UVM_TLM_READ_COMMAND.

Set the current value of the m_command variable

to UVM_TLM_READ_COMMAND.
Returns true if the current value of the
m_command variable is
UVM_TLM_WRITE_COMMAND.

Set the current value of the m_command variable

to UVM_TLM_WRITE_COMMAND.

Set the value of the m_address variable

Get the value of the m_address variable
Return the value of the m_data array

Set the value of the m_data array

Return the current size of the m_data array
Set the value of the m_length

Get the value of the m_streaming_width array
Set the value of the m_streaming_width array
Return the value of the m_byte_enable array
Set the value of the m_byte_enable array
Return the current size of the m_byte_enable
array

Set the size m_byte_enable_length of the
m_byte_enable array i.e m_byte_enable.size()
DMI hint.

DMI hint.

Return the current value of the
m_response_status variable

Set the current value of the m_response_status
variable

Return TRUE if the current value of the
m_response_status variable is
UVM_TLM_OK_RESPONSE

Return TRUE if the current value of the
m_response_status variable is not
UVM_TLM_OK_RESPONSE

Return the current value of the
m_response_status variable as a string

Add an instance-specific extension.

Return the current number of instance specific
extensions.

Return the instance specific extension bound
under the specified key.

Remove the instance-specific extension bound
under the specified key.

Remove all instance-specific extensions

252

Address for the bus operation. Should be set or read using the set_address and
get_address methods. The variable should be used only when constraining.

For a read command or a write command, the target shall interpret the current value of
the address attribute as the start address in the system memory map of the contiguous
block of data being read or written. The address associated with any given byte in the
data array is dependent upon the address attribute, the array index, the streaming width
attribute, the endianness and the width of the physical bus.

If the target is unable to execute the transaction with the given address attribute
(because the address is out-of-range, for example) it shall generate a standard error
response. The recommended response status is UVM_TLM_ADDRESS ERROR_RESPONSE.

m_command

rand uvmtl m command_e m conmmand

Bus operation type. Should be set using the set_command, set_read or set_write
methods and read using the get_command, is_read or is_write methods. The variable
should be used only when constraining.

If the target is unable to execute a read or write command, it shall generate a standard
error response. The recommended response status is
UVM_TLM_COMMAND_ERROR_RESPONSE.

On receipt of a generic payload transaction with the command attribute equal to
UVM_TLM_IGNORE_COMMAND, the target shall not execute a write command or a read
command not modify any data. The target may, however, use the value of any attribute
in the generic payload, including any extensions.

The command attribute shall be set by the initiator, and shall not be overwritten by any
interconnect

m_data

rand byte unsigned mdatal]

Data read or to be written. Should be set and read using the set_data or get_data
methods The variable should be used only when constraining.

For a read command or a write command, the target shall copy data to or from the data
array, respectively, honoring the semantics of the remaining attributes of the generic
payload.

For a write command or UVM_TLM_IGNORE_COMMAND, the contents of the data array
shall be set by the initiator, and shall not be overwritten by any interconnect component
or target. For a read command, the contents of the data array shall be overwritten by
the target (honoring the semantics of the byte enable) but by no other component.

Unlike the OSCI TLM-2.0 LRM, there is no requirement on the endiannes of multi-byte
data in the generic payload to match the host endianness. Unlike C++, it is not possible

UVM 1.1 Class Reference 253

in SystemVerilog to cast an arbitrary data type as an array of bytes. Therefore,
matching the host endianness is not necessary. In constrast, arbitrary data types may
be converted to and from a byte array using the streaming operator and uvm_object
objects may be further converted using the uvm_object::pack_bytes() and
uvm_object::unpack_bytes() methods. All that is required is that a consistent
mechanism is used to fill the payload data array and later extract data from it.

Should a generic payload be transfered to/from a systemC model, it will be necessary for
any multi-byte data in that generic payload to use/be interpreted using the host
endianness. However, this process is currently outside the scope of this standard.

m_length
rand int unsigned mlength

The number of bytes to be copied to or from the m_data array, inclusive of any bytes
disabled by the m_byte_enable attribute.

The data length attribute shall be set by the initiator, and shall not be overwritten by any
interconnect component or target.

The data length attribute shall not be set to 0. In order to transfer zero bytes, the
m_command attribute should be set to UVM_TLM_IGNORE_COMMAND.

m_response_status

rand uvm tl mresponse_status_e mresponse_status

Status of the bus operation. Should be set using the set_response_status method and
read using the get_response_status, get_response_string, is_response_ok or
is_response_error methods. The variable should be used only when constraining.

The response status attribute shall be set to UVM_TLM_INCOMPLETE_RESPONSE by the
initiator, and may be overwritten by the target. The response status attribute should not
be overwritten by any interconnect component, because the default value
UVM_TLM_INCOMPLETE_RESPONSE indicates that the transaction was not delivered to
the target.

The target may set the response status attribute to UVM_TLM_OK_RESPONSE to indicate
that it was able to execute the command successfully, or to one of the five error
responses to indicate an error. The target should choose the appropriate error response
depending on the cause of the error. If a target detects an error but is unable to select
a specific error response, it may set the response status to
UVM_TLM_GENERIC_ERROR_RESPONSE.

The target shall be responsible for setting the response status attribute at the
appropriate point in the lifetime of the transaction. In the case of the blocking transport
interface, this means before returning control from b_transport. In the case of the non-
blocking transport interface and the base protocol, this means before sending the
BEGIN_RESP phase or returning a value of UVM_TLM_COMPLETED.

It is recommended that the initiator should always check the response status attribute on

UVM 1.1 Class Reference 254

receiving a transition to the BEGIN_RESP phase or after the completion of the
transaction. An initiator may choose to ignore the response status if it is known in
advance that the value will be UVM_TLM_OK_RESPONSE, perhaps because it is known in
advance that the initiator is only connected to targets that always return
UVM_TLM_OK_RESPONSE, but in general this will not be the case. In other words, the
initiator ignores the response status at its own risk.

m_dmi
rand bit madm

DMI mode is not yet supported in the UVM TLM2 subset. This variable is provided for
completeness and interoperability with SystemC.

m_byte_enable

rand byte unsigned m byte_enabl g[]

Indicates valid m_data array elements. Should be set and read using the
set_byte_enable or get_byte_enable methods The variable should be used only when
constraining.

The elements in the byte enable array shall be interpreted as follows. A value of 8'h00
shall indicate that that corresponding byte is disabled, and a value of 8'hFF shall indicate
that the corresponding byte is enabled.

Byte enables may be used to create burst transfers where the address increment
between each beat is greater than the number of significant bytes transferred on each
beat, or to place words in selected byte lanes of a bus. At a more abstract level, byte
enables may be used to create “lacy bursts” where the data array of the generic payload
has an arbitrary pattern of holes punched in it.

The byte enable mask may be defined by a small pattern applied repeatedly or by a large
pattern covering the whole data array. The byte enable array may be empty, in which
case byte enables shall not be used for the current transaction.

The byte enable array shall be set by the initiator and shall not be overwritten by any
interconnect component or target.

If the byte enable pointer is not empty, the target shall either implement the semantics
of the byte enable as defined below or shall generate a standard error response. The
recommended response status is UVM_TLM_BYTE_ENABLE_ERROR_RESPONSE.

In the case of a write command, any interconnect component or target should ignore the
values of any disabled bytes in the m_data array. In the case of a read command, any
interconnect component or target should not modify the values of disabled bytes in the
m_data array.

m_byte_enable_length

UVM 1.1 Class Reference 255

rand int unsigned mbyte enabl e_| ength

The number of elements in the m_byte_enable array.

It shall be set by the initiator, and shall not be overwritten by any interconnect
component or target.

m_streaming_width

rand int unsigned mstreamnm ng_w dth

Number of bytes transferred on each beat. Should be set and read using the
set_streaming_width or get_streaming_width methods The variable should be used only
when constraining.

Streaming affects the way a component should interpret the data array. A stream
consists of a sequence of data transfers occurring on successive notional beats, each beat
having the same start address as given by the generic payload address attribute. The
streaming width attribute shall determine the width of the stream, that is, the number of
bytes transferred on each beat. In other words, streaming affects the local address
associated with each byte in the data array. In all other respects, the organisation of the
data array is unaffected by streaming.

The bytes within the data array have a corresponding sequence of local addresses within
the component accessing the generic payload transaction. The lowest address is given by
the value of the address attribute. The highest address is given by the formula
address_attribute + streaming_width - 1. The address to or from which each byte is
being copied in the target shall be set to the value of the address attribute at the start
of each beat.

With respect to the interpretation of the data array, a single transaction with a streaming
width shall be functionally equivalent to a sequence of transactions each having the same
address as the original transaction, each having a data length attribute equal to the
streaming width of the original, and each with a data array that is a different subset of
the original data array on each beat. This subset effectively steps down the original data
array maintaining the sequence of bytes.

A streaming width of 0 indicates that a streaming transfer is not required. it is equivalent
to a streaming width value greater than or equal to the size of the m_data array.

Streaming may be used in conjunction with byte enables, in which case the streaming

width would typically be equal to the byte enable length. It would also make sense to
have the streaming width a multiple of the byte enable length. Having the byte enable
length a multiple of the streaming width would imply that different bytes were enabled
on each beat.

If the target is unable to execute the transaction with the given streaming width, it shall
generate a standard error response. The recommended response status is
TLM_BURST_ERROR_RESPONSE.

new

UVM 1.1 Class Reference 256

function newstring name = "")

Create a new instance of the generic payload. Initialize all the members to their default
values.

convert2string

function string convert2string()

Convert the contents of the class to a string suitable for printing.

ACCESSORS

The accessor functions let you set and get each of the members of the generic payload.
All of the accessor methods are virtual. This implies a slightly different use model for
the generic payload than in SsytemC. The way the generic payload is defined in
SystemC does not encourage you to create new transaction types derived from
uvm_tlm_generic_payload. Instead, you would use the extensions mechanism. Thus in
SystemC none of the accessors are virtual.

get_command

virtual function uvmtlmcomand_e get_conmand()

Get the value of the m_command variable

set_command

virtual function void set_command(uvmtl m conmand_e conmand)

Set the value of the m_command variable

is_read
virtual function bit is_read()

Returns true if the current value of the m_command variable is
UVM_TLM_READ_COMMAND.

set_read

virtual function void set_read()

Set the current value of the m_command variable to UVM_TLM_READ_COMMAND.

UVM 1.1 Class Reference 257

is_write
virtual function bit is_wite()

Returns true if the current value of the m_command variable is
UVM_TLM_WRITE_COMMAND.

set_write

virtual function void set_wite()

Set the current value of the m_command variable to UVM_TLM_WRITE_COMMAND.

set_address

virtual function void set_address(bit [63:0] addr)

Set the value of the m_address variable

get_address

virtual function bit [63:0] get_address()

Get the value of the m_address variable

get_data

virtual function void get_data (output byte unsigned p [])

Return the value of the m_data array

set_data

virtual function void set_data(ref byte unsigned p [])

Set the value of the m_data array

get_data_length

virtual function int unsigned get_data | ength()

Return the current size of the m_data array

UVM 1.1 Class Reference 258

set_data_length

virtual function void set_data_l ength(int unsigned |ength)

Set the value of the m_length

get_streaming_width

virtual function int unsigned get_stream ng_w dth()

Get the value of the m_streaming_width array

set_streaming_width

virtual function void set_stream ng_wi dth(int unsigned w dth)

Set the value of the m_streaming_width array

get_byte_enable

virtual function void get_byte_ enabl e(out put byte unsigned p[])

Return the value of the m_byte_enable array

set_byte_enable

virtual function void set_byte enabl e(ref byte unsigned p[])

Set the value of the m_byte_enable array

get_byte_enable_length

virtual function int unsigned get_byte_enabl e_| ength()

Return the current size of the m_byte_enable array

set_byte_enable_length

virtual function void set_byte enable_ | ength(int unsigned |ength)

Set the size m_byte_enable_length of the m_byte_enable array i.e m_byte_enable.size()

UVM 1.1 Class Reference 259

set_dmi_allowed

virtual function void set_dmi _allowed(bit dm)

DMI hint. Set the internal flag m_dmi to allow dmi access

is_dmi_allowed

virtual function bit is_dm _allowed()

DMI hint. Query the internal flag m_dmi if allowed dmi access

get_response_status

virtual function uvmtlmresponse_status_e get_response_status()

Return the current value of the m_response_status variable

set_response_status

virtual function void set_response_status(uvmtlmresponse_status_e status)

Set the current value of the m_response_status variable

is_response_ok
virtual function bit is_response_ok()

Return TRUE if the current value of the m_response_status variable is
UVM_TLM_OK_RESPONSE

is_response_error

virtual function bit is_response_error()

Return TRUE if the current value of the m_response_status variable is not
UVM_TLM_OK_RESPONSE

get_response_string

virtual function string get_response_string()

UVM 1.1 Class Reference 260

Return the current value of the m_response_status variable as a string

ExTeENsioNs MECHANISM

set_extension

function uvmtl m extension_base set_extension(uvmtl m extensi on_base ext)

Add an instance-specific extension. The specified extension is bound to the generic
payload by ts type handle.

get_num_extensions

function int get_num extensions()

Return the current number of instance specific extensions.

get_extension

function uvmtl m extensi on_base get_extension(uvm tl m extension_base ext_hand

Return the instance specific extension bound under the specified key. If no extension is
bound under that key, null is returned.

clear_extension

function void clear_extension(uvmtl m extensi on_base ext_handl e)

Remove the instance-specific extension bound under the specified key.

clear_extensions

function void cl ear_extensions()

Remove all instance-specific extensions

This typedef provides a short, more convenient name for the uvm_tlm_generic_payload

UVM 1.1 Class Reference 261

type.

Summary

uvm_tim_gp

This typedef provides a short, more convenient name for the
uvm_tlm_generic_payload type.

CLass DEecLARATION
typedef uvm tl m generic_payload uvmtl mgp

uvm_tim_extension_base

The class uvm_tim_extension_base is the non-parameterized base class for all generic
payload extensions. It includes the utility do_copy() and create(). The pure virtual
function get_type_handle() allows you to get a unique handles that represents the
derived type. This is implemented in derived classes.

This class is never used directly by users. The uvm_tim_extension class is used instead.

Summary

uvm_tim_extension_base

The class uvm_tlm_extension_base is the non-parameterized base class for all
generic payload extensions.

Crass HierARCHY
uvm_void

uvm_object

uvm_tim_extension_base

Crass DEcLARATION
virtual class uvmtl m extensi on_base extends uvm object

MeTHoDS
new
get_type_handle An interface to polymorphically retrieve a handle
that uniquely identifies the type of the sub-class
get_type_handle_name An interface to polymorphically retrieve the name
that uniquely identifies the type of the sub-class
create

UVM 1.1 Class Reference 262

METHODS

new

function newstring nane = "")

get_type_handle

pure virtual function uvmtl m extension_base get_type_ handl e()

An interface to polymorphically retrieve a handle that uniquely identifies the type of the
sub-class

get_type_handle_name

pure virtual function string get_type_handl e_nane()

An interface to polymorphically retrieve the name that uniquely identifies the type of the
sub-class

create

virtual function uvmobject create (string name = "")

uvm_tim_extension

TLM extension class. The class is parameterized with arbitrary type which represents the
type of the extension. An instance of the generic payload can contain one extension
object of each type; it cannot contain two instances of the same extension type.

The extension type can be identified using the ID() method.

To implement a generic payload extension, simply derive a new class from this class and
specify the name of the derived class as the extension parameter.

cl ass r%_l D extends uvmtl mextension#(nmy_ID);
int ID;
“uvm obj ect _utils_begin(nmy_lD)
“uvm field int(ID, UVMALL_QON)
“uvm object _ufils_end

function new(string name = "ny_ID");
super. new nane) ;
endf unction
endcl ass

UVM 1.1 Class Reference 263

Summary

uvm_tim_extension

TLM extension class.
CLass HierarcHy
uvm_void
uvm_object

uvm_tlm_extension_base

uvm_tim_extension |

CLass DEecLARATION

class uvm tl m extension #(
type T = int]
) extends uvm tl| m extension_base

MEeTHODS
new creates a new extension object.
ID() Return the unique ID of this TLM extension type.
METHODS
new
function newstring nane = "")

creates a new extension object.

ID()

static function this_type IIX)
Return the unique ID of this TLM extension type. This method is used to identify the

type of the extension to retrieve from a uvm_tim_generic_payload instance, using the
uvm_tlm_generic_payload::get_extension() method.

UVM 1.1 Class Reference 264

14.2 TLM2 interfaces

Summary

tim interfaces

GLoBALS Global macro’s & enums
uvm_tlm_phase_e Nonblocking transport synchronization state
values between an initiator and a target.
uvm_tim_sync_e Pre-defined phase state values for the

nonblocking transport Base Protocol
between an initiator and a target.

"UVM_TLM_TASK_ERROR Defines Not-Yet-Implemented TLM tasks
"UVM_TLM_FUNCTION_ERROR Defines Not-Yet-Implemented TLM
functions
TLM IF Cirass Base class type to define the transport
functions.
GLoBALS

Global macro’s & enums

uvm_tim_phase_e

Nonblocking transport synchronization state values between an initiator and a target.
UNINITIALIZED_ PHASE Defaults for constructor

BEGIN_REQ Beginning of request phase
END_REQ End of request phase
BEGIN_RESP Begining of response phase
END_RESP End of response phase

uvm_tim_sync_e
Pre-defined phase state values for the nonblocking transport Base Protocol between an

initiator and a target.

UVM_TLM_ACCEPTED Transaction has been accepted
UVM_TLM_UPDATED Transaction has been modified
UVM_TLM_COMPLETED Execution of transaction is complete

UVM 1.1 Class Reference 265

"UVM_TLM_TASK_ERROR

Defines Not-Yet-Implemented TLM tasks

"UVM_TLM_FUNCTION_ERROR

Defines Not-Yet-Implemented TLM functions

TLM IF Cuass

Base class type to define the transport functions.

Base class type to define the transport functions.

e nb_transport_fw
e nb_transport_bw
¢ b_transport

Summary

uvm_tim_if

Base class type to define the transport functions.

CLass DEcLARATION

class uvmtIimif #(type T uvm t| m generi c_payl oad,

type P = uvm_tl mphase_e
TLM TRANSPORT Each of the interface methods take a handle to the
METHODS transaction to be transported and a reference argument
for the delay.
nb_transport_fw Forward path call.
nb_transport_bw Implementation of the backward path.
b_transport Execute a blocking transaction.

TLM TRANSPORT METHODS

Each of the interface methods take a handle to the transaction to be transported and a
reference argument for the delay. In addition, the nonblocking interfaces take a
reference argument for the phase.

UVM 1.1 Class Reference 266

nb_transport_fw

virtual function uvmtlmsync_e nb_transport_fw T t,
ref P p,
input uvmtlmtinme delay)

Forward path call. The first call to this method for a transaction marks the initial timing
point. Every call to this method may mark a timing point in the execution of the
transaction. The timing annotation argument allows the timing points to be offset from
the simulation times at which the forward path is used. The final timing point of a
transaction may be marked by a call to nb_transport_bw or a return from this or
subsequent call to nb_transport_fw.

See TLM2 Interfaces, Ports, Exports and Transport Interfaces Subset for more details on
the semantics and rules of the nonblocking transport interface.

nb_transport_bw

virtual function uvmtlmsync_e nb_transport_bw f T t,
ref P P,
input uvmtlimtinme delay)

Implementation of the backward path. This function MUST be implemented in the
INITIATOR component class.

Every call to this method may mark a timing point, including the final timing point, in the
execution of the transaction. The timing annotation argument allows the timing point to
be offset from the simulation times at which the backward path is used. The final timing
point of a transaction may be marked by a call to nb_transport_fw or a return from this
or subsequent call to nb_transport_bw.

See TLM?2 Interfaces, Ports, Exports and Transport Interfaces Subset for more details on
the semantics and rules of the nonblocking transport interface.

Example

cl ass naster extends uvm conponent;

uvm_tim_nb_initiator_socket #(trans, uvm_tim_phase_e, this_t) initiator_socket;

function void buil d_phase(uvm phase phase);

initiator_socket = new(“initiator_socket”, this, this);

endfunction

function uvmtlmsync_e nb_transport_bwref trans t,
ref 'uvmtlmphase_e p,

UVM 1.1 Class Reference 267

] input uvmtlimtine delay);
transaction = t;
state = p;
return UVM TLM ACCEPTED,;
endf uncti on

endcl ass

b_transport

virtual task b_transport(T) t,
uvmtimtime del ay)

Execute a blocking transaction. Once this method returns, the transaction is assumed to
have been executed. Whether that execution is succesful or not must be indicated by
the transaction itself.

The callee may modify or update the transaction object, subject to any constraints
imposed by the transaction class. The initiator may re-use a transaction object from one
call to the next and across calls to b_transport().

The call to b_transport shall mark the first timing point of the transaction. The return
from b_transport shall mark the final timing point of the transaction. The timing
annotation argument allows the timing points to be offset from the simulation times at
which the task call and return are executed.

UVM 1.1 Class Reference 268

14.3 TLM Sockets

Each uvm_tim_*_socket class is derived from a corresponding uvm_tlm_*_socket_base
class. The base class contains most of the implementation of the class, The derived
classes (in this file) contain the connection semantics.

Sockets come in several flavors: Each socket is either an initiator or a target, a
passthrough or a terminator. Further, any particular socket implements either the
blocking interfaces or the nonblocking interfaces. Terminator sockets are used on
initiators and targets as well as interconnect components as shown in the figure above.
Passthrough sockets are used to enable connections to cross hierarchical boundaries.

There are eight socket types: the cross of blocking and nonblocking, passthrough and
termination, target and initiator

Sockets are specified based on what they are (IS-A) and what they contains (HAS-A).
IS-A and HAS-A are types of object relationships. IS-A refers to the inheritance
relationship and HAS-A refers to the ownership relationship. For example if you say D is
a B that means that D is derived from base B. If you say object A HAS-A B that means
that B is a member of A.

Contents

TLM Sockets Each uvm_tIm_* socket class is
derived from a corresponding

uvm_tim_*_socket_base class.

IS-A forward port; has no backward
path except via the payload contents
IS-A forward imp; has no backward
path except via the payload contents.
IS-A forward port; HAS-A backward
imp

IS-A forward imp; HAS-A backward
port

uvm_tlm_b_initiator_socket
uvm_tlm_b_target_socket
uvm_tlm_nb_initiator_socket

uvm_tim_nb_target_socket

uvm_tlm_b_passthrough_initiator_socket
uvm_tlm_b_passthrough_target_socket
uvm_tlm_nb_passthrough_initiator_socket

uvm_tlm_nb_passthrough_target_socket

IS-A forward port;

IS-A forward export;

IS-A forward port; HAS-A backward
export

IS-A forward export; HAS-A
backward port

uvm_tim_b_initiator_socket

IS-A forward port; has no backward path except via the payload contents

Summary

UVM 1.1 Class Reference

269

uvm_tim_b_initiator_socket

IS-A forward port; has no backward path except via the payload contents

Crass HierARCHY

uvm_tlm_b_initiator_socket_base#(T)

uvm_tim_b_initiator_socket |

Crass DEcCLARATION

class uvmtim_
type T = uv
m_

init
tl

b_ at or _socket #(
m generi c_payl oad

) extends uvmtImb initiator_socket base #(T)
MEeTHODS
new Construct a new instance of this socket
Connect Connect this socket to the specified uvm_tim_b_target_socket
METHODS
new
function new(string namne,

uvm _conponent parent)

Construct a new instance of this socket

Connect

Connect this socket to the specified uvm_tim_b_target_socket

uvm_tim_b_target_socket

IS-A forward imp; has no backward path except via the payload contents.

The component instantiating this socket must implement a b_transport() method with the
following signature

task b_transport(T t, uvmtlimtinme delay);

Summary

UVM 1.1 Class Reference 270

uvm_tim_b_target_socket
IS-A forward imp; has no backward path except via the payload contents.

CLass HIERARCHY
uvm_tlm_b_target_socket base#(T)

uvm_tim_b_target_socket

CLass DEcLARATION
class uvmtimb target socket #(

type | MP = int, _
type T = uvm tl m generi c_payl oad
extends uvmtlmb target socket base #(T)

)

Construct a new instance of this socket imp is a reference to the

MEeTHODS
new
class implementing the b_transport() method.
Connect Connect this socket to the specified uvm_tim_b_initiator_socket
MEeTHODS
new
function new (string nane,
uvm conponent parent,
I nmp = null)

| MP

Construct a new instance of this socket imp is a reference to the class implementing the
If not specified, it is assume to be the same as parent.

b_transport() method.

Connect
Connect this socket to the specified uvm_tim_b_initiator_socket

uvm_tim_nb_initiator_socket

IS-A forward port; HAS-A backward imp
The component instantiating this socket must implement a nb_transport_bw() method

with the following signature
uvmtimtine

ref P p, input

function uvmtlmsync_e nb_transport_bwT t,

del ay) ;

271

UVM 1.1 Class Reference

Summary

uvm_tim_nb_initiator_socket

IS-A forward port; HAS-A backward imp

Crass HierARCHY

uvm_tlm_nb_initiator_socket_base#(T,P)

uvm_tim_nb_initiator_socket |

CLAss DECLARATION
class uvmtlmnb_initiator_socket #(

type IMP = int, _
type T = uvm_tl| m generic_payl oad,
type P = uvmtlm phase_e
) extends uvmtlimnb_initiator_socket _base #(T, P)
MEeTHODS
new Construct a new instance of this socket imp is a reference to the
class implementing the nb_transport_bw() method.
Connect Connect this socket to the specified uvm_tim_nb_target_socket
MEeTHODS
new
function newstring nane,
uvm conponent parent,
I MP I mp = null)

Construct a new instance of this socket imp is a reference to the class implementing the
nb_transport_bw() method. If not specified, it is assume to be the same as parent.

Connect

Connect this socket to the specified uvm_tlm_nb_target_socket

uvm_tim_nb_target_socket

IS-A forward imp; HAS-A backward port

The component instantiating this socket must implement a nb_transport_fw() method
with the following signature

UVM 1.1 Class Reference 272

Bulnctson uvmtlmsync_e nb_transport fw(T t, ref P p, input uvmtlimtine
el ay

Summary

uvm_tim_nb_target_socket

IS-A forward imp; HAS-A backward port
CLass HierarcHy

uvm_tlm_nb_target _socket base#(T,P)

uvm_tim_nb_target_socket |

Crass DEcLARATION

class uvmtl mnb_target_socket #(
type IMP = in
type T :umtlmgener|c payl oad,
type P :umtlmphasee
) extends uvmtl mnb_target_socket base #(T,P)
MEeTHODS
new Construct a new instance of this socket imp is a reference to the
class implementing the nb_transport_fw() method.
connect Connect this socket to the specified uvm_tlm_nb_initiator_socket
MEeTHODS
new
function new (string nane,
uvm conponent parent,
I MP I nmp = null)

Construct a new instance of this socket imp is a reference to the class implementing the
nb_transport_fw() method. If not specified, it is assume to be the same as parent.

connect

function void connect(this_type provider)

Connect this socket to the specified uvm_tim_nb_initiator_socket

UVM 1.1 Class Reference 273

uvim_tim_b_passthrough_initiator_socket

IS-A forward port;

Summary

uvm_tim_b_passthrough_initiator_socket

IS-A forward port;
Crass HierARCHY

uvm_tlm_b_passthrough_initiator_socket_base#(T)

uvm_tim_b_passthrough_initiator_socket |

Crass DEcLARATION

class uvmtl mb_passthrough_initiator_socket #(
type T = uvmtlmgeneric_payl oa
;)#(_?;(t ends uvmtlmb_passthrough_initiator_socket base

uvim_tim_b_passthrough_target_socket

IS-A forward export;

Summary

uvm_tim_b_passthrough_target_socket

IS-A forward export;

Crass HierARCHY

uvm_tlm_b_passthrough_target_socket_base#(T)

uvm_tim_b_passthrough_target_socket |

Crass DEcLARATION

class uvm tl mb_passthrough_target_socket #(
type T = uvmtl| mgeneric_payl oad
) extends uvmtl mb_passthrough target_socket base #(T)

uvm_tim_nb_passthrough_initiator_socket

UVM 1.1 Class Reference 274

IS-A forward port; HAS-A backward export

Summary

uvm_tim_nb_passthrough_initiator_socket

IS-A forward port; HAS-A backward export
Crass HierARCHY

uvm_tlm_nb_passthrough_initiator_socket_base#(T,P)

uvm_tim_nb_passthrough_initiator_socket |

CLass DEcLARATION
class uvm tl mnb_passthrough_initiator_socket #(

type T = uvmtlmgeneric_payl oad,

type P = uvmtlmphase_e L
)(ext)ends uvm t|l m nb_passt hrough_i ni ti at or_socket base
#(T, P

uvm_tim_nb_passthrough_target_socket

IS-A forward export; HAS-A backward port

Summary

uvm_tim_nb_passthrough_target_socket

IS-A forward export; HAS-A backward port
CiLass HierarcHY

uvm_tlm_nb_passthrough_target_socket_base#(T,P)

uvm_tim_nb_passthrough_target_socket |

Crass DEcLARATION

class uvm_tl mnb_passt hrough_target_socket #(
type uvm t | m generi c_payl oad,
type uvm t| m phase e
) extends uvm tl m nb_passthrough_target _socket base #(T, P)

ol

MEeTHODS
connect Connect this socket to the specified uvm_tlm_nb_initiator_socket

MEeTHODS

UVM 1.1 Class Reference 275

connect

function void connect(this_type provider)

Connect this socket to the specified uvm_tim_nb_initiator_socket

UVM 1.1 Class Reference 276

14.4 TLM2 ports

The following defines TLM2 port classes.

Contents
TLM2 ports The following defines TLM2 port classes.
uvm_tlm_b_transport_port Class providing the blocking transport port, The

port can be bound to one export.
uvm_tlm_nb_transport_fw_port Class providing the non-blocking backward
transport port.
uvm_tlm_nb_transport_bw_port Class providing the non-blocking backward
transport port.

uvim_tim_b_transport_port

Class providing the blocking transport port, The port can be bound to one export. There
is no backward path for the blocking transport.

Summary

uvm_tim_b_transport_port

Class providing the blocking transport port, The port can be bound to one export.
Crass HieraRcHY

uvm_port_base# (uvm_tim_if#(T))

uvm_tim_b_transport_port |

Crass DecLARATION

class uvmtlmb_transport_port #(
type T = uvm tl m generic_payl oad
) extends uvm port _base #(uvmtImif #(T))

uvm_tim_nb_transport_fw_port

Class providing the non-blocking backward transport port. Transactions received from
the producer, on the forward path, are sent back to the producer on the backward path
using this non-blocking transport port. The port can be bound to one export.

UVM 1.1 Class Reference 277

Summary

uvm_tim_nb_transport_fw_port
Class providing the non-blocking backward transport port.

CLass HIERARCHY

uvm_port_base#(uvm_tim_if#(T,P))

uvm_tim_nb_transport_fw_port |

Crass DEcLARATION

class uvmtlimnb_transport_fw port #(
type T = uvm_tl m generic_payl oad,
type P = uvmtl m phase e
) extends uvm port_base #(uvmtIimif #(T,P))

uvm_tim_nb_transport_bw_port

Class providing the non-blocking backward transport port. Transactions received from
the producer, on the forward path, are sent back to the producer on the backward path
using this non-blocking transport port The port can be bound to one export.

Summary

uvm_tim_nb_transport_bw_port
Class providing the non-blocking backward transport port.

CLass HIERARCHY

uvm_port_base#(uvm_tim_if#(T,P))

uvm_tim_nb_transport_bw_port |

Crass DEcLARATION

class uvmtlmnb_transport_bw port #(
type T = uvm tl m generic_payl oad,
type P = uvmtl m phase e
) extends uvm port_base #(uvmtIimif #(T,P))

MEeTHODS
new

MEeTHODS

UVM 1.1 Class Reference 278

new

UVM 1.1 Class Reference 279

14.5 TLM2 Export Classes

This section defines the export classes for connecting TLM2 interfaces.

Contents
TLM2 Export Classes This section defines the export classes for
connecting TLM2 interfaces.
uvm_tlm_b_transport_export Blocking transport export class.

uvm_tlm_nb_transport_fw_export Non-blocking forward transport export class
uvm_tlm_nb_transport_bw_export Non-blocking backward transport export class

uvm_tim_b_transport_export

Blocking transport export class.

Summary

uvm_tim_b_transport_export

Blocking transport export class.
CiLass HierarcHY

uvm_port_base# (uvm_tIm_if#(T))

uvm_tim_b_transport_export |

Crass DEcLARATION

class uvmtlimb_transport_export #(
type T = uvm_tl mgeneric_payl oad
) extends uvm port_base #(uvmtImif #(T))

uvm_tim_nb_transport_fw_export

Non-blocking forward transport export class

Summary

uvm_tim_nb_transport_fw_export

UVM 1.1 Class Reference 280

Non-blocking forward transport export class
Crass HieraARCHY

uvm_port_base# (uvm_tim_if#(T,P))

uvm_tim_nb_transport_fw_export |

CLass DecLARATION

class uvmtlmnb_transport_fw export #(
type T = uvmtl m generic_payl oad,
type P = uvmtl m phase_e
) extends uvm port_base #(uvmtImif #(T,P))

uvim_tim_nb_transport_bw_export

Non-blocking backward transport export class

Summary

uvm_tim_nb_transport_bw_export

Non-blocking backward transport export class
Crass HieraRcHY

uvm_port_base# (uvm_tim_if#(T,P))

uvm_tim_nb_transport_bw_export |

Crass DEecLARATION

class uvmtlmnb_transport_bw export #(
type T = uvm tl m generic_payl oad,
type P = uvmtl m phase e
) extends uvm port_base #(uvmtIimif #(T,P))

MEeTHODS
new

METHODS

new

UVM 1.1 Class Reference 281

14.6 TLM2 imps (interface implementations)

This section defines the implementation classes for connecting TLM2 interfaces.

TLM imps bind a TLM interface with the object that contains the interface
implementation. In addition to the transaction type and the phase type, the imps are
parameterized with the type of the object that will provide the implementation. Most
often this will be the type of the component where the imp resides. The constructor of
the imp takes as an argument an object of type IMP and installs it as the
implementation object. Most often the imp constructor argument is “this”.

Contents
TLM2 imps (interface This section defines the implementation
implementations) classes for connecting TLM2 interfaces.

IMP BINDING MACROS

"UVM_TLM_NB_TRANSPORT_FW_IMP The macro wraps the forward path call
function nb_transport_fw()

"UVM_TLM_NB_TRANSPORT_BW_IMP Implementation of the backward path.

"UVM_TLM_B_TRANSPORT_IMP The macro wraps the function
b_transport() Execute a blocking
transaction.

IMP BINDING CLASSES

uvm_tim_b_transport_imp Used like exports, except an addtional
class parameter specifices the type of
the implementation object.

uvm_tlm_nb_transport_fw_imp Used like exports, except an addtional
class parameter specifices the type of
the implementation object.

uvm_tim_nb_transport_bw_imp Used like exports, except an addtional
class parameter specifices the type of
the implementation object.

IMP BINDING MACROS

"UVM_TLM_NB_TRANSPORT_FW_IMP
The macro wraps the forward path call function nb_transport_fw()

The first call to this method for a transaction marks the initial timing point. Every call to
this method may mark a timing point in the execution of the transaction. The timing
annotation argument allows the timing points to be offset from the simulation times at
which the forward path is used. The final timing point of a transaction may be marked
by a call to nb_transport_bw() within "UVM_TLM_NB_TRANSPORT_BW_IMP or a return
from this or subsequent call to nb_transport_fw().

See TLM?2 Interfaces, Ports, Exports and Transport Interfaces Subset for more details on

UVM 1.1 Class Reference 282

the semantics and rules of the nonblocking transport interface.

"UVM_TLM_NB_TRANSPORT_BW_IMP

Implementation of the backward path. The macro wraps the function called
nb_transport_bw(). This function MUST be implemented in the INITIATOR component
class.

Every call to this method may mark a timing point, including the final timing point, in the
execution of the transaction. The timing annotation argument allows the timing point to
be offset from the simulation times at which the backward path is used. The final timing
point of a transaction may be marked by a call to nb_transport_fw() within
"UVM_TLM_NB_TRANSPORT_FW_IMP or a return from this or subsequent call to
nb_transport_bw().

See TLM2 Interfaces, Ports, Exports and Transport Interfaces Subset for more details on
the semantics and rules of the nonblocking transport interface.

Example

class master extends uvm conponent;
uvm tl mnb_initiator_socket] o
#(trans, uvmtTmphase e, this t) initiator_socket;

function void build_phase(uvm phase phase);
initiator_socket = new("initiator_socket", this, this);

endf unction

function uvmtl msync_e nb_transport_bw(trans t,
ref uvmtlmphase_e p,
] input uvmtTmtine delay);
transaction = t;
state = p;
return UVM TLM ACCEPTED,;
endf uncti on

endcl ass

"UVM_TLM_B_TRANSPORT_IMP

The macro wraps the function b_transport() Execute a blocking transaction. Once this
method returns, the transaction is assumed to have been executed. Whether that
execution is succesful or not must be indicated by the transaction itself.

The callee may modify or update the transaction object, subject to any constraints
imposed by the transaction class. The initiator may re-use a transaction object from one
call to the next and across calls to b_transport().

The call to b_transport shall mark the first timing point of the transaction. The return
from b_transport() shall mark the final timing point of the transaction. The timing
annotation argument allows the timing points to be offset from the simulation times at
which the task call and return are executed.

UVM 1.1 Class Reference 283

IMP BINDING CLASSES

uvm_tim_b_transport_imp

Used like exports, except an addtional class parameter specifices the type of the
implementation object. When the imp is instantiated the implementation object is

bound.

Summary

uvm_tim_b_transport_imp

Used like exports, except an addtional class parameter specifices the type of the
implementation object.

Crass HierRARCHY

uvm_port_base# (uvm_tIm_if#(T))

uvm_tim_b_transport_imp |

Crass DEecLARATION

class uvmtlimb_ transport _inp #(
type T = uvm tl m generic_payl oad,
type IMP = int

) extends uvm port_base #(uvmtIimif #(T))

uvm_tim_nb_transport_fw_imp

Used like exports, except an addtional class parameter specifices the type of the
implementation object. When the imp is instantiated the implementation object is

bound.

Summary

uvm_tim_nb_transport_fw_imp

Used like exports, except an addtional class parameter specifices the type of the
implementation object.

Crass HierARCHY

uvm_port_base# (uvm_tim_if#(T,P))

uvm_tim_nb_transport_fw_imp |

UVM 1.1 Class Reference 284

Crass DEcLARATION

class uvmtimnb_transport _fw.inp #(
type T = uvm t| m generi c_payl oad,
type P uvm t | m phase_e,
type IMP = int
) extends uvm port_base #(uvmtIimif #(T,P))

uvm_tim_nb_transport_bw_imp

Used like exports, except an addtional class parameter specifices the type of the

implementation object. When the imp is instantiated the implementation object is
bound.

Summary

uvm_tim_nb_transport_bw_imp

Used like exports, except an addtional class parameter specifices the type of the
implementation object.

Crass HierRARCHY

uvm_port_base# (uvm_tim_if#(T,P))

uvm_tim_nb_transport_bw_imp |

Crass DEecLARATION

class uvmtlmnb_transport_bw inp #(
type T uvm t | m generi c_payl oad,
type P uvm t | m phase_e,
type | MP i nt
) extends uvm port _base #(uvmtIimif #(T,P))

UVM 1.1 Class Reference 285

14.7 Interface Masks

Each of the following macros is a mask that identifies which interfaces a particular port
requires or export provides. The interfaces are identified by bit position and can be or'ed
together for combination ports/exports. The mask is used to do run-time interface type
checking of port/export connections.

Summary

Interface Masks

Each of the following macros is a mask that identifies which interfaces a particular
port requires or export provides.

Macros
"UVM_TLM_NB_FW_MASK Define Non blocking Forward mask onehot
assignment = ‘b001
“UVM_TLM_NB_BW_MASK Define Non blocking backward mask onehot
assignment = 'b010
"UVM_TLM_B_MASK Define blocking mask onehot assignment =
‘b100

MAcRros

"UVM_TLM_NB_FW_MASK

Define Non blocking Forward mask onehot assignment = 'b001

"UVM_TLM_NB_BW_MASK

Define Non blocking backward mask onehot assignment = *b010

"UVM_TLM_B_MASK

Define blocking mask onehot assignment = ‘b100

UVM 1.1 Class Reference 286

14.8 TLM Socket Base Classes

A collection of base classes, one for each socket type. The reason for having a base
class for each socket is that all the socket (base) types must be known before connect is
defined. Socket connection semantics are provided in the derived classes, which are user
visible.

Termination Sockets A termination socket must be the terminus of every TLM
path. A transaction originates with an initator socket
and ultimately ends up in a target socket. There may
be zero or more passthrough sockets between initiator
and target.

Passthrough Sockets Passthrough initiators are ports and contain exports for
instance IS-A port and HAS-A export. Passthrough
targets are the opposite, they are exports and contain

ports.
Contents
TLM Socket Base Classes A collection of base classes,
one for each socket type.
uvm_tlm_b_target_socket_base IS-A forward imp; has no

backward path except via the
payload contents.

uvm_tlm_b_initiator_socket_base IS-A forward port; has no
backward path except via the
payload contents

uvm_tlm_nb_target_socket_base IS-A forward imp; HAS-A
backward port
uvm_tlm_nb_initiator_socket_base IS-A forward port; HAS-A

backward imp
uvm_tlm_nb_passthrough_initiator_socket_base IS-A forward port; HAS-A

backward export
uvm_tlm_nb_passthrough_target_socket_base IS-A forward export; HAS-A

backward port
uvm_tlm_b_passthrough_initiator_socket_base IS-A forward port
uvm_tim_b_passthrough_target_socket_base IS-A forward export

uvm_tim_b_target_socket_base

IS-A forward imp; has no backward path except via the payload contents.

Summary

uvm_tim_b_target_socket_base

IS-A forward imp; has no backward path except via the payload contents.

UVM 1.1 Class Reference 287

Crass HieraARcHY

uvm_port_base# (uvm_tim_if#(T))

uvm_tim_b_target_socket_base |

Crass DEcLARATION

class uvmtlimb_target_socket_base #(
type T = uvm_tl mgeneric_payl oad
) extends uvm port_base #(uvmtImif #(T))

uvm_tim_b_initiator_socket_base

IS-A forward port; has no backward path except via the payload contents

Summary

uvm_tim_b_initiator_socket_base

IS-A forward port; has no backward path except via the payload contents

Crass HierARCHY

uvm_port_base# (uvm_tIm_if#(T))

uvm_tim_b_initiator_socket_base |

Crass DECLARATION

class uvmtlImb_initiator_socket_base #(
type T = uvmtl mgeneric_payl oad
) extends uvm port _base #(uvmitImif #(T))

uvim_tim_nb_target_socket_base

IS-A forward imp; HAS-A backward port

Summary

uvm_tim_nb_target_socket_base

IS-A forward imp; HAS-A backward port
Crass HieraARCHY

uvm_port_base# (uvm_tim_if#(T,P))

UVM 1.1 Class Reference 288

uvm_tim_nb_target_socket_base |

Crass DEcLARATION

class uvmtlmnb_target_socket _base #(
type T = uvm tl m generi c_payl oad,
type P = uvmtl m phase e
) extends uvm port_base #(uvmtIimif #(T,P))

uvm_tim_nb_initiator_socket_base

IS-A forward port; HAS-A backward imp

Summary

uvm_tim_nb_initiator_socket_base

IS-A forward port; HAS-A backward imp
Crass HierARCHY

uvm_port_base# (uvm_tim_if#(T,P))

uvm_tim_nb_initiator_socket_base |

Crass DEcLARATION

class uvmtimnb_initiator_socket_base #(
type T = uvm tl m generic_payl oad,
type P = uvmtl m phase_ e

) extends uvm port_base #(uvmtIimif #(T,P))

uvim_tim_nb_passthrough_initiator_socket_base

IS-A forward port; HAS-A backward export

Summary

uvm_tim_nb_passthrough_initiator_socket_base

IS-A forward port; HAS-A backward export
Crass HieraARCHY

uvm_port_base# (uvm_tim_if#(T,P))

uvm_tim_nb_passthrough_initiator_socket_base

UVM 1.1 Class Reference 289

Crass DEcLARATION

class uvm_tl mnb_passthrough_initiator_socket_base #(
type T = uvmtl mgeneric_payl oad,
type P = uvmtl mphase_e

) extends uvm port_base #(uvmtIimif #(T,P))

uvim_tim_nb_passthrough_target_socket_base

IS-A forward export; HAS-A backward port

Summary

uvm_tim_nb_passthrough_target_socket_base

IS-A forward export; HAS-A backward port
Crass HierARCHY

uvm_port_base# (uvm_tim_if#(T,P))

uvm_tim_nb_passthrough_target_socket_base |

Crass DEecLARATION

class uvm tl mnb_passthrough_target_socket _base #(
type T = uvmtl mgeneric_payl oad,
type P = uvmtl m phase_e

) extends uvm port_base #(uvmtIimif #(T,P))

uvim_tim_b_passthrough_initiator_socket_base

IS-A forward port

Summary

uvm_tim_b_passthrough_initiator_socket_base

IS-A forward port
Crass HieraARCHY

uvm_port_base# (uvm_tim_if#(T))

uvm_tim_b_passthrough_initiator_socket_base

CLass DEecLARATION

UVM 1.1 Class Reference 290

class uvmtl mb_passthrough_initiator_socket_base #(
type T = uvmtlmgeneric_payl oad
) extends uvm port_base #(uvmtimif #(T))

uvm_tim_b_passthrough_target_socket_base

IS-A forward export

Summary

uvm_tim_b_passthrough_target_socket_base

IS-A forward export

Crass HierARCHY

uvm_port_base# (uvm_tIm_if#(T))

uvm_tim_b_passthrough_target_socket_base |

Crass DECLARATION

class uvmtlmb_passthrough_target socket base #(
type T = uvmtl mgeneric_payl oad
) extends uvm port_base #(uvmtIimif #(T))

UVM 1.1 Class Reference 291

14.9 uvm_tim_time

Canonical time type that can be used in different timescales

This time type is used to represent time values in a canonical form that can bridge
initiators and targets located in different timescales and time precisions.

For a detailed explanation of the purpose for this class, see Why is this necessary.

Summary

uvm_tim_time

Canonical time type that can be used in different timescales

CLass DECLARATION
class uvmtimtinme
set_time_resolution Set the default canonical time resolution.

new Create a new canonical time value.

get_name Return the name of this instance

reset Reset the value to 0

get_realtime Return the current canonical time value, scaled for the
caller’s timescale

incr Increment the time value by the specified number of
scaled time unit

decr Decrement the time value by the specified number of
scaled time unit

get_abstime Return the current canonical time value, in the number of

specified time unit, reguardless of the current timescale
of the caller.

set_abstime Set the current canonical time value, to the number of
specified time unit, reguardless of the current timescale
of the caller.

WHy 1s THIS Integers are not sufficient, on their own, to represent

NECESSARY time without any ambiguity: you need to know the scale

of that integer value.

set_time_resolution

static function void set_tine_resolution(real res)

Set the default canonical time resolution.

Must be a power of 10. When co-simulating with SystemC, it is recommended that
default canonical time resolution be set to the SystemC time resolution.

By default, the default resolution is 1.0e-12 (ps)

new

UVM 1.1 Class Reference 292

function newstring name
real res)

Create a new canonical time value.

The new value is initialized to 0. If a resolution is not specified, the default resolution,
as specified by set_time_resolution(), is used.

get_name

function string get_nane()

Return the name of this instance

reset

function void reset()

Reset the value to 0

get_realtime

function real get_realtime(tinme scaled,
real secs)

Return the current canonical time value, scaled for the caller’s timescale

scaled must be a time literal value that corresponds to the number of seconds specified
in secs (1ns by default). It must be a time literal value that is greater or equal to the
current timescale.

#(del ay. get _real time(1ns));
#(del ay.get _real time(1fs, 1.0e-15));

incr

function void incr(real t,
time scal ed,
real secs)

Increment the time value by the specified number of scaled time unit

t is a time value expressed in the scale and precision of the caller. scaled must be a
time literal value that corresponds to the number of seconds specified in secs (1ns by
default). It must be a time literal value that is greater or equal to the current timescale.

UVM 1.1 Class Reference 293

del ay. i ncrEl. 5ns, 1ns);
del ay.incr(1.5ns, 1ps, 1.0e-12);

decr

function void decr(real t,
time scal ed,
real secs)

Decrement the time value by the specified number of scaled time unit

t is a time value expressed in the scale and precision of the caller. scaled must be a
time literal value that corresponds to the number of seconds specified in secs (1ns by
default). It must be a time literal value that is greater or equal to the current timescale.

del ay. decr (200ps, 1ns);

get_abstime

function real get_abstine(real secs)

Return the current canonical time value, in the number of specified time unit, requardless
of the current timescale of the caller.

secs is the number of seconds in the desired time unit e.g. 1e-9 for nanoseconds.

$wite("% 3f ps\n", delay.get_abstine(le-12));

set_abstime

function void set_abstine(real t,
real secs)

Set the current canonical time value, to the number of specified time unit, reguardless of
the current timescale of the caller.
secs is the number of seconds in the time unit in the value t e.g. 1e-9 for nanoseconds.

del ay. set _abstinme(1.5, 1le-12));

UVM 1.1 Class Reference 294

WHY IS THIS NECESSARY

Integers are not sufficient, on their own, to represent time without any ambiguity: you
need to know the scale of that integer value. That scale is information conveyed outside
of that integer. In SystemVerilog, it is based on the timescale that was active when the
code was compiled. SystemVerilog properly scales time literals, but not integer values.

That's because it does not know the difference between an integer that carries an

integer value and an integer that carries a time value. The ‘time’ variables are simply

64-bit integers, they are not scaled back and forth to the underlying precision.

“tinescal e 1ns/1ps

nodul e m();
time t;

initial

begi n
#1.5;
$wite("T=%
t = 1.5;

#;
Swrite("T=%
#10ps;
Swrite(" T=%
L = 10ps;

6§
Swite("T=%
end
endnodul e

yields

=1. 500000 ns
=3. 500000 ns
=3. 510000 ns
=3.510000 ns

EOEOEnE=

ns (1.5)\n",

ns (3.0)\n",

ns (3.010)\n",

ns (3.020)\n",

ooou
N = —

3

(=X=]

$realtine());

$realtime());
$realtine());

$realtine());

Within SystemVerilog, we have to worry about

o different time scale

+ different time precision

Because each endpoint in a socket could be coded in different packages and thus be
executing under different timescale directives, a simple integer cannot be used to
exchange time information across a socket.

For example

“tinescal e 1ns/1ps

package a_pkg;

function void f(inout tine t);

class a;
t += 10ns;
endfunction
endcl ass
endpackage

UVM 1.1 Class Reference

295

“timescal e 1ps/1ps
program p;

i mport a_pkg::*
time t = O;
e

afA(:)new,
Af(t);
#i -

end
endpr ogr am

1§
$wite("T=%0d ps (10,000)\n", S$realtine());

yeilds

T=10 ps (10, 000)

Scaling is needed everytime you make a procedural call to code that may interpret a

time value in a different timescale.

Using the uvm_tlm_time type

“tinescal e 1ns/1ps
package a_pkg;
i mport uvm pkg::*
class a;
function void f(uvmtimtine t);
t.incr(10ns, 1ns);
endf unction
endcl ass

endpackage

“timescal e 1ps/1ps

program p;
i nport uvm pkg
i nport a_pkg::
uvmtlmtine t = new,
initial
begi n

a A new,

A f

#(t. real ti me(1lns

$wr i te(“'T %90d ps (10))OOO)\ n",
end

endpr ogram

$realtine());

yields

T=10000 ps (10, 000)

UVM 1.1 Class Reference

296

A similar procedure is required when crossing any simulator or language boundary, such
as interfacing between SystemVerilog and SystemC.

UVM 1.1 Class Reference 297

15. Sequence Item Pull Ports

This section defines the port, export, and imp port classes for communicating sequence
items between uvm_sequencer #(REQ,RSP) and uvm_driver #(REQ,RSP).

Contents

Sequence Item Pull This section defines the port, export, and imp port

Ports classes for communicating sequence items between
uvm_sequencer #(REQ,RSP) and uvm_driver
#(REQ,RSP).

uvm_seq_item_pull_port UVM provides a port, export, and imp connector for

#(REQ,RSP) use in sequencer-driver communication.

uvm_seq_item_pull_export This export type is used in sequencer-driver

#(REQ,RSP) communication.

uvm_seq_item_pull_imp This imp type is used in sequencer-driver

#(REQ,RSP,IMP) communication.

15.1 uvm_seq_item_pull_port #(REQ,RSP)

UVM provides a port, export, and imp connector for use in sequencer-driver
communication. All have standard port connector constructors, except that
uvm_seq_item_pull_port’s default min_size argument is 0; it can be left unconnected.

Summary

uvm_seq_item_pull_port #(REQ,RSP)

UVM provides a port, export, and imp connector for use in sequencer-driver
communication.

Crass HieraARCHY

uvm_port_base#(uvm_sqr_if base#(REQ,RSP))

uvm_seq_item_pull_port#(REQ,RSP) |

Crass DecLARATION

class uvmseq_item pul |l _port #(
type REQ = int,
type RSP = REQ)
) extends uvm port_base #(uvmsqr_if_base #(REQ RSP))

uvm_seq_item_pull_export #(REQ,RSP)

UVM 1.1 Class Reference 298

This export type is used in sequencer-driver communication. It has the standard
constructor for exports.

Summary

uvm_seq_item_pull_export #(REQ,RSP)

This export type is used in sequencer-driver communication.

Crass HierARCHY

uvm_port_base#(uvm_sqr_if base#(REQ,RSP))

uvm_seq_item_pull_export#(REQ,RSP) |

CLass DecLARATION

class uvm seq_item pul | _export #(
type REQ = 1nt,
type RSP = REOQ
) extends uvm port_base #(uvmsqr_if_base #(REQ RSP))

uvm_seq_item_pull_imp #(REQ,RSP,IMP)

This imp type is used in sequencer-driver communication. It has the standard
constructor for imp-type ports.

Summary

uvm_seq_item_pull_imp #(REQ,RSP,IMP)

This imp type is used in sequencer-driver communication.

Crass HierarcHy
uvm_port_base#(uvm_sqr_if base#(REQ,RSP))
uvm_seq_item_pull_imp#(REQ,RSP,IMP) |

Crass DecLARATION

class uvmseq_itempul |l _inp #(
type REQ = int,
type RSP = REQ
type IMP = int
) extends uvm port_base #(uvmsqr_if_base #(REQ RSP))
MEeTHODS
new

UVM 1.1 Class Reference 299

MEeTHODS

new

UVM 1.1 Class Reference 300

15.2 uvim_sqr_if_base #(REQ,RSP)

This class defines an interface for sequence drivers to communicate with sequencers.
The driver requires the interface via a port, and the sequencer implements it and
provides it via an export.

Summary

uvm_sqr_if_base #(REQ,RSP)

This class defines an interface for sequence drivers to communicate with
sequencers.

Crass DecLARATION

virtual class uvmsqr_if_base #(type T1 uvm obj ect,
T2

T1
METHODS

get_next_item Retrieves the next available item from a sequence.

try_next_item Retrieves the next available item from a sequence if
one is available.

item_done Indicates that the request is completed to the
sequencer.

wait_for_sequences Waits for a sequence to have a new item available.

has_do_available Indicates whether a sequence item is available for
immediate processing.

get Retrieves the next available item from a sequence.

peek Returns the current request item if one is in the
sequencer fifo.

put Sends a response back to the sequence that issued
the request.

MEeTHODS

get_next_item
virtual task get_next _iten{output T1 t)

Retrieves the next available item from a sequence. The call will block until an item is
available. The following steps occur on this call:

1 Arbitrate among requesting, unlocked, relevant sequences - choose the
highest priority sequence based on the current sequencer arbitration
mode. If no sequence is available, wait for a requesting unlocked relevant
sequence, then re-arbitrate.

2 The chosen sequence will return from wait_for_grant
3 The chosen sequence uvm_sequence_base::pre_do is called
4 The chosen sequence item is randomized

UVM 1.1 Class Reference 301

file:///C|/Users/Joe/Documents/accellera/uvm/docs/umv_1.1/1.1_RM/uvm_ref_1_1_html/distrib/src/tlm1/sqr_ifs.svh

5 The chosen sequence uvm_sequence_base::post_do is called
6 Return with a reference to the item

Once get_next_item is called, item_done must be called to indicate the completion of the
request to the sequencer. This will remove the request item from the sequencer fifo.

try_next_item

virtual task try_next_itemoutput T1 t)

Retrieves the next available item from a sequence if one is available. Otherwise, the
function returns immediately with request set to null. The following steps occur on this
call:

1 Arbitrate among requesting, unlocked, relevant sequences - choose the
highest priority sequence based on the current sequencer arbitration
mode. If no sequence is available, return null.

The chosen sequence will return from wait_for_grant

The chosen sequence uvm_sequence_base::pre_do is called
The chosen sequence item is randomized

The chosen sequence uvm_sequence_base::post_do is called

o 0o~ WN

Return with a reference to the item

Once try_next_item is called, item_done must be called to indicate the completion of the
request to the sequencer. This will remove the request item from the sequencer fifo.

item_done

virtual function void itemdone(input T2 t = null)

Indicates that the request is completed to the sequencer. Any
uvm_sequence_base::wait_for_item_done calls made by a sequence for this item will
return.

The current item is removed from the sequencer fifo.

If a response item is provided, then it will be sent back to the requesting sequence. The
response item must have it's sequence ID and transaction ID set correctly, using the
uvm_sequence_item::set_id_info method:

rsp.set_id_info(req);

Before item_done is called, any calls to peek will retrieve the current item that was
obtained by get_next_item. After item_done is called, peek will cause the sequencer to
arbitrate for a new item.

UVM 1.1 Class Reference 302

wait_for_sequences

virtual task wait_for_sequences()

Waits for a sequence to have a new item available. The default implementation in the
sequencer delays <uvm_sequencer_base::pound_zero_count> delta cycles. User-derived
sequencers may override its wait_for_sequences implementation to perform some other
application-specific implementation.

has_do_available

virtual function bit has_do_avail abl e()

Indicates whether a sequence item is available for immediate processing.
Implementations should return 1 if an item is available, 0 otherwise.

get

virtual task get(Tl t)

Retrieves the next available item from a sequence. The call blocks until an item is
available. The following steps occur on this call:

1 Arbitrate among requesting, unlocked, relevant sequences - choose the
highest priority sequence based on the current sequencer arbitration
mode. If no sequence is available, wait for a requesting unlocked relevant
sequence, then re-arbitrate.

The chosen sequence will return from uvm_sequence_base::wait_for_grant
The chosen sequence uvm_sequence_base::pre_do is called

The chosen sequence item is randomized

The chosen sequence uvm_sequence_base::post_do is called

Indicate item_done to the sequencer

N 0o o b~ 0N

Return with a reference to the item

When get is called, item_done may not be called. A new item can be obtained by calling
get again, or a response may be sent using either put, or uvm_driver::rsp_port.write().

peek

virtual task peek(Tl t)

Returns the current request item if one is in the sequencer fifo. If no item is in the fifo,
then the call will block until the sequencer has a new request. The following steps will
occur if the sequencer fifo is empty:

1 Arbitrate among requesting, unlocked, relevant sequences - choose the

UVM 1.1 Class Reference 303

highest priority sequence based on the current sequencer arbitration
mode. If no sequence is available, wait for a requesting unlocked relevant
sequence, then re-arbitrate.

The chosen sequence will return from uvm_sequence_base::wait_for_grant
The chosen sequence uvm_sequence_base::pre_do is called
The chosen sequence item is randomized

a b~ W N

The chosen sequence uvm_sequence_base::post_do is called

Once a request item has been retrieved and is in the sequencer fifo, subsequent calls to
peek will return the same item. The item will stay in the fifo until either get or
item_done is called.

put

virtual task put(T2 t)

Sends a response back to the sequence that issued the request. Before the response is
put, it must have it’s sequence ID and transaction ID set to match the request. This can
be done using the uvm_sequence_item::set_id_info call:

rsp.set_id_info(req);

This task will not block. The response will be put into the sequence response queue or it
will be sent to the sequence response handler.

UVM 1.1 Class Reference 304

16. PreperINED CoMPONENT CLASSES

Components form the foundation of the UVM. They encapsulate behavior of drivers,
scoreboards, and other objects in a testbench. The UVM library provides a set of
predefined component types, all derived directly or indirectly from uvm_component.

Predefined Components

Pre-defined Components

| wvm_object |

[uwm_report_object |

| uvm_component |

F

| ovm_test | REq, 5P |
H uvm_driver T

—{_wmen | | REQ, AP |

i uvm_push_i driver]' -
—| uvim_agent |

I uvm_seguencer_base |
—l uvm_monitor I [MREG RSP |

I UVIT_SeqUencer param base r -

{uvm_scoreboard| T IREQREP] IREQ, RSP,
I uvm_sequencer | |uvm_push saquancar|

rI_T |
I uvm_subsecriber ~ |

571
uvm_random_s’ﬂmﬁlﬁ]'

Summary

Predefined Component Classes

Components form the foundation of the UVM.

UVM 1.1 Class Reference 305

16.1 uvm_component

The uvm_component class is the root base class for UVYM components. In addition to the
features inherited from uvm_object and uvm_report_object, uvm_component provides
the following interfaces:

Hierarchy provides methods for searching and traversing the
component hierarchy.

Phasing defines a phased test flow that all components follow,
with a group of standard phase methods and an API
for custom phases and multiple independent phasing
domains to mirror DUT behavior e.g. power

Configuration provides methods for configuring component topology
and other parameters ahead of and during component
construction.

Reporting provides a convenience interface to the
uvm_report_handler. All messages, warnings, and
errors are processed through this interface.

Transaction recording provides methods for recording the transactions
produced or consumed by the component to a
transaction database (vendor specific).

Factory provides a convenience interface to the uvm_factory.
The factory is used to create new components and
other objects based on type-wide and instance-specific
configuration.

The uvm_component is automatically seeded during construction using UVM seeding, if
enabled. All other objects must be manually reseeded, if appropriate. See
uvm_object::reseed for more information.

Summary

uvm_component

The uvm_component class is the root base class for UVM components.
CLass HierarcHY
uvm_void
uvm_object

uvm_report_object

uvim_component

CLass DECLARATION
virtual class uvm conmponent extends uvm report_object

new Creates a new component with the given leaf
instance name and handle to to its parent.

HierarcHY INTERFACE These methods provide user access to

UVM 1.1 Class Reference 306

get_parent
get_full_name
get_children
get_child
get_next_child
get_first_child
get_num_children

has_child

lookup

get_depth

PHASING INTERFACE

build_phase

connect_phase

end_of_elaboration_phase

start_of_simulation_phase

run_phase
pre_reset_phase
reset_phase
post_reset_phase
pre_configure_phase
configure_phase
post_configure_phase
pre_main_phase
main_phase
post_main_phase
pre_shutdown_phase

shutdown_phase

UVM 1.1 Class Reference

information about the component hierarchy,
i.e., topology.
Returns a handle to this component’s
parent, or null if it has no parent.
Returns the full hierarchical name of this
object.
This function populates the end of the
children array with the list of this
component’s children.

These methods are used to iterate through
this component’s children, if any.
Returns the number of this component’s
children.

Returns 1 if this component has a child
with the given name, 0 otherwise.
Looks for a component with the given
hierarchical name relative to this
component.

Returns the component’s depth from the
root level.

These methods implement an interface which
allows all components to step through a
standard schedule of phases, or a
customized schedule, and also an API to
allow independent phase domains which can
jump like state machines to reflect behavior
e.g.

The uvm_build_phase phase

implementation method.

The uvm_connect_phase phase

implementation method.

The uvm_end_of _elaboration_phase phase

implementation method.

The uvm_start_of_simulation_phase phase

implementation method.

The uvm_run_phase phase implementation

method.

The uvm_pre_reset_phase phase

implementation method.

The uvm_reset_phase phase

implementation method.

The uvm_post_reset_phase phase

implementation method.

The uvm_pre_configure_phase phase

implementation method.

The uvm_configure_phase phase

implementation method.

The uvm_post_configure_phase phase

implementation method.

The uvm_pre_main_phase phase

implementation method.

The uvm_main_phase phase

implementation method.

The uvm_post_main_phase phase

implementation method.

The uvm_pre_shutdown_phase phase

implementation method.

The uvm_shutdown_phase phase

307

post_shutdown_phase

extract_phase
check_phase
report_phase
final_phase
phase_started

phase_ready_to_end

phase_ended
set_domain
get_domain
define_domain

set_phase_imp

suspend
resume
resolve_bindings

CONFIGURATION INTERFACE

set_config_int
set_config_string
set_config_object

get_config_int
get_config_string
get_config_object

check_config_usage

apply_config_settings

print_config_settings

print_config

UVM 1.1 Class Reference

implementation method.

The uvm_post_shutdown_phase phase
implementation method.

The uvm_extract_phase phase
implementation method.

The uvm_check_phase phase
implementation method.

The uvm_report_phase phase
implementation method.

The uvm_final_phase phase
implementation method.

Invoked at the start of each phase.
Invoked when all objections to ending the
given phase have been dropped, thus
indicating that phase is ready to end.
Invoked at the end of each phase.

Apply a phase domain to this component
and, if hier is set, recursively to all its
children.

Return handle to the phase domain set on
this component

Builds custom phase schedules into the
provided domain handle.

Override the default implementation for a
phase on this component (tree) with a
custom one, which must be created as a
singleton object extending the default one
and implementing required behavior in
exec and traverse methods

Suspend this component.

Resume this component.

Processes all port, export, and imp
connections.

Components can be designed to be user-
configurable in terms of its topology (the
type and number of children it has), mode of
operation, and run-time parameters (knobs).

Calling set_config_* causes configuration
settings to be created and placed in a table
internal to this component.

These methods retrieve configuration
settings made by previous calls to their
set_config_* counterparts.

Check all configuration settings in a
components configuration table to
determine if the setting has been used,
overridden or not used.

Searches for all config settings matching
this component’s instance path.

Called without arguments,
print_config_settings prints all configuration
information for this component, as set by
previous calls to set_config_*.
Print_config_settings prints all configuration
information for this component, as set by
previous calls to set_config_* and exports
to the resources pool.

308

print_config_with_audit

print_config_matches

OBiecTioN INTERFACE

raised

dropped

all_dropped

FactorYy INTERFACE

create_component

create_object

set_type_override_by_type

set_inst_override_by_type

set_type_override

set_inst_override

print_override_info

UVM 1.1 Class Reference

Operates the same as print_config except
that the audit bit is forced to 1.

Setting this static variable causes
get_config_* to print info about matching
configuration settings as they are being
applied.

These methods provide object level hooks
into the uvm_objection mechanism.

The raised callback is called when this or a
descendant of this component instance
raises the specfied objection.

The dropped callback is called when this or
a descendant of this component instance
drops the specfied objection.

The all_droppped callback is called when all
objections have been dropped by this
component and all its descendants.

The factory interface provides convenient
access to a portion of UVM'’s uvm_factory
interface.

A convenience function for
uvm_factory::create_component_by_name,
this method calls upon the factory to create
a new child component whose type
corresponds to the preregistered type
name, requested_type_name, and instance
name, name.

A convenience function for
uvm_factory::create_object_by_name, this
method calls upon the factory to create a
new object whose type corresponds to the
preregistered type name,
requested_type_name, and instance name,
name.

A convenience function for
uvm_factory::set_type_override_by_type,
this method registers a factory override for
components and objects created at this
level of hierarchy or below.

A convenience function for
uvm_factory::set_inst_override_by_type,
this method registers a factory override for
components and objects created at this
level of hierarchy or below.

A convenience function for
uvm_factory::set_type_override_by_ name,
this method configures the factory to create
an object of type override_type_name
whenever the factory is asked to produce a
type represented by original_type_name.
A convenience function for
uvm_factory::set_inst_override_by_type,
this method registers a factory override for
components created at this level of
hierarchy or below.

This factory debug method performs the
same lookup process as create_object and
create_component, but instead of creating
an object, it prints information about what
type of object would be created given the

309

HierarcHicAL REPORTING INTERFACE

set_report_id_verbosity_hier

set_report_severity_id_verbosity_hier

set_report_severity_action_hier
set_report_id_action_hier

set_report_severity_id_action_hier

set_report_default_file_hier
set_report_severity_file_hier
set_report_id_file_hier
set_report_severity_id_file_hier

set_report_verbosity_level_hier

pre_abort

REcorRDING INTERFACE

accept_tr

do_accept_tr

begin_tr
begin_child_tr

do_begin_tr

end_tr

do_end_tr

record_error_tr
record_event_tr

print_enabled

recorder

UVM 1.1 Class Reference

provided arguments.

This interface provides versions of the
set_report_* methods in the
uvm_report_object base class that are
applied recursively to this component and all
its children.

These methods recursively associate the
specified verbosity with reports of the given
severity, id, or severity-id pair.

These methods recursively associate the
specified action with reports of the given
severity, id, or severity-id pair.

These methods recursively associate the
specified FILE descriptor with reports of the
given severity, id, or severity-id pair.

This method recursively sets the maximum
verbosity level for reports for this
component and all those below it.

This callback is executed when the
message system is executing a UVM_EXIT
action.

These methods comprise the component-
based transaction recording interface.

This function marks the acceptance of a
transaction, tr, by this component.

The accept_tr method calls this function to
accommodate any user-defined post-
accept action.

This function marks the start of a
transaction, tr, by this component.

This function marks the start of a child
transaction, tr, by this component.

The begin_tr and begin_child_tr methods
call this function to accommodate any
user-defined post-begin action.

This function marks the end of a
transaction, tr, by this component.

The end_tr method calls this function to
accommodate any user-defined post-end
action.

This function marks an error transaction by
a component.

This function marks an event transaction by
a component.

This bit determines if this component
should automatically be printed as a child
of its parent object.

Specifies the uvm_recorder object to use
for begin_tr and other methods in the
Recording Interface.

310

new

function new (string nane,
uvm _component parent)

Creates a new component with the given leaf instance name and handle to to its parent.
If the component is a top-level component (i.e. it is created in a static module or
interface), parent should be null.

The component will be inserted as a child of the parent object, if any. If parent already
has a child by the given name, an error is produced.

If parent is null, then the component will become a child of the implicit top-level
component, uvm_top.

All classes derived from uvm_component must call super.new(name,parent).

HieraRCHY INTERFACE

These methods provide user access to information about the component hierarchy, i.e.,
topology.

get_parent

virtual function uvm conponent get_parent ()

Returns a handle to this component’s parent, or null if it has no parent.

get_full_name

virtual function string get_full_nane ()

Returns the full hierarchical name of this object. The default implementation
concatenates the hierarchical name of the parent, if any, with the leaf nhame of this
object, as given by uvm_object::get_name.

get_children

function void get_children(uvm conponent children[$])

This function populates the end of the children array with the list of this component’s
children.

uvm 1 conponent array[$];

nﬁ get chlldren(array)
forea (array[i]
do_sonet hi ng(array[|]);

UVM 1.1 Class Reference 311

get_child

function uvm conponent get_child (string nane)

get_next_child

function int get_next_child (ref string nane)

get_first_child
function int get_first_child (ref string nane)

These methods are used to iterate through this component’s children, if any. For
example, given a component with an object handle, comp, the following code calls
uvm_object::print for each child:

string nane;
uvm conponent child;
if (conp.get _first_child(nane))

do Ee idn hi | d()
chi = conp. get _chi nane) ;
child. pri ntngj) ;g -

end while (conp.get_next_child(nane));

get_num_children

function int get_numchildren ()

Returns the number of this component’s children.

has_child

function int has_child (string name)

Returns 1 if this component has a child with the given name, 0 otherwise.

lookup

function uvm conponent | ookup (string nane)

Looks for a component with the given hierarchical name relative to this component. If
the given name is preceded with a ‘. (dot), then the search begins relative to the top

UVM 1.1 Class Reference 312

level (absolute lookup). The handle of the matching component is returned, else null.
The name must not contain wildcards.

get_depth
function int unsigned get_depth()

Returns the component’s depth from the root level. uvm_top has a depth of 0. The test
and any other top level components have a depth of 1, and so on.

PHAsING INTERFACE

These methods implement an interface which allows all components to step through a
standard schedule of phases, or a customized schedule, and also an API to allow
independent phase domains which can jump like state machines to reflect behavior e.g.
power domains on the DUT in different portions of the testbench. The phase tasks and
functions are the phase name with the _phase suffix. For example, the build phase
function is build_phase.

All processes associated with a task-based phase are killed when the phase ends. See
<uvm_phase::execute> for more details.

build_phase
virtual function void build_phase(uvm phase phase)

The uvm_build_phase phase implementation method.

Any override should call super.build_phase(phase) to execute the automatic configuration
of fields registed in the component by calling apply_config_settings. To turn off
automatic configuration for a component, do not call super.build_phase(phase).

This method should never be called directly.

connect_phase

virtual function void connect_phase(uvm phase phase)

The uvm_connect_phase phase implementation method.

This method should never be called directly.

end_of_elaboration_phase

virtual function void end_of el aboration_phase(uvm phase phase)

UVM 1.1 Class Reference 313

The uvm_end_of _elaboration_phase phase implementation method.

This method should never be called directly.

start_of_simulation_phase

virtual function void start_of_simulation_phase(uvm phase phase)

The uvm_start_of simulation_phase phase implementation method.

This method should never be called directly.

run_phase

virtual task run_phase(uvm phase phase)

The uvm_run_phase phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. Thn
the phase will automatically ends once all objections are dropped using
phase.drop_objection().

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

The run_phase task should never be called directly.

pre_reset_phase

virtual task pre_reset_phase(uvm phase phase)

The uvm_pre_reset_phase phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

reset_phase

virtual task reset_phase(uvm phase phase)

The uvm_reset_phase phase implementation method.

UVM 1.1 Class Reference 314

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

post_reset_phase

virtual task post_reset phase(uvm phase phase)

The uvm_post_reset_phase phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

pre_configure_phase

virtual task pre_configure_phase(uvm phase phase)

The uvm_pre_configure_phase phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

configure_phase
virtual task configure_phase(uvm phase phase)
The uvm_configure_phase phase implementation method.
This task returning or not does not indicate the end or persistence of this phase. It is

necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using

UVM 1.1 Class Reference 315

phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

post_configure_phase

virtual task post_configure_phase(uvm phase phase)

The uvm_post_configure_phase phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

pre_main_phase

virtual task pre_main_phase(uvm phase phase)

The uvm_pre_main_phase phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

main_phase

virtual task main_phase(uvm phase phase)

The uvm_main_phase phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be

UVM 1.1 Class Reference 316

killed once the phase ends.

This method should not be called directly.

post_main_phase

virtual task post_mai n_phase(uvm phase phase)

The uvm_post_main_phase phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

pre_shutdown_phase

virtual task pre_shutdown_phase(uvm phase phase)

The uvm_pre_shutdown_phase phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

shutdown_phase

virtual task shutdown_phase(uvm phase phase)

The uvm_shutdown_phase phase implementation method.

This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

UVM 1.1 Class Reference 317

post_shutdown_phase

virtual task post_shutdown_phase(uvm phase phase)
The uvm_post_shutdown_phase phase implementation method.
This task returning or not does not indicate the end or persistence of this phase. It is
necessary to raise an objection using phase.raise_objection() to cause the phase to
persist. Once all components have dropped their respective objection using
phase.drop_objection(), or if no components raises an objection, the phase is ended.

Any processes forked by this task continue to run after the task returns, but they will be
killed once the phase ends.

This method should not be called directly.

extract_phase

virtual function void extract_phase(uvm phase phase)

The uvm_extract_phase phase implementation method.

This method should never be called directly.

check_phase

virtual function void check_phase(uvm phase phase)

The uvm_check_phase phase implementation method.

This method should never be called directly.

report_phase

virtual function void report_phase(uvm phase phase)

The uvm_report_phase phase implementation method.

This method should never be called directly.

final_phase

virtual function void final_phase(uvm phase phase)

The uvm_final_phase phase implementation method.

UVM 1.1 Class Reference 318

This method should never be called directly.

phase_started

virtual function void phase_started (uvm phase phase)

Invoked at the start of each phase. The phase argument specifies the phase being
started. Any threads spawned in this callback are not affected when the phase ends.

phase_ready_to_end

virtual function void phase_ready_to_end (uvm phase phase)

Invoked when all objections to ending the given phase have been dropped, thus
indicating that phase is ready to end. All this component’s processes forked for the
given phase will be killed upon return from this method. Components needing to
consume delta cycles or advance time to perform a clean exit from the phase may raise
the phase’s objection.

phase. rai se_objection(this,"Reason");

This effectively resets the wait-for-all-objections-dropped loop for phase. It is the
responsibility of this component to drop the objection once it is ready for this phase to
end (and processes killed).

phase_ended

virtual function void phase_ended (uvm phase phase)

Invoked at the end of each phase. The phase argument specifies the phase that is
ending. Any threads spawned in this callback are not affected when the phase ends.

set_domain

function void set_domai n(uvm domai n donai n,
i nt hi er)

Apply a phase domain to this component and, if hier is set, recursively to all its children.

Calls the virtual define_domain method, which derived components can override to
augment or replace the domain definition of ita base class.

get_domain

UVM 1.1 Class Reference 319

function uvm domai n get_donmai n()

Return handle to the phase domain set on this component

define_domain

virtual protected function void define_donmai n(uvm donmai n donai n)

Builds custom phase schedules into the provided domain handle.

This method is called by set_domain, which integrators use to specify this component
belongs in a domain apart from the default ‘uvm’ domain.

Custom component base classes requiring a custom phasing schedule can augment or
replace the domain definition they inherit by overriding <defined_domain>. To augment,
overrides would call super.define_domain(). To replace, overrides would not call
super.define_domain().

The default implementation adds a copy of the uvm phasing schedule to the given
domain, if one doesn’t already exist, and only if the domain is currently empty.

Calling set_domain with the default uvm domain (see
<uvm_domain::get_uvm_domain>) on a component with no define_domain override
effectively reverts the that component to using the default uvm domain. This may be
useful if a branch of the testbench hierarchy defines a custom domain, but some child
sub-branch should remain in the default uvm domain, call set_domain with a new domain
instance handle with hier set. Then, in the sub-branch, call set_domain with the default
uvm domain handle, obtained via uvm_domain::get_uvm_domain().

Alternatively, the integrator may define the graph in a new domain externally, then call
set_domain to apply it to a component.

set_phase_imp

function void set_phase_i np(uvm phase phase,
uvm phase 1 np,
i nt hi er)

Override the default implementation for a phase on this component (tree) with a custom

one, which must be created as a singleton object extending the default one and
implementing required behavior in exec and traverse methods

The hier specifies whether to apply the custom functor to the whole tree or just this
component.

suspend

virtual task suspend ()

Suspend this component.

UVM 1.1 Class Reference 320

This method must be implemented by the user to suspend the component according to
the protocol and functionality it implements. A suspended component can be
subsequently resumed using resume().

resume

virtual task resune ()

Resume this component.

This method must be implemented by the user to resume a component that was
previously suspended using suspend(). Some component may start in the suspended
state and may need to be explicitly resumed.

resolve_bindings

virtual function void resolve_bindings ()

Processes all port, export, and imp connections. Checks whether each port’s min and
max connection requirements are met.

It is called just before the end_of_elaboration phase.

Users should not call directly.

CONFIGURATION INTERFACE

Components can be designed to be user-configurable in terms of its topology (the type
and number of children it has), mode of operation, and run-time parameters (knobs).
The configuration interface accommodates this common need, allowing component
composition and state to be modified without having to derive new classes or new class
hierarchies for every configuration scenario.

set_config_int

virtual function void set_config_int (string i nst _narme,
string field_nane,
uvmbitstreamt val ue)

set_config_string

virtual function void set_config_string (string inst_nane,
string field_nane,
string val ue)

UVM 1.1 Class Reference 321

set_config_object

virtual function void set_config_object (string i nst _narme,
stri ng field nane,
uvm obj ect val ue,
bi t cl one)

Calling set_config_* causes configuration settings to be created and placed in a table
internal to this component. There are similar global methods that store settings in a
global table. Each setting stores the supplied inst_name, field_name, and value for later
use by descendent components during their construction. (The global table applies to all
components and takes precedence over the component tables.)

When a descendant component calls a get_config_* method, the inst_name and
field_name provided in the get call are matched against all the configuration settings
stored in the global table and then in each component in the parent hierarchy, top-
down. Upon the first match, the value stored in the configuration setting is returned.
Thus, precedence is global, following by the top-level component, and so on down to the
descendent component’s parent.

These methods work in conjunction with the get_config_* methods to provide a
configuration setting mechanism for integral, string, and uvm_object-based types.
Settings of other types, such as virtual interfaces and arrays, can be indirectly supported
by defining a class that contains them.

Both inst_name and field_name may contain wildcards.

* For set_config_int, value is an integral value that can be anything from 1 bit to
4096 bits.

* For set_config_string, value is a string.

* For set_config_object, value must be an uvm_object-based object or null. Its
clone argument specifies whether the object should be cloned. If set, the object is
cloned both going into the table (during the set) and coming out of the table
(during the get), so that multiple components matched to the same setting (by
way of wildcards) do not end up sharing the same object.

The following message tags are used for configuration setting. You can use the standard
uvm report messaging interface to control these messages. CFGNTS -- The configuration
setting was not used by any component. This is a warning. CFGOVR -- The configuration
setting was overridden by a setting above. CFGSET -- The configuration setting was used
at least once.

See get_config_int, get_config_string, and get_config_object for information on getting
the configurations set by these methods.

get_config_int

virtual function bit get_config_int (string field_nane,
uvm bitstreamt val ue

get_config_string

UVM 1.1 Class Reference 322

virtual function bit get_config_string (string field_nane,
string val ue)

get_config_object

virtual function bit get_config_object (stri ng. field_nane,
uvm obj ect val ue,
bi t cl one)

These methods retrieve configuration settings made by previous calls to their
set_config_* counterparts. As the methods’ names suggest, there is direct support for
integral types, strings, and objects. Settings of other types can be indirectly supported
by defining an object to contain them.

Configuration settings are stored in a global table and in each component instance. With
each call to a get_config_* method, a top-down search is made for a setting that
matches this component’s full name and the given field_name. For example, say this
component’s full instance name is top.ul.u2. First, the global configuration table is
searched. If that fails, then it searches the configuration table in component ‘top’,
followed by top.ul.

The first instance/field that matches causes value to be written with the value of the
configuration setting and 1 is returned. If no match is found, then value is unchanged
and the 0 returned.

Calling the get_config_object method requires special handling. Because value is an
output of type uvm_object, you must provide an uvm_object handle to assign to (not a
derived class handle). After the call, you can then $cast to the actual type.

For example, the following code illustrates how a component designer might call upon the
configuration mechanism to assign its data object property, whose type myobj_t derives
from uvm_object.

cl ass nyconponent extends uvm conponent;
| ocal myobj t data;

function void build_phase(uvm phase phase);
uvm obj ect tnp;
super . bui | d_phase(phase) ;
if (?et _config_object("data", tnp))
If (T$cast(data, tnp))
$di splay("error! config setting for 'data' not of type nyobj_t");
endfunction

The above example overrides the build_phase method. If you want to retain any base
functionality, you must call super.build_phase(uvm_phase phase).

The clone bit clones the data inbound. The get_config_object method can also clone the
data outbound.

See Members for information on setting the global configuration table.

UVM 1.1 Class Reference 323

check_config_usage

function void check_config usage (bit recurse)

Check all configuration settings in a components configuration table to determine if the
setting has been used, overridden or not used. When recurse is 1 (default),
configuration for this and all child components are recursively checked. This function is
automatically called in the check phase, but can be manually called at any time.

Additional detail is provided by the following message tags
» CFGOVR -- lists all configuration settings that have been overridden from above.
o CFGSET -- lists all configuration settings that have been set.

To get all configuration information prior to the run phase, do something like this in your
top object:

function void start_of _simulation ghase(uvm phase phase);
set _report_id_action_hier("CFGOVR', UVM DI SPLAY);
set_report_id_action_hier("CFGSET", UVM DI SPLAY);
check_config_usage();

endf uncti on

apply_config_settings

virtual function void apply_config_settings (bit verbose)

Searches for all config settings matching this component’s instance path. For each
match, the appropriate set_*_local method is called using the matching config setting’s
field_name and value. Provided the set_*_local method is implemented, the component
property associated with the field_name is assigned the given value.

This function is called by uvm_component::build_phase.

The apply_config_settings method determines all the configuration settings targeting this
component and calls the appropriate set_*_local method to set each one. To work, you
must override one or more set_*_local methods to accommodate setting of your
component’s specific properties. Any properties registered with the optional
“uvm_*_field macros do not require special handling by the set_*_local methods; the
macros provide the set_*_local functionality for you.

If you do not want apply_config_settings to be called for a component, then the
build_phase() method should be overloaded and you should not call
super.build_phase(phase). Likewise, apply_config_settings can be overloaded to
customize automated configuration.

When the verbose bit is set, all overrides are printed as they are applied. If the
component’s print_config_matches property is set, then apply_config_settings is
automatically called with verbose = 1.

UVM 1.1 Class Reference 324

print_config_settings

function void print_config _settings (string field
uvm conponent conp
bi t recurse)

Called without arguments, print_config_settings prints all configuration information for
this component, as set by previous calls to set_config_*. The settings are printing in the
order of their precedence.

If field is specified and non-empty, then only configuration settings matching that field, if
any, are printed. The field may not contain wildcards.

If comp is specified and non-null, then the configuration for that component is printed.

If recurse is set, then configuration information for all comp’s children and below are
printed as well.

This function has been deprecated. Use print_config instead.

print_config

function void print_config(bit recurse
bit audit)

Print_config_settings prints all configuration information for this component, as set by
previous calls to set_config_* and exports to the resources pool. The settings are
printing in the order of their precedence.

If recurse is set, then configuration information for all children and below are printed as
well.

if audit is set then the audit trail for each resource is printed along with the resource
name and value

print_config_with_audit
function void print_config with audit(bit recurse)
Operates the same as print_config except that the audit bit is forced to 1. This interface

makes user code a bit more readable as it avoids multiple arbitrary bit settings in the
argument list.

If recurse is set, then configuration information for all children and below are printed as
well.

print_config_matches

static bit print_config _matches = 0

Setting this static variable causes get_config_* to print info about matching configuration

UVM 1.1 Class Reference 325

settings as they are being applied.

OBiecTION INTERFACE

These methods provide object level hooks into the uvm_objection mechanism.

raised
virtual function void raised (uvm objection objection,
uvm obj ect sour ce_obj,
string descri pti on,
i nt count)

The raised callback is called when this or a descendant of this component instance raises
the specfied objection. The source_obj is the object that originally raised the objection.

The description is optionally provided by the source_obj to give a reason for raising the

objection. The count indicates the number of objections raised by the source_obj.

dropped
virtual function void dropped (uvm objection objection,
uvm obj ect sour ce_obj,
string descri pti on,
i nt count

The dropped callback is called when this or a descendant of this component instance
drops the specfied objection. The source_obj is the object that originally dropped the
objection. The description is optionally provided by the source_obj to give a reason for
dropping the objection. The count indicates the number of objections dropped by the the
source_obj.

all_dropped

virtual task all_dropped (uvm objection objection,

uvm obj ect sour ce_obj,
string description,
i nt count

The all_droppped callback is called when all objections have been dropped by this
component and all its descendants. The source_obj is the object that dropped the last
objection. The description is optionally provided by the source_obj to give a reason for
raising the objection. The count indicates the number of objections dropped by the the
source_obj.

FAacTtorY INTERFACE

The factory interface provides convenient access to a portion of UVM’s uvm_factory

UVM 1.1 Class Reference 326

interface. For creating new objects and components, the preferred method of accessing
the factory is via the object or component wrapper (see uvm_component_registry
#(T,Tname) and uvm_object_registry #(T,Tname)). The wrapper also provides functions
for setting type and instance overrides.

create_component

function uvm conponent create_conponent (string requested_type_nane,
string nane

A convenience function for uvm_factory::create_component_by_name, this method calls
upon the factory to create a new child component whose type corresponds to the
preregistered type name, requested_type _name, and instance name, name. This method
is equivalent to:

factory. create_conponent _by_ name(requested_type_nane,]
get _fulT_nane(), nane, this);

If the factory determines that a type or instance override exists, the type of the
component created may be different than the requested type. See set_type_override
and set_inst_override. See also uvm_factory for details on factory operation.

create_object

function uvm obj ect create_object (string requested_type_nane,
string name ="")

A convenience function for uvm_factory::create_object_by_name, this method calls upon
the factory to create a new object whose type corresponds to the preregistered type
name, requested_type name, and instance name, name. This method is equivalent to:

factory. create_object_by nane(requested type_nane,
get _ful [_nane(), nane);

If the factory determines that a type or instance override exists, the type of the object
created may be different than the requested type. See uvm_factory for details on
factory operation.

set_type_override_by_type

static function void set_type override_by_type (
uvm obj ect _wr apper origi nal_type,
uvm obj ect _wr apper override_type,
bi t repl ace =1

UVM 1.1 Class Reference 327

A convenience function for uvm_factory::set_type_override_by_type, this method
registers a factory override for components and objects created at this level of hierarchy
or below. This method is equivalent to:

factory.set _type_override_by type(original _type, override_type,replace);

The relative_inst_path is relative to this component and may include wildcards. The
original_type represents the type that is being overridden. In subsequent calls to
uvm_factory::create_object_by_type or uvm_factory::create_component_by_type, if the
requested_type matches the original_type and the instance paths match, the factory will
produce the override_type.

The original and override type arguments are lightweight proxies to the types they
represent. See set_inst_override_by_type for information on usage.

set_inst_override_by_type

function void set_inst_override_by_type(stri ng. relative_inst_path
uvm obj ect _wr apper ori gi nal _type,
uvm obj ect _wrapper override_type

A convenience function for uvm_factory::set_inst_override_by_type, this method registers
a factory override for components and objects created at this level of hierarchy or
below. In typical usage, this method is equivalent to:

factory.set_inst_override_by_type({get_full_name(),".",
relative_inst_path},
origi nal _type,
override_type);

The relative_inst_path is relative to this component and may include wildcards. The
original_type represents the type that is being overridden. In subsequent calls to
uvm_factory::create_object_by_type or uvm_factory::create_component_by_type, if the
requested_type matches the original_type and the instance paths match, the factory will
produce the override_type.

The original and override types are lightweight proxies to the types they represent. They
can be obtained by calling type::get_type(), if implemented by type, or by directly calling
type::type_id::get(), where type is the user type and type_id is the name of the typedef
to uvm_object_registry #(T,Thame) or uvm_component_registry #(T,Thame).

If you are employing the “uvm_*_utils macros, the typedef and the get_type method
will be implemented for you. For details on the utils macros refer to Utility and Field
Macros for Components and Objects.

The following example shows “uvm_*_utils usage

UVM 1.1 Class Reference 328

class conp extends uvm conponent;
uvm conponent _uti | s(conp)

endcl ass

class nyconp extends uvm conponent;
uvm conponent _uti | s(nyconp)

endcl ass
class bl ock extends uvm conponent;
“uvm conponent _uti | s(bl ock)
conp c_inst;]]
virtual function void build phase(uvm phase phase);
set _inst_override_by type("c_inst", conp::get_type(),

- myconp: Tget _type());
endf uncti on

endcl ass

set_type_override

static function void set_type_override(string original_type_nane,
string override_type_nane,
bi t repl ace = 1)

A convenience function for uvm_factory::set_type_override_by_name, this method
configures the factory to create an object of type override_type name whenever the
factory is asked to produce a type represented by original_type name. This method is
equivalent to:

factory. set_type_override_by_nane(original _type_nane,
override_type_nane, replace);

The original_type_name typically refers to a preregistered type in the factory. It may,
however, be any arbitrary string. Subsequent calls to create_component or
create_object with the same string and matching instance path will produce the type
represented by override_type_name. The override_type name must refer to a
preregistered type in the factory.

set_inst_override

function void set_inst_override(string relative_inst_path,
string original _type_nang,
string override_type_nane)

A convenience function for uvm_factory::set_inst_override_by_type, this method registers
a factory override for components created at this level of hierarchy or below. In typical
usage, this method is equivalent to:

factory.set_inst_override_by_name({get_full_name(),".",
relative_inst_path},
ori gi nal _type_nang,
override_type_nane);

UVM 1.1 Class Reference 329

The relative_inst_path is relative to this component and may include wildcards. The
original_type_name typically refers to a preregistered type in the factory. It may,
however, be any arbitrary string. Subsequent calls to create_component or
create_object with the same string and matching instance path will produce the type
represented by override_type name. The override_type name must refer to a
preregistered type in the factory.

print_override_info

function void print_override_info(string requested_type_nane,
string nane ="")

This factory debug method performs the same lookup process as create_object and

create_component, but instead of creating an object, it prints information about what
type of object would be created given the provided arguments.

HierarRcHIicAL REPORTING INTERFACE

This interface provides versions of the set_report_* methods in the uvm_report_object
base class that are applied recursively to this component and all its children.

When a report is issued and its associated action has the LOG bit set, the report will be
sent to its associated FILE descriptor.

set_report_id_verbosity_hier

function void set _report_id _verbosity hier (string id,
i nt verbosity)

set_report_severity_id_verbosity_hier

function void set_report_severity_id_verbosity_hier(uvmseverity _sgveri ty,
string id,
i nt verbosity)

These methods recursively associate the specified verbosity with reports of the given
severity, id, or severity-id pair. An verbosity associated with a particular severity-id pair
takes precedence over an verbosity associated with id, which takes precedence over an
an verbosity associated with a severity.

For a list of severities and their default verbosities, refer to uvm_report_handler.

set_report_severity_action_hier

function void set_report_severity_action_hier (uvmseverity severity,

UVM 1.1 Class Reference 330

uvm action action)

set_report_id_action_hier

function void set_report_id_action_hier (string id,
uvm acti on action)

set_report_severity_id_action_hier

function void set_report_severity_id_action_hier(uvmseverity severity,
string id,
uvm acti on action)

These methods recursively associate the specified action with reports of the given
severity, id, or severity-id pair. An action associated with a particular severity-id pair
takes precedence over an action associated with id, which takes precedence over an an
action associated with a severity.

For a list of severities and their default actions, refer to uvm_report_handler.

set_report_default_file_hier

function void set _report_default _file _hier (UWMFILE file)

set_report_severity_file_hier

function void set_report_severity_file_hier (uvmseverity severity,
UVM_FI LE file

set_report_id_file_hier

function void set _report_id file_hier (string id,
UVM FI'LE file)

set_report_severity_id_file_hier

function void set_report_severity_id_file_hier(uvmseverity sgveri ty,
string id,
UVM FI'LE file)

These methods recursively associate the specified FILE descriptor with reports of the
given severity, id, or severity-id pair. A FILE associated with a particular severity-id pair
takes precedence over a FILE associated with id, which take precedence over an a FILE
associated with a severity, which takes precedence over the default FILE descriptor.

UVM 1.1 Class Reference 331

For a list of severities and other information related to the report mechanism, refer to
uvm_report_handler.

set_report_verbosity_level_hier

function void set_report_verbosity level _hier (int verbosity)

This method recursively sets the maximum verbosity level for reports for this component
and all those below it. Any report from this component subtree whose verbosity exceeds
this maximum will be ignored.

See uvm_report_handler for a list of predefined message verbosity levels and their
meaning.

pre_abort

virtual function void pre_abort

This callback is executed when the message system is executing a UVM_EXIT action.
The exit action causes an immediate termination of the simulation, but the pre_abort
callback hook gives components an opportunity to provide additional information to the
user before the termination happens. For example, a test may want to executed the
report function of a particular component even when an error condition has happened to
force a premature termination you would write a function like:

function void nyconponent::pre_abort();
report();
endf uncti on

The pre_abort() callback hooks are called in a bottom-up fashion.

REcORDING INTERFACE

These methods comprise the component-based transaction recording interface. The
methods can be used to record the transactions that this component “sees”, i.e. produces
or consumes.

The API and implementation are subject to change once a vendor-independent use-model
is determined.

accept_tr

function void accept_tr (uvmtransaction tr,)
time accept _tine)

This function marks the acceptance of a transaction, tr, by this component. Specifically,

UVM 1.1 Class Reference 332

it performs the following actions:

» Calls the tr's uvm_transaction::accept_tr method, passing to it the accept_time
argument.

* Calls this component’s do_accept_tr method to allow for any post-begin action in
derived classes.

* Triggers the component’s internal accept_tr event. Any processes waiting on this
event will resume in the next delta cycle.

do_accept_tr

virtual protected function void do_accept tr (uvmtransaction tr)

The accept_tr method calls this function to accommodate any user-defined post-accept
action. Implementations should call super.do_accept_tr to ensure correct operation.

begin_tr
function integer begin_tr (uvmtransaction tr,
string stream name
string | abel
string desc
tinme begin_tine
i nteger parent _handl e)

This function marks the start of a transaction, tr, by this component. Specifically, it
performs the following actions:

e Calls tr's uvm_transaction::begin_tr method, passing to it the begin_time
argument. The begin_time should be greater than or equal to the accept time. By
default, when begin_time = 0, the current simulation time is used.

If recording is enabled (recording_detail '= UVM_OFF), then a new database-transaction
is started on the component’s transaction stream given by the stream argument. No
transaction properties are recorded at this time.

* Calls the component’s do_begin_tr method to allow for any post-begin action in
derived classes.

* Triggers the component’s internal begin_tr event. Any processes waiting on this
event will resume in the next delta cycle.

A handle to the transaction is returned. The meaning of this handle, as well as the
interpretation of the arguments stream_name, label, and desc are vendor specific.

begin_child_tr

function integer begin_child_tr (uvmtransaction tr,

i nt eger par ent _handl e

string stream nane

string | abel

string desc

tinme begi n_tine)

UVM 1.1 Class Reference 333

This function marks the start of a child transaction, tr, by this component. Its operation
is identical to that of begin_tr, except that an association is made between this
transaction and the provided parent transaction. This association is vendor-specific.

do_begin_tr
virtual protected function void do_begin_tr (uvmtransaction tr,
string stream nane,
i nt eger tr_handle)

The begin_tr and begin_child_tr methods call this function to accommodate any user-
defined post-begin action. Implementations should call super.do_begin_tr to ensure
correct operation.

end_tr
function void end_tr (uvmtransaction tr,
tine end_tinme
bit free_handl e)

This function marks the end of a transaction, tr, by this component. Specifically, it
performs the following actions:

e Calls tr's uvm_transaction::end_tr method, passing to it the end_time argument.
The end_time must at least be greater than the begin time. By default, when
end_time = 0, the current simulation time is used.

The transaction’s properties are recorded to the database-transaction on which it was
started, and then the transaction is ended. Only those properties handled by the
transaction’s do_record method (and optional “~uvm_*_field macros) are recorded.

¢ Calls the component’s do_end_tr method to accommodate any post-end action in
derived classes.

* Triggers the component’s internal end_tr event. Any processes waiting on this
event will resume in the next delta cycle.

The free_handle bit indicates that this transaction is no longer needed. The
implementation of free_handle is vendor-specific.

do_end_tr

virtual protected function void do_end_tr (uvmtransaction tr,
i nt eger tr_handl e)

The end_tr method calls this function to accommodate any user-defined post-end action.
Implementations should call super.do_end_tr to ensure correct operation.

record_error_tr

function integer record_error_tr (string stream namne

UVM 1.1 Class Reference 334

uvm obj ect info

string | abel

string desc

tinme error_tine

bi t keep_active)

This function marks an error transaction by a component. Properties of the given
uvm_object, info, as implemented in its uvm_object::do_record method, are recorded to
the transaction database.

An error_time of 0 indicates to use the current simulation time. The keep_active bit
determines if the handle should remain active. If 0, then a zero-length error transaction
is recorded. A handle to the database-transaction is returned.

Interpretation of this handle, as well as the strings stream_name, label, and desc, are
vendor-specific.

record_event_tr

function integer record_event tr (stri ng_ st ream nane
uvm obj ect info

string | abel

string desc

tinme event _tine

bi t keep_active)

This function marks an event transaction by a component.
An event_time of 0 indicates to use the current simulation time.

A handle to the transaction is returned. The keep_active bit determines if the handle
may be used for other vendor-specific purposes.

The strings for stream_name, label, and desc are vendor-specific identifiers for the
transaction.

print_enabled

bit print_enabled =1

This bit determines if this component should automatically be printed as a child of its
parent object.

By default, all children are printed. However, this bit allows a parent component to
disable the printing of specific children.

recorder

uvm r ecorder recorder

Specifies the uvm_recorder object to use for begin_tr and other methods in the
Recording Interface. Default is uvm_default_recorder.

UVM 1.1 Class Reference

335

This class is the virtual base class for the user-defined tests.

The uvm_test virtual class should be used as the base class for user-defined tests.
Doing so provides the ability to select which test to execute using the UVM_TESTNAME
command line or argument to the uvm_root::run_test task.

For example

pronpt > SI M _COVWAND +UVM TESTNAME=t est _bus_retry

The global run_test() task should be specified inside an initial block such as

initial run_test();

Multiple tests, identified by their type name, are compiled in and then selected for
execution from the command line without need for recompilation. Random seed selection
is also available on the command line.

If +UVM_TESTNAME=test_name is specified, then an object of type ‘test_name’ is
created by factory and phasing begins. Here, it is presumed that the test will instantiate
the test environment, or the test environment will have already been instantiated before
the call to run_test().

If the specified test_name cannot be created by the uvm_factory, then a fatal error
occurs. If run_test() is called without UVYM_TESTNAME being specified, then all
components constructed before the call to run_test will be cycled through their
simulation phases.

Deriving from uvm_test will allow you to distinguish tests from other component types
that inherit from uvm_component directly. Such tests will automatically inherit features
that may be added to uvm_test in the future.

Summary

uvim_test

This class is the virtual base class for the user-defined tests.
CLass HieraRcHY
uvm_void
uvm_object
uvm_report_object

uvm_component

UVM 1.1 Class Reference 336

uvim_test

CLass DEcCLARATION
virtual class uvmtest extends uvm conponent

MEeTHODS
new Creates and ini